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High-entropy alloys (HEAs) are a new class of multi-component alloys that exhibit surprising
characteristics, [1] including very large strain hardening rates, large fracture toughness at room
temperature [2], and a strong temperature dependence of yield strength at or below room temperature.
These properties are closely linked to nano-twinning and dislocation-mediated plasticity, yet little
experimental work has explored dislocation dissociation, stacking fault energy, or core structures in
these alloys [3]. In this study, an HEA, containing 5 elements (Cr, Co, Mn, Fe, and Ni) with equiatomic
composition was deformed to a 5% plastic strain at room temperature [4]. Post-mortem 3mm disks were
electro-polished using a solution consisting of 21% Perchloric acid and 79% Acetic acid and analyzed
using a probe-corrected Titan® 80-300kV along a [110] zone axis. Highly planar deformation was first
observed by Otto et al. [5] and was active for this study as well. This planar deformation, involving
dislocation arrays on {111} slip systems, may imply the existence of short-range order, low stacking
fault energy (SFE), and/or supplementary displacements in the wake of dislocations.

Smith et al. [6] previously demonstrated that high and medium angle annular dark field scanning
transmission electron microscopy (HAADF/MAADF-STEM) could effectively be used to determine the
misalignment of a dislocation through foil thickness. This misalignment created a contrast “plume”
when imaged in a MAADF condition. Recently, Smith et al. revealed the presence of a broad
distribution of stacking fault widths, suggesting the concept of a “local” stacking fault energy in HEAs
which affect the the dislocation dissociation and may play a role in how these dislocations glide [7]. To
further explore this misalignment and how it relates to the dislocation core structure, through-focal
HAADF-STEM imaging was employed. Acquisition of a through-focal STEM series was shown to
enable detection of the crystal rotation in association with the “Eshelby twist” around screw dislocations
[8]. This technique has been employed presently to create a 3D analysis of dislocation cores in the
Cantor alloy as shown in Figure 1(a) and 1(b). Changing defocus allowed different depths along a
dislocation line to be imaged, allowing for a three dimensional analysis of the whole dislocation core.

The field of focus (z) was calculated using [9]:
yl

z=— (1)
where A was the electron wavelength (which at 300kV was .00224nm) and o was the convergence angle
(22mrad). Therefore, the depth of field for this study was 4.6nm. A nano-hole was drilled through the
sample near the dislocation to act as a marker and reveal changes in the dislocation’s location and
dissociation distance. Two different dislocation types were analyzed using this technique. One with a
short contrast “plume” attached to it and another with a much longer one — the latter shown in Figure 2.
A gray box with a red outline is placed over the dislocations stacking fault and represents the
dislocation’s location and dissociation width. A series of different defocal images were taken for both
types of dislocations and aligned using ImageJ [10]. For both dislocations, the dissociation distance
changed along the dislocation line; however, the dislocation with a long plume showed a much larger

variation in stacking fault width as shown in Figure 2(b), 2(c), and 2(d). These findings demonstrate the
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unique capability of through-focal HAADF imaging for probing dislocation structure information in 3D
at atomic-scale. These results will be discussed in the context of the concept of a “local” SFE in this
HEA, and in relationship to the unique macro-behavior exhibited by these alloys.
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Figure 1: A schematic of the through-focal STEM technique at (a) Onm defocus and (b) -15nm defocus.
(c) A MAADF-STEM image showing an example of the setup for the through-focal STEM.
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Figure 2: (a) A dislocation with a long (20nm) contrast “plume” attached to it that was imaged edge-on
at different defocus values (b) 10nm defocus (c¢) -2nm defocus and (d) -10nm defocus.
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