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High-entropy alloys (HEAs) are a new class of multi-component alloys that exhibit surprising 
characteristics, [1] including very large strain hardening rates, large fracture toughness at room 
temperature [2], and a strong temperature dependence of yield strength at or below room temperature. 
These properties are closely linked to nano-twinning and dislocation-mediated plasticity, yet little 
experimental work has explored dislocation dissociation, stacking fault energy, or core structures in 
these alloys [3]. In this study, an HEA, containing 5 elements (Cr, Co, Mn, Fe, and Ni) with equiatomic 
composition was deformed to a 5% plastic strain at room temperature [4]. Post-mortem 3mm disks were 
electro-polished using a solution consisting of 21% Perchloric acid and 79% Acetic acid and analyzed 
using a probe-corrected Titan3 80-300kV along a [110] zone axis. Highly planar deformation was first 
observed by Otto et al. [5] and was active for this study as well. This planar deformation, involving 
dislocation arrays on {111} slip systems, may imply the existence of short-range order, low stacking 
fault energy (SFE), and/or supplementary displacements in the wake of dislocations. 
 
Smith et al. [6] previously demonstrated that high and medium angle annular dark field scanning 
transmission electron microscopy (HAADF/MAADF-STEM) could effectively be used to determine the 
misalignment of a dislocation through foil thickness. This misalignment created a contrast “plume” 
when imaged in a MAADF condition. Recently, Smith et al. revealed the presence of a broad 
distribution of stacking fault widths, suggesting the concept of a “local” stacking fault energy in HEAs 
which affect the the dislocation dissociation and may play a role in how these dislocations glide [7]. To 
further explore this misalignment and how it relates to the dislocation core structure, through-focal 
HAADF-STEM imaging was employed. Acquisition of a through-focal STEM series was shown to 
enable detection of the crystal rotation in association with the “Eshelby twist” around screw dislocations 
[8]. This technique has been employed presently to create a 3D analysis of dislocation cores in the 
Cantor alloy as shown in Figure 1(a) and 1(b). Changing defocus allowed different depths along a 
dislocation line to be imaged, allowing for a three dimensional analysis of the whole dislocation core. 
The field of focus (z) was calculated using [9]: 

𝑧 = #
$%

       (1) 
where λ was the electron wavelength (which at 300kV was .00224nm) and α was the convergence angle 
(22mrad). Therefore, the depth of field for this study was 4.6nm. A nano-hole was drilled through the 
sample near the dislocation to act as a marker and reveal changes in the dislocation’s location and 
dissociation distance. Two different dislocation types were analyzed using this technique. One with a 
short contrast “plume” attached to it and another with a much longer one – the latter shown in Figure 2. 
A gray box with a red outline is placed over the dislocations stacking fault and represents the 
dislocation’s location and dissociation width. A series of different defocal images were taken for both 
types of dislocations and aligned using ImageJ [10]. For both dislocations, the dissociation distance 
changed along the dislocation line; however, the dislocation with a long plume showed a much larger 
variation in stacking fault width as shown in Figure 2(b), 2(c), and 2(d). These findings demonstrate the 
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unique capability of through-focal HAADF imaging for probing dislocation structure information in 3D 
at atomic-scale. These results will be discussed in the context of the concept of a “local” SFE in this 
HEA, and in relationship to the unique macro-behavior exhibited by these alloys. 
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Figure 1: A schematic of the through-focal STEM technique at (a) 0nm defocus and (b) -15nm defocus. 
(c) A MAADF-STEM image showing an example of the setup for the through-focal STEM.  
 

	
  
Figure 2: (a) A dislocation with a long (20nm) contrast “plume” attached to it that was imaged edge-on 
at different defocus values (b) 10nm defocus (c) -2nm defocus and (d) -10nm defocus.  
 

1937Microsc. Microanal. 22 (Suppl 3), 2016

https://doi.org/10.1017/S1431927616010527 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927616010527



