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Minimal Dynamical Systems on Connected
Odd Dimensional Spaces

Huaxin Lin

Abstract. Let β∶ S2n+1 → S2n+1 be a minimal homeomorphism (n ≥ 1). We show that the crossed
product C(S2n+1)⋊β Z has rational tracial rank at most one. Let Ω be a connected, compact, metric
space with ûnite covering dimension and with H1(Ω,Z) = {0}. Suppose that K i(C(Ω)) = Z⊕G i ,
where G i is a ûnite abelian group, i = 0, 1. Let β∶Ω → Ω be a minimal homeomorphism. We also
show that A = C(Ω) ⋊β Z has rational tracial rank at most one and is classiûable. In particular, this
applies to the minimal dynamical systems on odd dimensional real projective spaces. _is is done
by studying minimal homeomorphisms on X ×Ω, where X is the Cantor set.

1 Introduction

Let Ω be a compact metric space and let α∶Ω → Ω be a minimal homeomorphism.
We study the resultingC∗-algebra C(Ω)⋊αZ, the crossed productC∗-algebra. _ere
are interesting connections between minimal dynamical systems and the study of
C∗-algebras. A classical result of Giordano, Putnam, and Skau [7] showed that two
Cantor minimal systems are strongly orbit equivalent if and only if the associated
crossed productC∗-algebras are isomorphic. _eC∗-algebra theoretic aspect of their
result is indebted to the fact that the crossed product C∗-algebras are unital simple
AT-algebras of real rank zero and belong to the classiûable C∗-algebras; i.e., they are
classiûed up to isomorphisms by their Elliott invariant, namely, in this case, by their
ordered K-theory. In turn, the Cantor minimal systems are classiûed up to strong
orbit equivalence by their ordered K-theory. C∗-algebras of the form C(Ω) ⋊α Z are
always simple when α is minimal. _ese C∗-algebras provide a rich source of uni-
tal separable amenable simple C∗-algebras that satisfy the so-called Universal Coeõ-
cient _eorem. On the other hand, the rapidly developed Elliott program, otherwise
known as the program of classiûcation of amenable C∗-algebras by K-theoretical in-
variant, provides a possible way to characterize minimal dynamical systems by their
K-theoretical invariant. It is therefore important to known when C(Ω) ⋊α Z belongs
to the classiûable class of amenable simple C∗-algebras (in the sense of the Elliott
program). Elliott and Evans ([4]) showed that all irrational rotation algebras that are
crossed product C∗-algebras from minimal dynamical systems on the circle are clas-
siûable; in fact, they are unital AT-algebras of real rank zero. Let A = C(Ω) ⋊α Z.
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In [19], it was shown that, if X has ûnite covering dimension and ρA(K0(A)), the
tracial image of K0(A), is dense in Aò(T(A)), the space of real continuous aõne
functions on the tracial state space, then A has tracial rank zero (the converse also
holds). Consequently A is classiûable. In the case where Ω is connected and (Ω, α) is
unique ergodic, this result states, for example, that if (Ω, α) has an irrational rotation
number, then A is classiûable. In particular, this recovers the previously mentioned
case of irrational rotations on the circle. With the development in the Elliott program
([11, 16, 29]), the classiûable C∗-algebras now include the class of C∗-algebras which
are rationally of tracial rank at most one. _e result of [19] were further pushed by
Toms andWinter to the great generality: if projections in A separate the tracial states,
then A has rational tracial rank zero. Moreover these crossed products are also clas-
siûable by the Elliott invariant (see [27]).

On the other hand, during these developments, minimal dynamical systems on
X × T, where X is the Cantor set and T is the circle, have been studied (see [14, 15]).
More general cases were also studied in [25]. In both [19] and [27], Putnam algebra
Ax was used as the main bridge. One may view that Ax is a large C∗-subalgebra of
A = C(Ω) ⋊α Z by “taking away ” one point. In [14, 15], a smaller C∗-subalgebra
is used. _at C∗-subalgebra may be viewed as a C∗-subalgebra by “taking away”
a circle (an idea of Hiroki Matui). _is method seemed to be too specialized to be
useful in general case. However, it has recently been adopted by K. Strung [24] to
obtain very interesting results about crossed products of certain minimal systems on
the odd spheres. Strung showed that by studying the minimal systems of product
type X × S2n+1 , one can provide examples of non-unique ergodic minimal dynamical
systems on the odd spheres whose crossed product C∗-algebras are classiûable. Let A
be the crossed product from theminimal systemon the odd sphere. It should be noted
these crossed products Amay not have rational tracial rank zero. In particular, their
projections may not separate the tracial states. Nevertheless, A has rational tracial
rank at most one; i.e., A⊗ U has tracial rank at most one for any UHF-algebra U of
inûnite type. _erefore, a more general classiûcation result from [10] can be applied.

In [24], theminimal homeomorphisms on the odd spheres are assumed to be limits
of periodic homeomorphisms constructed by ”fast approximation-conjugation”. In
this note we will study the general minimal dynamical systems on the odd spheres as
well as on the odd dimensional real projective spaces. We show that crossed product
C∗-algebras fromanyminimal dynamical systems on odd spheres or odd dimensional
real projective spaces have rational tracial rank at most one and are classiûable. It
should be mentioned that there are no minimal homeomorphisms on even spheres
or on the even dimensional real projective spaces because of the existence of ûxed
points. We actually prove much more general results (see_eorems 6.1 and 6.2). _e
methods we used here to study theminimal dynamical systems on the product spaces
of the form X × Ω, where X is the Cantor set and Ω is a connected space, are those
developed in [14, 15]. We also use a recent uniqueness theorem (see _eorem 4.2)
from [12]. We continue to use the argument of Strung as well as an embedding result
of Winter [30]. _e classiûcation result in [10] is also applied.

_is paper is organized as follows. _e next section includes some preliminary
concepts. In Section 3, we study general minimal dynamical systems on the product
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spaces X ×Ω, where X is the Cantor set and Ω is a connected compact space. Exam-
ples of minimal dynamical systems studied in Section 3 are presented in Section 4.
Applications are presented in Section 5.

2 Preliminaries

Deûnition 2.1 Let A be a unital C∗-algebra. Denote by U(A) the unitary group
of A and U0(A) the normal subgroup of connected component of U(A) containing
the identity. Denote by CU(A) the closure of the commutator subgroup of U0(A).
Denote by T(A) the tracial state space of A. We also use T(A) for traces of the form
τ⊗Tr on Mn(A) for all integers n, where Tr is the standard (un-normalized) trace on
Mn . Denote by ρA∶K0(A) → Aò(T(A)) the homomorphism deûned by ρA([p]) =
τ(p) for all projections in Mn(A), n = 1, 2, . . . .

Deûnition 2.2 Let A = Mn and a ∈ A. We use det(a) for the usual determinant. If
A = C(X) ⊗Mn , we will o�en identify Awith C(X ,Mn). If f ∈ A, we use det( f ) for
the function det( f )(x) in C(X).

Let A be a unital C∗-algebra with T(A) /= ∅ and let u ∈ U0(A). Let
{u(t) ∶ t ∈ [0, 1]} ⊂ U0(A)

be a piecewise smooth continuous path with u(0) = u and u(1) = 1A. Deûne

∆̃τ(u(t)) = ( 1
2πi

) ∫
1

0
τ( du(t)

dt
u(t)∗)dt for all τ ∈ T(A).

If u ∈ CU(A), then ∆̃τ(u(t)) ∈ ρA(K0(A)). _is de La Harp–Skandalis determinant
(which is independent of the choice of the path) gives an injective homomorphism

∆∶U0(A)/CU(A) → Aò(T(A))/ρA(K0(A))
(see [26]).

If u ∈ U(A), we will use u for its image in U(A)/CU(A).

Deûnition 2.3 Let Ω be a compactmetric space. Denote byHomeo(Ω) the set of all
homeomorphisms on Ω equipped with the topology of point-wise convergence. Let
β ∈ Homeo(Ω). Denote by β̃∶C(Ω) → C(Ω) the automorphism deûned by β̃( f ) =
f ○β−1 for all f ∈ C(Ω). If F ⊂ Ω, denote by χF the characteristic function of F . When
F is a clopen set, χF ∈ C(Ω).

Lemma 2.4 ([14, Lemma 2.1]) Let X be the Cantor set and let Ω be a connected
compact metric space. Let β ∈ Homeo(X × Ω). _en there is γ ∈ Homeo(X) and a
continuous map ϕ∶X → Homeo(Ω) such that β(x , ξ) = (γ(x), ϕx(ξ)) for all (x , ξ) ∈
X ×Ω.

Proof Let pX ∶X × Ω → X and pΩ ∶X × Ω → Ω be projection maps such that
pX(x , ξ) = x and pΩ(z, ξ) = ξ for all (x , ξ) ∈ X×Ω. Fix (x , ξ) ∈ X×Ω. _en {x}×Ω
is the connected component of X×Ω containing (x , ξ). _e homeomorphism βmaps
it into a connected component containing β(x , ξ) = (x1 , ξ1), x1 = pX(β(x , ξ)) and
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ξ1 = pΩ(β(x , ξ)). _erefore, as just mentioned, the component is {x1} × Ω. Deûne
γ(x) = pX(β(x , ξ)) for x ∈ X . Since pX(β(x , ξ)) = pX(β(x , ξ′)), it is a well deûned
map. Since β is a homeomorphism, we can also see that γ ∈ Homeo(X). Fix x ∈ X ,
then map ϕx(ξ) = pΩ(β(x , ξ)) is a homeomorphism from Ω onto Ω. It is easy to
check that ϕ∶X → Homeo(Ω) is continuous.

2.1 Notation

Let X be the Cantor set and let Ω be a connected compact metric space. _en

K0(C(X ×Ω)) = C(X ,K0(C(Ω))) and K1(C(X ×Ω)) = C(X ,K1(C(Ω))) ,
where the group K i(C(Ω)) is viewed as a discrete space, i = 0, 1. Moreover,

K0(C(X ×Ω))+ = { f ∈ C(X ,K0(C(Ω))) ∶ f (x) ∈ K0(C(Ω))+}
= C(X ,K0(C(Ω)))

+
.

Let (X , α) be a Cantor minimal system. Following [7], denote

K0(X , α) = C(X ,Z)/{ f − f ○ α−1 ∶ f ∈ C(X ,Z)}.
Deûne ϕ̃x ∶C(Ω) → C(Ω) to be the isomorphism deûned by ϕ̃x( f ) = f ○ ϕx for all
f ∈ C(Ω). Denote by (ϕ̃x)∗i ∶K i(C(Ω)) → K i(C(Ω)) the induced isomorphism,
i = 0, 1.
Deûne ϕ̃−1

∗i( f ○ α−1)(x) = (ϕ̃x)−1
∗i( f ○ α−1(x)) for x ∈ X , i = 0, 1, where f ∈

C(X ,K i(C(Ω))). Denote

K i(X , α × ϕ,K0(C(Ω))) =
C(X ,K i(C(Ω)))/{ f − (ϕ̃)−1

∗i( f ○ α−1) ∶ f ∈ C(X ,K i(C(Ω)))}

with K0(X , α × ϕ,K0(C(Ω))) equipped with the positive cone

K0(X , α × ϕ,K0(C(Ω)))+ = {[ f ] ∶ f ∈ C(X ,K0(C(Ω))+}.
Denote

ker(idX×Ω −(α × ϕ)−1)∗i = { f ∈ C(X ,K i(C(Ω))) ∶ f − (ϕ̃)−1
∗i( f ○ α−1) = 0} ,

i = 0, 1.

When Ω is connected, ρC(Ω)(K0(C(Ω))) = Z. _is is also used in the following
computation.

Proposition 2.5 Let (X , α) be aCantorminimal system, letΩ be a connected compact
metric space, and let ϕ∶X → Homeo(Ω). Let A = C(X×Ω)α×ϕZ and C = C(X)⋊αZ.
_en there are short exact sequences

0→ K0(X , α × ϕ,K0(C(Ω))) → K0(A) → ker( idX×Ω −(α × ϕ)−1
∗1) → 0,(2.1)

0→ K 1(X , α × ϕ,K1(C(Ω))) → K1(A) → ker( idX×Ω −(α × ϕ)−1
∗0) → 0.(2.2)

Moreover,

(2.3) ρA(K0(X , (α × ϕ)−1 ,K0(C(Ω)))) = ρC(K0(X , α)),
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Furthermore, if (ϕx)∗i = idK i(C(Ω)) , i = 0, 1, then

0→ K0(X , α × id,K0(C(Ω))) → K0(A) → K1(C(Ω)) → 0,

0→ K 1(X , α × id,K1(C(Ω))) → K1(A) → K0(C(Ω)) → 0.

Proof It is clear that (2.1) and (2.2) follow directly from the Pimsner–Voiculescu six-
term exact sequence. To see the second statement, we note that Ω is connected and all
tracial states on K0(C(Ω)) agree with the rank. It follows that ρC(Ω)(K0(C(Ω))) =
Z. Moreover, ρC(Ω)( f ○(ϕ)−1

∗0)) = ρC(Ω)( f ) for any f ∈ K0(C(Ω)), since ϕ does not
change the rank of any projections ofMn(C(Ω)). _erefore, any (α×ϕ)−1

∗0-invariant
state on K0(C(X) ⊗ C(Ω)) can be viewed as an α∗0-invariant state on C(X ,Z). We
then check that (2.3) holds.

To see the last statement, we note that

K i(C(X ×Ω)) = C(X ,K i(C(Ω))) , i = 0, 1.

In the case ϕ∗i = idK i(C(Ω)) , i = 0, 1, (only) constant elements are invariant under
(α ⊗ ϕ)−1

∗i . It follows that

ker( idX×Ω −(α × ϕ)−1
∗i) = K i+1(C(Ω)), i = 0, 1.

Lemma 2.6 Let Ω be a compact metric space with U(C(Ω)) = U0(C(Ω)) and
β ∈ Homeo(Ω). _en

ρB(K0(B)) = ρB( ı∗0(K0(C(Ω)))) ,

where B = C(Ω)⋊β Z and ı∶C(Ω) → B is the natural embedding. Consequently, when
Ω is connected, ρB(K0(B)) = Z, and in Proposition 2.5, if H1(Ω,Z) = {0}, then

ρA(K0(A)) = ρC(K0(X , α)),

where C = C(X) ⋊α Z.

Proof _e ûrst part follows from [5, Chapter VI] (see also [1, 10.10.5]). For the sec-
ond part, we note that X has zero dimension, so H1(X × Ω,Z) = {0}. _erefore, by
(2.3),

ρA(K0(A)) = ρA(K0(X , (α × ϕ)−1 ,K0(C(Ω)))) = ρC(K0(X , α)),

where C = C(X) ⋊ αZ.

Deûnition 2.7 Denote byA the class of unital,Z-stable, separable, simple, amenable
C∗-algebras that satisfy the Universal Coeõcient _eorem and have rational tracial
rank at most one, i.e., A ⊗ U has tracial rank at most one, where U is any inûnite
dimensional UHF-algebra (see [10]). _is class of C∗-algebras are classiûable in the
sense that if A, B ∈ A, then A ≅ B if and only if they have the isomorphic Elliott in-
variants ([10]). _is class contains all unital simple AH-algebras with no dimension
growth as well as the Jiang-Su algebra. A description of the range of the invariant is
presented in [17].
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3 The C∗-subalgebra Ax

Deûnition 3.1 Let (X , α) be a Cantor minimal system and let Ω be a connected,
ûnite dimensional compact, metric space. Fix x ∈ X . Denote by Ax theC∗-subalgebra
of A = C(X ×Ω) ×α×ϕ Z generated by C(X ×Ω) and uC0(X ∖ {x} ×Ω), where u is
the unitary in A that implements the action α × ϕ.

_eorem 3.2 Let X and Ω be as above. _e C∗-algebra Ax is isomorphic to a unital
simple AH-algebra with slow dimension growth.

Proof Part of the proof is known. As in the proof of [14, Proposition 3.3(5)], using
groupoid C∗-algebra, Ax is simple since we assume that α × ϕ is minimal.

We now assume that the dimension of Ω is d . To show that Ax is locally AH, we
use an argument of I. Putnam ([22, 3.1]) and proceed as in the proof of [14, Proposi-
tion 3.3]. Let

Pn = {X(n, v , k) ∶ v ∈ Vn , k = 1, 2, . . . , k(v)}

be a sequence of Kakutani–Rohlin partition which gives a Bratteli–Vershik model for
(X , σ) (see [8, _eorem 4.2] or [20, Sect. 2])). We also assume the roof sets

R(Pn) = ⋃
v∈V

X(n, v , hn(v))

shrink to a single point x . Let An be the C∗-algebra generated by C(X × Ω) and
uC(R(Pn)c × Ω). Since R(Pn+1) ⊂ R(Pn), An ⊂ An+1 , n = 1, 2, . . . . It is easy see
that Ax is the norm closure of the union of all A′ns. By using a similar argument to
[22, Lemma 3.1], it can be shown that An is isomorphic to

(3.1) ⊕
v∈Vn

Mhn(v) ⊗ C(X(n, v , hn(v))) ⊗ C(Ω) ≅ ⊕
v∈Vn

Mhn(v)(C(Yn ,v)) ,

where Yn ,v is a compact metric space of covering dimension d . In fact, let

pv =
hn(v)
∑
k=1

χX(n ,v ,k)

for each v ∈ V . It is easy to check that pvu(1 − χR(Pn)) = u(1 − χR(Pn))pv . It follows
that pv is central in An . Put e i , j(n, v) = u i− j χX(n ,v , j)×Ω . One observes that, for each
n and v , {e i , j(n, v)}i , j (1 ≤ i , j ≤ hn(v)) form matrix units in An with

hn(v)
∑
i=1

e i , i =
h(v)
∑
i=1

χX(n ,v , i = pn ,v .

Note that χX(n ,v ,hn(v))An χX(n ,v ,hn(v)) = C(X(n, v , hn(v)) × Ω). One checks that
the C∗-subalgebra generated by {e i , j(n, v)} and χX(n ,v ,hn(v)An χX(n ,v ,hn(v) is iso-
morphic to Mhn(v)(C(X(n, v , hn(v)) × Ω)). _erefore, (3.1) holds. It follows from
[13,_eorem 1.1] thatAx is a unital simpleAH-algebrawith no dimension growth.
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Proposition 3.3 Let (X , α) be a Cantor minimal system, let x ∈ X , let Ω be a con-
nected ûnite dimensional compact metric space, and let ϕ∶X → Homeo(Ω) be a con-
tinuous map. _en

(3.2) K i(Ax) ≅
K i(C(X ×Ω))/{ f − (ϕ̃)−1

∗i( f ○ α−1) ∶ f (x) = 0, f ∈ C(X ,K i(C(Ω)))} .

Moreover, the embedding ı∶Ax → Agives an aõne homeomorphism ı♯∶T(A) → T(Ax)
and gives an order isomorphism ρAx (K0(Ax)) = ρC(K0(X , α)), where C = C(X) ⋊α
Z. Moreover, if q ∈ C(X ×Ω) is a projection, then uqu∗ and q are equivalent in Ax .

Proof Let An be as in the proof of_eorem 3.2; i.e, An is generated byC(X×Ω) and
uC(R(P)c ×Ω). _ere is a natural homomorphism from K i(C(X ×Ω)) to K i(An)
(by the embedding of C(X × Ω)). By (3.1), this homomorphism is surjective. For
i = 0, 1, the kernel is

{ f − (ϕ̃)−1
∗i( f ○ α−1) ∶ f (y) = 0 for all y ∈ R(Pn), f ∈ C(X ,K0(C(Ω)))} .

_us (3.2) holds.
We now prove that for any projection q ∈ C(X ×Ω), uqu∗ and q are equivalent in

Ax . If q(x ,ω) = 0 for any ω ∈ Ω, then uq ∈ Ax . It follows that qu∗ ∈ Ax . _erefore
uqu∗ and q are equivalent in Ax . Suppose that q(x ,ω) /= 0 for some ω ∈ Ω. Since q
is a projection in C(X × Om) and Ω is connected, q(x ,ω) = 1 for all ω. It suõces to
show that

[q] − [q ○ (α × ϕ)−1] = 0 in K0(Ax).

Let f (y,ω) = [q(y,ω)] − [1C(X×Ω)(y,ω)] for all (y,ω) ∈ X ×Ω. It follows that

[q] − [q ○ (α × ϕ)−1] = f − f ○ (α × ϕ)−1 + [1C(X×Ω)] − [1C(X×Ω) ○ (α × ϕ)−1].

Note that since f (x ,ω) = 0 for all ω and 1C(X×Ω) − 1C(X×Ω) ○ (α × ϕ)−1 = 0, w f may
be represented by an element F ∈ C(X ,K0(C(Ω))) with F(x) = 0. From (3.2), this
implies that [q] − [q ○ (α × ϕ)−1] = 0 in K0(Ax). _is proves that q and uqu∗ are
equivalent in Ax .

To show T(Ax) = T(A), it suõces to show that every tracial state τ ∈ T(Ax)
can be extended to tracial state of A. Let U be a clopen neighborhood of x such that
U , α−1(U), . . . , α−n(U) are mutually disjoint. Let p = χU×Ω . We have shown that
p, upu∗ , and un pu∗n are mutually equivalent in Ax and mutually orthogonal. _e
proof that T(Ax) = T(A) can then be proceed exactly the same way as that of [14,
Proposition 3.3(4)].

To show that ρAx (K0(Ax)) = ρC(K0(X , α)) (C = C(X) ⋊α Z), we ûrst note that
we have just proved that the map sending [χO] to [χO] (for clopen sets O ⊂ X) is
an embedding from K0(X , α,Z) into K0(Ax). Since Ω is connected, the subgroup
K0(X , α) injectively maps into K0(X , α × ϕ,K0(C(Ω))) ⊂ K0(A).
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4 Tracial Rank

Deûnition 4.1 Let T be a compact Choquet simplex. Suppose that Y is a compact
metric space and let L∶C(Y)s.a. → Aò(T) be an aõne map. We say L is unital and
strictly positive if L(1C(Y))(τ) = 1 for all τ ∈ T and L( f )(τ) > 0 for all τ if f /= 0 and
f ≥ 0.

Suppose that L∶C(Y)s.a. → Aò(T) is a strictly positive aõne homomorphism. Let
f /= 0 and f ≥ 0. _en since T(A) is compact,

inf{L( f )(τ) ∶ τ ∈ T(A)} > 0.

For each open subset O ⊂ Y , let

d(O) = inf
τ∈T

{ sup{L( f )(τ) ∶ 0 ≤ f ≤ 1, supp( f ) ⊂ O}} .

_en, for any non-empty open subset O ⊂ Y , d(O) > 0. For each a ∈ (0, 1), let
{y1 , y2 , . . . , ym} ⊂ Y be an a/4-dense subset. Deûne

D(a, i) = d(B(x i , a/4)), i = 1, 2, . . . ,m.

Put

▽0(a) = min{D(a, i) ∶ i = 1, 2, . . . ,m}.

_en ▽0∶ (0, 1) → (0, 1) is non-decreasing. For any y ∈ Y , there exists i such that
B(x , a) ⊃ B(x , a/4). _us, d(B(x , a)) ≥ (3/4)∆0(a). Put ▽(a) = (3/4) ▽0 (a)
for all a ∈ (0, 1). Now let A be a unital separable simple C∗-algebra with T(A) = T
and let ϕ∶C(Y) → A be a unital monomorphism. _en ϕ♯∶C(Y)s.a. → Aò(T(A))
deûned by

ϕ♯( f )(τ) = τ ○ ϕ( f ) for all f ∈ C(Y)s.a.

is a unital strictly positive aõne homomorphism. It is easy to check that, for any
1 > σ > 0, there is a ûnite subset H ⊂ C(Y)s.a. and η > 0 such that

µτ○ϕ(B(x , r)) ≥ ▽(r)

for all open balls with radius r ≥ σ , provided that

∣τ ○ ϕ(g) − L(g)(τ)∣ < η for all g ∈H,

where µτ○ϕ is the Borel probability measure induced by the state τ ○ ϕ.

We will use the following uniqueness theorem.

_eorem 4.2 ([12, _eorem 5.9]) Let Y be a compact metric space and let T be
a compact Choquet simplex. Suppose that L∶C(Y)s.a. → Aò(T) is a unital strictly
positive aõne map. Let є > 0 and let F ⊂ C(Y) be a ûnite subset. _ere exists a ûnite
subsetH ⊂ C(Y)s.a. , a ûnite subsetP ⊂ K(C(Y)), a ûnite subsetU ⊂ Uc(K1(C(Y))),
δ > 0, and η > 0 satisfying the following. Suppose that ϕ1 , ϕ2∶C(Y) → A are two
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unital monomorphisms for some unital simple C∗-algebra A of tracial at most one with
T(A) = T such that

[ϕ1]∣P = [ϕ2]∣P ,
∣τ ○ ϕ i(g) − L(g)(τ)∣ < δ for all g ∈H, i = 1, 2, and(4.1)

dist(ϕ1(v)ϕ2(v∗), 1A) < η for all v ∈ U.

_en there is a unitary w ∈ A such that

∥w∗ϕ1( f )w − ϕ2( f )∥ < є for all f ∈ F.

Proof _is is a variation of [12, _eorem 5.9]. Let ▽∶ (0, 1) → (0, 1) be as in Deû-
nition 4.1 (depending on L). For any 0 < d < 1, if δ is small enough and H is large
enough, by the discussion above in Deûnition 4.1 and by (4.1),

µτ○ϕ i (B(x , r)) ≥ ▽(r)
for all 1 > r > d , i = 1, 2. Note also that (4.1) implies that

∣τ ○ ϕ1(g) − τ ○ ϕ2(g)∣ < 2δ for all g ∈H.

_erefore, _eorem 4.2 follows from [12, Lemma 5.7], and [12, _eorem 5.9].

_e following is a well-known lemma.

Lemma 4.3 Let Y be a compactmetric space such that U(C(Y)) = U0(C(Y))._en
for any z ∈ K1(C(Y)) there is an integer m ≥ 1 and a unitary v ∈ Mm(C(Y)) such that

[v] = z and det(v)(y) = 1 for all y ∈ Y .

Proof _ere exists an integer m ≥ 1 and a unitaryw ∈ Mm(C(Y)) such that [w] = z.
Put w00(y) = det(w)(y) for all y ∈ Y . _en w00 ∈ U(C(Y)) = U0(C(Y)). It
follows that

w0(y) =
⎛
⎜⎜⎜
⎝

w∗
00(y) 0 ⋯ 0
0 1 ⋯ 0

⋱
1

⎞
⎟⎟⎟
⎠
∈ U0(Mm(C(Y)).

Deûne v = w0w . _en [v] = [w] = z and

det(v)(y) = det(w0)(y)det(w)(y) = 1 for all y ∈ Y .

Lemma 4.4 Let (X , α) be a Cantor minimal system, let Ω be a connected ûnite di-
mensional compact metric space with U(C(Ω)) = U0(C(Ω)) and let

ϕ∶X → Homeo(Ω)
be a continuous map. Denote A = C(X × Ω) ⋊α×ϕ Z. Suppose that there is x ∈ X and
an integer k ≥ 1 such that

(4.2) [Φy] = [idC(Ω)] in KL(C(Ω),C(Ω)),
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where Φy ∶C(Ω) → C(Ω) is deûned by

Φy( f ) = f ○ ϕ−1
α−k+1(y) ○ ϕ−1

α−k+2(y) ○ ⋯ ○ ϕ−1
y for all f ∈ C(Ω)

and for all y ∈ {α j(x) ∶ j ∈ Z} and αk is minimal. Let x ∈ X . _en for any N ∈ N, є > 0
and any ûnite subset F ⊂ C(X ×Ω), there is an integer M > N , a clopen neighborhood
O of x and partial isometry w ∈ Ax that satisfy the following:
(i) α−N(O), α−N+1(O), . . . ,O , α(O), . . . , αM(O) aremutually disjoint and µ(O) <

є/M for every α-invariant probability measure µ;
(ii) w∗w = χO and ww∗ = χαM(O);
(iii) u∗iwu i ∈ Ax for i = 0, 1, . . . ,N − 1;
(iv) ∥w f − f w∥ < є for all f ∈ F.

Proof Since U(C(Ω)) is connected and X is zero-dimensional, one has

U(C(X ×Ω)) = U0(C(X ×Ω)).
It follows from Lemma 2.6 that

ρA(K0(A)) = ρA(K0(X , α,Z)).
_erefore, by Proposition 3.3, the embedding ı∶Ax → A gives

(4.3) ρAx (K0(Ax)) = ρA(K0(A)).
Note Ax is a unital simple AH-algebra with no dimension growth, by _eorem 3.2.
So TR(Ax) ≤ 1. It is generated by C(X × Ω) and uC((X ∖ {x}) × Ω). _e g →
1X⊗ g gives a unital embedding fromC(Ω) intoC(X×Ω). _erefore, there is a unital
embedding ı∶C(Ω) → Ax . Let L∶C(Ω) → Aò(T(Ax)) be the unital strictly positive
aõne homomorphism induced by ı . Note that L(g) = τ(1 ⊗ g) for all g ∈ C(Ω)s.a.
and for all τ ∈ T(Ax).

Without loss of generality, we may assume that

F = { f ⊗ 1Ω , 1X ⊗ g ∶ f ∈ F0 and g ∈ F1},
where F0 ⊂ C(X) and F1 ⊂ C(Ω) are ûnite subsets. _ere exists a clopen neighbor-
hood Bx of x such that

(4.4) ∣ f (x) − f (y)∣ < є/8 for all y ∈ Bx and for all f ∈ F0 .

Since αk is minimal, we can ûnd n > N such that αkn(x) ⊂ Bx . Choose a suõciently
small clopen neighborhood Ox of x such that (i) holds and

α(y) ∈ Bx for all y ∈ Ox .

Moreover, we may also require that Ox ∪ αkn(Ox) ⊂ Bx . Let p1 = χOx and q1 =
χαkn(Ox) . Put M = kn. _en

uM g p1u∗M = uM gu∗Mq1 for all g ∈ C(Ω).
Deûne Ψx = Φα(1−k)(n−1)(x) ○Φα(2−k)(n−2)(x) ○ ⋯ ○Φx . It follows that

(4.5) [Ψx] = [idC(Ω)] × [idC(Ω)] × ⋯ × [idC(Ω)] = [idC(Ω)].
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Let H ⊂ C(Ω)s.a. , P ⊂ K(C(Ω)), and U ⊂ Uc(K1(C(Ω))) be ûnite subsets, let
δ > 0 and η > 0 be required by _eorem 4.2 for є/4 (in place of є) and F1 (in place
of F) associated with L given above. Let V = {v1 , v2 , . . . ., vm} ⊂ MK(C(Ω)) such
that U ⊂ {v i ∶ 1 ≤ i ≤ m}, and by Lemma 4.3,

det(v i)(y) = 1 for all y ∈ Ω, i = 1, 2, . . . ,m.

_ere is a ûnite subset G ⊂ C(Ω) and δ1 > 0 satisfying the following. Suppose that
h1 , h2∶C(Ω) → B are two unital homomorphisms (for any unital C∗-algebra B) such
that

∥h1(g) − h2(g)∥ < δ1 for all g ∈ G.
_en [h1]∣P = [h2]∣P. Let G1 = G ∪H and let

U = diag(
K

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u, u, . . . , u).

_ere is a neighborhood O of x with O ⊂ Ox such that

∥uM g pu∗M − Ψx(g)q∥ < min{δ, δ1 , є/8} for all g ∈ G1 and(4.6)

∥UMv iPU∗M − (Ψx ⊗ idMK )(v i)Q∥ < η, 1 ≤ i ≤ m,

where

p = χO , q = χαM(O) , P = p⊗ idMK , and Q = q ⊗ idMK .

Deûne ψ1,0 ,ψ2,0∶C(Ω) → C(X × Ω) by ψ1,0( f ) = f (as constant along X) and
ψ2,0( f ) = Ψx( f ) for all f ∈ C(Ω). It follows from (4.5) that

(4.7) [ψ2,0] = [ψ1,0] KL(C(Ω),C(X ×Ω)).
Deûne ψ′1 ,ψ′2∶C(Ω) → q(C(X × Ω))q by ψ′1(g) = ψ1,0(g)∣αM(O) and ψ′2(g) = ψ′1 ○
ψ2,0(g) = Ψx(g) ⋅ q for all g ∈ C(Ω). It follows from (4.7) that

[ψ′1] = [ψ′2] in KL(C(Ω), qC(X ×Ω)q).
Denote by j the embedding qC(X ×Ω)q → qAxq, ψ i = j ○ ψ′i , i = 0, 1. _en

[ψ1] = [ψ2] in KL(C(Ω), qAxq).
It follows from (4.6) and_ereom 3.2 that

∣t ○ ψ1(g) − t ○ ψ2(g)∣ < δ for all g ∈H and for all t ∈ T(qAxq).
Note

τ ○ ψ1(g) = τ(q ⊗ g) for all τ ∈ T(A) and for all g ∈ C(Ω)s.a. .

It follows that

L(g)(τ) = τ ○ ψ1(g)
τ(q) for all g ∈ C(Ω)s.a.
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for all τ ∈ T(A).
Note also that ψ1(v i)ψ2(v∗i ) ∈ MK(C(X × Ω)) for some integer m ≥ 1. In virtue

of [5, _eorem 10, Chapter VI],

∆(ψ1(v i)ψ2(v∗i )) = ∆(det(ψ1(v i)ψ2(v∗i ))) = ∆(det(ψ1(v i))det(ψ2(v∗i )))
= ∆(ψ1(det(v i))ψ2(det(v∗i ))) = ∆(1qAx q) ∈ ρAx (K0(qAxq)).

It follows that

(4.8) dist(ψ1(v i)ψ2(v∗i ), 1qAx q) = 0.

It follows from _eorem 4.2 that there is a unitary w1 ∈ qAxq such that

∥w1ψ2(g)w∗
1 − ψ1(g)∥ < є/4 for all g ∈ F1 .

_ere is a unitary normalizer w2 ∈ Ax ∩ C∗(X , α) of C(X) such that w2pw∗
2 = q.

Note that w2 has the form w2 = ∑m∈Z um χΓ−1(m) , where Γ∶X → Z is a continuous
map. Deûne ψ3 ,ψ4 ,ψ5∶C(Ω) → pAx p by ψ3(g) = g p and

ψ4(g) = w∗
2w1uM g pu∗Mw∗

1 w2 and ψ5(g) = w∗
2w1(g ○Ψx)pw∗

1 w2

for all g ∈ C(Ω). As above, we compute that

[ψ5] = [ψ3] in KL(C(Ω), pAx p).
By (4.6), the choice of G1 and δ1 , [ψ5]∣P = [ψ4]∣P . It follows from _eoerem 3.2 that

τ ○ ψ3(g) = τ ○ ψ4(g) for all g ∈ C(Ω) and for all τ ∈ T(pAx p).
It is clear that ψ3(v i)ψ4(v∗i ) ∈ CU(pAp). It follows that

∆̃τ(ψ3(v i)ψ4(v∗i )) ∈ ρA(K0(A)).
_erefore, by (4.3),

dist(ψ1(v i)ψ2(v∗), 1qAx q) = 0.

By applying _eorem 4.2 again, we obtain a unitary w3 ∈ pAx p such that

∥w3g pw∗
3 − ψ4(g)∥ < є/4 for all g ∈ F1 .

Put w = w2w3 . _en w ∈ Ax and

w∗w = pw∗
3w∗

2w2w3p = p = χO ,
ww∗ = w2w3w∗

3w∗
2 = w2pw∗

2 = q = χαM(O) .

So (ii) holds. Moreover (see also (4.6)),

∥wgpw∗ − gq∥ ≤ ∥w2(w3g pw∗
3 )w∗

2 −w2ψ4(g)w∗
2 ∥ + ∥w2ψ4(g)w∗

2 − gq∥
< є/4 + ∥w1uM g pu∗Mw∗

1 − gq∥
< є/4 + є/8 + ∥w1Ψx(g)w∗

1 − gq∥
< є/4 + є/8 + є/4 = 5є/8 for all g ∈ F1 .
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It follows that

∥wg − gw∥ = ∥wgp − gqw∥ = ∥(wgp − gqw)w∗∥ = ∥wgpw∗ − gq∥ < 5є/8
for all g ∈ F1 . Since O ∪ αM(O) ⊂ Bx , by (4.4), for all f ∈ F0 ,

∥w f − f w∥ ≤ ∥wp f −wp f (x)∥ + ∥wp f (x) − f (x)qw∥ + ∥ f (x)qw − f w∥
< є/8 + ∥w f (x) − f (x)w∥ + є/8 = є/4.

_us (iv) holds. To see (iii), we note that

pu i = puχα−1(O)uχα−2(O)⋯uχα−i(O) ,

(u∗iq)∗ = quχαM−1(O)uχαM−2(O)⋯uχαM−i(O)

for i = 1, 2, . . . ,N − 1. Since x ∈ O , (i) implies that pu i and u∗iq are in Ax . From this
one concludes that u∗iwu i ∈ Ax , which proves the lemma.

In Lemma 4.4, if k = 1, assumption (4.2) implies that

[ϕ̃x] = [idC(Ω)] in KL(C(Ω),C(Ω)).

Corollary 4.5 In the case where k = 1, Lemma 4.4 holds if the condition U(C(Ω)) =
U0(C(Ω)) is replaced by the following: for each z ∈ U(C(Ω))/U0(C(Ω)), there exists
v ∈ U(C(Ω)) with [u] = z and h ∈ C(X)s.a. such that

(4.9) ϕ̃y(v) = v exp(ih(y)) for all y ∈ X .

Proof For each z ∈ U(C(Ω))/U0(C(Ω)), choose v ∈ U(C(Ω)) such that [u] = z
and (4.9) holds. _erefore, the rotation map

∆t(v(α × ϕ)(v∗)) = −t(h) + ρC(X×Ω)(K0(C(X × C(Ω))))
for all t ∈ T(C(X ×Ω)). Since α is minimal, C(X)⋊α Z is a unital AT-algebra of real
rank zero. In particular, ρB(K0(B)) is dense in Aò(T(B)), where B = C(X) ⋊α Z.
Note that

ρB(K0(B)) = ρA(K0(X , α,Z)) and h(y) ∈ C(X)s.a. .

It follows that for each τ ∈ T(A),
(4.10) ∆τ(v(α × ϕ)(v∗)) ∈ ρA(K0(X , α,Z)).
It follows from the last part of Proposition 2.5 and (4.10) that

ρAx (K0(Ax)) = ρA(K0(A)).
In the proof of Lemma 4.4, if v j ∈ U(C(Ω)), then

ψ1(v j)ψ2(v j)∗ = v jqΨx(v∗j )q = v j ϕ̃x(v∗j ) = exp(−ih j)
for some h j ∈ C(X)s.a. . It follows that

Dτ(ψ1(v j)ψ2(v j)) = −τ(h jq) ∈ ρAx (K0(qAxq)),
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since h jq ∈ C(X). If v j /= U(C(Ω)) and v j ∈ MK(C(Ω)) with K > 1, letw j = det v j ∈
U(C(Ω)) and

v′j =
⎛
⎜⎜⎜
⎝

det v∗j 0 ⋯ 0
0 1 ⋯ 0

⋱
1

⎞
⎟⎟⎟
⎠
v j .

Note that det(v′j) = 1. As in the proof of Lemma 4.4, one has

∆(ψ1(v′j)ψ2((v′j)∗)) ∈ ρAx (K0(qAxq)).

Put w′
j = (v′j(v∗j ))∗ . _en

∆(ψ1(v j)ψ2(v∗j )) = ∆(ψ1(w′
jv′j)ψ2((w′

jv′j)∗))
= ∆(ψ1(v′j)ψ2((v′j)∗)ψ2((w′

j)∗)ψ1(w′
j))

= ∆(ψ1(v′j)ψ2((v′j)∗)) + ∆(ψ2((w′
j)∗)ψ1(w′

j))

= ∆(ψ1(v′j)ψ2((v′j)∗)) − ∆(ψ1(w j)ψ2(w∗
j )) ∈ ρAx (K0(qAxq)).

_us (4.8) also holds here. _e rest of the proof is exactly the same as for Lemma 4.4.

_e following lemma is taken from the proof of [14, _eorem 5.6].

Lemma 4.6 Let (X , α) be a Cantor minimal system, let Ω be a compact connected
ûnite dimensional metric space, and let ϕ∶X → Homeo(Ω) be a continuous map.
Suppose that there is x ∈ X such that, for any N ∈ N, δ > 0, and any ûnite subset
F ⊂ C(X × Ω), there is an integer M > N , a clopen neighborhood O of x and partial
isometry w ∈ Ax that satisfy the following:
(i) α−N(O), α−N+1(O), . . . ,O , α(O), . . . , αM(O) aremutually disjoint and µ(O) <

δ/M for every α-invariant probability measure µ;
(ii) w∗w = χO and ww∗ = χαM(O);
(iii) u∗iwu i ∈ Ax for i = 0, 1, . . . ,N − 1;
(iv) ∥w f − f w∥ < є for all f ∈ F.

_en for any є > 0 and any ûnite subset F ⊂ A, there exists a projection e ∈ Ax
satisûes the following:
(a) ∥ea − ae∥ < є for all a ∈ F,
(b) dist(pap, eAx e) < є for all a ∈ F,
(c) τ(1 − e) < є for all τ ∈ T(A).

Proof It suõces to show that for any є > 0, any ûnite subset F ⊂ C(X ×Ω), and any
nonzero element a ∈ A+ ∖ {0}, there exists a projection e ∈ Ax ⊂ A such that the
following hold:
(i)′ ∥e f − f e∥ < є for all a ∈ F ∪ {u},
(ii)′ dist(e f e , eAx e) < є for all f ∈ F,
(iii)′ τ(1 − e) < є for all τ ∈ T(A).
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Without loss of generality, wemay assume thatF∗ = F. ChooseN ⊂ N so that 2π/N <
є. Put G = ⋃N−1

i=0 u iFu∗i . We obtain an integer M > N , a clopen neighborhood O of
x, and a partial isometry w ∈ Ax satisfying (i)–(iv).

Put p = χO and q = χαM(O) . Deûne

P(t) = p cost +w sin t cos t +w∗ sin t cos t + q sin2 t t ∈ [0, π/2].
_en P(0) = p and P(π/2) = q. Moreover, one checks that P(t) is a continuous path
of projections. By (ii), (iii), and by the choice of G, one has

∥u i∗P(t)u i f − f u i∗P(t)u i∥ < є
for all t ∈ [0, π/2], i = 0, 1, . . . ,N − 1 and f ∈ F. Deûne

e = 1 − (
M−N
∑
i=0

u i pu i∗ +
N−1
∑
i=1

u i∗P(iπ/2N)u i) .

Using (i) and (ii), one veriûes that e is a projection. By the assumption that u i∗wu i ∈
Ax , e ∈ Ax . By (ii) and the fact that

{ p, upu∗ , u2pu2∗ , . . . , uM−N p(uM−N)∗ ,
u∗P(π/2N)u, u2∗P(2π/2N)u2 , . . . , (u∗)N−1P((N − 1)π/2N)uN−1}

is a set of orthogonal projections, we can verify that

∥ f e − e f ∥ < є for all f ∈ F.

Since

∥P(iπ/2N) − P((i − 1)π/2N)∥ < π/N < є, i = 1, 2, . . . ,N ,
one can further verify that ∥ue−eu∥ < є. It is clear that e f e ∈ Ax for all f ∈ C(X×Ω).
Note that eue = eu(1 − p)e . _erefore, eue ∈ Ax . One also has

τ(1 − e) < Mτ(p) < є for all τ ∈ T(A).

Lemma 4.7 Let A be a unital simple C∗-algebra and let B ⊂ A, where 1B = 1A and
B is a unital simple AH-algebra with no dimension growth such that T(B) = T(A).
Suppose that for any є > 0 and any subset F ⊂ A, there is a projection e ∈ B such that
(i) ∥ea − ae∥ < є for all a ∈ F,
(ii) dist(eae , eBe) < є for all a ∈ F,
(iii) τ(1 − e) < є for all τ ∈ T(A).
_en A has tracial rank at most one.

Proof We ûrst show that, with the assumption, for any given d ∈ A+ ∖ {0}, one can
require that 1 − e ≲ d . We can assume that 0 ≤ d ≤ 1. Put σ = inf{τ(d) ∶ τ ∈ T(A)}.
Since A is simple and T(A) is compact, σ > 0. Choose є0 = min{σ/2, є/2}. By the
assumption, there is a projection e1 ∈ B such that

∥e1de1 − d1∥ < є0/32 and τ(1 − e1) < є0/2 for all τ ∈ T(A)
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for some d1 ∈ e1Be1 . Since

τ(d) = τ(e1de1) + τ((1 − e1)d(1 − e1)) for all τ ∈ T(A),

∥e1de1∥ ≥ σ − є0/2 ≥ σ/2.

It follows that

∥d1∥ ≥ σ2 − є0/32 ≥ 15σ/32.

Put δ = є0/32. _en by [23, Proposition 2.2], 0 /= fδ(d1) ≲ e1de1 ∼ d 1/2e1d 1/2 ≲ d.
Since B has tracial rank at most one, e1Be1 has property (SP). In particular, there is a
non-zero projection e2 ∈ fδ(d1)B fδ(d1). Put

є2 = min{є/2, inf{τ(e2) ∶ τ ∈ T(A)}}.

_en, by the assumption, there is a projection e ∈ B such that
(i) ∥ea − ae∥ < є2 ≤ є/2 for all a ∈ F,
(ii) dist(eae , eBe) < є2 ≤ є/2 for all a ∈ F,
(iii) τ(1 − e) < є2 ≤ τ(e2) for all τ ∈ T(A).
Since T(B) = T(A) and B has tracial rank at most one, 1 − e ≲ e2 ≲ fδ(d1) ≲ d .

Note that B has tracial rank at most one. _e same argument used in the proof of
[19, Lemma 4.4] shows that A has tracial rank at most one. Another way to reach the
conclusion is to apply [9, Lemma 4.3].

_eorem 4.8 Let (X , α) be a Cantor minimal system, let Ω be a compact con-
nected ûnite dimensional metric space with U(C(Ω)) = U0(C(Ω)), and let ϕ∶X →
Homeo(Ω) be a continuous map. Suppose that there exists x ∈ X and an integer k ≥ 1
such that

[Φy] = [idC(Ω)] in KL(C(Ω),C(Ω)) ,

where

Φy( f ) = f ○ ϕ−1
α−k(y) ○ ϕ−1

α1−k(x) ○ ⋯ ○ ϕ−1
α−1(x) ○ ϕ−1

x for all f ∈ C(Ω)

for all y ∈ {α j−1(x) ∶ j ∈ N} and suppose that αk is minimal.
If α × ϕ is minimal, then A = C(X × Ω) ⋊α×ϕ Z has tracial rank at most one.

Consequently, A is isomorphic to a unital simple AH-algebra with no dimension growth.

Proof _is follows from Lemmas 4.4, 4.6, and 4.7.

Remark 4.9 In this paper, we mainly consider the case where ϕ is a constant map.
We state the above in a greater generality for the future usage.

_eorem 4.10 Let (X , α) be a Cantor minimal system, let Ω be a compact con-
nected ûnite dimensional metric space, and let ϕ∶X → Homeo(Ω) be a continuous
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map. Suppose that [ϕy] = [idC(Ω)] in KL(C(Ω),C(Ω)) for all y ∈ X, and for each
z ∈ U(C(Ω))/U0(C(Ω)), there exists v ∈ U(C(Ω)) and h ∈ C(X)s.a. such that

ϕ̃y(v) = v exp(ih(y)) for all y ∈ X .

If α × ϕ is minimal on X × Ω, then A = C(X × Ω) ⋊α×ϕ Z is isomorphic to a unital
simple AH-algebra with no dimension growth.

Proof _is follows from Corollary 4.5 and Lemmas 4.6 and 4.7.

5 Examples

5.1 Notation

Let (X , α) be a Cantor minimal system and let ϕ∶X → Tn be a continuous map. One
can write Tn = R/Z × R/Z ×⋯R/Z. Given η ∈ Tn , one can write η = (t1 , t2 , . . . , tn),
where t j ∈ R/Z. Deûne η(ξ) = (s1+ t1 , s2+ t2 , . . . , sn+ tn), where ξ = (s1 , s2 , . . . , sn) ∈
Tn . Deûne (α×ϕ)(x , ξ) = (α(x), ϕx(ξ)) for all (x , ξ) ∈ X×Tn . Since X is totally dis-
connected, we may also write ϕx = (exp(iθ1(x)), exp(iθ2(x)), . . . , exp(iθn(x))),
where θ j ∈ C(X)s.a. . Note that for each x ∈ X , [ϕx] = [idC(Ω)]. Let z be the
standard unitary generator of C(T). Denote by z j ∈ C(Tn) the function that maps
(s1 , s2 , . . . , sn) to s j . _en ϕ̃y(z j) = z j exp(iθ j(y)) for all y ∈ X , j = 1, 2, . . . , n.
_erefore, if α ×ϕ is minimal, then _eorem 4.10 applies. In particular, when α ×ϕ is
minimal, C(X × Tn) ⋊α×ϕ Z is a unital simple C∗-algebra with tracial rank at most
one. In the case where n = 1, [14, Lemma 4.2] provides a necessary and suõcient
condition for α × ϕ being minimal (see also [25]).

5.2 Definition

Let {mn} be a sequence of integers with mn ≥ 2 and mn ∣mn+1 . Let λn ∶Z/mn+1 →
Z/mn be the quotient map. _e inverse limit lim←Z/mn is the Cantor set. _e so-
called odometer action α is deûned by α(x) = x+ 1 for x ∈ lim←Z/mn . Such action is
always minimal. Moreover, the family {αk ∶ k ∈ N} is equicontinuous on the Cantor
set ([3, II.9.6.7]).

Lemma 5.1 For each integer k ≥ 2, there exists an odometer action α on the Cantor
set such that αk is minimal.

Proof Fix k ≥ 2. Choose a sequence of integers {mn} such that (k,mn) = 1; i.e.,
k and mn are relatively prime and mn ∣mn+1 , n = 1, 2, . . . . Fix x ∈ lim←Z/mnZ. We
will show that {αmk(x) ∶ m ∈ N} is dense. Let y ∈ lim←Z/mnZ. Fix є > 0. Since
{αm ∶ m ∈ N} is equicontinuous, there is δ > 0 such that, for any pair of z1 , z2 ∈
lim←Z/mnZ,

dist(αm(z1), αm(z2)) < є/2 for all m ∈ N,

provided dist(z1 , z2) < δ.
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_ere is an integer j ≥ 1 and x′ , y′ ∈ Z/m jZ such that x0 = {x′n}, y0 = {y′n} ∈
lim←Z/mnZ and x′n = γ j,n(x′) and y′n = γ j,n(y′) for all n < j, where γ j,n = γn ○
γn+1 ○ ⋯ ○ γ j and such that dist(x0 , x) < δ and dist(y0 , y) < δ. We can assume that
δ < є/2. Since (k,m j) = 1, there is m ∈ N such that mk ≡ 1(m j) or mk ≡ −1(m j).
Since −(m j − 1) ≡ 1(m j), in fact, in both case, there is an integer l1 ≥ 1 such that
l1k ≡ 1(m j). We may assume that y′ = x′ + m in Z/m jZ. _en y′ = x′ + ml1k in
Z/m jZ. _en one computes that

αml1k(x0) = x0 +ml1k = y0 .

It follows that

dist(αml1k(x), y) ≤ dist(αml1k(x), αml1k(x0)) + dist(αml1k(x0), y)
< є/2 + dist(y′ , y) < є.

_e following is a result of K. Strung ([24, Proposition 2.1, Section 5]). We quote
here for the convenience. Note that if Ω is connected, βm is minimal for any non-zero
integer m (see, for example, [3, II 9.6.7]).

Proposition 5.2 Let α be an odometer action on the Cantor set and let Ω be compact
metric space. Suppose that β∶Ω → Ω is a minimal homeomorphism such that βm is
minimal for all m ∈ N. _en α × β is a minimal homeomorphism on X ×Ω.

Example 5.3 Let β∶ S2n+1 → S2n+1 (n = 1, 2, . . . ) be a minimal homeomorphism. It
is known that such β exists. Fathi and Herman ([6]) showed that there exists a unique
ergodic andminimal diòeomorphismon S2n+1 ._e groupR/Z can act on S2n+1 freely
as rotations. By a result of A. Windsor, there are minimal homeomorphisms β on
S2n+1 such that β can have any number of ergodic measures ([28]). It follows from
Proposition 5.2 that α × β are minimal homeomorphism on X × S2n+1 , where α is an
odometer that has many invariant probability measures.

Corollary 5.4 Let α be an odometer on the Cantor set and let (S2n+1 , β) be aminimal
dynamical system with n ≥ 1. _en α × β is minimal and A = C(X × S2n+1)⋊α×β Z has
tracial rank at most one.

Proof It follows from Example 5.3 that α × β is minimal. Since β is minimal, it does
not have a ûxed point. _erefore, β has zero degree. If follows that [β] = [id] in
KK(C(S2n+1),C(S2n+1)). Moreover, U(C(S2n+1)) = U0(C(S2n+1)). _us _eorem
4.8 applies (with k = 1).

Example 5.5 Consider an R/Z action on RP2n+1 . We identify PR2n+1 as SO(2n).
Deûne γ∶R/Z→ SO(2n) by

γ(t) =

⎛
⎜⎜⎜⎜⎜
⎝

cos(πt/2) sin(πt/2) 0
− sin(πt/2) cos(πt/2) 0

0 0 1
⋱

1

⎞
⎟⎟⎟⎟⎟
⎠

.
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Deûne an action R/Z × SO(2n) → SO(2n) by

Γ(t)(x) = γ(t)x for all t ∈ R/Z and x ∈ SO(2n).
It is clear that Γ is free and aC∞ -diòeomorphism. For each 1/n2 > δ > 0 and r ∈ Q/Z,
by [28], there is a minimal diòeomorphism βr ∶ SO(2n) → SO(2) such that

dist(βr(x), γ(r)x) < δ for all x ∈ SO(2n).

Corollary 5.6 Let n ≥ 1 be an integer. _ere are odometer actions α on the Cantor set
such that for any minimal homeomorphism β on RP2n+1 , A = C(X × RP2n+1) ⋊α×β Z
is a unital simple C∗-algebra with tracial rank at most one.

Proof First it is well known that H1(C(RP2n+1),Z) = {0}. In other words,

U(C(RP2n+1)) = U0(C(RP2n+1)) .
Note that

K0(C(RP2n+1)) = Z⊕G0 and K1(C(RP2n+1)) = Z,
where G0 is a ûnite group such that 2g = 0 for all g ∈ G0 . Any automorphism on
K0(C(RP2n+1)) induced by an automorphism on C(RP2n+1) has the form

(5.1) ( idZ 0
ϕ2,1 ϕ2,2

) ,

where ϕ2,1∶Z → G0 and ϕ2,2∶G0 → G0 are homomorphisms, since it sends identity
of C(RP2n+1) to itself and G0 is ûnite. Automorphisms of the form of (5.1) form a
subgroup. It is a ûnite group; suppose that its order is k1 . _en for any automorphism
ϕ∶C(RP2n+1) → C(RP2n+1), ϕk1

∗0 = idK0(C(RP2n+1)) .
We note that H0(RP2n+1 ,Q) = Q, H2n+1(RP2n+1 ,Q) = Q and H i(RP2n+1) = {0}

for all other i . Also, H0(RP2n+1 ,Z) = Z and H2n+1(RP2n+1 ,Z) = Z. Let

β̃∶C(RP2n+1) → C(RP2n+1)
be the isomorphism induced by β. Note that β∗ = id on H0(RP2n+1 ,Z) = Z and
β̃∗(1) = ±1 on H2n+1(RP2n+1 ,Z) = Z. Let

Lβ = ∑
k≥0

(−1)k Tr(β∗∣(Hk(RP2n+1 ,Q)))

= Tr( id ∣(H0(RP2n+1 ,Q)) + (−1)2n+1 Tr(β∗∣(H2n+1(RP2n+1 ,Q)))
be the Lefschetz number. If β is minimal, it does not have a ûxed point. So Lβ =
0. It follows that β∗(1) = 1 on H2n+1(PR2n+1 ,Z). It follows that, for any minimal
homeomorphism β on RP2n+1 , (ϕβ)∗1 = idK1(C(RP2n+1)) . We compute that

K0(C(RP2n+1 ,Z/2Z)) = Z/2Z⊕G0 and

0→ Z/2Z→ K1(C(RP2n+1 ,Z/2Z) → G0 → 0.

Let k2 be the order of Aut(Z/2Z ⊕ G0) (which is ûnite). One also checks, from the
above, K1(C(RP2n+1),Z/2Z) is a ûnite abelian group such that 4x = 0 for all x ∈
K1(C(RP2n+1),Z/2Z). Let k3 be the order of Aut(K1(C(RP2n+1))).
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Deûne k = k1 ⋅k2 ⋅k3, which depends on n only. Choose a sequence of integers {m j}
such that m j ∣m j+1 for all j and each m j is prime relative to K . _en by Lemma 5.1,
there are odometer actions α on the Cantor set such that αk is also minimal.

Now let β be a minimal homeomorphism on RP2n+1 . _en by the above,

[(β̃)k]∣K i(C(RP2n+1)) = id, i = 0, 1 and

[β̃)k]∣K i(C(RP2n+1),Z/2Z) = id, i = 0, 1.

(5.2)

Note that

KL(C(RP2n+1),C(RP2n+1)) = HomΛ K(C(RP2n+1),C(RP2n+1))

It follows from [2, 2.11] that, to check [β̃k] = [id], it suõces to show that (5.2) holds,
since 2g = 0 for all g ∈ G0 . _erefore,

[β̃k] = [id] in KL(C(RP2n+1),C(RP2n+1)).

By the assumption we also have that αk is minimal. Hence _eorem 4.8 applies to
α × β.

6 Applications

In this section we consider A = C(Ω) ⋊β Z, where Ω is a connected compact met-
ric space and β is a minimal homeomorphism on Ω. Speciûc examples are the cases
where Ω = S2n+1 or Ω = RP2n+1 , where n ≥ 1. It should be noted that there are nomin-
imal homeomorphisms on even spheres or even dimensional real projective spaces.
Our results can also apply to other connected spaces.

_eorem 6.1 Let Ω be a connected, compact, metric space with ûnite covering di-
mension such that U(C(Ω)) = U0(C(Ω)) and let β∶Ω → Ω be a minimal homeomor-
phism. Suppose that [β̃k] = [id] in KL(C(Ω),C(Ω)) for some integer k ≥ 1, where
β̃( f ) = f ○β−1 for all f ∈ C(Ω)._en A = C(Ω)⋊βZ has rationally tracial rank atmost
one; i.e., A⊗U has tracial rank at most one for any inûnite dimensional UHF-algebra
U . In particular, A is in A.

Proof First we note that since Ω has ûnite covering dimension, it follows from [27]
that A has ûnite nuclear dimension. Let α be an odometer action on the Cantor set
such that αk is also minimal. It follows from Proposition 5.2 that α × β is a minimal
action. Let B = C(X ×Ω) ⋊α×β Z and C = C(X) ⋊α Z.

It follows from _eorem 4.8 that B has tracial rank at most one. Consider the em-
bedding ı∶A → B by sending C(Ω) → C(X × Ω) and sending the implementing
unitary to the implementing unitary in a natural way. Any tracial state τ of B is given
by α × β-invariant Borel probability measure. Let τ0 be the unique tracial state on
C = C(X) ⋊α Z that is given by the α-invariant Borel probability measure. _ere-
fore, K0(C) = K0(X , α) has a unique state. _en each α × β-invariant tracial state
on C(X ×Ω) = C(X) ⊗ C(Ω) has the form τ0 ⊗ τ1 , where τ1 is a β-invariant tracial
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state on C(Ω). It follows that the map ı♯∶T(B) → T(A) induced by ı is a homeo-
morphism. It follows from Lemma 2.6, since Ω is connected and H1(Ω,Z) = {0},
that ρB(K0(B)) = ρC(K0(X , α)) and that ρA(K0(A)) = Z. _erefore, if τ0 ⊗ τ1 and
τ0 ⊗ τ′1 are two tracial states then they induce the same state on K0(A) as well as the
same state on K0(B). It follows from [30,_eorem 4.2] that A⊗U has tracial rank at
most one. It follows from [18] that A⊗U has tracial rank at most one for all inûnite
dimensional UHF-algebras U . Since A = C(Ω) ⋊β Z, it satisûes the Universal Coef-
ûcient _eorem. Furthermore, by [27], A is Z-stable. _erefore, A is in the class of
unital separable amenable simple C∗-algebras that are in A.

_eorem 6.2 Let Ω be a connected compact metric space with ûnite covering dimen-
sion such that H1(Ω,Z) = {0} and K i(C(Ω)) = Z ⊕ G i , where G i is a ûnite group.
Suppose that β∶Ω → Ω is a minimal homeomorphism. _en A = C(Ω) ⋊β Z has
rational tracial rank at most one and is in A.

Proof _is is a corollary of _eorem 6.1. We note that U(C(Ω)) = U0(C(Ω)).
_erefore, it suõces to show that [β̃k] = [id] in KL(C(Ω)). Similar to the proof of
Corollary 5.6, it is easy to see that there exists an integer k i ≥ 1 such that ((β̃)k i )∗i =
(β̃)k i

∗i = idK i(C(Ω)) , i = 0, 1.
Let r i be the order of G i . For each 1 ≤ j ≤ (r i)!, there exists a short exact sequence

0→ Z/ jZ⊕G i/ jG i → K i(C(Ω),Z/ jZ) → G( j)i → 0,

where G( j)i = {g ∈ K i(C(Ω)) ∶ jg = 0}, i = 0, 1. _erefore, K i(C(Ω),Z/ jZ) is a
ûnite group, i = 0, 1. Note that [β̃]∣K i(C(Ω),Z/ jZ) ∈ Aut(K i(C(Ω),Z/ jZ)). However,
Aut(K i(C(Ω),Z/ jZ)) is a ûnite group. _erefore, for some m i , j ≥ 1 with i = 0, 1,
[β̃m i , j]∣K i(C(Ω),Z/ jZ) = idK i(C(Ω),Z/ jZ). Put

k = k1 ⋅ k2 ⋅ ∏
1≤ j≤(r i)!

i=0,1

m i , j .

One checks that (β̃k)∗i = idK i(C(Ω)) and [β̃k]∣K i(C(Ω),Z/ jZ) = idK i(C(Ω),Z/ jZ),
for j = 1, 2, . . . , (r i)!, i = 0, 1. Since r i is the order of G i , by [2, 2.11],

[β̃k] = [idC(Ω)].

Corollary 6.3 Let β be aminimal homeomorphism on S2n+1 ._enA = C(S2n+1)⋊βZ
has rationally tracial rank at most one and is in A.

Proof As inCorollary 5.4, we note thatU(C(S2n+1)) = U0(C(S2n+1)) and anymin-
imal homeomorphism has the property [β] = [id]. So _eorem 6.1 applies.

Corollary 6.4 Let β1 , β2∶ S2n+1 → S2n+1 be two minimal homeomorphisms and let
A i = C(S2n+1) ⋊β i Z, i = 1, 2. _en A1 ≅ A2 if and only if T(A1) ≅ T(A2).

Proof One computes, using the Pimsner–Voiculescu exact sequence ([21]), that
K i(A j) = Z ⊕ Z, i = 0, 1, and j = 1, 2. One also computes that the order of K0(A j)
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is determined by one copy of Z from the rank of projections of Mk(C(S2n+1)) for
all k and K0(A1) and K0(A2) are unital order isomorphic. Furthermore, all traces
agree on K0(A1) = K0(A2). _erefore their Elliott invariant is determined by T(A i),
i = 1, 2. Now, by Corollary 6.3, the classiûcation theorem in [10] applies.

Corollary 6.5 Let β be a minimal homeomorphism on RP2n+1 (for n ≥ 1). _en
A = C(RP2n+1) ⋊Z has rational tracial rank at most one and is in A.

Proof As in Corollary 5.6, we note that

U(C(RP2n+1)) = U0(C(RP2n+1)) and K0(C(RP2n+1)) = Z⊕G ,

where G is a ûnite group and K1(C(RP2n+1)) = Z. _us, _eorem 6.2 applies.

Corollary 6.6 Let β1 and β2 be twominimal homeomorphisms on RP2n+1 (for n ≥ 1)
and let A i = C(RP2n+1) ⋊β i Z, i = 1, 2. _en A1 ≅ A2 if and only if

K1(A1) ≅ K1(A2), (β1)∗ = (β2)∗ on K0(C(RP2n+1)) and T(A1) = T(A2).

Proof By Corollary 6.5, it suõces to show that A1 and A2 have the same Elliott in-
variant. _e assumption shows that

K0(C(RP2n+1))/{z − z ○ (β1)∗ ∶ z ∈ K0(C(RP2n+1))} ≅
K0(C(RP2n+1))/{z − z ○ (β2)∗ ∶ z ∈ K0(C(RP2n+1))} ≅ Z⊕G′

0 ,

whereG′
0 is a quotient of Tor(K0(C(RP2n+1)). Moreover, they are order isomorphic.

By the Pimsner–Voiculescu exact sequence, we may write

K0(A1) = (Z⊕G′
0) ⊕Z ≅ K0(A2).

Since H1(RP2n+1 ,Z) = {0}, it follows that

ρA1(K0(A1)) = ρA1(Z⊕G′
0) = Z and ρA2(K0(A2)) = Z.

It follows that K0(A1) and K0(A2) are unital order isomorphic. Since all traces
of A i agree on K0(A i), i = 1, 2. It follows that A1 and A2 have isomorphic Elliott
invariant. _us, [10] applies.
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