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Minimal Dynamical Systems on Connected
Odd Dimensional Spaces

Huaxin Lin

Abstract. Let f: $?"*1 — §2"*1 be 3 minimal homeomorphism (n > 1). We show that the crossed
product C(S§2"+1) x p Z has rational tracial rank at most one. Let Q2 be a connected, compact, metric
space with finite covering dimension and with H'(Q,Z) = {0}. Suppose that K; (C(Q)) = Z® G;,
where G; is a finite abelian group, i = 0,1. Let 8: O — Q be a minimal homeomorphism. We also
show that A = C(Q) xg Z has rational tracial rank at most one and is classifiable. In particular, this
applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done
by studying minimal homeomorphisms on X x Q, where X is the Cantor set.

1 Introduction

Let Q) be a compact metric space and let a: QO - Q be a minimal homeomorphism.
We study the resulting C*-algebra C(Q) x4 Z, the crossed product C*-algebra. There
are interesting connections between minimal dynamical systems and the study of
C*-algebras. A classical result of Giordano, Putnam, and Skau [7] showed that two
Cantor minimal systems are strongly orbit equivalent if and only if the associated
crossed product C*-algebras are isomorphic. The C*-algebra theoretic aspect of their
result is indebted to the fact that the crossed product C*-algebras are unital simple
AT-algebras of real rank zero and belong to the classifiable C*-algebras; i.e., they are
classified up to isomorphisms by their Elliott invariant, namely, in this case, by their
ordered K-theory. In turn, the Cantor minimal systems are classified up to strong
orbit equivalence by their ordered K-theory. C*-algebras of the form C(Q) %, Z are
always simple when « is minimal. These C*-algebras provide a rich source of uni-
tal separable amenable simple C* -algebras that satisfy the so-called Universal Coefhi-
cient Theorem. On the other hand, the rapidly developed Elliott program, otherwise
known as the program of classification of amenable C*-algebras by K-theoretical in-
variant, provides a possible way to characterize minimal dynamical systems by their
K-theoretical invariant. It is therefore important to known when C(Q) %, Z belongs
to the classifiable class of amenable simple C*-algebras (in the sense of the Elliott
program). Elliott and Evans ([4]) showed that all irrational rotation algebras that are
crossed product C*-algebras from minimal dynamical systems on the circle are clas-
sifiable; in fact, they are unital AT-algebras of real rank zero. Let A = C(Q) x, Z.
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In [19], it was shown that, if X has finite covering dimension and p4(Ko(A)), the
tracial image of Ko (A), is dense in Aff(T(A)), the space of real continuous affine
functions on the tracial state space, then A has tracial rank zero (the converse also
holds). Consequently A is classifiable. In the case where Q is connected and (Q, &) is
unique ergodic, this result states, for example, that if (), &) has an irrational rotation
number, then A is classifiable. In particular, this recovers the previously mentioned
case of irrational rotations on the circle. With the development in the Elliott program
(11,16, 29]), the classifiable C*-algebras now include the class of C*-algebras which
are rationally of tracial rank at most one. The result of [19] were further pushed by
Toms and Winter to the great generality: if projections in A separate the tracial states,
then A has rational tracial rank zero. Moreover these crossed products are also clas-
sifiable by the Elliott invariant (see [27]).

On the other hand, during these developments, minimal dynamical systems on
X x T, where X is the Cantor set and T is the circle, have been studied (see [14,15]).
More general cases were also studied in [25]. In both [19] and [27], Putnam algebra
A, was used as the main bridge. One may view that A, is a large C*-subalgebra of
A = C(Q) x4 Z by “taking away ” one point. In [14,15], a smaller C*-subalgebra
is used. That C*-subalgebra may be viewed as a C*-subalgebra by “taking away”
a circle (an idea of Hiroki Matui). This method seemed to be too specialized to be
useful in general case. However, it has recently been adopted by K. Strung [24] to
obtain very interesting results about crossed products of certain minimal systems on
the odd spheres. Strung showed that by studying the minimal systems of product
type X x $2"*1, one can provide examples of non-unique ergodic minimal dynamical
systems on the odd spheres whose crossed product C*-algebras are classifiable. Let A
be the crossed product from the minimal system on the odd sphere. It should be noted
these crossed products A may not have rational tracial rank zero. In particular, their
projections may not separate the tracial states. Nevertheless, A has rational tracial
rank at most one; i.e., A ® U has tracial rank at most one for any UHF-algebra U of
infinite type. Therefore, a more general classification result from [10] can be applied.

In [24], the minimal homeomorphisms on the odd spheres are assumed to be limits
of periodic homeomorphisms constructed by “fast approximation-conjugation”. In
this note we will study the general minimal dynamical systems on the odd spheres as
well as on the odd dimensional real projective spaces. We show that crossed product
C*-algebras from any minimal dynamical systems on odd spheres or odd dimensional
real projective spaces have rational tracial rank at most one and are classifiable. It
should be mentioned that there are no minimal homeomorphisms on even spheres
or on the even dimensional real projective spaces because of the existence of fixed
points. We actually prove much more general results (see Theorems 6.1 and 6.2). The
methods we used here to study the minimal dynamical systems on the product spaces
of the form X x ), where X is the Cantor set and () is a connected space, are those
developed in [14,15]. We also use a recent uniqueness theorem (see Theorem 4.2)
from [12]. We continue to use the argument of Strung as well as an embedding result
of Winter [30]. The classification result in [10] is also applied.

This paper is organized as follows. The next section includes some preliminary
concepts. In Section 3, we study general minimal dynamical systems on the product

https://doi.org/10.4153/CJM-2014-035-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-035-7

872 H. Lin

spaces X x Q, where X is the Cantor set and () is a connected compact space. Exam-
ples of minimal dynamical systems studied in Section 3 are presented in Section 4.
Applications are presented in Section 5.

2 Preliminaries

Definition 2.1 Let A be a unital C*-algebra. Denote by U(A) the unitary group
of A and Uy (A) the normal subgroup of connected component of U(A) containing
the identity. Denote by CU(A) the closure of the commutator subgroup of Uy (A).
Denote by T(A) the tracial state space of A. We also use T'(A) for traces of the form
7®Tr on M, (A) for all integers n, where Tr is the standard (un-normalized) trace on
M,,. Denote by pa: Ko(A) - Aff(T(A)) the homomorphism defined by p4([p]) =
7(p) for all projections in M, (A), n=1,2,....

Definition 2.2 Let A= M, and a € A. We use det(a) for the usual determinant. If
A =C(X)® M,, we will often identify A with C(X, M,,). If f € A, we use det(f) for
the function det(f)(x) in C(X).

Let A be a unital C*-algebra with T(A) # @ andlet u € Uy(A). Let

{u(t):t€[0,1]} c Up(A)

be a piecewise smooth continuous path with #(0) = u and u(1) = 14. Define

Z,(u(t)):(i)folf(d“(t)u(t)*)dt forall 7eT(A).

2mi dt

Ifu e CU(A), then A, (u(t)) € pa(Ko(A)). This de La Harp-Skandalis determinant
(which is independent of the choice of the path) gives an injective homomorphism

8+ Ug (4)/CU(A) ~ ABE(T(A))/pa(Ko(A))

(see [26]).
Ifu € U(A), we will use u for its image in U(A)/CU(A).

Definition 2.3 Let () be a compact metric space. Denote by Homeo(€)) the set of all
homeomorphisms on Q equipped with the topology of point-wise convergence. Let
B € Homeo(Q). Denote by f: C(Q) - C(Q) the automorphism defined by (f) =
foptorall f € C(Q).IfF c Q, denote by yr the characteristic function of F. When
Fis a clopen set, yr € C(Q).

Lemma 2.4 ([14, Lemma 2.1]) Let X be the Cantor set and let Q be a connected
compact metric space. Let 3 € Homeo(X x Q). Then there is y € Homeo(X) and a
continuous map ¢: X — Homeo(Q) such that B(x, &) = (y(x), ¢« (&)) forall (x, &) €
X x Q.

Proof Let px:X x Q — X and po: X x Q — Q be projection maps such that
px(x,&) =xand pa(z, &) = Eforall (x,&) e Xx Q. Fix (x, &) € Xx Q. Then {x} xQ
is the connected component of X x ( containing (x, £). The homeomorphism 3 maps
it into a connected component containing S(x, &) = (x1, &), x1 = px(B(x,&)) and
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& = pa(B(x, &)). Therefore, as just mentioned, the component is {x;} x Q. Define
y(x) = px(B(x, &)) for x € X. Since px(B(x,&)) = px(B(x,&")), itis a well defined
map. Since f3 is a homeomorphism, we can also see that y € Homeo(X). Fix x € X,
then map ¢ (&) = pa(f(x,£&)) is a homeomorphism from Q onto Q. It is easy to
check that ¢: X - Homeo(Q) is continuous. [ |

2.1 Notation
Let X be the Cantor set and let Q be a connected compact metric space. Then
Ko(C(X xQ)) =C(X,Ko(C(Q))) and Ki(C(XxQ)) =C(X,K(C(Q))),
where the group K;(C(Q)) is viewed as a discrete space, i = 0,1. Moreover,
Ko(C(X x Q)), = { f € (X, Ko(C(Q))) : () € Ko(C(0)). }
- C(X. Ko(C(0))) .
Let (X, «) be a Cantor minimal system. Following [7], denote
K'(X,a) = C(X,Z)/{f - foa™: feC(X,Z)}.
Define ¢,: C(Q) - C(€Q) to be the isomorphism defined by 6:(f) = f o ¢, forall
f € C(Q). Denote by (¢,).::K;(C(Q)) - K;(C(Q)) the induced isomorphism,
l_l()),elfine 6 (foa)(x) = ()} (foal(x)) for x € X, i = 0,1, where f ¢
C(X,K;(C(©))). Denote
K'(X,ax¢,Ko(C(Q))) =
C(X,Ki(C)) {f=($)ii(fea™): feC(X,Ki(C(Q)))}
with K%(X, a x ¢, Ko(C(Q))) equipped with the positive cone

KO(X,ax ¢, Ko(C(Q)))s = {[]+ f € C(X. Ko (C(Q)). ).

Denote
ker(idx.o —(a x $) )i = { f € C(X, Ki(C(Q))) : f = (§)2i(fea") =0},
i=0,1.
When Q is connected, pc(a)(Ko(C(£2))) = Z. This is also used in the following
computation.

Proposition 2.5 Let (X, a) be a Cantor minimal system, let Q be a connected compact
metric space, and let ¢: X — Homeo(Q). Let A = C(X x Q) yx¢Z and C = C(X) x4 Z.
Then there are short exact sequences

21 0-K°(X,ax¢,Ko(C(Q))) - Ko(A) > ker(idxxq —(ax ¢);1) =0,
(22) 0-K'(X,ax¢, K (C(Q))) — Ki(A) — ker(idxxa —(a x ¢)55) — 0.
Moreover,

23) pa(K°(X. (ax ) Ko(C(Q)))) = pe(K°(X. @),
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Furthermore, if (¢x)«i = idk,(c(a))> i = 0,1, then
0 K°(X,a xid, Ko(C(Q))) - Ko(A) - K;(C(Q)) — 0,
0 K'(X,a xid, K (C(Q))) = Ki(A) - Ko(C(Q)) — 0.

Proof Itis clear that (2.1) and (2.2) follow directly from the Pimsner-Voiculescu six-
term exact sequence. To see the second statement, we note that Q) is connected and all
tracial states on Ko(C(Q)) agree with the rank. It follows that p¢ () (Ko(C(Q))) =
Z. Moreover, pca)(fo (¢)30)) = pc(a)(f) forany f € Ko(C(£2)), since ¢ does not
change the rank of any projections of M,,(C(Q)). Therefore, any (a x ¢) 4 -invariant
state on Ko (C(X) ® C(Q)) can be viewed as an a.q-invariant state on C(X,Z). We
then check that (2.3) holds.
To see the last statement, we note that

Ki(C(XxQ)) =C(X,Ki(C(Q))), i=0,L

In the case ¢.; = idk,(c(a)), i = 0,1, (only) constant elements are invariant under
(a ® ¢); 1. 1t follows that

ker(idxxq —(a x ¢)5}) = Kina(C(Q)), i=0,1 |

Lemma 2.6 Let Q be a compact metric space with U(C(Q)) = Uy(C(Q)) and
B € Homeo(Q). Then

ps(Ko(B)) = pa(1c0( Ko (C(Q)))),

where B = C(Q) xg Z and 1: C(Q) — B is the natural embedding. Consequently, when
Q is connected, pp(Ko(B)) = Z, and in Proposition 2.5, if H'(Q, Z) = {0}, then

pa(Ko(A)) = pc(K" (X, a)),
where C = C(X) x4 Z.

Proof The first part follows from [5, Chapter VI] (see also [1, 10.10.5]). For the sec-
ond part, we note that X has zero dimension, so H'(X x Q,Z) = {0}. Therefore, by
(2.3),

pa(Ko(A)) = pa(K*(X, (@ x ¢) ™, Ko(C(Q)))) = pc(K*(X, @),
where C = C(X) x aZ. [ |

Definition 2.7 Denote by A the class of unital, Z-stable, separable, simple, amenable
C*-algebras that satisfy the Universal Coefficient Theorem and have rational tracial
rank at most one, i.e., A ® U has tracial rank at most one, where U is any infinite
dimensional UHF-algebra (see [10]). This class of C*-algebras are classifiable in the
sense that if A, B € A, then A = B if and only if they have the isomorphic Elliott in-
variants ([10]). This class contains all unital simple AH-algebras with no dimension
growth as well as the Jiang-Su algebra. A description of the range of the invariant is
presented in [17].
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3 The C*-subalgebra A,

Definition 3.1 Let (X, a) be a Cantor minimal system and let ( be a connected,
finite dimensional compact, metric space. Fix x € X. Denote by A, the C*-subalgebra
of A= C(X x Q) x4x¢ Z generated by C(X x Q) and uCo(X \ {x} x Q), where u is
the unitary in A that implements the action « x ¢.

Theorem 3.2  Let X and Q be as above. The C*-algebra A, is isomorphic to a unital
simple AH-algebra with slow dimension growth.

Proof Part of the proof is known. As in the proof of [14, Proposition 3.3(5)], using
groupoid C*-algebra, A, is simple since we assume that & x ¢ is minimal.

We now assume that the dimension of Q is d. To show that A, is locally AH, we
use an argument of I. Putnam ([22, 3.1]) and proceed as in the proof of [14, Proposi-
tion 3.3]. Let

P, = {X(n,v,k):ve Vn,k:1,2,...,k(v)}

be a sequence of Kakutani-Rohlin partition which gives a Bratteli-Vershik model for
(X, 0) (see [8, Theorem 4.2] or [20, Sect. 2])). We also assume the roof sets

R(P) = U X, (9)

shrink to a single point x. Let A, be the C*-algebra generated by C(X x Q) and
uC(R(P,)¢ x Q). Since R(P,41) € R(P,), Ay € Apyr, n = 1,2,.... It is easy see
that A, is the norm closure of the union of all A’s. By using a similar argument to
[22, Lemma 3.1], it can be shown that A, is isomorphic to

3.1) P My, ) ® C(X(n,v,ha(v))) ® C(Q) = P My, () (C(Yay)),

where Y, , is a compact metric space of covering dimension d. In fact, let

hu(v)
pv = Z XX (n,v,k)
k=1

for each v € V. It is easy to check that p,u(1 - yr(p,)) = (1~ xr(p,)) Py It follows
that p, is central in A,,. Put e; j(n,v) = ui_jXX(n,‘,,j)XQ. One observes that, for each
nand v, {e; j(n,v)}i; 1< i, j< h,(v)) form matrix units in A, with

ha (v) h(v)

izl €i,i = lZ:l XX(n,v,i =Pun,yv-
Note that xx(u,v.n,(v))AnXX(nv.h(v)) = C(X(1,v,h,(v)) x Q). One checks that
the C*-subalgebra generated by {e; ;j(n,v)} and Xx(n,v,h,(v)An XX (n,v,ha(v) 18 i50-
morphic to My, (,y(C(X(n,v,h,(v)) x Q)). Therefore, (3.1) holds. It follows from
[13, Theorem 1.1] that A is a unital simple AH-algebra with no dimension growth. W
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Proposition 3.3 Let (X, a) be a Cantor minimal system, let x € X, let Q be a con-
nected finite dimensional compact metric space, and let ¢: X -~ Homeo(Q) be a con-
tinuous map. Then

(32) Ki(Ax)2
Ki(C(Xx Q)/{f-($)ii(foa™): f(x) =0, f e C(X,Ki(C(Q))) }.

Moreover, the embedding 1: A, — A gives an affine homeomorphism 1y T(A) — T(Ay)
and gives an order isomorphism pa_(Ko(Ax)) = pc(K°(X, «)), where C = C(X) x4
7. Moreover, if g € C(X x Q) is a projection, then uqu* and q are equivalent in A,.

Proof LetA, beasin the proof of Theorem 3.2;i.e, A,, is generated by C(X x () and
uC(R(P) x Q). There is a natural homomorphism from K;(C(X x Q)) to K;(A,)
(by the embedding of C(X x Q)). By (3.1), this homomorphism is surjective. For
i = 0,1, the kernel is

{f-(@®)i(fea™):f(y)=0 forall yeR(Py), feC(X Ko(C(Q)))}.

Thus (3.2) holds.

We now prove that for any projection g € C(X x Q), uqu* and q are equivalent in
A, Ifg(x,w) = 0 for any w € Q, then uq € A,. It follows that qu* € A,. Therefore
uqu* and q are equivalent in A,. Suppose that g(x, w) # 0 for some w € Q. Since q
is a projection in C(X x Om) and Q is connected, g(x, w) =1 for all w. It suffices to
show that

[a]-[go(ax¢)]=0 in Ko(Ay).

Let f(y,w) = [q(y, )] — [Ic(xx0) (> @)] for all (y, w) € X x Q. It follows that

[a]-[go(ax¢)]=f-folaxd)™+[lcpmxal — [legxxa) o (ax ) 7).

Note that since f(x, w) = 0 for all w and 1¢(xxq) — le(xxa) © (& % $)™' =0, w f may
be represented by an element F € C(X, Ko(C(Q))) with F(x) = 0. From (3.2), this
implies that [q] — [q o (a x ¢)7'] = 0 in Ko(A). This proves that q and uqu* are
equivalent in A,.

To show T(Ay) = T(A), it suffices to show that every tracial state 7 € T(Ay)
can be extended to tracial state of A. Let U be a clopen neighborhood of x such that
U,a}(U),...,a "(U) are mutually disjoint. Let p = yyxq. We have shown that
p, upu”, and u” pu™" are mutually equivalent in A, and mutually orthogonal. The
proof that T(A,) = T(A) can then be proceed exactly the same way as that of [14,
Proposition 3.3(4)].

To show that p4, (Ko(Ax)) = pc(K°(X, «)) (C = C(X) x4 Z), we first note that
we have just proved that the map sending [yo] to [xo] (for clopen sets O c X) is
an embedding from K°(X, «,Z) into Ko(A,). Since Q is connected, the subgroup
K°(X, &) injectively maps into K°(X, a x ¢, Ko(C(Q))) c Ko(A). [ |
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4 Tracial Rank

Definition 4.1 Let T be a compact Choquet simplex. Suppose that Y is a compact
metric space and let L: C(Y)s.,. - Aff(T) be an affine map. We say L is unital and
strictly positive if L(1¢(yy)(7) = 1forall 7€ T and L(f)(7) > 0 for all 7if f # 0 and

f=o.

Suppose that L: C(Y)s... — Aff(T) is a strictly positive affine homomorphism. Let
f#0and f >0. Then since T(A) is compact,

inf{L(f)(r): e T(A)} > 0.

For each open subset O c Y, let

d(0) = irelg{sup{L(f)(r) :0< f<Lsupp(f) c O}}

Then, for any non-empty open subset O c Y, d(O) > 0. For each a € (0,1), let
{y1,¥2,-.., ¥ym} ¢ Y be an a/4-dense subset. Define
D(a,i) =d(B(x;,a/4)), i=12,...,m.

Put

vo(a) =min{D(a,i):i=1,2,...,m}.

Then vo:(0,1) — (0,1) is non-decreasing. For any y € Y, there exists i such that
B(x,a) > B(x,a/4). Thus, d(B(x,a)) > (3/4)Aq(a). Put v(a) = (3/4) v, (a)
for all a € (0,1). Now let A be a unital separable simple C*-algebra with T(A) = T
and let ¢: C(Y) — A be a unital monomorphism. Then ¢y: C(Y)... - Aff(T(A))
defined by

¢tt(f)(7) =to¢(f) forall feC(Y).n.

is a unital strictly positive affine homomorphism. It is easy to check that, for any
1> ¢ > 0, there is a finite subset H c C(Y);.,. and # > 0 such that

brop (B(x,7)) 2 v(r)

for all open balls with radius r > ¢, provided that
[To¢(g) - L(g)(T)|<n forall ged,
where p104 is the Borel probability measure induced by the state 7 o ¢.
We will use the following uniqueness theorem.

Theorem 4.2 ([12, Theorem 5.9]) Let Y be a compact metric space and let T be
a compact Choquet simplex. Suppose that L: C(Y)s... - Aff(T) is a unital strictly
positive affine map. Let € > 0 and let F c C(Y) be a finite subset. There exists a finite
subset H ¢ C(Y)s.a., a finite subset P ¢ K(C(Y)), a finite subset U c U.(K1(C(Y))),
8 > 0, and n > 0 satisfying the following. Suppose that ¢1, ¢,:C(Y) — A are two
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unital monomorphisms for some unital simple C*-algebra A of tracial at most one with
T(A) = T such that

[¢1]lp = [$2]]o,
(4.1) |[to¢i(g)-L(g)(7)| <8 forall geIH, i=1,2, and

dist(¢1(v)p2(v*),14) <y forall vell

Then there is a unitary w € A such that

[w o1 (f)w—¢2(f)|| <e forall fe3F.

Proof This is a variation of [12, Theorem 5.9]. Let v:(0,1) — (0,1) be as in Defi-
nition 4.1 (depending on L). For any 0 < d < 1, if § is small enough and 7 is large
enough, by the discussion above in Definition 4.1 and by (4.1),

freotn (B(x,1)) > 9 ()
foralll>r > d, i =1,2. Note also that (4.1) implies that
[To¢1(g) —To¢,(g) <28 forall geH.
Therefore, Theorem 4.2 follows from [12, Lemma 5.7], and [12, Theorem 5.9]. [ |

The following is a well-known lemma.

Lemma 4.3  Let Y be a compact metric space such that U(C(Y)) = Up(C(Y)). Then
forany z e Ky(C(Y)) there is an integer m > 1 and a unitary v € M,,(C(Y)) such that
[v]=2z and det(v)(y)=1 forall yeY.

Proof There exists an integer m > 1and a unitary w € M,,(C(Y')) such that [w] = z.

Put woo(y) = det(w)(y) forall y e Y. Then woo € U(C(Y)) = Upg(C(Y)). It
follows that

wio(y) 0 - 0
w= * ! O e vsmn(c(r).
1

Define v = wow. Then [v] = [w] = z and

det(v)(y) = det(wo)(y) det(w)(y) =1 forall yeY. [ |

Lemma 4.4 Let (X, a) be a Cantor minimal system, let Q) be a connected finite di-
mensional compact metric space with U(C(Q)) = Upg(C(Q)) and let

¢: X - Homeo(Q)

be a continuous map. Denote A = C(X x Q) Xqyxy Z. Suppose that there is x € X and
an integer k > 1 such that

(4.2) [®y] = [idc(ay] in KL(C(Q),C(Q)),
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where ®,: C(Q) — C(Q) is defined by

Dy (f) = f o palungyy © Parrnagyy 0o dy forall feC(Q)

and forall y € {a/(x) : j € Z} and a* is minimal. Let x € X. Then forany N e N, e > 0
and any finite subset F ¢ C(X x Q), there is an integer M > N, a clopen neighborhood
O of x and partial isometry w € A, that satisfy the following:

i) a™M(0),a™N*(0),...,0,a(0),...,aM(0) are mutually disjoint and u(0O) <
€/ M for every a-invariant probability measure y;

(i) w*w = yo and ww” = x,m(0);

(iil) w*iwu €Ay fori=0,1,...,N-1

(iv) |wf - fw|<eforall feT.

Proof Since U(C(Q)) is connected and X is zero-dimensional, one has

U(C(X x Q)) = Up(C(X x Q)).

It follows from Lemma 2.6 that

pa(Ko(A)) = pa(K* (X, &, Z)).
Therefore, by Proposition 3.3, the embedding 1: A, — A gives

(4.3) pa,(Ko(Ax)) = pa(Ko(A)).

Note A is a unital simple AH-algebra with no dimension growth, by Theorem 3.2.
So TR(A,) < 1. It is generated by C(X x Q) and uC((X \ {x}) x Q). The g -
1x ® g gives a unital embedding from C(Q) into C(X x Q). Therefore, there is a unital
embedding 1: C(Q) — A,. Let L: C(Q) - Aff(T(A,)) be the unital strictly positive
affine homomorphism induced by 1. Note that L(g) = 7(1® g) for all g € C(Q);..
and forall 7 € T(A,).

Without loss of generality, we may assume that
F={f®lg,lx®g:feFy and geF},

where ¥y ¢ C(X) and F; c C(Q) are finite subsets. There exists a clopen neighbor-
hood B, of x such that
(4.4) If(x)-f(y) <e/8 forall yeB, andforall feF,.
Since a* is minimal, we can find n > N such that «*"(x) c B,. Choose a sufficiently
small clopen neighborhood O, of x such that (i) holds and

a(y) e B, forall yeO,.

Moreover, we may also require that O, U a¥"(0,) c B,. Let p; = yo, and q =
Xakn(0,)- Put M = kn. Then

uMgpu™ = uMgu™Mg, forall geC(Q).
Define ¥, = q)a(l—k)(n—l)(x) o q)‘x(Z—k)(n—Z)(x) o--- 0 ®,. It follows that
(4.5) [¥:] = [idC(Q)] X [idc(o)] X X [idc(o)] = [idc(n)]‘
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Let H ¢ C(Q)s.a, P ¢ K(C(Q)), and U ¢ U (K;(C(Q))) be finite subsets, let
8 > 0 and 5 > 0 be required by Theorem 4.2 for €/4 (in place of €) and F; (in place
of F) associated with L given above. Let V = {v,v2,....,vm} € Mg(C(Q)) such
that U c {v; : 1< i < m}, and by Lemma 4.3,
det(v;)(y) =1 forall yeQ, i=12,...,m.

There is a finite subset G ¢ C(Q) and &; > 0 satisfying the following. Suppose that
hy, hy: C(Q) — B are two unital homomorphisms (for any unital C*-algebra B) such
that

[hi(g) - ha(g)| <8y forall ge§.
Then [hy]|p = [h2]|p. Let G = G U H and let

K
U= diag(m).
There is a neighborhood O of x with O c O, such that
4.6) |uMgpu™ - ¥, (g)q| < min{d, &;,¢/8} forall geG, and
|UMy, PU*M — (¥, @ idp, ) (vi)Q| <1, 1<i<m,
where
P=Xo> q=Xam0) P=p®idy,, and Q=q®idy,.

Define y1,0,¥2,0: C(Q) = C(X x Q) by y1,0(f) = f (as constant along X) and
V2,0(f) = Y. (f) forall f € C(Q). It follows from (4.5) that

(47) [v2.0] = [va0] KL(C(Q), C(X x Q)).
Define y1, y5: C(Q) » q(C(X x Q))q by y1(g) = ¥1,0(8)lan(0) and y5(g) = y1 ©
V2,0(g) = ¥ (g) - g forall g e C(Q). It follows from (4.7) that

[vil=[y3] in KL(C(Q),qC(X x Q)q).
Denote by j the embedding gC(X x Q)q — qAxq, i = joy:, i =0,1. Then

[vi] =[y2] in KL(C(Q),qAxq).
It follows from (4.6) and Thereom 3.2 that

[toyi(g) —toyy(g)|<d forall geXH andforallte T(qArq).
Note

Toy(g)=1(q®g) forall 7eT(A) andforallge C(Q)s...
It follows that

L(g)(7) = Tc;l(p;()g) forall geC(Q)s.a.
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forall 7€ T(A).
Note also that y;(v;)y2(v}) € Mg(C(X x Q)) for some integer m > 1. In virtue
of [5, Theorem 10, Chapter V1],

A(yi(v)ya(vi)) = A(det(ya(vi)ya(v)))) = A(det(ya(vi)) det(ya(v)))
= A(ya(det(vi))ya(det(v}))) = A(lga.q) € pa,(Ko(qAxq)).
It follows that
(4.8) dist(y1(vi)y2 (v} ), Lgarq) = 0.
It follows from Theorem 4.2 that there is a unitary w; € qA,q such that

lwiy2(g)wi - vi(g)[ <e/4 forall geF.

There is a unitary normalizer w, € A, N C*(X, a) of C(X) such that w,pw; = gq.
Note that w, has the form wy = ¥,,c7 ™ xr-1(m)> where I: X — Z is a continuous
map. Define y3, y4, y5: C(Q) — pA,p by ws(g) = gp and

ya(g) = wywiuMgpuMwiw, and  ys(g) = wiwi(g o W) pwi w2

for all g € C(Q). As above, we compute that

[vs]=[ys] in KL(C(Q), pAsp).
By (4.6), the choice of G; and 8, [y5]|» = [w4]|». It follows from Theoerem 3.2 that

toys3(g) =toyy(g) forall geC(Q) andforallte T(pA,p).
It is clear that y3(v;)ya(v}) € CU(pAp). It follows that

Ar(y3(vi)va(v})) € pa(Ko(A)).
Therefore, by (4.3),

dist(yy (vi)y2(v*),144,4) = 0.
By applying Theorem 4.2 again, we obtain a unitary w; € pA, p such that

|wsgpws —va(g)| <e/4 forall ge3.

Put w = wows. Thenw € A, and
wrw = pwiwywawsp = p = Xo,
WW" = Wawswiwy = WapW, =4 = Yam(0)-

So (ii) holds. Moreover (see also (4.6)),

[wepw™ - gqll < |wa(wsgpw3)wy = waya(g)wy | + [waya(g)w; - g4l

<ef4+ [wiu gpuMwi — gq]
<e/4+e/8+ [wi¥i(g)wi - gql
<el4+¢/8+¢e/4=5¢/8 forall geT.

https://doi.org/10.4153/CJM-2014-035-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-035-7

882 H. Lin

It follows that

lwg—gwl = [wgp—gqwll = |(wgp - gqw)w™| = [wgpw™ - gq] < 5¢/8
for all g € F,. Since O U a™(0) c By, by (4.4), for all f € F,
lwf = fwl<lwpf-wpf(x)| +wpf(x) - f(x)qw] + [ f(x)qw - fw]
<ef8+|wf(x) - f(x)w| +¢/8 =¢€/4.
Thus (iv) holds. To see (iii), we note that
pu’ = PUta-1(0)UXa=(0)" U Xa-i(0)>
(4'q)" = quan-1(0) U Xam-2(0) U ak-1(0)

fori=1,2,...,N —1.Since x € O, (i) implies that pu’ and u*q are in A,. From this
one concludes that u*'wu’ € A, which proves the lemma. ]

In Lemma 4.4, if k = 1, assumption (4.2) implies that

[¢:] = lidc(a)] in KL(C(Q),C(Q)).

Corollary 4.5  In the case where k = 1, Lemma 4.4 holds if the condition U(C(Q)) =
Uo(C(Q)) is replaced by the following: for eachz € U(C(Q))/Uo(C(Q)), there exists
ve U(C(Q)) with [u] = zand h € C(X)s.a. such that

(4.9) $y(v) =vexp(ih(y)) forall yeX.

Proof Foreachz € U(C(Q))/Up(C(Q)), choose v € U(C()) such that [u] = z
and (4.9) holds. Therefore, the rotation map

Ar(v(ax ¢)(v")) = ~t(h) + peixxa)(Ko(C(X x C(Q))))
forall t € T(C(X x Q)). Since « is minimal, C(X) x4 Z is a unital AT-algebra of real
rank zero. In particular, pg(Ko(B)) is dense in Aff(T(B)), where B = C(X) x4 Z.
Note that

p5(Ko(B)) = pa(K*(X, 0, Z)) and  h(y) € C(X)s.a..
It follows that for each 7 € T(A),

(4.10) Ar(v(ax¢)(v*)) € pa(KO(X,a,Z)).
It follows from the last part of Proposition 2.5 and (4.10) that

pa,(Ko(Ax)) = pa(Ko(A)).
In the proof of Lemma 4.4, if v; € U(C(Q)), then

(v va(v)* = viq¥e(vi)q =v;dx(v]) = exp(-ih;)
for some hj € C(X)s.,.. It follows that

D:(y1(vj)v2(vj)) = -7(hjq) € pa, (Ko(qAxq))>
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since hjq € C(X).Ifv; # U(C(Q)) and v; € Mg (C(Q)) with K > 1, let w; = detv; €
U(C(Q)) and

detv]’f 0 - 0

, 0 1 - 0
Vj = Vj.

1

Note that det(v}) = 1. As in the proof of Lemma 4.4, one has

A(yi(vya((v))")) € pa, (Ko(gAxq)).
Putw’ = (vi(v}))". Then

AMy(v)va(v))) = A(y(wiviva((wiv))™))
= A (DY (V) w2 (W) )y (w)))
= Ay (v)ya((v)*) + Ay (W) )ya(w)))
= A (DY((v)*) = Ay (w))ya(w))) € pa, (Ko(qAxq)).

Thus (4.8) also holds here. The rest of the proof is exactly the same as for Lemma 4.4.
]

The following lemma is taken from the proof of [14, Theorem 5.6].

Lemma 4.6 Let (X, ) be a Cantor minimal system, let Q be a compact connected
finite dimensional metric space, and let ¢: X — Homeo(Q) be a continuous map.
Suppose that there is x € X such that, for any N € N, § > 0, and any finite subset
F c C(X x Q), there is an integer M > N, a clopen neighborhood O of x and partial
isometry w € A, that satisfy the following:
i) a™N(0),a™M(0),...,0,a(0),...,aM(0) are mutually disjoint and u(0) <
0/ M for every a-invariant probability measure p;

(i) w*w=yoand ww* = xam(0);
(iii) w*'wu' €A, fori=0,1,...,N-1;
(iv) |wf - fw|<eforall feT.

Then for any € > 0 and any finite subset F c A, there exists a projection e € Ay
satisfies the following:

(@) |ea—ae| <e forall aced,
(b) dist(pap,eAye) <eforallacd,
() T(1-e) <eforallte T(A).

Proof It suffices to show that for any € > 0, any finite subset F ¢ C(X x Q), and any
nonzero element a € A, \ {0}, there exists a projection e € A, c A such that the
following hold:

(i) |ef-fe||<eforallaeFu{u},

(i)’ dist(efe,eA e) <eforall f e T,

(iii)) 7(1-e)<eforallTe T(A).
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Without loss of generality, we may assume that * = F. Choose N c N so that 27z/N <
e. Put G = UN,' u’Fu*’. We obtain an integer M > N, a clopen neighborhood O of
x, and a partial isometry w € A, satistying (i)-(iv).

Put p = xo and q = y,m(0). Define

P(t) = pcos' +wsintcost +w*sintcost + gsin*t t e [0,7/2].

Then P(0) = p and P(7/2) = q. Moreover, one checks that P(¢) is a continuous path
of projections. By (ii), (iii), and by the choice of G, one has

lu™P(t)u' f - fu*P(t)u'| <e
forall t € [0,7/2],i=0,1,...,N—1land f € F. Define

M-N . . N-1 . ‘
e=1- ( > ou'put+ Y u’*P(in/ZN)u’).
i=0 i1

Using (i) and (ii), one verifies that e is a projection. By the assumption that u*wu' e

Ay, e € A,. By (ii) and the fact that

M-N

{pupu*, v pu, ..., uM N p(
u*P(m/2N)u, u** P(2r[2N)u?, ..., (u* )N 'P((N - 1)m/2N)uN""}

uM—N)*’

is a set of orthogonal projections, we can verify that

|fe-ef| <e forall fe3.

Since

[P(in/2N) - P((i-1)n/2N)| <n/N<e, i=12,...,N,
one can further verify that |ue —eul| < €. Itis clear that e fe € A, forall f e C(XxQ).
Note that eue = eu(1 - p)e. Therefore, eue € A,. One also has

7(1-e) <M1(p) <e forall 7eT(A). [ |

Lemma 4.7 Let A be a unital simple C*-algebra and let B c A, where 15 = 14 and
B is a unital simple AH-algebra with no dimension growth such that T(B) = T(A).
Suppose that for any € > 0 and any subset F c A, there is a projection e € B such that
(i) |ea—ae|<e forall acd,

(ii) dist(eae,eBe) <e forall aed,

(iii) 7(1-e) <eforallte T(A).

Then A has tracial rank at most one.

Proof We first show that, with the assumption, for any given d € A, \ {0}, one can
require that 1 — e < d. We can assume that 0 < d < 1. Put 0 = inf{7(d) : 7€ T(A)}.
Since A is simple and T(A) is compact, o > 0. Choose ¢y = min{c/2,¢/2}. By the
assumption, there is a projection e; € B such that

lerder —di| <e0/32 and 7T(1-—¢1) <e€o/2 forall 7€ T(A)
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for some d; € e;Be;. Since

(d) =1(erde)) + 1((1—e)d(1-e;)) forall 7eT(A),

lerder| 2 0 —¢€/2 > 0/2.

It follows that

Hd1H >0y — 60/32 > 150/32
Put & = €/32. Then by [23, Proposition 2.2], 0 # f5(d,) S eide; ~ d"/?e;d/? < d.
Since B has tracial rank at most one, e;Be; has property (SP). In particular, there is a
non-zero projection e; € f5(d;)Bfs(d;). Put

€, = min{¢/2,inf{7(e;) : 7€ T(A)}}.

Then, by the assumption, there is a projection e € B such that
(i) |ea-ael|<ey<ef2forallacd,
(i) dist(eae,eBe) <e; <ef2forallacd,
(i) 7(1-e) <€y <7(ey) forall Te T(A).
Since T(B) = T(A) and B has tracial rank at most one, 1 - e S e S f5(dy) S d.
Note that B has tracial rank at most one. The same argument used in the proof of
[19, Lemma 4.4] shows that A has tracial rank at most one. Another way to reach the
conclusion is to apply [9, Lemma 4.3]. ]

Theorem 4.8 Let (X,a) be a Cantor minimal system, let Q be a compact con-
nected finite dimensional metric space with U(C(Q)) = Upg(C(Q)), and let ¢: X —
Homeo(Q) be a continuous map. Suppose that there exists x € X and an integer k > 1
such that

[@,] =[idca)] in KL(C(Q),C(Q)),
where
Dy(f) = o bate(yy © Pai-k(x) OO bun(x) © b forall feC(Q)
forall y € {a/}(x) : j € N} and suppose that a* is minimal.
If a x ¢ is minimal, then A = C(X x Q) %4x¢ Z has tracial rank at most one.
Consequently, A is isomorphic to a unital simple AH-algebra with no dimension growth.

Proof This follows from Lemmas 4.4, 4.6, and 4.7. |

Remark 4.9 In this paper, we mainly consider the case where ¢ is a constant map.
We state the above in a greater generality for the future usage.

Theorem 4.10 Let (X, ) be a Cantor minimal system, let Q be a compact con-
nected finite dimensional metric space, and let ¢: X — Homeo(Q) be a continuous
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map. Suppose that [¢,] = [idc(q)] in KL(C(Q),C(Q)) forall y € X, and for each
ze U(C(Q))/Us(C(Q)), there existsv € U(C(Q)) and h € C(X)s.o. such that

ay(v):vexp(ih(y)) forall yeX.

If a x ¢ is minimal on X x Q, then A = C(X x Q) %4x¢ Z is isomorphic to a unital
simple AH-algebra with no dimension growth.

Proof This follows from Corollary 4.5 and Lemmas 4.6 and 4.7. ]

5 Examples
5.1 Notation

Let (X, «) be a Cantor minimal system and let ¢: X — T” be a continuous map. One
can write T" = R/Z x R/Z x ---R/Z. Given 1 € T", one can write 1§ = (t1,t2,...,tn),
where t; € R/Z. Define (&) = (si+t,52+t2,..., 5y +1,), where & = (s1,53,...,5,) €
T". Define (ax¢)(x, &) = (a(x), ¢ (&)) forall (x, &) € XxT". Since X is totally dis-
connected, we may also write ¢, = (exp(i60;(x)),exp(i62(x)),...,exp(if,(x))),
where 0; € C(X)s... Note that for each x € X, [¢.] = [idc(q)]. Let z be the
standard unitary generator of C(T). Denote by z; € C(T") the function that maps
(51,525-..,5) to s;. Then ay(zj) = zjexp(ifj(y)) forall y € X, j = 1,2,...,n.
Therefore, if a x ¢ is minimal, then Theorem 4.10 applies. In particular, when « x ¢ is
minimal, C(X x T") %44 Z is a unital simple C*-algebra with tracial rank at most
one. In the case where n = 1, [14, Lemma 4.2] provides a necessary and sufficient
condition for & x ¢ being minimal (see also [25]).

5.2 Definition

Let {m,} be a sequence of integers with m, > 2 and m,|m,. Let 1,,:Z/m, ;1 —
Z/m, be the quotient map. The inverse limit lim. Z/m,, is the Cantor set. The so-
called odometer action « is defined by a(x) = x +1for x € lim. Z/m,,. Such action is
always minimal. Moreover, the family {a : k € N} is equicontinuous on the Cantor
set ([3, 11.9.6.7]).

Lemma 5.1 For each integer k > 2, there exists an odometer action « on the Cantor
set such that a* is minimal.

Proof Fix k > 2. Choose a sequence of integers {m, } such that (k,m,) = 1; i.e.,
k and m,, are relatively prime and m,|my.1, n = 1,2,.... Fix x € lim Z/m,Z. We
will show that {a™*(x) : m € N} is dense. Let y € lim. Z/m,Z. Fix € > 0. Since
{a™ : m € N} is equicontinuous, there is § > 0 such that, for any pair of z;,z, €
lim. Z/m,Z,

dist(a™(z1),a™(z3)) <e/2 forall meN,

provided dist(z;,z;) < 6.
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There is an integer j > 1and x', y' € Z/m;Z such that xo = {x},},y0 = {y,} €
lim Z/m,Z and x;, = y;.(x") and y;, = y;.(y") forall n < j, where y; , = y, o
Yn+1 © -+ o y; and such that dist(xo, x) < § and dist(yo, y) < §. We can assume that
0 < €/2. Since (k,m;j) = 1, there is m € N such that mk = 1(m;) or mk = -1(m;).
Since —(m; — 1) = 1(m;), in fact, in both case, there is an integer I; > 1 such that
Lk = 1(m;). We may assume that y' = x’ + m in Z/m;Z. Then y' = x" + mlk in
Z[m;Z. Then one computes that

ocml‘k(xo) = xo + mhik = yy.
It follows that
dist(a™"* (x), y) < dist(a™* (x), a™"*(x9)) + dist(«™"* (x0), y)
<ef2+dist(y', y) <e. [

The following is a result of K. Strung ([24, Proposition 2.1, Section 5]). We quote
here for the convenience. Note that if Q) is connected, ™ is minimal for any non-zero
integer m (see, for example, 3, I1 9.6.7]).

Proposition 5.2  Let a be an odometer action on the Cantor set and let Q) be compact
metric space. Suppose that : Q) — Q is a minimal homeomorphism such that ™ is
minimal for all m € N. Then a x 8 is a minimal homeomorphism on X x Q.

Example 5.3 Let :S*"*! - §2"*1 (5 = 1,2,...) be a minimal homeomorphism. It
is known that such f3 exists. Fathi and Herman ([6]) showed that there exists a unique
ergodic and minimal diffeomorphism on $2"*!. The group R/Z can act on S*"*! freely
as rotations. By a result of A. Windsor, there are minimal homeomorphisms f on
$2"*1 such that 8 can have any number of ergodic measures ([28]). It follows from
Proposition 5.2 that & x 8 are minimal homeomorphism on X x $2"*!, where « is an
odometer that has many invariant probability measures.

Corollary 5.4  Let a be an odometer on the Cantor set and let (S*"*1, B) be a minimal
dynamical system with n > 1. Then a x 3 is minimal and A = C(X x S*"*') x5 Z has
tracial rank at most one.

Proof It follows from Example 5.3 that « x 8 is minimal. Since 8 is minimal, it does
not have a fixed point. Therefore, § has zero degree. If follows that [3] = [id] in
KK(C(8*"*1), C(8*"*1)). Moreover, U(C(S*"*1)) = Up(C(S*"*')). Thus Theorem
4.8 applies (with k = 1). ]

Example 5.5 Consider an R/Z action on RP*"*!. We identify PR*"*! as SO(2n).
Define y:R/Z - SO(2n) by

cos(mt/2) sin(mt/2) 0

—sin(7t/2) cos(mt/2) 0
y(t) = 0 0 1
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Define an action R/Z x SO(2n) - SO(2n) by

I(t)(x)=y(t)x forall teR/Z and xeSO(2n).

Itis clear that T is free and a C* -diffeomorphism. Foreach1/n? > § > 0 and r € Q/Z,
by [28], there is a minimal diffeomorphism f3,: SO(2n) — SO(2) such that

dist(B,(x),y(r)x) <& forall xeSO(2n).

Corollary 5.6  Let n > 1be an integer. There are odometer actions o on the Cantor set
such that for any minimal homeomorphism 8 on RP*"*', A = C(X x RP*"*') x5 Z
is a unital simple C*-algebra with tracial rank at most one.

Proof First it is well known that H'(C(RP***'),Z) = {0}. In other words,

U(C(RP*™)) = Up( C(RP*™)).
Note that

Ko(C(RP*"™))=Z® Gy and K (C(RP*"™)) =7,

where Gy is a finite group such that 2¢g = 0 for all g € Gy. Any automorphism on
Ko(C(RP***1)) induced by an automorphism on C(RP*"**!) has the form

idz, 0
G (¢2,1 ¢2,2) '

where ¢,1:Z — Gg and ¢,,2: Gp - Gy are homomorphisms, since it sends identity
of C(RP*"*!) to itself and G, is finite. Automorphisms of the form of (5.1) form a
subgroup. It is a finite group; suppose that its order is k;. Then for any automorphism
¢: C(RP¥™1) > C(RP*™1), ¢%4 = idy, (c(rponsry) -

We note that Hy(RP?"*!, Q) = Q, Hz,11(RP?"1,Q) = Q and H;(RP***!) = {0}
for all other i. Also, Hy(RP***',Z) = Z and Hy,,(RP*"*,Z) = Z. Let

B': C(RP2n+1) N C(RP2n+1)

be the isomorphism induced by . Note that B, = id on Ho(RP?*"*',Z) = Z and
B+(1) = 1 on Hy,yy (RP*",Z) = 7. Let

Ly = £ (- (B (H(RP*"™,0)))

= Tr(id [(Ho(RP*"*,Q)) + (-1)*"*" Tr( u| (Hani1 (RP*",Q)))
be the Lefschetz number. If 8 is minimal, it does not have a fixed point. So Lg =

0. It follows that B,(1) = 1 on Hy,y(PR**,Z). Tt follows that, for any minimal
homeomorphism f8 on RP*"*', (¢3) .1 = idk, (c(rpz+y) - We compute that

Ko(C(RP*"',7,/27))) = Z]2Z. &® Gy and
0 — Z/27 — K\ (C(RP*"*', ZJ27) — Gy — 0.

Let k;, be the order of Aut(Z/27Z ® Gy) (which is finite). One also checks, from the
above, K;(C(RP*"*!),Z/2Z) is a finite abelian group such that 4x = 0 for all x €
Ki(C(RP*"*Y),Z/27). Let k3 be the order of Aut(K;(C(RP?"*))).
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Define k = ky-k,-k3, which depends on 7 only. Choose a sequence of integers {m;}
such that mj|m ;. for all j and each m; is prime relative to K. Then by Lemma 5.1,
there are odometer actions « on the Cantor set such that a* is also minimal.

Now let B be a minimal homeomorphism on RP?"*!, Then by the above,

(5.2) [(E)kﬂx,»(c(RPZnH)) =id, i=0,1 and
[ﬁ)k“K;(C(RPZ"“),Z/zZ) =id, i=0,L

Note that
KL( C(RP2n+l)) C(RP2n+1)) = HOmA K( C(szn"'l), C(RP2n+1))

It follows from [2, 2.11] that, to check [B*] = [id], it suffices to show that (5.2) holds,
since 2¢g = 0 for all g € Gg. Therefore,

[Ek]:[id] in KL(C(RPZ"“),C(RPZ“”))‘

By the assumption we also have that a* is minimal. Hence Theorem 4.8 applies to
ax . |

6 Applications

In this section we consider A = C(Q) xg Z, where Q) is a connected compact met-
ric space and f3 is a minimal homeomorphism on Q. Specific examples are the cases
where Q = $*"*! or O = RP*"*!, where n > 1. It should be noted that there are no min-
imal homeomorphisms on even spheres or even dimensional real projective spaces.
Our results can also apply to other connected spaces.

Theorem 6.1 Let Q be a connected, compact, metric space with finite covering di-
mension such that U(C(Q)) = Uy (C(Q)) and let : QO — Q be a minimal homeomor-
phism. Suppose that [B*] = [id] in KL(C(Q), C(Q)) for some integer k > 1, where
B(f) = fop™ forall f € C(Q). Then A = C(Q) % Z has rationally tracial rank at most
one; i.e, A ® U has tracial rank at most one for any infinite dimensional UHF-algebra
U. In particular, A is in A.

Proof First we note that since Q has finite covering dimension, it follows from [27]
that A has finite nuclear dimension. Let & be an odometer action on the Cantor set
such that a* is also minimal. It follows from Proposition 5.2 that « x 8 is a minimal
action. Let B = C(X x Q) g, Z and C = C(X) x4 Z.

It follows from Theorem 4.8 that B has tracial rank at most one. Consider the em-
bedding 1: A — B by sending C(Q) — C(X x Q) and sending the implementing
unitary to the implementing unitary in a natural way. Any tracial state 7 of B is given
by « x -invariant Borel probability measure. Let 7o be the unique tracial state on
C = C(X) x, Z that is given by the a-invariant Borel probability measure. There-
fore, Ko(C) = K°(X, ) has a unique state. Then each a x B-invariant tracial state
on C(X x Q) = C(X) ® C(€) has the form 7y ® 17, where 77 is a S-invariant tracial
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state on C(Q). It follows that the map #: T(B) — T(A) induced by 1 is a homeo-
morphism. It follows from Lemma 2.6, since Q is connected and H'(Q,Z) = {0},
that pp(Ko(B)) = pc(K°(X, a)) and that p5(Ko(A)) = Z. Therefore, if 7o ® 7, and
To ® 7 are two tracial states then they induce the same state on Ky(A) as well as the
same state on Ko (B). It follows from [30, Theorem 4.2] that A ® U has tracial rank at
most one. It follows from [18] that A ® U has tracial rank at most one for all infinite
dimensional UHF-algebras U. Since A = C(Q) »g Z, it satisfies the Universal Coef-
ficient Theorem. Furthermore, by [27], A is Z-stable. Therefore, A is in the class of
unital separable amenable simple C*-algebras that are in A. ]

Theorem 6.2  Let Q) be a connected compact metric space with finite covering dimen-
sion such that H'(Q,Z) = {0} and K;(C(Q)) = Z & G;, where G; is a finite group.
Suppose that : Q0 — Q is a minimal homeomorphism. Then A = C(Q) xp Z has
rational tracial rank at most one and is in A.

Proof This is a corollary of Theorem 6.1. We note that U(C(Q)) = Up(C(Q)).
Therefore, it suffices to show that [$%] = [id] in KL(C(Q)). Similar to the proof of
Corollary 5.6, it is easy to see that there exists an integer k; > 1 such that ((8)*),; =

(/Aj)i‘l =idg,(c()), i =0,L
Let 7; be the order of G;. For each 1 < j < (r;)!, there exists a short exact sequence

0~ Z/jZ® Gi]jG; = K;(C(Q),Z/jZ) - ij) -0,
where G,(f) = {g € K;(C(Q)) : jg = 0}, i = 0,1. Therefore, K;(C(Q),Z/jZ) is a

finite group, i = 0, 1. Note that [B]|,(c(a),z/jz) € Aut(K;(C(Q),Z/jZ)). However,
Aut(K;(C(Q),Z/jZ)) is a finite group. Therefore, for some m; ; > 1 with i = 0,1,

[B™ ]|k, (cc).z/jz) = 1dk,(c(q),z/jz)- Put

k:kl'kz' H m,-,j.
1<j<(ri)!
i=0,1

One checks that (Ek)*,- = idK,.(C(Q)) and [Ek]h(i(c(g))z/jz) = idK,.(C(Q)’Z/jZ),
for j=1,2,...,(r;)!, i = 0,1. Since r; is the order of G;, by [2, 2.11],

[B*] = [idc(ay]- u

Corollary 6.3  Let 3 be a minimal homeomorphism on $>"*'. Then A = C(S***') x4 Z
has rationally tracial rank at most one and is in A.

Proof Asin Corollary 5.4, we note that U(C(S8?"*!)) = Uy (C(S*"*!)) and any min-
imal homeomorphism has the property [ 3] = [id]. So Theorem 6.1 applies. [ |

Corollary 6.4  Let fy, Bo: > — §*"*! be two minimal homeomorphisms and let
Aj=C(S*" ™) %p, Z,i=1,2. Then Ay = A, if and only if T(A1) = T(A3).

Proof One computes, using the Pimsner—Voiculescu exact sequence ([21]), that
Ki(Aj) =Z®Z,i=0,1and j = 1,2. One also computes that the order of Ko(A;)
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is determined by one copy of Z from the rank of projections of M (C(S*"*1)) for
all k and Ky(A;) and K¢(A,) are unital order isomorphic. Furthermore, all traces
agree on Ko(A;) = Ko(A). Therefore their Elliott invariant is determined by T(4;),
i =1,2. Now, by Corollary 6.3, the classification theorem in [10] applies. ]

Corollary 6.5 Let B be a minimal homeomorphism on RP***! (for n > 1). Then
A = C(RP*"*') x Z has rational tracial rank at most one and is in A.

Proof Asin Corollary 5.6, we note that
U(C(RP*™ 1)) = Ug(C(RP*"*")) and Ko(C(RP*"))=Z®eG,
where G is a finite group and K;(C(RP***')) = Z. Thus, Theorem 6.2 applies. W

Corollary 6.6  Let 3, and 3, be two minimal homeomorphisms on RP*"*! (forn > 1)
and let A; = C(RP*"™') g, Z, i = 1,2. Then A, 2 A, if and only if

KI(AI) = Kl(Az), (ﬁ])* = (ﬁz)* on K()(C(RPZYHI)) and T(Al) = T(Az)

Proof By Corollary 6.5, it suffices to show that A; and A, have the same Elliott in-
variant. The assumption shows that

Ko(C(RP*™™M))/{z =z 0 (B1)« : z € Ko(C(RP*™))} =
Ko(C(RP*™™M))/{z=z0 (B2)« : z € Ko(C(RP*" M)} 2 Z & G,

where G{ is a quotient of Tor(Ky(C(RP*"*!)). Moreover, they are order isomorphic.
By the Pimsner—Voiculescu exact sequence, we may write

Ko(Al) = (Z ® G6) Y= Ko(Az)
Since H'(RP?"*1,Z) = {0}, it follows that

pa,(Ko(A1)) = pa,(Z®Gy) =Z and  pa,(Ko(Ay)) = 2.

It follows that Ko(A;) and Ko(A,) are unital order isomorphic. Since all traces
of A; agree on Ko(A;), i = 1,2. It follows that A; and A, have isomorphic Elliott
invariant. Thus, [10] applies. u
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