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This paper proposes a model-free test for the strict stationarity of a potentially vector-
valued time series using the discrete Fourier transform (DFT) approach. We show
that the DFT of a residual process based on the empirical characteristic function
weakly converges to a zero spectrum in the frequency domain for a strictly stationary
time series and a nonzero spectrum otherwise. The proposed test is powerful against
various types of nonstationarity including deterministic trends and smooth or abrupt
structural changes. It does not require smoothed nonparametric estimation and, thus,
can detect the Pitman sequence of local alternatives at the parametric rate T−1/2,
faster than all existing nonparametric tests. We also design a class of derivative tests
based on the characteristic function to test the stationarity in various moments. Monte
Carlo studies demonstrate that our test has reasonarble size and excellent power. Our
empirical application of exchange rates strongly suggests that both nominal and real
exchange rate returns are nonstationary, which the augmented Dickey–Fuller and
Kwiatkowski–Phillips–Schmidt–Shin tests may overlook.

1. INTRODUCTION

Stationarity is a fundamental assumption in many time series applications that
generally enables convenient applications of statistical analysis, such as parameter
estimation, inference, and forecasting. The stationarity assumption enables extract-
ing or investigating the properties of a time series process that is stable over time.

Fu acknowledges financial support from the National Science Foundation of China (NSFC) under Nos. 71903032 and
72121002. Gao acknowledges financial support from the NSFC under No. 71973030. Su gratefully acknowledges
the NSFC for financial support under No. 72133002. Wang acknowledges financial support from the NSFC under
No. 71873151. Address correspondence to Xia Wang, School of Economics, Renmin University of China, Beijing,
China; e-mail: wxia@ruc.edu.cn.

© The Author(s), 2022. Published by Cambridge University Press. 511

https://doi.org/10.1017/S0266466622000494 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466622000494
mailto:wxia@ruc.edu.cn
https://doi.org/10.1017/S0266466622000494


512 ZHONGHAO FU ET AL.

Various time series models are based on certain stationarity assumptions, such as
the stationary autoregressive moving average (ARMA), generalized autoregressive
conditional heteroskedasticity (GARCH), threshold autoregressive, and Markov
regime-switch models. Furthermore, the strict stationarity assumption has been
adopted in various nonparametric and semiparametric approaches, such as kernel
and local polynomial estimation (Li and Racine, 2006). The strict stationarity
assumption is also vital for tests involving the full distribution; for example,
see Hong and White’s (1995) test for correct model specification and tests for
conditional independence by Su and White (2007) and Wang and Hong (2018).

However, indiscriminately imposed stationarity restrictions on time series mod-
els can lead to challenges for empirical studies. The prevalence of structural
changes in the real world, such as policy switches, technology progress, or
institutional changes, leads to abrupt or smooth structural changes in time series
sequences. Empirical studies typically assume that a differenced time series
satisfies certain stationarity conditions. However, there may still be a nonexplosive
trend that cannot be eliminated by differencing. Failure to acknowledge such
nonstationarity a priori while continuing to impose the stationarity assumption
will result in a lack of consistency in inference and estimation. In the forecasting
literature, density forecasts can provide more insight than point forecasts for
macroeconomic risk management (see, e.g., Diebold, Gunther, and Tay, 1998;
Diebold, Hahn, and Tay, 1999). However, owing to the instability of macroe-
conomic and financial time series (Rossi, 2013), density forecasts may deliver
suboptimal predictions in case of time-varying underlying density (e.g., Rossi and
Sekhposyan, 2013; González-Rivera and Sun, 2017). In financial risk manage-
ment, the strict stationarity of financial returns is a critical condition for assessing
the probability of extreme events (e.g., Koedijk, Schafgans, and de Vries, 1990;
Quintos, Fan, and Phillips, 2001; Lin and Kao, 2008). In addition, studying
the nonlinear dependence of financial variables requires testing the constancy
of copulas, which may change with variation in the joint distribution over time
(Busetti and Harvey, 2011; Manner, Stark, and Wied, 2019). It is therefore essential
to test for stationarity in an underlying time series process before proposing a
concrete analytical tool.

There is extensive literature on stationarity testing, most commonly investigat-
ing two types: the “strict stationarity”, by which all finite-dimensional distributions
do not depend on time, and “pth-order stationarity”, which suggests the existence
and time invariance of moments up to pth order. When p = 2, it indicates
weak stationarity where the mean and covariance structure of a time series exist
and do not depend on time. Related studies focus on testing whether economic
processes behave like a random walk or are stationary around a certain trend. Unit-
root tests—including the Dickey–Fuller (Dickey and Fuller, 1979), augmented
Dickey–Fuller (ADF) (Dickey and Fuller, 1981), and Phillips and Perron’s (1988)
tests—are typical tests whose null hypotheses are unit roots against (trend) weak
stationarity alternative hypotheses. Tests designed to examine the null of trending
stationarity against the unit-root alternative constitute another test type and include
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the Kwiatkowski et al.’s (1992; hereafter KPSS) test and its variants (Leybourne
and McCabe, 1994; Xiao, 2001; Busetti and Taylor, 2003, 2004; Hobijn, Franses,
and Ooms, 2004; Cavaliere and Taylor, 2005; Xiao and Lima, 2007; Cavaliere and
Taylor, 2009).

Investigating stationarity in the first two moments is sufficient for linear time
series models to produce consistent estimation and valid inference. Nevertheless,
many nonlinear time series models and distribution-based approaches require strict
stationarity. For example, higher-order moments, including skewness and kurtosis,
have economic interpretations in financial time series analysis. Tests for weak
stationarity cannot provide valuable information on the stability of such higher-
order moments. However, to the best of our knowledge, there are relatively few
studies on strict stationarity tests. Kapetanios (2009) tests strict stationarity by
using a nonparametric marginal density estimator, whereas Busetti and Harvey
(2010) formulate tests based on weighted quantile indicators. Francq and Zakoïan
(2012) propose a strict stationarity test under the GARCH framework. Hong,
Wang, and Wang (2017) develop a model-free test by estimating a nonparametric
time-varying characteristic function (CF) and comparing it with the empirical
characteristic function (ECF). Additionally, Guo, Li, and Li (2019) propose a
strict stationarity test under the double autoregressive (DAR) framework. Although
existing studies have addressed strict stationarity testing, the tests they discuss
exhibit certain undesired features. For smoothed nonparametric tests, such as those
in Kapetanios (2009) and Hong et al. (2017), the power is affected by the choice
of tuning parameters. Tests under certain model specifications, such as those of
Francq and Zakoïan (2012) and Guo et al. (2019), can offer misleading results if
the model is misspecified.

A related strand of literature explores the estimation and testing of structural
breaks in joint distributions. Structural breaks may be a source of nonstationarity in
a distribution, and strict stationarity can be tested using tests by Inoue (2001) based
on empirical distribution functions (EDFs) and by Fu, Hong, and Wang (2022a)
based on ECFs. However, although these tests have power for various types of
nonstationarity, the asymptotic theories developed for a finite number of structural
breaks in the distribution could be invalid under certain types. In addition, as all
these tests require trimming the observations at the boundary regions of the sample,
nonstationarity that exists only in the boundary regions may be missed.

Motivated by the importance of the strict stationarity test and the fact that
existing approaches have various undesired features, we develop a novel test based
on the discrete Fourier transform (DFT), a useful tool applied in a second-order
stationarity test by Dwivedi and Subba Rao (2011) and Jentsch and Subba Rao
(2015), and a structural change test in factor models by Fu, Hong, and Wang
(2022b). We construct the test by comparing the DFT of a residual process from
a generalized regression with a zero spectrum. As the CF has a one-to-one corre-
spondence with the cumulative distribution function (CDF), we estimate the CF
using the ECF; if the underlying time series process is strictly stationary, then the
ECF should be consistent for the true CF. Thus, the DFT of the estimated residual
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process will converge to a zero spectrum in the frequency domain. In contrast,
if the time series process is nonstationary, the ECF is no longer a consistent
estimator for a time-varying CF. Therefore, the time-varying information could
be extracted from the estimated residual process, and the DFT will converge to
a nonzero spectrum. Based on this intuition, we construct a Cramér–von Mises
(CvM)-type test statistic that compares the DFT of the estimated residuals and a
zero spectrum under the null hypothesis of strict stationarity. This idea of using CF
for hypothesis testing is similar to that of Su and White (2007), Chen and Hong
(2010), Hong et al. (2017), Wang and Hong (2018), and Fu and Hong (2019).
Our test has several advantages. First, unlike some existing strict stationarity tests,
which are useful only under specific parametric assumptions, our DFT test is
model-free and can detect various types of nonstationarity. The second advantage is
that, unlike the existing nonparametric kernel-based strict stationarity tests, which
depend on the choice of bandwidth, our DFT test is free of tuning parameters;
choosing a smoothing or trimming parameter when computing our test statistic is
not necessary. This method can detect a class of local alternatives that converge to
the null hypothesis at a parametric convergence rate of T−1/2, which is faster than
the existing nonparametric tests. Third, compared with existing tests designed to
test distributional breaks, our test does not require trimming data and can detect
nonstationarity in the boundary regions. As a final advantage of our test, the
asymptotic theory is relatively general for various types of nonstationarity, and
only very weak conditions are required for the alternatives.

The remainder of this paper is organized as follows. Section 2 introduces our
hypotheses of interest and proposes the CvM-type test statistic. In Section 3, we
derive the asymptotic distribution and investigate the asymptotic power properties
of our test. Section 4 proposes a pth-order moment stationarity test using the DFT.
In Section 5, we study the finite-sample performance of our test using Monte
Carlo simulation; we apply our test to the exchange rate market in Section 6.
Section 7 concludes the paper. Proofs of the main results are relegated to the
Mathematical Appendix. Further technical analysis, simulations, and application
results are reported in the Supplementary Material.

Notation. We use i to denote the imaginary number,
√−1 = i. For an m × n

complex-valued matrix A = (aij), we use aij to denote the (i,j)th element, A∗ =
(a∗

ji) to denote its complex conjugate, and A′ = (aji) to denote its transpose. Let
||A|| ≡ (∑m

i=1

∑n
j=1 |aij|2)1/2 denote the Frobenius norm of A, where |·| denotes the

modulus of a complex number and ≡ signifies a definitional relationship. We use
p→,

d→, and ⇒ to denote convergence in probability, convergence in distribution,
and weak convergence, respectively.

2. HYPOTHESES AND TEST STATISTIC

2.1. Hypotheses of Interest

Let {Xt}∞t=1 be a d-dimensional time series process, where d ≥ 1 denotes a fixed
constant. For a given collection of time indices (t1, . . . ,tm), we denote the joint
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CDF of {Xt1, . . . ,Xtm} as

FXt1,...,Xtm
(x1, . . . ,xm)= P(Xt1 ≤ x1, . . . ,Xtm ≤ xm).

If {Xt}∞t=1 is strictly stationary, then FXt1,...,Xtm
(x1, . . . ,xm) depends on the time

indices (t1, . . . ,tm) only through the differences between them for any m ≥ 1. To
test whether a time series process is strictly stationary, we test the following null
hypothesis:

H0 : FXt1,...,Xtm
(x1, . . . ,xm) = FXt1+k,...,Xtm+k(x1, . . . ,xm) (2.1)

for any collection of admissible time indices (t1, . . . ,tm), realization (x1, . . . ,xm)

with m ≥ 1, and integer k ≥ 1. For a collection of pre-specified time indices
(t1, . . . ,tm), we assume t1 < t2 < · · · < tm, where a special case is tj = t + j − 1,
for j = 1, . . . ,m. To simplify the expression of the joint distribution, we define the
following dm-dimensional time series

Yt ≡ (X′
t,X

′
t+t2−t1

, . . . ,X′
t+tm−t1

)′,

where we follow Hong et al. (2017) to suppress the dependence of Yt on
(t1,t2, . . . ,tm) and m. The joint CDF of Xt, Xt+t2−t1, . . . , and Xt+tm−t1 is identical to
the CDF of Yt. Therefore, the null and alternative hypotheses could be rewritten as

H0 : Ft(y)= P(Yt ≤ y) does not depend on t for all y ∈ R
dm, (2.2)

and

HA : Ft(y)=P(Yt ≤ y) depends on t for some nonnegligible collection of y∈R
dm.

Note that strict stationarity requires that (2.1) hold for all (t1,t2, . . . ,tm) and all m.
These values should be specified because some settings may only require certain
aspects of strict stationarity. For example, to check m0th-order stationarity of an
AR(p) process,1 one can let m = m0. Another example is testing stationarity in
a copula-based first-order Markov model, in which we can specify m = 1 to test
whether the marginal distribution changes over time. For more examples, see the
applications of strict stationarity in Joe (1997) and Chen and Fan (2006). Compared
to the strict stationarity test of Kapetanios (2009), which focuses only on the
marginal distribution, our test is more flexible and can test strict stationarity in
a joint distribution.

To illustrate, we assume that m is fixed. Consider the CF of {Yt}
φt(u)≡ E(eiu′Yt)=

∫
eiu′Yt dFt(y),

where u ∈ R
dm is a dm×1 nuisance parameter vector. Given that CF is unique for

any particular distribution of Yt, our test is equivalent to testing

1Here, the m0th-order stationarity requires FXt1 ,...,Xtm0
(x1, . . . ,xm0 )= FXt1+k,...,Xtm0 +k (x1, . . . ,xm0 ), which differs from

the definition of stationarity up to the m0th-order moment.
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H0 : φt(u)= φ0(u) for all u ∈ R
dm (2.3)

and for some time-invariant CF φ0(u) against

HA : φt(u) �= φ(u) for some u ∈ R
dm (2.4)

in a Borel set of positive measure and for any time-invariant CF φ(u). To achieve
consistency of our test against various types of nonstationarity under HA, we must
check whether (2.3) holds for all t and all u ∈ R

dm instead of a subset of Rdm. This
usually requires consistent nonparametric estimation for φt(u) (e.g., Hong et al.,
2017). In this paper, we propose a novel approach that avoids undesired features
in a smoothed nonparametric approach.

2.2. Discrete Fourier Transform

The idea of our test is to capture the time-varying behavior of φt(u)without directly
estimating it. Unlike Hong et al. (2017), who rely on smoothed nonparametric
estimation of φt(u), we use the DFT. To extract the potential time-varying features
of φt(u), we consider the following generalized regression:

eiu′Yt = φt(u)+ εt(u), (2.5)

where εt(u) is a generalized error process with E[εt(u)] = 0. For each fixed
u ∈ R

dm, (2.5) can be considered as a complex-valued time-varying coefficient
model with a local constant (e.g., Robinson, 1989, 1991). The literature on the
nonparametric estimation of φt(u) includes Ramsay (1991), Cai (2007), and Hong
et al. (2017). In particular, the strict stationarity test of Hong et al. (2017) is based
primarily on the comparison of the smoothed nonparametric consistent estimate
of φt(u) with the ECF under the null. Their generalized Hausman-type test relies
on nonparametric kernel estimation and can detect a class of local alternatives at a
nonparametric rate. Additionally, the choice of bandwidth can significantly impact
the smoothed nonparametric test results; two practitioners may draw opposing
conclusions from the same dataset with different bandwidth choices. We propose
our novel test based on the DFT to avoid these undesired features in a smoothed
nonparametric test.

Specifically, we consider the following generalized residual process:

ε̂t(u)= eiu′Yt − φ̂0(u)

=
[
φt(u)− φ̂0(u)

]
+ εt(u),

where φ̂0(u) ≡ T−1∑T
t=1 eiu′Yt is the ECF, and T is the sample size. Under H0 :

φt(u) = φ0(u), for all t and u, the ECF is consistent for the CF. Thus, ε̂t(u) is
essentially a stationary zero-mean process in the frequency domain indexed by
u ∈R

dm, and it weakly converges to a zero spectrum. However, under HA : φt(u) �=
φ0(u) for some t and u, ε̂t(u) contains the time-varying feature of φt(u) because the
ECF cannot consistently estimate a time-varying CF. To extract information from
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{
ε̂t(u)

}
under HA, we propose a test based on the following empirical process:

Â(u,v)= 1

T

T∑
t=1

ε̂t(u)e
iv2π t/T,

where u ∈ R
dm and v ∈ R. Note that Â(u,v) is the DFT of ε̂t(u). Because the DFT

converts a time series from the time domain to the frequency domain, Â(u,v)
contains complete time series information of ε̂t(u). Hence, by comparing the
spectrum of the estimated residual process with the null (zero) spectrum, we can
infer whether the underlying time series is strictly stationary.

Note that Â(u,v) can be written equivalently in terms of a demeaned Fourier
transform of eiu′Yt . Let M̄t(v)≡ eiv2π t/T −T−1∑T

s=1 eiv2πs/T be a demeaned Fourier
process. Then, we can easily verify

Â(u,v)= 1

T

T∑
t=1

M̄t(v)ε̂t(u)= 1

T

T∑
t=1

M̄t(v)e
iu′Yt

= Â1(u,v)+ Â2(u,v), (2.6)

where Â1(u,v)= T−1∑T
t=1 M̄t(v)φt(u) and Â2(u,v)= T−1∑T

t=1 M̄t(v)εt(u).
The decomposition in (2.6) provides insight into the power of the test based

on the use of Â(u,v) against the alternatives. Â1(u,v) and Â2(u,v) are clearly the
demeaned DFTs of the unknown CF φt(u) and the unobservable generalized error
process εt(u), respectively. Under H0, Â1(u,v) = 0 for all (u,v) ∈ R

dm+1, and the
asymptotic behavior of DFT Â(u,v) is dominated by Â2(u,v), which converges to
a zero spectrum in the frequency domain at the typical

√
T-parametric rate. Under

HA, Â1(u,v) converges to a nonzero spectrum μ(u,v) defined in Proposition 3.2,
and Â(u,v) is dominated by Â1(u,v), which captures the nonstationary features
of φt(u). Thus, we can detect the nonstationarity of an unknown form in the
distribution of {Yt}.

Interestingly, DFT Â(u,v) can be viewed as testing independence between Yt

and the rescaled time index t/T . Let ψ̂(u,v)= T−1∑T
t=1 eiu′Yt+iv2π t/T , and λ̂(v)=

T−1∑T
t=1 eiv2π t/T , then it follows that

Â(u,v)= ψ̂(u,v)− φ̂0(u)λ̂(v),

where ψ̂(u,v) can be viewed as a pseudo-joint ECF of Yt and t/T and λ̂(v) as the
pseudo-marginal ECF of the rescaled time index t/T in the sense that it follows the
U[0,1] distribution. Given that φ̂0(u) is the marginal ECF of Yt, our DFT test can
be viewed as testing the generalized distance covariance between the CF of Yt and
a pseudo-CF of the rescaled time index t/T . Such a construction is analogous to the
distance-covariance approach proposed by Székely, Rizzo, and Bakirov (2007) for
independent and identically distributed (i.i.d.) observations and by Zhou (2012)
and Davis et al. (2018) for strictly stationary and weakly dependent observations.
However, our asymptotic analysis differs substantially from those in Székely et al.
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(2007), Zhou (2012), and Davis et al. (2018). The deterministic time index {t/T}T
t=1

is not independent or stationary over time in these studies; hence, their results are
not applicable.

Notably, our test can also be cast into the vast literature on model specification
tests. Consider the spatial regression in (2.5). When E(eiu′Yt) is correctly specified,
we should have the following pseudo-conditional moment condition:

E [εt(u)|t/T] = 0 for all u ∈ R
dm,

by pretending that t/T is a random variable. According to Bierens (1982, 1990),
this conditional moment condition is equivalent to the following set of uncondi-
tional moment conditions:

E
[
εt(u)e

iv2π t/T
] = 0 for all (u,v) ∈ R

dm+1,

where eiv2π t/T can be interpreted as the choice of the “generically totally revealing
(GTR)” functions, as defined by Stinchcombe and White (1998). As noted by an
anonymous referee, eiv2π t/T can be replaced by some other GTR functions, which
can also serve as a foundation for alternative tests for strict stationarity.

2.3. Test Statistic

To examine the behavior of Â(u,v) in the frequency domain, we construct the
following CvM-type test statistic:

D̂ = T
∫
Rdm+1

∣∣∣Â(u,v)∣∣∣2 W(u,v)dudv, (2.7)

where W(u,v) : Rdm+1 → R
+ is a nonnegative symmetric weighting function.

Equation (2.7) implies D̂ can capture the deviation of Â(u,v) from a zero
spectrum at all possible combinations of (u,v) in the frequency domain. Intuitively,
u is a nuisance parameter for the CF. Checking all u ensures that the test statistic
does not miss any information in the distribution of Yt. v is the nuisance parameter
introduced by the DFT. The time-varying behavior of φt(u) can be captured by
various v values in the frequency domain. Thus, investigating all v ensures the
consistency of D̂ against various types of nonstationarity. The weighting function
W(u,v) enables assigning various weights to (u,v). Superficially, computing D̂
requires numerical integration over (u,v) ∈ R

dm+1, which can be time-consuming
when dm is moderately large. A major advantage of our test is that, for certain
appropriate choices of the weighting functions W(u,v), we can avoid numerical
integration to deliver a closed-form expression for D̂ with nuisance parameters u
and v integrated out.

In practice, we recommend choosing W(u,v) in a product form W(u,v) =
W1(u)W2(v). Let

h1 (y,ỹ)≡
∫
Rdm

eiu′(y−ỹ)W1 (u)du and h2 (τ,τ̃ )≡
∫
R

eiv2π(τ−τ̃ )W2 (v)dv.
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Denote h1st ≡ h1 (Ys,Yt), h2st ≡ h2 (s/T,t/T), and h̃�st ≡ h�st − 1
T

∑T
t=1 h�st −

1
T

∑T
s=1 h�st + 1

T2

∑T
s=1

∑T
t=1 h�st, for �= 1,2. Then it is easy to verify that2

D̂ = 1

T

T∑
t=1

T∑
s=1

h̃1sth̃2st. (2.8)

For example, if

W1(u)= (2πγ 2
1 )

− dm
2 e

− ||u||2
2γ 2

1 and W2(v)= (2πγ 2
2 )

− 1
2 e

− v2

2γ 2
2 , (2.9)

then h1st = e−γ 2
1 ||Ys−Yt ||2/2 and h2st = e−2π2γ 2

2 (s−t)2/T2
, where γ1 and γ2 are scale

parameters that determine the dispersion of weights assigned to u ∈R
dm and v ∈R,

respectively; if

W1(u)= (2γ1)
−dme− 1

γ1

∑dm
i=1 |ui| and W2(v)= (2γ2)

−1e− |v|
γ2 , (2.10)

then h1st =∏dm
i=1[1+γ 2

1 (Yis −Yit)
2]−1 and h2st = [1+γ 2

2 4π2(s− t)2/T2]−1, where
γ1 and γ2 are scale parameters that have analogous roles as in (2.9); if

W1(u)=
(
cdm ‖u‖1+dm

)−1
and W2(v)= π−1|v|−2, (2.11)

then h1st = ‖Ys −Yt‖ and h2st = 2π |s−t|/T, where cdm =π(dm+1)/2/
 ((dm+1)/2)
and 
(·) is the complete gamma function: 
(z) = ∫ ∞

0 sz−1e−sds. Notice that
the choice of weighting function in (2.11) is associated with those used in the
distance covariance measure of Székely et al. (2007), Zhou (2012), and Su and
Zheng (2017), among others. This indicates that the DFT is equivalent to testing
independence between the distribution of Yt and rescaled time index t/T in the
sense that the latter follows the U[0,1] distribution.

3. ASYMPTOTIC PROPERTIES

We now derive the asymptotic properties of Â(u,v) and D̂. Let C denote a generic
constant that may vary across lines.

3.1. Assumptions

To establish the asymptotic theory, we first impose the following regularity
conditions.

Assumption A.1. (i) {Yt} is a strong mixing process on R
dm with mixing

coefficient α (·) such that
∑∞

s=1 s2α (s) <∞ and
∑∞

s=1α (s)
δ/(2+δ) <∞ and (ii)

E(‖Yteiu′Yt‖2+δ) <∞, for some δ > 0.

2Note that D̂ = T−1 ∑T
t=1

∑T
s=1 h̃1sth2st = T−1 ∑T

t=1
∑T

s=1 h1st h̃2st .
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Assumption A.2. The weighting function W(·): Rdm+1 → R
+ is a nonnegative

and symmetric function such that
∫
Rdm+1 W(u,v)dudv <∞.

Assumption A.1(i) restricts {Yt} to be an α-mixing process satisfying certain
mixing conditions. According to Fan and Yao (2003), a strictly stationary time
series {Yt,t = 0,±1,±2, . . .} is strong mixing when the α-mixing coefficient

α(n)≡ sup
A∈F0−∞,B∈F∞

n

|P(A)P(B)−P(AB)| → 0,

as n → ∞, where n = 1,2, . . . , and F j
i denotes the σ -field of {Yt,i ≤ t ≤ j}.

The strong mixing condition has been widely used in the nonparametric time
series literature. It is well known that a variety of time series processes, such
as ARMA, bilinear, and GARCH processes, typically satisfy the strong mixing
condition. Assumption A.1(ii) imposes a moment condition on {Yteiu′Yt}, which
is required to verify the tightness of certain empirical processes in the proof of
Proposition 3.1. Note that we do not require the density of Yt to exist because of the
application of CF. Thus, the components of Yt can be either continuous or discrete
random variables or a mixture of the two. This is an improvement over the test
by Kapetanios (2009), which requires a continuous probability density function
that is violated for discretely valued time series. Furthermore, unlike the weak
stationarity tests that usually require finite four-plus-order moment conditions,
we impose no higher-order moment conditions on Yt. This accounts for the main
difference between strict and weak stationarity tests; the former are based on the
entire distribution, allowing for the existence of only low-order moments, whereas
the latter are based on the first two moments and require the existence of higher-
order moments.

Assumption A.2 imposes a weak integrability condition on the weighting func-
tion W(u,v) to guarantee that D̂ is well-behaved asymptotically. When W(u,v) =
W1(u)W2(v), the first two examples given in the previous section (see (2.9) and
(2.10) in particular) satisfy the integrability constraint. The last example in (2.11)
does not satisfy Assumption A.2. Nevertheless, as discussed in Section S1 of the
Supplementary Material, the integrability condition can be removed at the cost of
a different proof strategy based on the V-statistic theory and Mercer theorem in
functional analysis. Thus, the moment condition on {Yteiu′Yt} can also be replaced
by that on h1st, which is satisfied for all three choices of W1 (·) discussed in the
last subsection.

As Hong et al. (2017) also consider tests for strict stationarity, it is interesting
to compare Assumptions A.1 and A.2 with their assumptions. First, the strong
mixing condition in Assumption A.1(i) is weaker than the β-mixing condition in
Assumption 1 of Hong et al. (2017), even though they conjecture that they can
relax their β-mixing condition to the α-mixing condition. Second, Hong et al.’s
(2017) test does not require moment conditions because they rely on the local
linear method to estimate the time-varying CF under the alternative, and they
do not need to use the empirical process theory in their asymptotic analyses.
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In contrast, we impose some moment conditions on {Yteiu′Yt} in Assumption A.1(ii)
to verify the tightness of the empirical process. As mentioned earlier, this moment
condition can be relaxed using an alternative proof strategy. Third, although the
condition on the weighting function is similar to that of Hong et al. (2017), it is
weaker. The integrability of the weighting function is a sufficient condition for us
to establish the limiting distribution of our test statistic, whereas Assumption 3
in Hong et al. (2017) requires that the weighting function has fourth-order finite
moments. As mentioned above, our integrability condition can be removed by
resorting to an alternative proof strategy. As pointed out by an anonymous referee,
weighting functions for our proposed test are allowed to be nonintegrable, which
is an improvement over Hong et al. (2017). Fourth, since Hong et al. (2017)
must estimate the time-varying CF under the alternative, they have to impose
smoothness conditions on the CF in their Assumption 4 for the power analysis. We
need no such conditions as our approach does not require smoothed nonparametric
estimation. Fifth, because Hong et al. (2017) require smoothed nonparametric
estimation for the time-varying CF, they must specify the conditions on the kernel
function and bandwidth; we need neither in our test.

3.2. Asymptotic Null Distributions

Let


1(u1,u2)≡
∞∑

j=−∞
cov(eiu′

1Yt,e−iu′
2Yt−j) and


2(v1,v2)≡
∫ 1

0
eiv12πτ e−iv22πτdτ −

∫ 1

0
eiv12πτdτ

∫ 1

0
e−iv22πτdτ .

Clearly, 
1(u1,u2) is a generalized long-run autocovariance of eiu′Yt . 
2(v1,v2)

can be written as cov
(
eiv12πτ,e−iv22πτ

)
, which represents the pseudo-covariance

between eiv12πτ and e−iv22πτ in the sense that τ ∼ U [0,1], the uniform distribution
on the interval [0,1].

Next, we provide the asymptotic distribution of Â(u,v) under the null hypothesis.

Proposition 3.1. Suppose Assumption A.1 holds. Let U ≡ [−b,b]dm and V ≡
[−c,c] be any bounded subsets of Rdm and R, respectively, with b> 0 and c> 0.
Then, under H0,
√

TÂ(u,v)⇒ S(u,v) on W ≡ U×V as T → ∞,
where S(u,v) is a complex-valued Gaussian process with a covariance kernel given
by

K0 (w1,w2)≡ 
1(u1,u2)
2(v1,v2),

where wl = (
u′

l,vl
)′ ∈ W for l = 1,2.
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Proposition 3.1 presents the asymptotic null distribution of Â(u,v) scaled by√
T , which is a complex-valued Gaussian process. The proof of Proposition 3.1

is primarily based on the central limit theorem for α-mixing processes; see,
e.g., Theorem 5.20 in White (2001). Under H0, Â2(u,v) is the dominant term
that converges to a complex-valued Gaussian process. Interestingly, when the
underlying time series satisfies the null hypothesis, the covariance kernel of the
limiting distribution of Â2(u,v) contains two components: the generalized long-
run covariance of εt(u1) and εt(u2) and the pseudo-covariance introduced by DFT.
Intuitively, under H0, the CF of Yt is time-invariant such that Yt is independent
of time t/T . Hence, the variance of the DFT is asymptotically equivalent to
the product of the generalized long-run autocovariance of eiu′Yt and the pseudo-
covariance of eiv2πτ .

The following theorem establishes the asymptotic distribution of the test statistic
D̂ under the null hypothesis.

Theorem 3.1. Suppose Assumptions A.1 and A.2 hold. Then, under H0,

D̂
d→
∫
Rdm+1

|S(u,v)|2 W(u,v)dudv as T → ∞,
where S(u,v) is the complex-valued Gaussian process defined in Proposition 3.1.

Theorem 3.1 presents the asymptotic distribution of D̂ under H0. This suggests
that the integral of the square of

√
TÂ(u,v) weighted by W(u,v) converges in

distribution to an analogous integral of the complex-valued Gaussian process
S(u,v). We note that the weak convergence in Proposition 3.1 may not hold when
‖u‖ or |v| increases to infinity. Owing to the integrability of the weighting function
W(u,v), which assigns smaller weights as ‖u‖ or |v| increases, the impact caused
by the nonconvergent region is asymptotically negligible. Consequently, D̂ can
check the deviation of Â(u,v) from the zero spectrum over the entire frequency
domain for (u,v) ∈R

dm+1. Nevertheless, D̂ is not asymptotically pivotal because it
depends on an unknown data generating process (DGP). In the following, we will
propose a resampling method to obtain the asymptotic critical values. In response
to an anonymous referee’s question regarding the possibility of standardizing
the statistic D̂ to obtain an asymptotically pivotal test within our framework,
we have illustrated this difficulty and discussed this issue in Section S2 of the
Supplementary Material. This phenomenon does not pertain only to our test; it is
true for a wide class of so-called nonsmoothing specification tests; see Chapter 13
of Li and Racine (2006). In any case, one should not interpret the nonasymptotic
pivotal property of such a test as a serious drawback in comparison with the kernel-
based smoothed nonparametric tests (e.g., Hong et al., 2017) simply because of
the need to rely on resampling methods to make asymptotic inferences. It is well
known that, even if many smooth tests are asymptotically pivotal under the null
hypothesis, one cannot always rely on using the asymptotic critical values to
make reliable inferences in finite samples, and resampling methods are frequently
needed.
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3.3. Asymptotic Power

In this subsection, we investigate the asymptotic properties of D̂ under the
alternative hypotheses, including both global and local properties.

Under the alternative, the process {Yt} is generally T-dependent; thus, we should
write YTt for Yt. However, for notational simplicity, we continue to use the notation
Yt when there is no risk of confusion. Following the lead of Su and White (2010),
we define the strong mixing coefficients αT (j) as follows:

αT (j)≡ sup1≤l≤T−j{P(A∩B)−P(A)P(B)|A ∈ σ (YTt : 1 ≤ t ≤ l),
B ∈ σ (YTt : l+ j ≤ t ≤ T)}, for j ≤ T −1;

αT (j)≡ 0, for j ≥ T .

The coefficient of strong mixing is defined by ᾱ (j) ≡ supT∈NαT (j), for j ∈ N,
where N signifies the set of natural numbers. Note that ᾱ (j) collapses to the usual
strong mixing coefficient α (·) under strict stationarity. We modify Assumption A.1
as follows.

Assumption A.3. (i) {YTt} is a double-array strong mixing process on R
dm

with mixing coefficient ᾱ (·) such that
∑∞

s=1 ᾱ (s) <∞ and (ii) φt(u)= φ(u,t/T)
and μ2 ≡ ∫

Rdm+1 |μ(u,v)|2 W(u,v)dudv > 0 where μ(u,v)≡ ∫ 1
0 φ(u,τ )e

iv2πτdτ −∫ 1
0 φ(u,τ )dτ

∫ 1
0 eiv2πτdτ .

Assumption A.3(i) states that {YTt} is a double-array strong mixing process.
Assumption A.3(ii) imposes conditions on the time-varying CF φt(u) to ensure
nontrivial power under the global alternative. Note that we do not require φ(u,·) to
be continuous, as in Hong et al.’s (2017) test. This indicates thatφ(u,·) can be either
discrete or continuous with respect to ·, another improvement over Hong et al.’s
(2017) test. In addition, it is not necessary to impose any moment conditions on
{Yt} because there is no need to establish the tightness condition when the global
alternative is satisfied.

The following proposition shows that, under the global alternative hypothesis,
Â(u,v) converges to a nonzero spectrum.

Proposition 3.2. Suppose Assumption A.3 holds. Then, under HA,

Â(u,v)
p→ μ(u,v) as T → ∞,

whereμ(u,v) can be expressed as cov
[
φ(u,τ ),eiv2πτ

]
to signify that it is a pseudo-

covariance between φ(u,τ ) and eiv2πτ in the sense that τ follows the U[0,1]
distribution.

Proposition 3.2 shows that Â(u,v) converges in probability to a nonzero spec-
trum in the frequency domain. This occurs because one can show that Â2(u,v) =
OP(T−1/2), and, by the Riemann summation approximation of integrals,
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Â1(u,v)= 1

T

T∑
t=1

φt(u)e
iv2π t/T −

[
1

T

T∑
t=1

φt(u)

][
1

T

T∑
t=1

eiv2π t/T

]

→
∫ 1

0
φ(u,τ )eiv2πτ dτ −

∫ 1

0
φ(u,τ )dτ

∫ 1

0
eiv2πτ dτ = μ(u,v).

Because, under HA, φt(u) = φ(u,t/T) is a nonconstant function of time t/T ,
cov

[
φ(u,τ ),eiv2πτ

]
differs from 0 for some (u,v) in a Borel set of positive

measures. This ensures the nontrivial power of our test under Assumption A.2(ii).
Next, we discuss the asymptotic global power of our test statistic D̂.

Theorem 3.2. Suppose Assumptions A.2 and A.3 hold. Then, under HA, P(D̂>
cT) → 1 as T → ∞ for any nonrandom sequence cT = o(T).

Theorem 3.2 shows that our test D̂ diverges to infinity in probability at rate T
provided that μ2 > 0. It is consistent, then, against a variety of global alternatives
that do not rely on specific DGPs, including abrupt and smooth changes in the
distribution of Yt. Compared with those parametric tests in Francq and Zakoïan
(2012) and Guo et al. (2019), which are designed to have power under the
GARCH and DAR models, respectively, our test has power against a larger class
of alternatives. Compared with Hong et al.’s (2017) nonparametric kernel-based
test, our test does not require the CF to be continuous in time and does not require
the choice of a bandwidth parameter for nonparametric kernel estimation.

To study the asymptotic local power property of our test, we consider the
following sequence of Pitman’s local alternatives:

HA (�T) : Ft(y)= F0(y)+�Tkt(y) for all (y,t), (3.1)

where F0(y) is a time-invariant CDF, kt(y) = k(y,t/T) for some measurable
function k(·,·), and �T → 0 measures the speed at which the time-varying CDF
Ft(·) deviates away from the time-invariant CDF F0(·). We then take the Fourier
transform of (3.1) to obtain the following equivalent representation:

HA (�T) : φt(u)= φ0(u)+�Tθt(u) for all (u,t), (3.2)

where φ0(u) = ∫
eiu′y dF0(y) and θt(u) ≡ θ(u,t/T) ≡ ∫

eiu′y dkt(y) denote the
Fourier transform of F0(y) and kt(y), respectively.

To obtain the asymptotic distribution of the DFT under HA (�T), we add the
following assumption.

Assumption A.4. (i) {YTt} is a strong mixing process on R
dm with mixing

coefficient ᾱ (·) such that
∑∞

s=1 s2ᾱ (s) < ∞ and
∑∞

s=1 ᾱ (s)
δ/(2+δ) < ∞;

(ii) max1≤t≤T E(‖YTteiu′YTt‖2+δ) <∞ for some δ > 0; and (iii) θt(u) = θ(u,t/T),
and θ(·,·) is Lipschitz continuous with respect to each of its arguments:
|θ(u1,v)− θ(u2,v)| ≤ C‖u1 −u2‖ and |θ(u,v1)− θ(u,v2)| ≤ C |v1 − v2| .
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Assumption A.4(i) and (ii) strengthens the mixing condition in Assumption
A.3(i) and requires some moment conditions on {YTteiu′YTt } in order to verify
the tightness condition for the proof of Theorem 3.3. The Lipschitz continuity
condition in Assumption A.4(iii) significantly facilitates the verification process.

Theorem 3.3. Suppose Assumptions A.2 and A.4 hold. Then, under HA (�T)

with �T = T−1/2, we have that

D̂
d−→

∫
Rdm+1

|ζ(u,v)+S(u,v)|2 W(u,v)dudv,

where ζ(u,v)≡ cov[θ(u,τ ),eiv2πτ ] = ∫ 1
0 θ(u,τ )e

iv2πτdτ −∫ 1
0 θ(u,τ )dτ

∫ 1
0 eiv2πτdτ

is a pseudo-covariance between θ(u,τ ) and eiv2πτ in the sense that τ ∼ U[0,1], and
S(u,v) is a complex-valued Gaussian process with covariance kernel given by

K1 (w1,w2)≡ lim
T→∞

1

T

T∑
t=1

T∑
s=1

cov(eiu′
1Yt,e−iu′

2Ys)M̄t(v1)M̄s(v2)
∗,

where wl = (
u′

l,vl
)′ ∈ W for l = 1,2.

Under the mixing condition in Assumption A.4(i), K1 (w1,w2) is well behaved
for all w1,w2 ∈ W. Theorem 3.3 indicates that our test D̂ has nontrivial power
against the class of local alternatives HA (�T) with the parametric convergence
rate �T = T−1/2. The convergence rate is faster than the nonparametric rate of
Kapetanios (2009). Although Kapetanios (2009) focuses on the univariate case,
his test can clearly only detect local alternatives that converge to the null at the rate
T−1/2h−d/2 when testing for strict stationarity of a d-dimensional time series using
bandwidth h in kernel estimation. Such a nonparametric test suffers from the “curse
of dimensionality”, and, as d amplifies, the convergence rate can be slow owing to
the use of nonparametric smoothing. Similarly, Hong et al.’s (2017) test can only
detect a class of local alternatives that converge to the null at the rate of T−1/2h−1/4,
which is also impacted adversely by bandwidth h. Our DFT method avoids
the choice of the bandwidth parameter and the slow nonparametric convergence
rate.

The strict stationarity test D̂ proposed in this paper does not require the choice
of any tuning parameter and can detect a class of local alternatives at a typical
parametric convergence rate. The cost of using DFT to construct such a nonsmooth
test statistic is that the test statistic is not asymptotically pivotal even under the
null hypothesis so that the null limiting distribution of our statistic depends on the
specific DGP. In practice, we need to rely on certain resampling methods to obtain
the critical values or p-values. This should not be considered a drawback for our
DFT-based nonsmooth test, however, as resampling methods are typically needed
to obtain reliable inferences in finite samples even for a kernel-based smooth
test.
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3.4. Dependent Wild Bootstrap

Because our test is not asymptotically pivotal, in this section, we propose applying
the dependent wild bootstrap (DWB) procedure of Shao (2010) to obtain bootstrap
p-values. Also see Leucht and Neumann (2013) and Doukhan et al. (2015) for
applications of DWB for hypotheses testing.

Our bootstrap procedure is as follows:

1. Given the observed sample {Yt}T
t=1, compute the test statistic D̂ as (2.7).

2. Generate {η�t }T
t=1 according to the following AR(1) process:

η�t = e
− 1

bT η�t−1 +νt,

where νt ∼ i.i.d. N(0,1−e−2/bT ), bT is the block length such that 1/bT +bT/T =
o(1), and η�0 is drawn from the stationary distribution N(0,1).

3. Denote the bootstrap empirical process as3

Â�(u,v)= 1

T

T∑
t=1

M̄t(v)ε̂t(u)η
�
t .

Calculate the bootstrap test statistic D̂� = T
∫
Rdm+1

∣∣∣Â�(u,v)∣∣∣2 W(u,v)dudv.

Specifically, if the weighting function admits a product form such that W(u,v)=
W1(u)W2(v), then D̂� can be computed as D̂� = T−1∑T

t=1

∑T
s=1 h̃1sth̃2stη

�
t η
�
s,

where h̃1st and h̃2st are defined as in Section 2.3.
4. Repeat Steps 2 and 3 for B times to obtain bootstrap test statistics {D̂�b}B

b=1,
where B is the number of bootstraps. Compute the bootstrap p-values by p�B =
B−1∑B

b=1 1(D̂�b > D̂).

In Step 2 above, we follow Doukhan et al. (2015) to generate {η�t }T
t=1 using

a Gaussian process. By construction, {η�t }T
t=1 has zero mean, unit variance, and

autocovariance function AT (·) given by

AT (t − s)≡ E
(
η�t η

�
s

) = e
− |t−s|

bT .

Clearly, AT (t − s) → 0 as |t − s|/bT → ∞ and it is easy to verify that∑T−1
r=0 AT (r) = O(bT). Such results will be used frequently in the proof of

Theorem 3.4.

Let P�,E�, cov�,
d�−→, and

p�−→ denote the probability, expectation, covariance,
convergence in distribution, and convergence in probability, respectively, under
the bootstrap law by conditioning on the observed sample {Yt}T

t=1 . To study the
asymptotic behavior of D̂�, we add the following assumption.

Assumption A.5. As T → ∞, 1/bT +bT/T → 0.

Assumption A.5 imposes weak conditions on bT , which plays a similar role as
the block length in the block bootstrap. However, we do not use the block bootstrap,

3Note that both M̄t(v) and ε̂t(u) are demeaned so that each has sample mean 0.
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because the data generated from that procedure are typically not strictly stationary
even with a strictly stationary original time series.

The following theorem establishes the asymptotic validity of the proposed
resampling procedure.

Theorem 3.4. Suppose Assumptions A.2 and A.5 hold.
(i) If Assumption A.4 is satisfied and {Yt}T

t=1 satisfies the local alternative
hypothesis HA (�T) with �T = o(b−1/2

T ), we have

D̂�
d�−→

∫
Rdm+1

|S(u,v)|2 W(u,v)dudv in probability,

where S(u,v) is as defined in Theorem 3.3 that has the covariance kernel
K1 (w1,w2).

(ii) If either Assumption A.3 or A.4 is satisfied and {Yt}T
t=1 satisfies HA (�T)with

�T �= o(b−1/2
T ) including the special case of the global alternative with �T = 1,

then D̂� = OP� (�
2
TbT).

Theorem 3.4(i) reports the asymptotic distribution of D̂� under HA (�T) with

�T = o(b−1/2
T ). Here, we use “

d�−→ in probability” to denote the weak convergence
in probability under the bootstrap law (see, e.g., Giné and Zinn, 1990). When H0 is
satisfied (i.e.,�T = 0) for the original sample {Yt}T

t=1, we observe that K1 (w1,w2)

reduces to K0 (w1,w2), and the asymptotic distribution of D̂� coincides with the
null limiting distribution of D̂. This ensures the correct asymptotic size for the
above DWB-based test. When�T = T−1/2 as in the standard local power analysis
(see Theorem 3.3), D̂� shares the same asymptotic variance as D̂ but does not have
the drifting term ζ(u,v) in its limit distribution. This indicates that our DWB-based
test continues to offer nontrivial local power against local alternatives converging
to the null at rate T−1/2.

Theorem 3.4(ii) reports the asymptotic property of D̂� when �T is large such
that the data deviate more from the null hypothesis than in Theorem 3.4(i). In
this case, it is easy to see from a modification of the proof of Theorem 3.4 that
D̂ diverges to infinity in probability at rate �2

TT, which is faster than �2
TbT

under Assumption A.5, the largest possible rate at which D̂� diverges to infinity
in probability. This ensures the consistency of our test. In particular, for global
alternatives, we learn from Theorem 3.2 that D̂ diverges to infinity in probability
at rate T and from Theorem 3.4(ii) that D̂� diverges to infinity in probability at
most at rate bT . For the power performance of the DWB-based test, this suggests
that a small value of bT is preferred. Nevertheless, a too-small value of bT may not
yield good size performance when strong serial dependence is present in the data.

To implement the above DWB test, we must select the tuning parameter bT .
Although we focus on the nondata-driven case in the proof of the above theory, we
recognize that, in practice, bT should be chosen using a data-driven procedure.
We propose adopting the minimum volatility (MV) method recently proposed
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by Rho and Shao (2019). Simulation studies demonstrate the good finite-sample
performance of the DWB-based test.

4. TESTING THE p-TH ORDER STATIONARITY VIA THE DFT

Note that a joint CF can generate moments, if they exist, using an appropriate
order of differentiation. In this section, we establish a sequence of derivative tests
for the pth-order stationarity. A d-dimensional time series process {Xt}∞t=1 is said
to be stationary up to order p if, for any admissible collection of time indices
(t1,t2, . . . ,tm) and any integer k ≥ 1, the joint moments of {Xt1,Xt2, . . . ,Xtm} up to
order p exist and equal those of {Xt1+k,Xt2+k, . . . ,Xtm+k}. The null hypothesis of
pth-order stationarity can then be formulated as

H
(p)
0 : E

(
X

p1,1
t1,1

· · ·Xp1,d
t1,d

X
p2,1
t2,1

· · ·Xpm,d
tm,d

)
= E

(
X

p1,1
t1+k,1 · · ·Xp1,d

t1+k,dX
p2,1
t2+k,1 · · ·Xpm,d

tm+k,d

)
for any integer k ≥ 1 and all positive integers p1,1, . . . ,pm,d such that 1 ≤∑m

i=1

∑d
j=1 pi,j ≤ p. Equivalently, we can test the following:

H
(p)
0 : E

(
X

p1,1
t,1 · · ·Xp1,d

t,d X
p2,1
t+t2−t1,1

· · ·Xpm,d
t+tm−t1,d

)
does not depend on t

for any pre-specified time indices (t1, t2, . . . , tm) and any dm-dimensional nonneg-
ative integer-valued vector

p̃ = (p1,1, . . . , p1,d, p2,1, . . . , pm,d)

satisfying 1 ≤ ‖p̃‖1 ≡ ∑d
i=1

∑m
j=1 pi,j ≤ p, where ‖ · ‖1 denotes the L1 norm of ·.

Given that

Yt = (X′
t,X

′
t+t2−t1

, . . . ,X′
t+tm−t1

)′,

we take the p̃th-order partial derivatives of the CF of Yt, i.e., φt(u), with respect to
u = (u1,u2, . . . ,udm)

′, and let ul = 0, for l = 1, . . . ,dm:

φ
(p̃)
t (0) = ∂‖p̃‖1φt(u)

∂ u
p1,1
1 ∂u

p1,2
2 · · ·∂u

pm,d
dm

∣∣∣∣∣
u=0

= i‖p̃‖1 E
(

X
p1,1
t,1 · · ·Xp1,d

t,d X
p2,1
t+t2−t1,1

· · ·Xpm,d
t+tm−t1,d

)
.

Because the derivatives of a CF uniquely determine their corresponding moments,
testing the pth-order stationarity can be represented as testing

H
(p)
0 : φ(p̃)t (0)= φ(p̃)0 (0) for all multi-indices p̃ with 1 ≤ ‖p̃‖1 ≤ p

and for some constant φ(p̃)0 (0), against

H
(p)
A : φ(p̃)t (0) �= φ(p̃)(0) for some multi-indices p̃ with 1 ≤ ‖p̃‖1 ≤ p,

and for all constants φ(p̃)(0). For notational simplicity, we suppress the dependence
of φ(p̃)t (0) on the argument 0 and denote φ(p̃)t ≡ φ(p̃)t (0).
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Let ϕ(p̃)t ≡ ∂ ‖p̃‖1 eiu′Yt

∂ u
p1,1
1 ∂u

p1,2
2 ···∂u

pm,d
dm

∣∣∣∣
u=0

= i‖p̃‖1X
p1,1
t,1 · · ·Xp1,d

t,d X
p2,1
t+t2−t1,1

· · ·Xpm,d
t+tm−t1,d

.

Then, following analogous reasoning for (2.5), we consider the following pseudo-
regression:

ϕ
(p̃)
t = φ

(p̃)
t + ε(p̃)t , (4.1)

where ε(p̃)t is an error term with E(ε(p̃)t )= 0. Intuitively, if the time series {Xt}T
t=1 is

pth-order stationary, the sample analog φ̂(p̃)0 ≡ T−1∑T
t=1 X

p1,1
t,1 · · ·Xp1,d

t,d X
p2,1
t+t2−t1,1

· · ·
X

pm,d
t+tm−t1,d

will be consistent for φ(p̃)t = φ(p̃)0 . However, under H
(p)
A , some time-

varying information of the joint pth-order moments will be captured by the
estimated residuals in (4.1); that is, ε̂(p̃)t ≡ ϕ(p̃)t − φ̂(p̃)0 . Hence, we can use the DFT
of the residuals to test H(p)0 against H(p)A :

Â(p̃)(v)= 1

T

T∑
t=1

ε̂
(p̃)
t eiv2π t/T

= 1

T

T∑
t=1

φ
(p̃)
t M̄t(v)+ 1

T

T∑
t=1

ε
(p̃)
t M̄t(v)

≡ Â(p̃)1 (v)+ Â(p̃)2 (v). (4.2)

Following analogous arguments in Section 2, the asymptotic behavior of the DFT
Â(p̃)(v) is dominated by Â(p̃)2 (v) under H

(p)
0 , which weakly converges to a zero

spectrum in the frequency domain at the
√

T-parametric rate. However, under H(p)A ,

Â(p̃)1 (v) will converge to the following nonzero spectrum:

μ(p̃)(v)≡
∫ 1

0
φ(p̃)(τ )eiv2πτdτ −

∫ 1

0
φ(p̃)(τ )dτ

∫ 1

0
eiv2πτdτ,

where we let φ(p̃)t ≡ φ(p̃)(t/T) be an integrable function of t/T . This implies that
the DFT Â(p̃)(v) is equivalent to a pseudo-covariance of φ(p̃)t and the Fourier basis
function of time t/T in the sense that it follows the U[0,1] distribution.

To examine the behavior of the DFT Â(p̃)(v) at each v ∈ R, we construct the
following CvM-type test statistic to test the pth-order stationarity:

D̂(p̃) = T
∫
R

∣∣∣Â(p̃)(v)∣∣∣2 W̃(v)dv, (4.3)

where W̃(·) : R → R
+ is a nonnegative and symmetric function such that∫

R
W̃(v)dv < ∞. Under conditions analogous to Assumptions A.1 and A.2,

together with certain moment restrictions, we can show that under H(p)0 ,

D̂(p̃)
d→
∫
R

∣∣∣S(p̃)(v)∣∣∣2 W̃(v)dv,
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where S(p̃)(v) is a complex-valued Gaussian process with a covariance kernel

K(p̃)(v1,v2)≡ E[S(p̃)(v1)S
(p̃)(v2)

∗] = 
(p̃)1 
2(v1,v2).

Here, 
(p̃)1 ≡ ∑∞
j=−∞ cov(ϕ(p̃)t ,ϕ

(p̃)
t−j) is a long-run autocovariance, and 
2(v1,v2) is

as defined in Section 3.2. Under H(p̃)A , we can show that the test D̂(p̃) can detect a
class of local alternatives that converges to the null hypothesis at the parametric
rate T−1/2.

Clearly, our derivative test statistic is not asymptotically pivotal. We can apply
the DWB, as in Section 3.4, to obtain the bootstrap critical values. The validity of
this resampling approach can be established similarly to Theorem 3.4 with certain
moment conditions on Xt.

The pth-order stationarity test mentioned above has several frequently used
forms. For instance, when d = 1 and m = 1, we have p̃ = p. Thus, the test
statistic D̂(p̃) is equivalent to testing pth-order stationarity in a univariate time series
process {Xt}. Specifically, when p = 2, m = 1, and d ≥ 1, we can use the proposed
derivative test to determine whether the d-dimensional time series {Xt} is weakly
stationary. Note that weak stationarity requires that both the first two moments and
the covariance structure of a time series process be constant over time. Because the
derivative test generally imposes restraints on the joint moment of a pre-specified
collection of time indices (t1,t2, . . . ,tm), both crude moments and product moments
are required to be independent of time under the null hypothesis. As introduced
in Section 1, there has been a vast literature on weak stationarity tests, including
the DF (Dickey and Fuller, 1979), ADF (Dickey and Fuller, 1981), PP (Phillips
and Perron, 1988), KPSS (Kwiatkowski et al., 1992), and LMC (Leybourne and
McCabe, 1994) tests, as well as those in Xiao (2001), Hobijn et al. (2004), and Xiao
and Lima (2007). These tests are typically based on a predefined linear time series
model, such as an AR(1) process. Our pth-order stationarity test, on the other hand,
does not rely on a correctly specified time series model, and has power against all
types of violation of weak stationarity, including abrupt shifts or smooth changes
in mean, variance, autocovariance, and higher-order moments. Furthermore, our
test can detect a class of local alternatives that converge to the null of pth-order
stationarity at the parametric rate T−1/2, which is faster than the derivative tests
of Hong et al. (2017). In Section S3.3 of the Supplementary Material, we provide
simulation evidence to show the finite-sample performance of the proposed pth-
order stationarity test.

5. MONTE CARLO SIMULATIONS

In this section, we present a simulation study to assess the finite-sample properties
of our test. Furthermore, we compare the proposed approach with existing strict
stationarity tests, including Inoue (2001), Kapetanios (2009), and Hong et al.
(2017). Further simulation results, including an examination of the impact of
bT on our DWB-based test, a comparison with the model-based test of Francq

https://doi.org/10.1017/S0266466622000494 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000494


TESTING FOR STRICT STATIONARITY 531

and Zakoïan (2012) for GARCH(1,1) processes, and tests for the second-order
stationarity, are reported in Section S3 of the Supplementary Material.

5.1. Data Generating Processes

To examine the size performance, we consider the following DGPs.

DGP.S1 : Yt = 0.5Yt−1 + εt;
DGP.S2 : Yt = βtYt−1 + εt, βt = 0.5βt−1 +ηt;
DGP.S3 : Yt,1 = 0.4Yt−1,1 + εt,

Yt,2 = 1+0.5Yt,1 + εt, εt = √
htιt, ht = 0.2+0.5ε2

t−1;
DGP.S4 : Yt,1 = 1+0.3Yt−1,1 + εt +0.2εt−1,

Yt,2 = √
htιt, ht = 0.3+0.2Y2

t−1,2,

Yt,3 = 0.8+0.1Yt,1 +Yt,2 +ηt;

DGP.S5 :

⎛
⎜⎜⎝

Yt,1

Yt,2

Yt,3

Yt,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.1
0.3
0.1
0.7

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0.3 0.1 0 0
0 0.2 0 0
0 0.2 0.3 0
0 0.3 0 0.4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Yt−1,1

Yt−1,2

Yt−1,3

Yt−1,4

⎞
⎟⎟⎠+ςt;

where

εt ∼ i.i.d. N(0,1);
ηt ∼ i.i.d. N(0,0.52);
ιt ∼ i.i.d. N(0,1); and

ςt ∼ i.i.d. N(0,�1), �1 =

⎛
⎜⎜⎝

1.1 0.1 0.2 0.2
0.1 1.1 0.1 0.1
0.2 0.1 1.1 0.1
0.2 0.1 0.1 1.1

⎞
⎟⎟⎠ .

These DGPs cover various univariate and multivariate time series models.
Among these, DGP.S1 is a stationary AR(1) process, and DGP.S2 is a random
coefficient autoregressive model with the coefficient being a stationary AR(1)
process. DGPs.S1 and S2 are designed to investigate how our test performs under
univariate serially dependent linear time series models with a deterministic and
random autoregressive coefficient, respectively. These two DGPs are considered
by Hong et al. (2017). DGP.S3 is a bivariate time series following an AR(1) process
and an AR(1)–ARCH(1) process, respectively. DGP.S4 is a three-dimensional
time series in which the first variable follows an ARMA(1,1) process, the second
follows an ARCH(1) process, and the third is a linear regression with the first two
variables as regressors. DGP.S5 is a four-dimensional VAR(1) process. DGPs.S3–
S5 allow examination of how our test performs under various specifications of
multivariate time series processes. They exhibit not only autocorrelation but also
cross-correlation among the different dimensions. It is easy to apply results in
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Davidson (1994), Doukhan (1994), and Carrasco and Chen (2002) to verify that
the mixing conditions in Assumption A.1 are satisfied for all the above DGPs.

To examine the power performance of our test in finite samples, we consider the
following DGPs:

DGP.P1 : Yt = Yt−1 + εt;
DGP.P2 : Yt = εt1(t ≤ 0.5T)+ηt1(t > 0.5T);
DGP.P3 : Yt = (1+√

2εt)1(t ≤ 0.5T)+ ε2
t 1(t > 0.5T);

DGP.P4 : Yt = sin(2π t/T)+ θt, θt = 0.5θt−1 + εt;
DGP.P5 : Yt,1 = 0.5Yt−1,1 + εt;

Yt,2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−0.5Yt,1 + ιt, if t ≤ 0.3T;
2.5+Yt,1 + ιt, if 0.3T < t ≤ 0.4T;
1.5−Yt,1 + ιt, if 0.4T < t ≤ 0.5T;
1+0.5Yt,1 + ιt, if 0.5T < t ≤ 0.7T;
−0.6−0.3Yt,1 + ιt, if t > 0.7T;

DGP.P6 :

⎛
⎝ Yt,1

Yt,2

Yt,3

⎞
⎠

=
⎛
⎝ 0.02

0.05
0

⎞
⎠+

⎛
⎝ 0.3 0.3 0

0 1 0
0 0 1

⎞
⎠
⎛
⎝ Yt−1,1

Yt−1,2

Yt−1,3

⎞
⎠+

⎛
⎝ ϑt,1

ϑt,2

ϑt,3

⎞
⎠+

⎛
⎝ 0.5ϑt−1,1

0.2ϑt−1,2

0.1ϑt−1,3

⎞
⎠;

where

εt ∼ i.i.d. N(0,1);
ηt ∼ i.i.d. N(0,2);
ιt ∼ i.i.d. N(0,1); and

ϑt ≡
⎛
⎝ ϑt,1

ϑt,2

ϑt,3

⎞
⎠ ∼ i.i.d. N(0,�2), with �2 =

⎛
⎝ 0.5 0.1 0.2

0.1 1.1 0.1
0.2 0.1 1

⎞
⎠ .

We consider various linear and nonlinear nonstationary time series with different
dimensions. Among these, DGP.P1 is a random walk process. DGP.P2 has an
abrupt structural break in variance, whereas the other moments are constant over
time. Under DGP.P3, the first two moments remain constant over time, but higher-
order moments undergo a single abrupt break. DGP.P4 exhibits smooth structural
changes in mean characterized by a deterministic function of t/T . DGP.P5 is
a bivariate time series process in which the first variable is weakly stationary,
whereas the second variable has multiple structural breaks in mean. DGP.P6 is
a three-dimensional VARMA(1,1) process, with the last two variables being unit-
root processes. Using the designs in DGPs.P5 and P6, we can assess the power
performance of our test for multivariate time series. Specifically, these DGPs
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contain both univariate stationary and nonstationary processes, which can examine
whether our test can capture nonstationarity coupled with stationary noise.

5.2. Finite-Sample Performance

In this subsection, we report the finite-sample performance of our test under the
considered DGPs. For each DGP, we simulate 1,000 datasets using the sample sizes
of T = 100,300, and 500. The number of bootstrap iterations is set at B = 500. We
consider the standard joint normal and joint Laplace weighting functions for our
test. Specifically, we use (2.9) and (2.10) with γ1 = γ2 = 1 for the normal and
Laplace weighting functions, respectively.

Because our test is not asymptotically pivotal, we implement the DWB given in
Section 3.4 to obtain the critical values. We choose the block length bT based on
Rho and Shao’s (2019) MV method: (i) choose a group of block length candidates
l1, . . . ,lk; (ii) for each block length candidate li (i = 1, . . . ,k), calculate the DWB
statistic D̂�i ; (iii) repeat B times to obtain a collection of {D̂�i,b}B

b=1 for each li; (iv) let

F̂i be the EDF of {D̂�i,b}B
b=1, i.e., F̂i(z)= B−1∑B

b=1 1(D�i,b ≤ z); for i = 1, . . . ,k −1,

calculate the squared distance between F̂i and F̂i+1 : Hi =∑
z∈Z |F̂i(z)− F̂i+1(z)|2,

where Z is a set of a priori chosen grids for z; and (v) note that the optimal
block length is bT = lı̂ , where ı̂ = argmini=1,...,k−1 Hi. We set the candidate block
lengths as l = �ln(lnT)�,�ln(lnT)� + 1, . . . ,lmax with the upper bound lmax =⌊

5(T/100)0.6
⌋

, where �·� denotes the integer part of ·. We set the starting value
of the candidate block lengths to �ln(lnT)� to ensure that all the considered block
lengths satisfy Assumption A.5.

As mentioned above, we compare our test with existing tests for strict station-
arity, including Inoue’s (2001) weighted CvM test, Kapetanios’ (2009) test, and
Hong et al.’s (2017) test. Since both Kapetanios’ (2009) and Hong et al.’s (2017)
tests involve nonparametric smoothing, we follow Hong et al. (2017) and use the
Epanechnikov kernel and set the bandwidth h = (1/√12)T−1/5. For Hong et al.’s
(2017) test, we use the standard normal weighting function for integration over the
nuisance parameters. In addition, the test statistic of Hong et al. (2017) involves
a long-run variance estimator. We follow Hong et al. (2017) to set the lag order

to pT = min

{⌊(
3T
2

)1/3
(

2ρ̂
1−ρ̂2

)2/3
⌋
,
⌊

8
(

T
100

)1/3
⌋}

with ρ̂ being the estimator of

first-order autocorrelation of Yt. Other settings for Kapetanios’ (2009) test are the
same as those in Kapetanios (2009). In addition, all three tests require a moving
block bootstrap to obtain the critical values. We adopt Politis and White’s (2004)
automatic block-length selection procedure for determining the block length.

Table 1 reports the empirical rejection rates at the 5% and 10% significance
levels under DGPs.S1–S5. Overall, the empirical rejection rates of our tests
using both the normal and Laplace weighting functions tend to converge to the
corresponding nominal levels as the sample size increases. Although there exists
reasonably acceptable under-rejection for D̂L at the 5% level, it improves as the
sample size increases. Hong et al.’s (2017) nonparametric test statistic Ĥ performs
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Table 1. Size of strict stationarity tests under DGPs.S1–S5

D̂N D̂L Ĥ Î K̂

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.S1 T = 100 0.047 0.135 0.033 0.112 0.028 0.082 0.080 0.165 0.064 0.133

T = 300 0.053 0.119 0.045 0.107 0.044 0.106 0.071 0.138 0.052 0.106

T = 500 0.050 0.100 0.040 0.091 0.040 0.092 0.058 0.128 0.050 0.098

DGP.S2 T = 100 0.032 0.125 0.021 0.099 0.192 0.270 0.085 0.175 0.049 0.089

T = 300 0.029 0.094 0.023 0.078 0.220 0.288 0.062 0.132 0.042 0.086

T = 500 0.038 0.106 0.023 0.088 0.199 0.266 0.067 0.147 0.038 0.071

DGP.S3 T = 100 0.042 0.127 0.025 0.103 0.070 0.130 0.072 0.153 0.032 0.079

T = 300 0.036 0.106 0.027 0.093 0.048 0.108 0.066 0.118 0.037 0.104

T = 500 0.047 0.096 0.035 0.088 0.050 0.098 0.058 0.122 0.044 0.103

DGP.S4 T = 100 0.039 0.131 0.028 0.110 0.062 0.152 0.068 0.171 0.040 0.102

T = 300 0.047 0.136 0.043 0.104 0.058 0.096 0.059 0.117 0.048 0.102

T = 500 0.044 0.097 0.036 0.085 0.045 0.091 0.055 0.110 0.042 0.100

DGP.S5 T = 100 0.026 0.122 0.013 0.083 0.044 0.092 0.059 0.153 0.003 0.010

T = 300 0.043 0.111 0.026 0.097 0.038 0.112 0.052 0.101 0.007 0.019

T = 500 0.042 0.114 0.025 0.098 0.049 0.107 0.059 0.116 0.014 0.029

Notes: (i) D̂N and D̂L denote DFT tests with normal weighting and Laplace weighting function,
respectively; (ii) Ĥ, Î, and K̂ are the strict stationarity tests of Hong et al. (2017), Inoue (2001), and
Kapetanios (2009), respectively; and (iii) for each test, the number of repetitions is 1,000 and the
number of bootstrap samples is 500.

reasonably well under most DGPs except for a certain size distortion under
DGP.S2, which is a random coefficient model. Regarding Inoue’s (2001) CvM
test statistic Î, there is an obvious oversize issue for most DGPs, particularly when
the sample size T is small, implying that Î tends to over-reject a stationary null
hypothesis. Kapetanios’ (2009) nonparametric test statistic K̂ performs reasonably
well in most cases except DGP.S5, in which the dimension of the data is relatively
high, and a serious under-size distortion occurs.

Table 2 demonstrates the power performance of the tests under DGPs.P1–P6 at
the 5% and 10% significance levels with sample sizes of T = 100, 300, and 500.
Overall, our tests deliver a robust power performance against all proposed DGPs.
As the sample size increases, the rejection rates of our tests under both normal
and Laplace weighting functions converge to 1. Note that D̂N and D̂L yield similar
simulation results for size and power experiments, indicating that the choice of
weighting function does not substantially impact the finite-sample performance of
our tests. Intuitively, as long as nonzero weights are assigned to the frequencies
(u,v) that exhibit structural breaks, our test has power. Hong et al.’s (2017)
nonparametric test statistic Ĥ is also quite powerful against all nonstationary DGPs
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Table 2. Power of strict stationarity tests under DGPs.P1–P6

D̂N D̂L Ĥ Î K̂

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.P1 T = 100 0.851 0.943 0.828 0.933 0.854 0.910 0.442 0.682 0.288 0.465

T = 300 0.949 0.973 0.960 0.983 0.992 0.994 0.602 0.744 0.389 0.567

T = 500 0.957 0.980 0.962 0.986 0.998 0.999 0.666 0.777 0.484 0.632

DGP.P2 T = 100 0.654 0.856 0.487 0.754 0.562 0.748 0.319 0.548 0.070 0.158

T = 300 1.000 1.000 0.999 1.000 0.996 0.998 0.967 0.995 0.208 0.349

T = 500 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.329 0.460

DGP.P3 T = 100 0.395 0.614 0.491 0.720 0.280 0.400 0.427 0.620 0.153 0.274

T = 300 0.974 0.996 0.999 1.000 0.708 0.816 0.979 0.998 0.332 0.494

T = 500 1.000 1.000 1.000 1.000 0.899 0.940 1.000 1.000 0.561 0.716

DGP.P4 T = 100 0.801 0.920 0.747 0.904 0.324 0.580 0.241 0.689 0.029 0.100

T = 300 0.995 0.999 0.995 0.999 0.984 0.998 0.462 0.790 0.108 0.194

T = 500 1.000 1.000 1.000 1.000 1.000 1.000 0.969 1.000 0.265 0.454

DGP.P5 T = 100 0.936 0.994 0.896 0.994 0.748 0.906 0.466 0.865 0.074 0.151

T = 300 1.000 1.000 1.000 1.000 1.000 1.000 0.977 1.000 0.073 0.152

T = 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.069 0.144

DGP.P6 T = 100 0.976 0.993 0.978 0.998 0.990 0.996 0.398 0.699 0.059 0.123

T = 300 0.995 1.000 0.999 1.000 0.997 0.999 0.648 0.850 0.105 0.185

T = 500 1.000 1.000 1.000 1.000 1.000 1.000 0.758 0.908 0.124 0.223

Notes: (i) D̂N and D̂L denote DFT tests with normal weighting and Laplace weighting function,
respectively; (ii) Ĥ, Î, and K̂ are the strict stationarity tests of Hong et al. (2017), Inoue (2001), and
Kapetanios (2009), respectively; and (iii) for each test, the number of repetitions is 1,000 and the
number of bootstrap samples is 500.

we investigate. Under DGPs.P3–P5, our tests outperform Ĥ, particularly when T
is small. Intuitively, this is because our tests can detect a class of local alternatives
that converge to the null at a faster rate. The power performance of Inoue’s (2001)
test statistic Î is not as comparable to our tests and Ĥ, especially when the sample
size is small. Finally, Kapetanios’ (2009) nonparametric test statistic K̂ lacks any
reasonable power for DGP.P6, which considers a multivariate time series process,
and it has relatively low power against smooth structural changes and multiple
structural breaks described by DGPs.P4 and P5.

6. AN EMPIRICAL APPLICATION TO THE EXCHANGE
RATE RETURNS

The foreign exchange market is among the most important financial markets and
has drawn substantial attention over the last four decades. Modeling and forecast-
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ing exchange rates are vital for decision-makers at both micro and macro levels.
Obtaining reasonable estimators and accurate forecasts requires first examining
the stationarity of exchange rate returns. Most empirical studies conclude that the
floating exchange rates follow unit-root processes, and their returns are assumed
to be stationary (see, e.g., Meese and Rogoff, 1988; Lothian and Taylor, 1996; Wu,
1996; Hegwood and Papell, 1998; Sollis, Leybourne, and Newbold, 2002). Among
the many approaches proposed in the literature, the most popular ones are the ADF
(Dickey and Fuller, 1981) and KPSS (Kwiatkowski et al., 1992) tests. However,
the ADF and KPSS tests are explicitly designed for the unit-root process, which
constitutes only one case of nonstationarity. Consequently, these tests may miss
other types of nonstationarity.

In this section, we apply our test to investigate the stationarity of nominal and
real exchange rate returns. We check the stationarity of four exchange rates: Great
Britain Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY), and Euro
(EUR). The data are measured using the rates of GBP, CAD, JPY , and EUR to one
U.S. Dollar, respectively. We use monthly data from January 1971 to April 2021
with 603 observations for GBP, CAD, and JPY . Since the Euro was introduced
in January 1999, we have only 266 observations for EUR. The monthly nominal
exchange rate returns are measured using the log difference of the end-of-period
exchange rates. The real exchange rate is constructed as ri,t = ei,t + p̃t − pi,t,i =
1, . . . ,4, with ei,t, p̃t, and pi,t being the nominal exchange rate returns, foreign price
level, and domestic price level, respectively. Following Mark (1990), Wu (1996),
Papell (1997), and other typical practices, we use the Consumer Price Indices to
measure the price levels. All data are collected from the website of the U.S. Federal
Reserve Bank of St. Louis.

We examine the stationarity of exchange rate returns using our test and several
others. Specifically, we consider Dickey and Fuller’s (1981) ADF test for the null
hypothesis of the unit-root process, Kwiatkowski et al.’s (1992) KPSS test for the
null hypothesis of trending stationarity, Inoue’s (2001) weighted CvM statistic Î,
Kapetanios’ (2009) test K̂, and Hong et al.’s (2017) test Ĥ for strict stationarity. As
in the simulation studies, we consider the normal and Laplace weighting functions
for our test. The tests of Kapetanios (2009) and Hong et al. (2017) are based
on smoothed nonparametric regression, which involves the kernel function and
bandwidth. We choose the Epanechnikov kernel function and the bandwidth h =
ch0 with h0 = (2.35/

√
12)T−1/5 being the Silverman’s rule-of-thumb bandwidth.

By choosing the tuning parameter c = 0.5,1,2, and 3, we examine the effect of
different bandwidths on Kapetanios’ (2009) and Hong et al.’s (2017) tests. Other
settings, including the block length and the lag order in calculating the long-run
variance, are the same as those used in the simulation studies. For tests involving
the bootstrap procedure, we set the bootstrap replication number B = 1,000. We
also check the stationarity of these series using the ADF and the KPSS tests. The
p-values of the ADF test are all below 0.001, and the p-values of the KPSS test
are all above 0.100 for all the exchange rate returns investigated. If we use either
the ADF or the KPSS test to check the stationarity of the underlying time series,
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Table 3. Stationarity tests for exchange rate returns

D̂N D̂L Ĥ0.5h0 Ĥh0 Ĥ2h0 Ĥ3h0 Î K̂0.5h0 K̂h0 K̂2h0 K̂3h0

Nominal-univariate

GBP 0.038 0.039 0.004 0.020 0.096 0.097 0.248 0.519 0.415 0.228 0.137

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.166 0.004 0.000 0.000

JAY 0.076 0.061 0.006 0.027 0.078 0.131 0.081 0.761 0.024 0.033 0.105

EUR 0.083 0.088 0.018 0.035 0.105 0.123 0.197 0.393 0.330 0.342 0.206

Real-univariate

GBP 0.024 0.025 0.020 0.010 0.053 0.097 0.033 0.332 0.284 0.061 0.082

CAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.007 0.001 0.000

JAY 0.074 0.058 0.003 0.012 0.024 0.068 0.067 0.596 0.651 0.274 0.093

EUR 0.082 0.073 0.022 0.032 0.074 0.111 0.218 0.004 0.087 0.035 0.049

Nominal-bivariate

(GBP, CAD) 0.007 0.004 0.000 0.000 0.000 0.000 0.003 0.726 0.608 0.163 0.211

(GBP, JAY) 0.017 0.011 0.000 0.000 0.004 0.012 0.048 0.237 0.090 0.054 0.024

(GBP, EUR) 0.258 0.191 0.053 0.109 0.299 0.400 0.323 0.065 0.191 0.141 0.142

(CAD, JAY) 0.003 0.003 0.018 0.000 0.000 0.000 0.000 0.230 0.517 0.205 0.059

(CAD, EUR) 0.044 0.035 0.007 0.026 0.122 0.181 0.496 0.614 0.819 0.841 0.979

(JAY , EUR) 0.084 0.077 0.001 0.016 0.070 0.101 0.208 0.910 0.196 0.452 0.056

Real-bivariate

(GBP, CAD) 0.004 0.003 0.000 0.000 0.000 0.000 0.004 0.312 0.411 0.064 0.047

(GBP, JAY) 0.028 0.033 0.000 0.000 0.001 0.005 0.013 0.162 0.136 0.058 0.080

(GBP, EUR) 0.341 0.256 0.067 0.091 0.219 0.303 0.390 0.529 0.405 0.011 0.009

(CAD, JAY) 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.180 0.389 0.104 0.285

(CAD, EUR) 0.098 0.084 0.009 0.022 0.085 0.146 0.470 0.253 0.296 0.879 0.895

(JAY , EUR) 0.212 0.113 0.003 0.015 0.050 0.068 0.195 0.235 0.108 0.108 0.040

Notes: (i) Numbers in main entries are p-values; (ii) D̂N and D̂L denote DFT tests with normal and
Laplace weighting function, respectively; (iii) Ĥch0 denotes Hong et al.’s (2017) test with the bandwidth
h = ch0 with c = 0.5,1,2, and 3, respectively; (iv) Î denotes Inoue’s (2001) weighted CvM statistic; (v)
K̂ch0 denotes Kapetanios’ (2009) test using the bandwidth h = ch0 with c = 0.5,1,2, and 3, respectively;
and (vi) for the tests involving bootstrap, the number of bootstrap samples is 1,000.

we regard these series as stationary processes. To save space, we do not report the
results of the ADF and KPSS tests.

Table 3 reports the p-values of various tests for the nominal and real exchange
rate returns. We consider both the univariate and the bivariate cases that combine
two exchange rate returns as a random vector. The top two panels of Table 3 report
the results for the univariate case. We note that our test, with normal and Laplace
weighting functions, rejects the null hypothesis of strict stationarity for GBP and
CAD at the 5% significance level for both the nominal and real exchange rate

https://doi.org/10.1017/S0266466622000494 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000494


538 ZHONGHAO FU ET AL.

returns, but rejects the null hypothesis for JAY and EUR at the 10% significance
level for both the nominal and real exchange rate returns. However, Kapetanios’
(2009) and Hong et al.’s (2017) tests are sensitive to the choice of bandwidth. For
example, Hong et al.’s (2017) test cannot reject the null hypothesis for the nominal
exchange rate returns of JAY and EUR when we use the bandwidth h = ch0 with
c = 3 at the 10% significance level; however, it can reject the null hypothesis at the
5% level if we choose c = 0.5 or 1. Therefore, different choices of bandwidth yield
mixed results for the tests of Kapetanios (2009) and Hong et al. (2017). Inoue’s
(2001) results fail to reject the null hypothesis at the 10% significance level for
nominal returns of GBP and EUR and real returns of EUR. This result is consistent
with our theoretical conclusion that our test is more powerful than the existing tests,
including that of Inoue (2001).

The bottom two panels of Table 3 report the results for the multivariate case.
Our DFT tests with both normal and Laplace weighting functions reject the null
hypothesis of strict stationarity at the 10% significance level for all combinations
except those of nominal exchange rate returns of (GBP,EUR) and real exchange
rate returns of (GBP,EUR) and (JAY,EUR). However, Hong et al.’s (2017) results
are mixed for the combinations of nominal exchange rate returns of (GBP,EUR)
and (JAY,EUR) and real exchange rate returns of (GBP,EUR) and (CAD,EUR).
Inoue’s (2001) test fails to reject the null hypothesis at the 10% significance
level for the nominal and real exchange rate returns of (GBP,EUR), (CAD,EUR),
and (JAY,EUR). In addition, we note that Kapetanios’ (2009) test is extremely
sensitive to the choice of bandwidth, and most of the results cannot reject the null
hypothesis. The low power of Kapetanios’ (2009) test may result from the slow
convergence rate T−1/2h−d/2, which is severely affected by the dimension of the
underlying time series process and, hence, suffers from the curse of dimensionality
problem.

7. CONCLUSION

Strict stationarity is a fundamental modeling assumption for time series analysis.
This paper proposes a model-free test for strict stationarity based on a DFT
approach with the basic idea of estimating a CF using the ECF. If the underlying
time series is nonstationary, the estimated residuals will contain such time-varying
information. We construct the DFT of the estimated generalized residuals and infer
the existence of nonstationarity by examining the corresponding spectrum at each
frequency. The test is powerful against a class of local alternatives. Specifically,
the DFT of the generalized residuals converges to a Gaussian process under the
null hypothesis, and the test statistic can detect local alternatives converging to the
null at the parametric rate T−1/2. In addition, using an appropriate choice of the
weighting function can avoid high-dimensional numerical integration when com-
puting the test statistic. Compared with strict stationarity tests based on smoothed
nonparametric estimation, our test avoids the choice of tuning parameters and has
a faster convergence rate. Furthermore, we examine the finite sample property
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of the test via Monte Carlo simulations. It shows that our test has a reasonable
size performance and nontrivial power against various forms of nonstationarity.
Moreover, employing our test on nominal and real exchange rate returns and
their bivariate combinations reveals that the exchange rate returns are mostly
nonstationary, in contrast to the conclusion of weak stationarity tests, e.g., the
ADF and KPSS tests. Our test results are robust to reject the strict stationarity
null hypothesis under various weighting functions. In contrast, the nonparametric
strict stationarity tests are susceptible to the choice of bandwidth and usually fail
to reject the null hypothesis of strict stationarity.

MATHEMATICAL APPENDIX

A.1. Proof of Proposition 3.1

Under H0 : φt(u) = φ0(u) for all u ∈ R
dm and all t, Â1(u,v) = 0 and

√
TÂ(u,v) =√

TÂ2(u,v). We only need to consider the asymptotic distribution of Ŝ(u,v)≡ √
TÂ2(u,v).

First, we calculate the first two moments of Ŝ(u,v). For each fixed (u′,v)′ ∈ R
dm+1,

we have

E[Ŝ(u,v)] = 1√
T

T∑
t=1

M̄t(v)E[εt(u)] = 0.

For the second moment, we make the following decomposition:

E[Ŝ(u,v)Ŝ(u,v)∗] = 1

T

T∑
t=1

T∑
s=1

E[εt(u)εs(u)
∗]M̄t(v)M̄s(v)

∗

= 1

T

T∑
t=1

E[εt(u)εt(u)
∗]|M̄t(v)|2

+ 1

T

T∑
t=2

t−1∑
s=1

E[εt(u)εs(u)
∗]M̄t(v)M̄s(v)

∗

+ 1

T

T−1∑
t=1

T∑
s=t+1

E[εt(u)εs(u)
∗]M̄t(v)M̄s(v)

∗

≡ V1(u,v)+V2(u,v)+V3(u,v), say.

Consider V1(u,v) first. Noting that εt(u)= eiu′Yt −φt(u) and φt(u)= φ0(u) under H0, we
can readily show that

E[εt(u)εt(u)
∗] = E[1−φ0(u)e

−iu′Yt − eiu′Ytφ0(u)
∗ + |φ0(u)|2] = 1−|φ0(u)|2.
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Then,

V1(u,v)= E[εt(u)εt(u)
∗]

1

T

T∑
t=1

⎛
⎜⎝1−2eiv2π t/T 1

T

T∑
t=1

e−iv2π t/T +
∣∣∣∣∣∣

1

T

T∑
t=1

eiv2π t/T

∣∣∣∣∣∣
2
⎞
⎟⎠

= E[εt(u)εt(u)
∗]

⎛
⎜⎝1−

∣∣∣∣∣∣
1

T

T∑
t=1

eiv2π t/T

∣∣∣∣∣∣
2
⎞
⎟⎠

→ E[εt(u)εt(u)
∗]

⎛
⎝1−

∣∣∣∣∣
∫ 1

0
eiv2πτ dτ

∣∣∣∣∣
2
⎞
⎠ .

For V2(u,v), we have that under H0,

V2(u,v)=
T−1∑
j=1

1

T

T∑
t=j+1

E[εt(u)εt−j(u)
∗]M̄t(v)M̄t−j(v)

∗

=
T−1∑
j=1

E[εt(u)εt−j(u)
∗]

1

T

T∑
t=j+1

(
eiv2π j/T − eiv2π t/T 1

T

T∑
t=1

e−iv2π t/T

− e−iv2π(t−j)/T 1

T

T∑
t=1

eiv2π t/T +
∣∣∣∣∣ 1

T

T∑
t=1

eiv2π t/T

∣∣∣∣∣
2⎞⎠

=
T−1∑
j=1

E[εt(u)εt−j(u)
∗]

⎛
⎝T − j

T
eiv2π j/T − 1

T

T−j∑
s=1

eiv2π(s+j)/T 1

T

T∑
t=1

e−iv2π t/T

− 1

T

T−j∑
s=1

e−iv2πs/T 1

T

T∑
t=1

eiv2π t/T + T − j

T

∣∣∣∣∣ 1

T

T∑
t=1

eiv2π t/T

∣∣∣∣∣
2⎞⎠

=
T−1∑
j=1

E[εt(u)εt−j(u)
∗]

T − j

T

⎛
⎝eiv2π j/T − eiv2π j/T 1

T − j

T−j∑
s=1

eiv2πs/T 1

T

T∑
t=1

e−iv2π t/T

− 1

T − j

T−j∑
s=1

e−iv2πs/T 1

T

T∑
t=1

eiv2π t/T +
∣∣∣∣∣ 1

T

T∑
t=1

eiv2π t/T

∣∣∣∣∣
2⎞⎠

=
T−1∑
j=1

E[εt(u)εt−j(u)
∗]

(
1− j

T

)
eiv2π j/T

(
1−

∣∣∣∣
∫ 1

0
eiv2πτdτ

∣∣∣∣
2)

+o(1)

→
∞∑

j=1

E[εt(u)εt−j(u)
∗]

(
1−

∣∣∣∣
∫ 1

0
eiv2πτdτ

∣∣∣∣
2)
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by the dominated convergence theorem (DCT). Analogously,

V3(u,v)=
−1∑

j=−(T−1)

E[εt(u)εt−j(u)
∗]

(
1− j

T

)
eiv2π j/T

⎛
⎝1−

∣∣∣∣∣
∫ 1

0
eiv2πτ dτ

∣∣∣∣∣
2
⎞
⎠+o(1)

→
−1∑

j=−∞
E[εt(u)εt−j(u)

∗]

⎛
⎝1−

∣∣∣∣∣
∫ 1

0
eiv2πτ dτ

∣∣∣∣∣
2
⎞
⎠ .

Therefore, it follows that

E[Ŝ(u,v)Ŝ(u,v)∗] =
T−1∑

j=−(T−1)

E[εt(u)εt−j(u)
∗]

⎛
⎝1−

∣∣∣∣∣
∫ 1

0
eiv2πτ dτ

∣∣∣∣∣
2
⎞
⎠+o(1)

→
∞∑

j=−∞
cov(eiu′Yt,e−iu′Yt−j)

⎛
⎝1−

∣∣∣∣∣
∫ 1

0
eiv2πτ dτ

∣∣∣∣∣
2
⎞
⎠

= 
1(u,u)
2(v,v),

where 
1(u,u)≡
∑∞

j=−∞cov(eiu′Yt,e−iu′Yt−j) is a generalized long-run variance of eiu′Yt

and 
2(v,v)≡ cov
(

eiv2πτ,e−iv2πτ
)

= 1−
∣∣∣∫ 1

0 eiv2πτ dτ
∣∣∣2 is the pseudo-covariance of the

Fourier basis function of time in the sense that τ follows U[0,1] distribution.
By the triangle inequality and the fact that |eiu′Yt | = |eiv2π t/T | = 1 for all t,

max
t

|εt(u)M̄t(v)| ≤ max
t

[∣∣∣eiu′Yt
∣∣∣+|φt(u)|

]⎡⎣max
t

∣∣∣eiv2π t/T
∣∣∣+ 1

T

T∑
t=1

∣∣∣eiv2π t/T
∣∣∣
⎤
⎦

≤ 2×2 = 4.

Then we can apply Theorem 5.20 of White (2001) with r = ∞ to obtain that for each fixed
(u,v) ∈ W ≡ U×V,

Ŝ(u,v)
d→ N [0,
1(u,u)
2(v,v)] .

Now, we show that Ŝ(u,v) is asymptotically tight onU×V. For any (u1,v1),(u2,v2)∈W,
we apply the mean value theorem to obtain

T∑
t=1

[εt(u1)− εt(u2)]M̄t(v1)=
T∑

t=1

ϒt(ū)
′(u1 −u2)M̄t(v1) and

T∑
t=1

[
M̄t(v1)− M̄t(v2)

]
εt(u2)=

T∑
t=1

�t(v̄)(v1 − v2)εt(u2),
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where ū lies between u1 and u2, v̄ lies between v1 and v2,

ϒt(u)= dεt(u)

du
= i

[
Yte

iu′Yt −E(Yte
iu′Yt )

]
, and

�t(v)= dM̄t(v)

dv
= i2π

⎡
⎣ t

T
eiv2π t/T − 1

T

T∑
t=1

t

T
eiv2π t/T

⎤
⎦ .

Then, it follows

E

[∣∣∣Ŝ(u1,v1)− Ŝ(u2,v2)

∣∣∣2]

= E

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

[εt(u1)− εt(u2)]M̄t(v1)+ 1√
T

T∑
t=1

εt(u2)
[
M̄t(v1)− M̄t(v2)

]∣∣∣∣∣
2⎤⎦

≤ 2E

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

[εt(u1)− εt(u2)]M̄t(v1)

∣∣∣∣∣
2⎤⎦+2E

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

εt(u2)
[
M̄t(v1)− M̄t(v2)

]∣∣∣∣∣
2⎤⎦

≤ 2E

⎡
⎣
∥∥∥∥∥ 1√

T

T∑
t=1

ϒt(ū)M̄t(v1)

∥∥∥∥∥
2⎤⎦‖u1 −u2‖2 +2E

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

εt(u2)�t(v̄)

∣∣∣∣∣
2⎤⎦(v1 − v2)

2

≤ 2

T

T∑
s,t=1

∥∥∥cov
[
Yte

iū′Yt,Yse
−iū′Ys

]
M̄t(v1)M̄s(v1)

∗
∥∥∥‖u1 −u2‖2

+ 2

T

T∑
s,t=1

∣∣∣cov
[
eiu′Yt,e−iu′Ys

]
�t(v̄)�s(v̄)

∗
∣∣∣(v1 − v2)

2

≤ 8

T

T∑
s,t=1

∥∥∥cov
[
Yte

iū′Yt,Yse
−iū′Ys

]∥∥∥ ||u1 −u2||2 + 32π2

T

T∑
s,t=1

∣∣∣cov
[
eiu′Yt,e−iu′Ys

]∣∣∣(v1 − v2)
2

≤ C(‖u1 −u2‖2 +|v1 − v2|2),

by the mixing condition in Assumption A.1 and the fact that maxt supv |M̄t(v)| ≤ 2 and
maxt supv |�t(v)| ≤ 4π . Thus, Ŝ(u,v) is asymptotically tight on W, and by Theorem 13.5
of Billingsley (1999), it follows

Ŝ(u,v)⇒ S(u,v) on W,

where S(u,v) is a complex-valued Gaussian process with covariance kernel K0(w1,w2) ≡

1(u1,u2)
2(v1,v2). �

A.2. Proof of Theorem 3.1

Recall that U= [−b,b]dm and V= [−c,c], where b and c are positive constants. Recall that
W = U×V. By the continuous mapping theorem (CMT), for any fixed W,

D̂W ≡
∫
W

∣∣∣Ŝ(u,v)∣∣∣2 W(u,v)dudv
d→
∫
W

|S(u,v)|2 W(u,v)dudv. (A.2.1)
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It remains to show that

D̂
d→
∫
Rdm+1

|S(u,v)|2 W(u,v)dudv.

To proceed, we first check the uniform integrability (UI) of {D̂W} by verifying the sufficient

condition that E
∣∣∣D̂W

∣∣∣r ≤ C for some r > 1 and C < ∞. Let cW = ∫
W

W(u,v)dudv

and W̄(u,v) = W(u,v)/cW. By the moment bounds for stationary mixing sequences (e.g.,
Yokoyama, 1980; Yang, 2007) and the fact that |εt(u)M̄t(v)| ≤ 4, we have

E

[∣∣∣Ŝ(u,v)∣∣∣2r
]

≤ CE|εt(u)M̄t(v)|r ≤ C4r .

Then, by the Jensen inequality and Fubini theorem, for any r > 1, we have

E
∣∣∣D̂W

∣∣∣r = cr
W

E

[∫
W

∣∣∣Ŝ(u,v)∣∣∣2 W̄(u,v)dudv

]r

≤ cr
W

E

[∫
W

∣∣∣Ŝ(u,v)∣∣∣2r
W̄(u,v)dudv

]

= cr
W

∫
W

E

[∣∣∣Ŝ(u,v)∣∣∣2r
]

W̄(u,v)dudv

≤ cr
W

∫
W

C4rW̄(u,v)dudv = C4rcr
W
<∞.

Thus, {D̂W} is uniformly integrable. This, in conjunction with (A.2.1), implies that

E
[
D̂W

]
→

∫
W

E |S(u,v)|2 W(u,v)dudv. (A.2.2)

Similarly,

{∣∣∣Ŝ(u,v)∣∣∣2} also satisfies the UI condition for each fixed (u,v). This, along with

the result in Proposition 3.1, implies that E
∣∣∣Ŝ(u,v)∣∣∣2 → E |S(u,v)|2 for each fixed (u,v) .

Under Assumption A.2, for any ε > 0, there exists a bounded subset set W = U×V large
enough such that∫
Wc

E |S(u,v)|2 W(u,v)dudv<
ε2

2
,

where W
c is the complementary set of W in R

dm+1. Then, it follows that

E

[∫
Wc

∣∣∣Ŝ(u,v)∣∣∣2 W(u,v)dudv

]
=
∫
Wc

E
∣∣∣Ŝ(u,v)∣∣∣2 W(u,v)dudv

→
∫
Wc

E |S(u,v)|2 W(u,v)dudv<
ε2

2
.

For this W, define

D̂1 =
∫
Wc

∣∣∣Ŝ(u,v)∣∣∣2 W(u,v)dudv,

D̂2 =
∫
W

∣∣∣Ŝ(u,v)∣∣∣2 W(u,v)dudv,
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D1 =
∫
Wc

|S(u,v)|2 W(u,v)dudv,

D2 =
∫
W

|S(u,v)|2 W(u,v)dudv.

Then, D̂2
d→ D2,E(D1) < ε

2/2, and there exists sufficiently large T0 such that E(D̂1) < ε
2

for T ≥ T0. We want to show that D̂ = D̂1 + D̂2
d→ D = D1 +D2. This follows because for

any x ∈ R and arbitrarily small ε > 0, we have

P(D1 +D2 ≤ x− ε)− ε ≤ P(D2 ≤ x− ε)− ε
= liminf

T→∞ P(D̂2 ≤ x− ε)− ε
= liminf

T→∞ [P(D̂1 + D̂2 ≤ x)+P(D̂1 ≥ ε)]− ε
≤ liminf

T→∞ P(D̂1 + D̂2 ≤ x)+ ε− ε
≤ limsup

T→∞
P(D̂1 + D̂2 ≤ x)

≤ limsup
T→∞

P(D̂2 ≤ x)

≤ P(D2 ≤ x)

≤ P(D1 +D2 ≤ x+ ε)+P(D1 ≥ ε)
≤ P(D ≤ x+ ε)+ ε/2.

That is, P(D ≤ x − ε)− ε ≤ limsupT→∞ P(D̂ ≤ x) ≤ P(D ≤ x + ε)+ ε/2 for any ε > 0.
This implies that

D̂
d→
∫
Rdm+1

|S(u,v)|2 W(u,v)dudv. �

A.3. Proof of Proposition 3.2

Noting that φt(u)=φ(u,t/T) underHA, we have by the Riemann summation approximation
of integrals,

Â1(u,v)= 1

T

T∑
t=1

φt(u)M̄t(u)

= 1

T

T∑
t=1

φt(u)e
iv2π t/T − 1

T

T∑
t=1

φt(u)
1

T

T∑
t=1

eiv2π t/T

→
∫ 1

0
φ(u,τ )eiv2πτ dτ −

∫ 1

0
φ(u,τ )dτ

∫ 1

0
eiv2πτ dτ ≡ μ(u,v) .

For Â2(u,v), we have E[Â2(u,v)] = 0, for all (u,v) ∈W, and by the Davydov inequality for
strong mixing processes and Assumption A.3(i),
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E
∣∣∣Â2(u,v)

∣∣∣2 = E

∣∣∣∣∣∣
1

T

T∑
t=1

εt(u)M̄t(v)

∣∣∣∣∣∣
2

≤ 4

T2

T∑
t,s=1

|E [εt(u)εs(u)]|

≤ C

T2

T∑
t,s=1

ᾱ (|t − s|)= O(T−1).

It follows that Â2(u,v)= OP(T
−1/2) for any (u,v) ∈ W. Then, the conclusion follows. �

A.4. Proof of Theorem 3.2

Note that

T−1D̂ =
∫
Rdm+1

∣∣∣Â(u,v)∣∣∣2 W(u,v)dudv

=
∫
Rdm+1

∣∣∣Â1(u,v)
∣∣∣2 W(u,v)dudv+

∫
Rdm+1

∣∣∣Â2(u,v)
∣∣∣2 W(u,v)dudv

+2Re

(∫
Rdm+1

Â1(u,v)Â2(u,v)
∗W(u,v)dudv

)

≡ D̂I + D̂II +2D̂III,

where Re(A) denotes the real part of A. By the Riemann summation approximation of
integrals,

D̂I =
∫
Rdm+1

∣∣∣Â1(u,v)
∣∣∣2 W(u,v)dudv →

∫
Rdm+1

|μ(u,v)|2 W(u,v)dudv ≡ μ2 > 0.

By straightforward moment calculations, we can show that E(D̂II) = O(T−1). Then,
D̂II = OP(T

−1) by the Markov inequality. In addition, |D̂III | ≤ {D̂ID̂II}1/2 = OP(T
−1/2)

by the Cauchy–Schwarz inequality. Consequently, we have shown that T −1D̂ is bounded
away from 0 in probability by a positive constant μ2 under Assumption A.3(ii). Then, the
conclusion follows. �

A.5. Proof of Theorem 3.3

Under HA (�T ) : φt(u) = φ0(u)+�Tθt(u) with �T = T−1/2 and θt(u) = θ(u,t/T), we
have

√
TÂ1(u,v)= 1√

T

T∑
t=1

[
φ0(u)+�Tθt(u)

]
M̄t(v)= 1

T

T∑
t=1

θ(u,t/T)M̄t(v)

→ ζ(u,v),

where ζ(u,v) ≡cov[θ(u,τ ),eiv2πτ ] = ∫ 1
0 θ(u,τ )e

iv2πτ dτ − ∫ 1
0 θ(u,τ )dτ

∫ 1
0 eiv2πτ dτ is a

pseudo-covariance between θ(u,τ ) and eiv2πτ in the sense that τ follows U[0,1].
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Now, consider Â2(u,v). As in the proof of Proposition 3.1, by letting
√

TÂ2(u,v) =
Ŝ(u,v), we have that for each fixed (u′,v)′ ∈ R

dm+1,

E[Ŝ(u,v)] = 1√
T

T∑
t=1

M̄t(v)E[εt(u)] = 0,

E[Ŝ(u,v)Ŝ(u,v)∗] = 1

T

T∑
t=1

T∑
s=1

cov(eiu′Yt,e−iu′Ys)M̄t(v)M̄s(v)
∗,

and maxt
∣∣M̄t(v)εt(u)

∣∣ ≤ 4. Then, by Assumption A.3 and Theorem 5.20 of White (2001),
we have

Ŝ(u,v)
d→ N[0,K1(w,w)],

where K1(w,w) = limT→∞ 1
T
∑T

t=1
∑T

s=1cov(eiu′Yt,e−iu′Ys)M̄t(v)M̄s(v)∗ with w =
(u′,v)′. Following analogous arguments in the proof of Proposition 3.1, we can also show
that Ŝ(u,v) is asymptotically tight on U×V under HA (�T ) . Then,

Ŝ(u,v)⇒ S(u,v),

where S(u,v) is a complex-valued Gaussian process with covariance kernel now given by

K1(w1,w2)≡ lim
T→∞

1

T

T∑
t=1

T∑
s=1

cov(eiu′
1Yt,e−iu′

2Ys)M̄t(v1)M̄s(v2)
∗,

where wl = (
u′

l,vl
)′ ∈ W, for l = 1,2. Note that K1(w1,w2) is well defined under

Assumption A.3 and K1(w1,w2) = K0(w1,w2) under H0. By the CMT and analogous
arguments in the proof of Theorem 3.1, we obtain the desired results. �

A.6. Proof of Theorem 3.4

(i) We show that underHA (�T )with�T = o(b−1/2
T ), D̂�

d�−→ ∫
Rdm+1 |S(u,v)|2 W(u,v)dudv

in probability. Letting Ŝ(u,v)� = √
TÂ(u,v)�, we prove this result in three steps: (i1) we

establish the finite-dimensional convergence of {Ŝ(u,v)�} for any (u,v) ∈ W = U×V;
(i2) we establish the asymptotic tightness of {Ŝ(u,v)�} on W; and (i3) we establish the
convergence in distribution of D̂� in probability.

Step (i1): We establish the finite-dimensional convergence of {Ŝ(u,v)�}. Recall
that M̄t(v) ≡ eiv2π t/T − 1

T
∑T

s=1 eiv2πs/T,ε̂t(u) = eiu′Yt − φ̂0 (u), and εt(u) = eiu′Yt −
E(eiu′Yt ) = eiu′Yt − φt (u) . Let w = (

u′,v
)′ and wl = (

u′
l,vl

)′, for l = 1, . . . ,k, where

(u,v), (ul,vl) ∈ W. Let K(w1,w2)
� ≡ cov�(Ŝ(w1)

�,Ŝ(w2)
�). Then,

Ŝ(w)� = 1√
T

T∑
t=1

M̄t(v)[e
iu′Yt − φ̂0 (u)]η

�
t and

K(w1,w2)
� = 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗[eiu′

1Yt − φ̂0 (u1)][e
−iu′

2Ys − φ̂0 (−u2)]AT (t − s).
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Using eiu′Yt = εt(u)+φt (u), we make the following decomposition for K(w1,w2)
� :

K(w1,w2)
� = 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗εt(u1)εs(u2)

∗AT (t − s)

+ 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗[φt(u1)− φ̂0 (u1)][φs(u2)− φ̂0 (u2)]

∗AT (t − s)

+ 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗εt(u1)[φs(u2)− φ̂0 (u2)]

∗AT (t − s)

+ 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗[φt(u1)− φ̂0 (u1)]εs(u2)

∗AT (t − s)

≡
4∑
�=1

Kl(w1,w2)
�. (A.6.1)

First, we prove that K1(w1,w2)
� p→ K1(w1,w2) by showing that E[K1(w1,w2)

�] →
K1(w1,w2) and Var[K1(w1,w2)

�] = o(1) . Noting that AT (0)= 1, we have

E[K1(w1,w2)
�] = 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗E[εt(u1)εs(u2)

∗]AT (t − s)

= 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗E[εt(u1)εs(u2)

∗]

+ 1

T

T−1∑
t=1

T∑
s=t+1

M̄t(v1)M̄s(v2)
∗E[εt(u1)εs(u2)

∗] {AT (t − s)−1}

+ 1

T

T∑
t=2

t−1∑
s=1

M̄t(v1)M̄s(v2)
∗E[εt(u1)εs(u2)

∗] {AT (t − s)−1}

≡ I1,1(w1,w2)+ I1,2(w1,w2)+ I1,3(w1,w2).

For I1,1(w1,w2), we have I1,1(w1,w2) = 1
T
∑T

s,t=1 M̄t(v1)M̄s(v2)
∗E[εt(u1)εs(u2)

∗] →
K1(w1,w2). Pick up a sequence {pT } such that 1/pT + pT/bT = o(1) as T → ∞. For
I1,2(w1,w2), we use the fact that supv maxt

∣∣M̄t(v)
∣∣ ≤ 2 to obtain

∣∣I1,2(w1,w2)
∣∣ =

∣∣∣∣∣∣
1

T

T−1∑
t=1

T−t∑
j=1

M̄t(v1)M̄t+j(v2)
∗E[εt(u1)εt+j(u2)

∗] {AT (j)−1}
∣∣∣∣∣∣

≤ 4

T

T−1∑
t=1

pT∑
j=1

∣∣E[εt(u1)εt+j(u2)
∗]
∣∣ |AT (j)−1|

+ 4

T

T−1∑
t=1

T∑
j=pT+1

∣∣E[εt(u1)εt+j(u2)
∗]
∣∣ |AT (j)−1| .
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The first term on the right-hand side (rhs) of the last inequality is o(1) by the
DCT by noticing that 1

T
∑T−1

t=1
∑T

j=1

∣∣E[εt(u1)εt+j(u2)
∗]
∣∣ = O(1) and AT (j) − 1 =

o(1) for any |j| ≤ pT = o(bT ) ; the second term on the rhs is bounded above by
4
T
∑T−1

t=1
∑T

j=pT+1

∣∣E[εt(u1)εt+j(u2)
∗]
∣∣ = o(1) as pT → ∞. Then, I1,2(w1,w2) = o(1) .

Similarly, I1,3(w1,w2)= o(1) . It follows that

E[K1(w1,w2)
�] → K1(w1,w2).

Let cum(Z1,Z2,Z3,Z4)= E
[
Z1Z2Z3Z4

] − E [Z1Z2]E
[
Z3Z4

] − E
[
Z1Z3

]
E [Z2Z4] −

E [Z1Z4]E
[
Z2Z3

]
. Then,

Var
(
K1(w1,w2)

�
)

= 1

T2

T∑
t,s,r,q=1

M̄t(v1)M̄s(v2)
∗M̄r(v1)M̄q(v2)

∗{E[εt(u1)εs(u2)
∗εr(u1)εq(u2)

∗]

−E[εt(u1)εs(u2)
∗]E[εr(u1)εq(u2)

∗]}AT (t − s)AT (r −q)

= 1

T2

T∑
t,s,r,q=1

M̄t(v1)M̄s(v2)
∗M̄r(v1)M̄q(v2)

∗cum(εt(u1),εs(u2)
∗,εr(u1),εq(u2)

∗)

×AT (t − s)AT (r −q)

+ 1

T2

T∑
t,s,r,q=1

M̄t(v1)M̄s(v2)
∗M̄r(v1)M̄q(v2)

∗E[εt(u1)εr(u1)]E[εs(u2)
∗εq(u2)

∗]

×AT (t − s)AT (r −q)

+ 1

T2

T∑
t,s,r,q=1

M̄t(v1)M̄s(v2)
∗M̄r(v1)M̄q(v2)

∗E[εt(u1)εq(u2)
∗]E[εs(u2)

∗εr(u1)]

×AT (t − s)AT (r −q)

≡ I1,4(w1,w2)+ I1,5(w1,w2)+ I1,6(w1,w2).

Let 1 ≤ t ≤ s ≤ r ≤ q ≤ T and κ = max{s− t,r − s,q− r} . By the uniform boundedness of
εt(u) and Davydov inequality for strong mixing processes, it is standard to show that under
Assumption A.3(i),

∣∣cum(εt(u1),εs(u2)
∗,εr(u1),εq(u2)

∗)
∣∣ ≤ Cᾱ (κ) .

It follows that

∣∣I1,4(w1,w2)
∣∣ ≤ C

T2

T∑
t,s,r,q=1

∣∣cum(εt(u1),εs(u2)
∗,εr(u1),εq(u2)

∗)
∣∣ ≤ C

T

T∑
κ=1

κ2ᾱ (κ)= O(T−1).
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Next,∣∣I1,5(w1,w2)
∣∣

≤ C

T2

T∑
t=1

T∑
s=1

T∑
r=1

T∑
q=1

|E[εt(u1)εr(u1)]|
∣∣E[εs(u2)

∗εq(u2)
∗]
∣∣AT (t − s)AT (r −q)

≤ C

T2

T∑
t=1

T∑
s=1

T−1∑
|j|=0

T−1∑
|k|=0

∣∣E[εt(u1)εt+j(u1)]
∣∣ ∣∣E[εs(u2)

∗εs+k(u2)
∗]
∣∣AT (t − s)AT (t − s+ j− k)

≤
⎛
⎝ max

u∈{u1,u2}max
t

T−1∑
|j|=0

∣∣E[εt(u)εt+j(u)]
∣∣
⎞
⎠

2
C

T

T−1∑
l=0

AT (l)

= O(1)O(T−1bT )= O(T−1bT ),

where the next to last inequality follows from the Davydov inequality and the fact that∑T−1
l=0 AT (l)= O(bT ). Analogously,

∣∣I1,6(w1,w2)
∣∣= O(T−1bT ). Hence, Var

(
K(w1,w2)

�
)=

O(T−1bT )= o(1) under Assumption A.5 and

K1(w1,w2)
� p→ K1(w1,w2).

Next, we study K2(w1,w2)
�. Under HA (�T ) : φt(u) = φ0(u)+�Tθt(u) with �T =

o(b−1/2
T ), we have

K2(w1,w2)
�

= 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗[φt(u1)− φ̂0 (u1)][φs(u2)− φ̂0 (u2)]

∗AT (t − s)

= 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗{[φ0(u1)− φ̂0 (u1)][φ0(u2)− φ̂0 (u2)]

∗ +�2
Tθt(u1)θs(u2)

∗

+�T [φ0(u1)− φ̂0 (u1)]θs(u2)
∗ +�Tθt(u1)[φ0(u2)− φ̂0 (u2)]

∗}AT (t − s)

≡
4∑
�=1

K2,�(w1,w2)
�.

Let δ̂ (u)= φ̂0 (u)−φ0(u). It is easy to show that δ̂ (u)= OP(T
−1/2 +�T ) for each u under

HA (�T ) . Then,

∣∣K2,1(w1,w2)
�
∣∣ ≤

∣∣∣δ̂ (u1)
∣∣∣ ∣∣∣δ̂ (u2)

∣∣∣ 1

T

T∑
t,s=1

∣∣M̄t(v1)M̄s(v2)
∗∣∣AT (t − s)

= OP

(
T−1 +�2

T

)T−1∑
j=0

AT (j)= OP

(
(T−1 +�2

T )bT

)
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and

∣∣K2,3(w1,w2)
�
∣∣ ≤ C

∣∣∣δ̂ (u1)
∣∣∣ �T

T

T∑
t,s=1

AT (t − s)= OP((T
−1/2 +�T )�T bT ).

Similarly,
∣∣K2,4(w1,w2)

�
∣∣ = OP((T

−1/2 +�T )�T bT ). For K2,1(w1,w2)
�, we have

∣∣K2,2(w1,w2)
�
∣∣ ≤ C�2

T
T

T∑
t,s=1

AT (t − s)= O(�2
T bT ).

Consequently, we have shown that K2(w1,w2)
� = OP

(
(T−1 +�2

T +T−1/2�T )bT

)
=

oP (1).
Next, we study K3(w1,w2)

� and K4(w1,w2)
�. For K3(w1,w2)

�, we make the following
decomposition:

K3(w1,w2)
� = 1

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗εt(u1)[φs(u2)− φ̂0 (u2)]

∗AT (t − s)

= [φ0(u2)− φ̂0 (u2)]
∗

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗εt(u1)AT (t − s)

+ �T

T

T∑
t,s=1

M̄t(v1)M̄s(v2)
∗εt(u1)θs(u2)

∗AT (t − s)

≡ [φ0(u2)− φ̂0 (u2)]
∗K3,1(w1,w2)

�+K3,2(w1,w2)
�.

It is straightforward to show that E
[
K3,�(w1,w2)

�
] = 0, for �= 1,2,

Var[K3,1(w1,w2)
�] ≤ C

T2

T∑
t,s,r,q=1

|E [εt(u1)εr(u1)]|AT (t − s)AT (r −q)= O
(

T−1b2
T

)
,

Var[K3,2(w1,w2)
�] ≤ C�2

T

T2

T∑
t,s,r,q=1

|E [εt(u1)εr(u1)]|AT (t − s)AT (r −q)= O
(
�2

T T−1b2
T

)
.

It follows that K3(w1,w2)
� = OP

(
�T T−1/2bT +T−1bT

)
= oP (1) under Assumption

A.5. Analogously, we can show that K4(w1,w2)
� = OP

(
�T T−1/2bT +T−1bT

)
= oP (1).

In sum, we have shown that

K(w1,w2)
�≡ cov�

(
Ŝ(w1)

�,Ŝ(w2)
�
) p→K1(w1,w2) under HA(�T ) with �T = o(b−1/2

T ).

Now, noticing that the finite-dimensional distributions of the empirical process {Ŝ(w)�}
are centered Gaussian by construction (cf. Doukhan et al., 2015), the above convergence of
the covariance kernel in conjunction with the Cramér–Wold device implies that for arbitrary
w1, . . . ,wk ∈ W and k ∈ N,(

Ŝ(w1)
�, . . . ,Ŝ(wk)

�
)

d�→ (S (w1), . . . ,S (wk)) in probability,
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where {S (w)} is the limit Gaussian process with covariance kernel K1(w1,w2). It is worth
mentioning that if

{
η�t
}

is generated as a non-Gaussian process, then we can follow the
proof of Theorem 3.1 in Shao (2010) to establish the above claim.

Step (i2): We establish the asymptotic tightness of {Ŝ(w)�}. We aim to prove that, for any
ε1,ε2 > 0, there exists  > 0 such that

P

(
P�

(
sup

‖w1−w2‖≤ 

∣∣∣Ŝ(w1)
�− Ŝ(w2)

�
∣∣∣ ≥ ε1

)
≤ ε2

)
→ 1.

Note that Ŝ(w)� = 1√
T

∑T
t=1 M̄t(v)[eiu′Yt − φ̂0 (u)]η

�
t . Then,

E�
[∣∣∣Ŝ(w1)

�− Ŝ(w2)
�
∣∣∣2]

= E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

M̄t(v1)[e
iu′

1Yt − φ̂0 (u1)]η
�
t − 1√

T

T∑
t=1

M̄t(v2)[e
iu′

2Yt − φ̂0 (u2)]η
�
t

∣∣∣∣∣∣
2
⎤
⎥⎦

= E�

⎧⎨
⎩
∣∣∣∣∣∣

1√
T

T∑
t=1

[
eiu′

1Yt − eiu′
2Yt − φ̂0 (u1)+ φ̂0 (u2)

]
M̄t(v1)η

�
t

+ 1√
T

T∑
t=1

[eiu′
2Yt − φ̂0 (u2)]

[
M̄t(v1)− M̄t(v2)

]
η�t

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭

≤ 3E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[εt (u1)− εt (u2)]M̄t(v1)η
�
t

∣∣∣∣∣∣
2
⎤
⎥⎦

+3E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[
φ̂0 (u1)−φt (u1)− φ̂0 (u2)+φt (u2)

]
M̄t(v1)η

�
t

∣∣∣∣∣∣
2
⎤
⎥⎦

+3E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[eiu′
2Yt − φ̂0 (u2)]

[
M̄t(v1)− M̄t(v2)

]
η�t

∣∣∣∣∣∣
2
⎤
⎥⎦

≡ 3II1 +3II2 +3II3.

By Taylor expansions,

E (II1)= EE�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[εt (u1)− εt (u2)]M̄t(v1)η
�
t

∣∣∣∣∣∣
2
⎤
⎥⎦

≤ EE�

⎡
⎢⎣
∥∥∥∥∥∥

1√
T

T∑
t=1

ϒt(ū)M̄t(v1)η
�
t

∥∥∥∥∥∥
2
⎤
⎥⎦‖u1 −u2‖2
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= 1

T

T∑
s,t=1

cov(Yte
iū′Yt,Yse−iū′Ys)M̄t(v1)M̄s(v1)

∗AT (t − s)‖u1 −u2‖2

≤ C‖u1 −u2‖2,

and

II3 = E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[eiu′
2Yt − φ̂0 (u2)]

[
M̄t(v1)− M̄t(v2)

]
η�t

∣∣∣∣∣∣
2
⎤
⎥⎦

≤ E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[eiu′
2Yt − φ̂0 (u2)]�t(v̄)η

�
t

∣∣∣∣∣∣
2
⎤
⎥⎦(v1 − v2)

2,

where ϒt (·),�t (·), ū, and v̄ are as defined in the proof of Proposition 3.1. Note that

E�

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

[eiu′
2Yt − φ̂0 (u2)]�t(v̄)η

�
t

∣∣∣∣∣
2⎤⎦ ≤ 3E�

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

[eiu′
2Yt −φt (u2)]�t(v̄)η

�
t

∣∣∣∣∣
2⎤⎦

+3E�

⎡
⎣
∣∣∣∣∣ 1√

T

T∑
t=1

[φ0 (u2)− φ̂0 (u2)]�t(v̄)η
�
t

∣∣∣∣∣
2⎤⎦

+3E�

⎡
⎣
∣∣∣∣∣�T√

T

T∑
t=1

θt (u2)�t(v̄)η
�
t

∣∣∣∣∣
2⎤⎦

≡ 3II3,1 +3II3,2 +3II3,3.

By straightforward (moment) calculations,

E
∣∣II3,1

∣∣ = 1

T

T∑
s,t=1

cov(eiu′
2Yt,e−iu′

2Ys)�t(v̄)�s(v̄)
∗AT (t − s)= O(1),

E
∣∣II3,3

∣∣ = �2
T

T

T∑
s,t=1

θt (u2)θs (u2)�t(v̄)�s(v̄)
∗AT (t − s)= O

(
�2

T bT

)
, and

II3,2 =
∣∣∣φ0 (u2)− φ̂0 (u2)

∣∣∣2
T

T∑
t,s=1

�t(v̄)�s(v̄)AT (t − s)= O
(
(T−1 +�2

T )bT

)
.

Then, II3 = OP (1)(v1 − v2)
2.

To study II2, let δ̂s(u1,u2)= φ̂0 (u1)−φs (u1)− φ̂0 (u2)+φs (u2) .Then, under HA (�T ),
we have, uniformly in s,
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∣∣∣δ̂s(u1,u2)

∣∣∣ =
∣∣∣∣∣ 1

T

T∑
t=1

[εt (u1)+φt (u1)]− 1

T

T∑
t=1

[εt (u2)+φt (u2)]− [φs (u1)−φs (u2)]

∣∣∣∣∣
≤
∣∣∣∣∣ 1

T

T∑
t=1

[εt (u1)− εt (u2)]

∣∣∣∣∣+
∣∣∣∣∣ 1

T

T∑
t=1

[φt (u1)−φt (u2)]

∣∣∣∣∣+|φs (u1)−φs (u2)|

=
∣∣∣∣∣ 1

T

T∑
t=1

iϒt(ū)
′(u1 −u2)

∣∣∣∣∣+
∣∣∣∣∣�T

T

T∑
t=1

[θt (u1)− θt (u2)]

∣∣∣∣∣+�T |θs (u1)− θs (u2)|

≤ OP(T
−1/2 +�T )‖u1 −u2‖,

where we use the fact that 1
T
∑T

t=1ϒt(ū) = OP(T
−1/2) and θt (·) is Lipschitz continuous.

Then,

|II2| = E�

⎡
⎢⎣
∣∣∣∣∣∣

1√
T

T∑
t=1

[
φ̂0 (u1)−φt (u1)− φ̂0 (u2)+φt (u2)

]
M̄t(v1)η

�
t

∣∣∣∣∣∣
2
⎤
⎥⎦

= 1

T

T∑
t,s=1

δ̂t(u1,u2)δ̂s(u1,u2)M̄t(v1)M̄s(v1)AT (t − s)

≤ max
t

∣∣∣δ̂t(u1,u2)
∣∣∣2 C

T

T∑
t,s=1

AT (t − s)= OP

(
(T−1 +�2

T )bT

)
‖u1 −u2‖2 .

In sum, we have shown that

E�
[∣∣∣Ŝ(w1)

�− Ŝ(w2)
�
∣∣∣2] = OP (1)

[
‖u1 −u2‖2 + (v1 − v2)

2
]

= OP (1)‖w1 −w2‖2 ,

which implies the asymptotic tightness of {Ŝ(w)�} in probability.
Step (i3): We establish the convergence in distribution of D̂�. Given the results in

Steps (i1) and (i2), the remaining arguments essentially follow from those in the proof of
Theorem 3.1.

(ii) Now consider the case where the alternativeHA (�T ) is satisfied with�T �= o(b−1/2
T )

for the original data. In this case, the decomposition in (A.6.1) continues to be valid, and so

does the study for K1 (w1,w2)
� in Step (i1) above: K1 (w1,w2)

� p→K1 (w1,w2) . Following
the analysis of Kl (w1,w2)

�, for �= 2,3,4 in Step (i1), now we can establish only that

K2 (w1,w2)
� = OP

(
�2

T bT

)
and K� (w1,w2)

� = OP(�T T−1/2bT ) for �= 3,4.

Consequently, K(w1,w2)
� ≡ cov�(Ŝ(w1)

�,Ŝ(w2)
�) = OP

(
1+�2

T bT

)
. This implies that

Ŝ(w)� diverges to infinity at most at rate�T b1/2
T if�T b1/2

T � 1. In the latter case, it is easy

to find that the leading term in Ŝ(w)� is given by

Ŝ1(w)
� ≡ 1√

T

T∑
t=1

M̄t(v)[φt(u)− φ̂0 (u)]η
�
t = OP� (�T b1/2

T ),
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where the order holds uniformly in w. As a result, the leading term in the expansion of D̂�

is given by

D̂�1 ≡
∫
Rdm+1

∣∣∣Ŝ1(u,v)
�
∣∣∣2 W (u,v)dudv = OP� (�

2
T bT ),

which diverges to infinity at most at rate �2
T bT when �T b1/2

T � 1.
Let Ō and ŌP� denote exact (probability) order such that aT = Ō(cT ) signifies both

aT/cT = O(1) and cT/aT = O(1) . When �T b1/2
T = Ō(1), it is easy to show that D̂� =

ŌP� (1) . This completes the proof of the theorem. �
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