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Abstract. We consider measured foliations on surfaces, and interval exchanges. We
give alternative proofs of the following theorems first proved by Masur and
(independently) Veech. The action of the diffeomorphism group of the surface on
the projective space of measured foliations (with respect to a natural 'Lebesgue'
measure) is ergodic. Almost all measured foliations are uniquely ergodic. Almost
all interval exchanges (again, with respect to a natural 'Lebesgue' measure) are
uniquely ergodic.

Introduction
In this paper we give alternative proofs to two theorems first proved by Masur [5]
about measured foliations on surfaces. Recall that a measured foliation on a surface
is defined [2] as being a C°° foliation except at finitely many points, in neighbour-
hoods of which leaves are images of the lines {Im Zp/2 = const} (p>3 , or p > 4 if
the point is on the boundary of the surface) for a chart in the complex plane
containing 0. Also, the foliation is endowed with a finite invariant transverse
measure C°°-equivalent to Lebesgue. The theorems are:

THEOREM 1. Let Diff0 (Mgtb) be the modular group of the oriented surface Mgib with
genus g and b boundary components. Let JHW(Mgyb) denote the space of measured
foliations on Mg_b, and 3PMSF(Mgib) the projective space. Then Diff0 (Mg_b) acts
ergodically on &Jl!¥(Mg<b) with respect to Lebesgue measure.

THEOREM 2. Lebesgue-almost-all foliations in Jt&(Mg,b) are uniquely ergodic (up
to multiplying the measure by a scalar).

We explain the terminology in § 1. Masur actually proved a stronger result than
theorem 1 -that the action on the square of S^M^{Mg>b) is ergodic. The methods
of the present paper give conservativity of the action on the square. We recall that
closely related results were proved by Masur [5], and by Veech [7], for interval
exchanges. We include a proof of this, although the aim is rather to give a different
viewpoint on theorems 1,2:

THEOREM 3. Lebesgue-almost-all irreducible interval exchanges are uniquely ergodic.

An irreducible permutation a of { 1 , . . . , n) is one such that

cr{l, ...,/•} 5* {1, ...,/•} for any r < n.
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462 M. Rees

ForanyA = (A,, . . . , AJ,A, >0,if/3, = I / S , Ay,with/3n >0,define/ACT :[0, /3J-»[0, /
by:

hAx+Pi-i) = x+ I Ay, ;
<r(/)scr(i)-l

'Lebesgue-almost-air in the statement of theorem 3 then means: for Lebesgue-
almost-all A, for a fixed a.

The proofs of theorems 1, 2 are inextricably linked. The same sort of situation
occurs in [5], [7]. Veech uses the conservativity of (0>M3', Diff0 (Mgib), Lebesgue)
to prove unique ergodicity (although the language is completely different)
and Masur uses conservativity of the square. In the case of measured foliations
of the torus, theorem 1 becomes the classical theorem of the ergodicity of
(R u {oo}, SL(2, Z), Lebesgue) where

)x
a) cx

One classical proof of this involves showing that the action of SL(2, Z) on
{z e C: Im 2 > 0} given by

b\(a b\ _
\c d) cz + d

has a finite volume quotient. Veech and Masur obtain the needed conservativity
results by proving an analogue of this. (Of course, this is a gross over-simplification.)
In the present paper, we imitate a different proof of the ergodicity of
(R u{oo}, SL(2,Z), Lebesgue) exposed in [6]:

Let £cRu{oo} be a set of positive measure. After acting by

we may assume that Ec. (0,1). Let x be a density point of E, and irrational. For
infinitely many q > 0, we have p > 0 with

\p/q-x\<l/q2.

There are r,s>0 with s<q and rq-sp = \. So the derivative of C £) on (0,1) is
O(l/qz), and & £) maps (0,1) to an interval of width >l/2q2 in (x - 2/q2, x + 2/q2).
Since x is a density point, the inverse image of (x - 2/q2, x + 2/q2) n E under (r

s £)
contains arbitrarily much of the measure of (0,1) as q -* oo. Translation of (0,1) by

then gives that the orbit of E is almost all R u {oo}.
Note that a generalization of this method might (and does) yield the following:

if E<=L2PM9' has positive measure, then there exists a sequence {</>„} cDiff0 such
that

measure
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Measured foliations on surfaces 463

One might also suspect that, as for actions of groups of hyperbolic isometries, if
the Radon-Nikodym derivative of <j> eDiff0 (Mg-b) on a set U is uniformly small,
then not only measure (<f>U), but also diameter (<f>U) is small. This is not at all
true. It is, however, true in a 'probabilistic' sense (proposition (3.1)). It is, in fact,
here that the problem of unique ergodicity arises.

One possible way of explaining why the ergodic theory of VPMSFiMg^) is less
straightforward in general than in the classical case of the torus, is that the natural
analogue of a conformal metric for 3PJ13F is not a metric at all, but the intersection
number. We use the intersection number in the present paper. We include (§ 1)
some basic facts about intersection numbers which do not appear in [2] (although
known). § 1 also contains other basic facts about measured foliations.

§ 2 concerns multiple loops on surfaces - the natural generalization of rationals
in IR u {oo}. The idea is to prove that a positive measure set of measured foliations
can be 'well approximated' by 'prime' multiple loops. (We do not try for a full
measure set at first.) This is done essentially by generalizing the result that the
number of coprime pairs (p, q) with

aN <\p\ + \q\<bN (0<a<b)

is O(N2). A similar result is needed for theorem 3. The divergence from straight
imitation of the classical case essentially comes in § 3, where we use analysis (mostly
a simple application of the Birkhoff ergodic theorem) to prove the existence of
'density points' for any subset of positive measure of a certain subset of 0'MS' with
respect to a certain cover of this subset.

My fundamental debt to [2] will be clear. I should like to thank, in particular,
A. Fathi and F. Laudenbach for their help, encouragement and additional infor-
mation.

1. Basic facts about measured foliations
We consider the space of measured foliations

on the oriented surface Mgtb of genus g with b boundary components. The basic
reference is [2].

An intersection number i(a, &) is defined for any simple (that is, non-self-intersect-
ing) loop a on Mg,b, and & e MS*, as the minimal measure given by SF to a loop in
the isotopy class of a. Recall that SFU S^2 are considered to be equivalent if

i(a,&i) = i(a,&2) for all a.
An R+-action is defined on M2F by taking A • 2F, for A 6 U+, to be the same

foliation as 2F, with all transverse measures multiplied by A.
An action of the modular group Diff0 (Mgwb) is defined on MSF by

where [ ] denotes an equivalence class, and
4

for any transversal /.
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464 M. Rees

The piecewise GL (•, Z/4)-stmcture of MS'
The following theorem is well known. Most comes directly from [2]. Z/4 denotes
the group of rationals with denominator 4. We shall elaborate some details.

(1.1) THEOREM. M&(Mg,b) has a structure of a piecewise GL(R6g~6+2\ Z/4)-
manifold. The charts can be taken as U+-invariant, the R4-action translating to
scalar multiplication in R6g~6+2fc. The Diff0 (Mg,b)-action is piecewise
GL (R6g"6+2i, Z/4). There is a Lebesgue measure A on M& such that the \d<f>^\/d\ |
are uniformly bounded for </> e Diffo (Mgib).

For the last part of the theorem we simply take a disjoint set of charts, and the
Lebesgue measures from these. The boundedness of the \d<t>i.\ld\\ follows from
the fact that a matrix A with both A, A"1 in GL (n, Z/4) has determinant between
1/4" and 4".

Note. By slightly more sophisticated methods, Masur actually finds an invariant
measure on MSF [5].

We should maybe elaborate on the choice of coordinates which makes the
structure piecewise GL (6g — 6 +2b, Z/4), not merely piecewise linear.

From [2] there are finitely many multiple loops

with the a, isotopically distinct disjoint simple loops, such that the sets Xa cover
M&, where

Xa = {^: /(ay, 9) > 0 for all /}.

Write mj = /(«,, !F). The mt determine 2F restricted to each pair of pants into
which a cuts Mgtb. An &eXa looks like figure 1 in a pair of pants bordered by
a.!, och, ah.

ait

m,, < mit + m>, for all y, fc, / e {1, 2, 3}
m,-, > m,2 + m,,

F I G U R E 1

There are two other cases obtained from the latter by interchanging ah, a,2, a,3,
and borderline cases such as mh = m,2 + m,3. (Pictures are given in [2, exp. 6].) For
each a,, and each possible pair of configurations occurring for foliations in Xa, in
the pairs of pants bordering on a, (it does not matter if there is only one pair of

https://doi.org/10.1017/S0143385700001383 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001383
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pants bordering on a,), choose a singularity and singular prong in each of the one
or two pairs of pants such that the two singular prongs hit a; on opposite sides of
a,. Choose also a homotopy class of arc crossing a,- and joining the two singularities.
(This still makes sense if the two singularities coincide.) Choose also an orientation
on aj, and call one of the two singular prongs the 'first'. Given 3F in Xa, let p;

denote how far in measure the second singular prong has to be moved along
at - positively or negatively - to meet the first singular prong and form the chosen
arc, up to homotopy. The coordinates (m,-,P/)/=i,...,3g-3+6 completely determine
PeXa. Let

be defined by

* . W = ((«,), (ft)).

The (Xa, <!><,) are the charts of the piecewise GL (•, Z/4)-structure.

FIGURE 2. Definition of p, given one possible choice of arc and singular prongs.

(1.2) Inductively, rth hitting points of singular prongs of 2F on the a; are piecewise
linear functions of the (m,, pf) with coordinates in Z/2. Since for any /3, z(/3, &) can
be attained by arranging /3 along segments of singular prong and segments of a,
the functions

are piecewise linear, with coefficients in Z/2.

(1.3) So is JF>-»/(% 9), if y is an arc between two boundary components.
(1.4) So is ^>->/(% fF), if y is an arc between two singularities.
(1.5) Let jj be a loop cutting only a, and lying only in the two (or one) adjacent
pairs of pants (figure 3). Pj is a piecewise linear function of the mk, and i(ah y),
with coefficients in Z/2. (This is the reason for Z/4 in the statement of the theorem.)

Theorem 1.1 follows from (1.2), (1.5), since

/(</>"V;, * ) , for </. eDiffo (Mg>6) •
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Sections of M2F
Supposed fixed, once and for all, a bounded piecewise smooth (not necessarily
globally continuous) section yjlZF of the U+-action on MSF.

(1.6) Definition. For &zM&, define |^ |eR + to be such that (1/|^|) •&&g>M&. If
a e M& is a multiple loop with all components non-intersecting disjoint (from [2,
exp. 4], multiple loops can be considered as elements of M!F), we shall refer to |a|
as the length of a. \i¥\ only depends on the choice of yjlSFup to a bounded proportion.

Note that if e is any fixed finite set of loops cutting the surface into cells, \3;\ is
boundedly proportional to £,1i i(eit S?) for all PtJUF, where e = (eu ..., eN).

(1.7) Let a = ( o i , . . . , a3g_3+(,) with all the a, isotopically distinct disjoint. Let

Xa,s ={&eM&: i(&, a,)s8|*|}.

If S is small enough, finitely many Xa,s cover M&, since the same is true for the
Xa. Note that, if p is a loop in Xa,s and i(y, P) = 0, then the integral part of the
twist of y round a, is bounded by that of p, so that |y| can also be estimated by
£/ i(y, «/)• We shall often use this fact. The bound depends only on 8, not on p.

(1.8) Definition. For $ e Diff0 (Afg>4), ^e^M^{Mg,b), define

Then (<f>, 9?)^>4> • & defines an action of Diff0 (Afg,6) on STM&, and (</>,
is a cocycle, that is

for all , </>, &e Diff0 (Afg>6).

Note that, if e is any finite set of loops cutting the surface into cells, both
~X^\ are boundedly proportional to

for all 4> € Diffo (Mg,/,), where e = (e\,..., eN)- For, if a is a multiple loop,

Then a can be arranged to lie only along arcs of the e/s with <Z?|a| segments
along each ef. So

i(<t>~lek, a) < d | a | X i(eh <t>~x
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and

|</>a| ^ C2 £ i(<t><*, £k) — C1C2I01I X '(£/> 4> ek\
k

For general &, the result follows from piecewise continuity of i (1.1), and density
of multiple loops.

We have a natural Lebesgue measure on SfMSF, up to bounded Radon-Nikodym
derivative, which we denote also by A (as well as the measure on .

(1.9) LEMMA.

C dk

for all 4>, &, for some constant C, where ^ A (A) = A (<£A) (A £

Proof. Let (a,b)-A denote {t • A: t e (a, b)}. Use the facts that:

where the left-hand A is measure on M3F, right-hand A is measure on SfMSF; for
A on M3F, by (1.1), the d<i>*\/d\ are uniformly bounded; and

U

In summary. tfMSF can be identified with the R+-orbit space of M2F. One of the
two main objects of the present paper is the study of the ergodic theory of

The intersection number function
For any two multiple loops a, (J on a surface Mgyt, (for which the components of
a do not intersect each other, and similarly for P) /(a, 3) is defined as the minimal
number of intersections of loops a', P' isotopic to a, p respectively.

For a a multiple loop, and !FeM!F, i(a, !F) is defined as the minimal ^-measure
of a loop in the isotopy class of a. If 9* is itself a multiple loop, this definition
coincides with the previous one.

{Aa: A e R+, a a multiple loop} is dense in Mif (since, for example, in a chart
Q'&iXfi), any point for which the m,-coordinates are even integers, and the p~
coordinates are integers, is a multiple loop). It is proved in [2] that ^<-*i(a, &) is
continuous on M2F. We prove:

(1.10) LEMMA. 2F-+ i(a, 9>) is Lipschitz with constant C\a\, some universal C, with
respect to any metric in the natural class of Lipschitz-equivalent metrics on MSF
(given, for example, by Euclidean-norm-metrics on the charts $>a(Xa) of (1.1)).

Proof. It suffices to prove the function is Lipschitz restricted to a set of & in an
Xfi,s (1.7) all with the same picture (as in (1.1)) with respect to p. Fix a metric d
on M&. Let a be such that /^(a) = /(a, 3^).

Let a cross /3, at points x u , . . , xUt, where xitk varies between 0 and mh and these
coordinates on /3, are with respect to an origin which we have fixed as the first
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hitting point of a singular prong of 9. If, for nearby 3F', we arrange a to cross
at points

then we clearly have

i(a, 9) =s (trio) < C'\u\d(9, 9") + /(a, ^),

some C. By symmetry,
|/(o, * ) - /(a, ^ ) | s C|o|d(*i 91). D

As an immediate corollary, we obtain the following unpublished result of Thurston:

(1.11) COROLLARY. / extends to a continuous Lipschitz function
satisfying

i(9u 92) = i(92, &i), i(A^i, 92) = M(?u 92).

Proof. /(Aa, 9) is already defined and, by (1.10), is Lipschitz with constant <CA |a|.
Let \nan -* <S. By Ascoli's theorem, since |Anan| is bounded, and hence /(Anan, e) is
bounded for any fixed multiple loop, some subsequence of /(Anan> •) converges to
a Lipschitz function g, with constant <Ci|$|, some C\. Also

for all multiple loops 3, all fi e U+, since

i(\nan, fifi) = i(fi

Hence, since scalar multiples of multiple loops are dense, {i(Anan, •): n e N} has only
one limit point, the sequence actually converges, and we can denote the limit by

). •
Minimal foliations and the cone of invariant measures
A measured foliation on ̂ fgtb is defined to be minimal if all leaves are either dense
in Mg<b, or join two singularities - and there must be no cycle of leaves of the latter
type. It is well known that an SPeMSF is minimal if and only if it is irreducible, that
is, there is no cycle of leaves (see [1], for instance). A non-minimal foliation can
thus be regarded as a foliation of a subsurface - the set of these is a countable
union of subvarieties of lower dimension than the dimension of M^(Mgib), and
hence has zero Lebesgue measure.

It is also well known that the set of invariant measures for 3F€iM3F(Mg,b) is of
finite dimension <6g-6 + 2b. In fact, by (1.2), the 'configuration' of an f e X p

(1.1) and the coordinates m,(^0, pt(!F) with respect to B, determine the measure
between any two hitting points of singular prongs of 9 on B. By minimality, these
give a generating partition on p. So any transverse invariant measure on 9 is
determined by coordinates m\, p't, which can be identified with another measured
foliation &1.

This identifies the cone of invariant measures for 9 with a 'subcone' of MS?.
This is, in fact, all we need for proving our theorems, but it may be interesting to
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prove the following, which was first explained to me by Laudenbach in terms of
geodesic laminations.

(1.12) THEOREM. Let (ZF, fi&) be minimal, and (&', /*&•) another measured foliation.
The following are equivalent.

(1) 2F, 3F' are Whitehead equivalent, that is, isotopic after some singularities joined
by prongs have possibly been amalgamated, and the reverse has possibly happened
for other singularities.

(2) i(P,3P) = 0.

Proof. 1 =>2. Write {&, fi&) = (&, m). Since &, 3? are Whitehead equivalent, as a
measured foliation {3F', figr) = (&, ix2), some fi2 not necessarily equivalent to Lebes-
gue measure. Let {an} be a sequence of multiple loops, and {An}cR+ such that
\nan -+&. Then, by (1.11), i{knan, ;F)->0. We aim to show i(\nan, 3F')^0, so that,
by(l.ll),/(<F,^') = 0.

Choose e so that &, &? e Xe. We may arrange an to lie piecewise along e and
leaves of &, such that

fn(an) = ((a,, &), fi2(an) = i(an, &').

Split up any segment of an winding round an e, several times into subsegments
winding round at most once, so that an consists of ^-leaf segments and <Ci|a«|
segments of e all with /^-measure <C2. Also,

C3/ |an |<An<C4/|an | ,
since \nan -* 2F.

Given 8, choose N such that

\ni{an,SF)<82, n>N.

Then

Hi(an) = /(«„, 9)<52|an|/C3.

If R of the segments of an along e have ^i-measure ^8, then R ^8C2\an\. Both
fix, n2 are non-atomic (since SF is minimal) so, given e, we can find 8 such that any
segment of e with /Ui-measure <8 has /n2-measure <e. Thus

Hence

i(Xnan, &') = A^ 2 (o , ) s dC2C48

and i(\nan, &?)->(), as required.
2^>1. Suppose i{3',9'') = Q. Choose {«„} a sequence of multiple loops, and

{An}cR+ such that

n,&')<Cxl\an\
s+\ An>C2/|an|, 8 = l / (6g-7 + 2b),

assuming without loss of generality that 9' e 9'MS', and d is some fixed Lipschitz
metric on MS?. This is possible because a point in Rm can be approximated to within
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jy-i-i/m ^ a r a t j o n a j of t j j e form (p1/N,..., Pm/N) for infinitely many N. Then

by (1.11) \nan -» 2F, and we aim to show that, in the limit, \nan defines an ^-invariant
tranverse measure. Let e be a fixed multiple loop with SF, !W'eXe (1.1). Arrange
an to lie only along singular leaves of IF and arc segments of e. Since i(an, !¥)-*0,
for large n, all segments of an must follow a leaf of & through N pairs of pants
for N large. Further, except for a union of segments of an with Se|an| intersection
points with e, all points of an n e lie in segments of an which follow some leaf of
2F both forwards and backwards through N pairs of pants, for n sufficiently large.
Thus, in the limit, the measure associated to knan is ̂ -invariant on the ^-invariant
partition of e given by the different isotopy paths that leaves of 2F can take through
N pairs of pants, for all N. This partition is generating, since & is minimal, and
the endpoints of the intervals of the partition are precisely the hitting points of
singular prongs. So the only isotopy paths through N pairs of pants which occur
for SF, occur for &', and / iy is ^-invariant.

We now show that 3F, 3F' are isotopic, assuming as we may do that they are both
transverse to e and have the same type of singularities in each pair of pants (because
they have the same isotopy paths). Let $ be defined as mapping hitting points of
singular leaves of ^ on e to the corresponding ones for 3F'. <t> is well-defined and
order-preserving, since (*&• is ^-invariant. Hitting points for $F are dense by
minimality, and also for SF', since otherwise ^ y would have an atomic part. So <t>
extends uniquely to e and is a homeomorphism, since its inverse can be defined
by the same argument. <& extends to a homeomorphism of the whole surface
mapping leaves of !F to leaves of 2F'. (The only obstruction would be if &, &' had
different integral twists round some e, - but this cannot happen, since isotopy paths
through two pairs of pants occurring for SF have also to occur for &'.) Thus 3F, 3F'
are isotopic. •

We end this section with the following well-known fact about minimal foliations,
which we shall need in § 3.

(1.13) LEMMA [1, § 2]. Let S> be a minimal foliation. Assume, without loss of
generality, that ^ defines a flow (otherwise take the oriented double cover). Let I be
a fixed transversal and T& the first return map to I. Then T& is a (finite) interval
exchange, and for any open U <=I there exists N such that U u • • • u T%U = I.

In fact, this is an easy consequence of Poincare recurrence and the fact that the
number of singularities is finite.

2. Multiple loops and the associated elements of Diff0
We continue with the notations established in § 1.

(2.1) Definitions. As usual, a multiple loop a on a surface is a finite set of non-
intersecting non-self-intersecting loops. A multiple loop a is maximal if no loop
non-isotopic to all components of a has zero intersection with a. On Mg,b this
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means a has components in 3g — 3 + b distinct isotopy classes. A multiple loop is
prime if it has at most one component in any isotopy class.

The aim of this section is to prove, first:

(2.2) PROPOSITION. Given Mgtb, there exist constant A, B, C such that the number
of prime maximal loops of length (1.6) >A", <An+1 with all components of length
>CAn, is >CA(6g~6+2b)n and <BA(6g-6+2h)n.

We want this in order to prove a result about Diff0 (M&b) (proposition (2.10)).
Note that the upper bound on cardinality in proposition (2.2) is trivial since it holds
for multiple loops - because under <t>a (1.1) multiple loops map to a set containing
(2N)3g-3+fcxZ38^3+') and contained in (N)3g-3+*xZ3g~3+*. We shall also need a
similar result to (2.2) for certain kinds of orientable loops (for the interval exchange
theorem) for which the proof is only a little different.

Suppose we are given a prime multiple loop e on Mg>0 cutting the surface into
holed spheres, together with an orientation on each component of e. Let if denote
a set of oriented foliations transverse to e, with one singularity in each holed sphere,
the orientation defined by leaves intersecting with e being constant, and the
configuration of singular prongs up to first intersections with e being constant on
if. Suppose if consists of all the foliations with these fixed configurations. For
instance, the configuration in one holed sphere might be fixed as shown in figure
4. if is then a subvariety of MfF(M&0) with constant dimension - because in each

Loops of e

FIGURE 4

holed sphere, the foliation is defined by the measure of pieces of boundary, and
to obtain a foliation on all Mg>0, we only need equalities between the two different
measures of each et, e = (eu ..., ep). Maximal loops in if are those to which no
new isotopy classes can be added to obtain another loop in if.

(2.3) PROPOSITION. Proposition (2.2) holds for prime maximal loops in if instead
ofM&(Mg,b), with 6g-6 + 2b replaced by s = dim if.

The idea of the proof of these two propositions is to modify arbitrary maximal
loops to obtain loops with the required properties. To start, we need:
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(2.4) LEMMA. Given Mgjb, there exists a constant D such that any hop a can be
completed to a maximal loop a' with \a'\ rsD\a\.

Proof. Fix a prime maximal loop e with aeXe,s (1-7). Mg,b-a has components
Si,... ,SN which are not merely cylinders homotopic to components of a, N<
2g-2 + b. e cuts each 5, into <D2|a| pieces. For instance, M2,o-{oti,a2} might
have one component as in figure 5.

e-segment

FIGURE 5

If we erase all those segments of e just bordering on rectangles, we arrive at a
finite set (depending only on S) of partial triangulations of 5,. For each S,, choose
a maximal loop set p, in S, with no component isotopic to a boundary component
(see figure 5, for example) and let a' be obtained from a by adjoining P i , . . . , pN.
There exists D3 such that p, passes through each region of the triangulation <£>3

times, hence crosses e<D2D3\a\ times.

|a'|s£>4/(«',e) (1.7)

and so

|a'|<£)|a|. D

Remark. Modifications of (2.4) needed towards (2.3) are trivial.

The following can be proved using the same method as (2.4).

(2.4') LEMMA. Let a = (itioti,..., nsas) be any multiple loop. There exists a simple
j8 such that /? crosses each a, at least once, but <£> times, and |/?|^D|a|, for D
independent of a.
Proof. As in (2.4), obtain a partial triangulation of Mg_b - a., hence a partial triangula-
tion of Mg_b by adding the a-decomposition. There is only a finite set of possible
triangulations (up to homeomorphism) so a loop /3 can be drawn crossing the edges
of the triangulation <£>i times (and each a, at least once), which gives |/8|^Z)|a|
for suitable D. (A slight modification of (1.7) is used - clearly the twist of /3 around
e cannot be much greater than that for a.) •
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(2.5) In the proofs of (2.2), (2.3), we shall use the following principle without
further explanation. Let SPn be a set of loops a with

A"< |a |<A" + 1

and

#(^)>CiAn,

some d < 1, A > 1, Let F be a map of U* ^ m t o multiple loops with

C2|a|<|F(a)|<C3|a| (C2<1,C3>1)

and F- 1F(a) having <C4 elements for all a. Then for Ax = A2(C3/C2f, the number
of elements a of Im (F), with A" < |a| < A"+1 is >(1/C4)A?, because we can find,
for any n, an r such that

[r • log A -log (C3/C2), (r+1) log A+log (C3/C2)]c [„ . log Ax, (n +1) log A J .

Proo/ 0/ (2.2). By (2.5), it suffices to construct a map F from the set of multiple
loops into the set of prime maximal loops

a = (au . . . ,a3g-3+b)

with |a,| > C|a| for all i, such that

and F-1F(P) having <H elements for all P, suitable H, K, L. In fact, we shall
construct F as a composition F4 ° F3 ° F2 ° Fi, where

and FrJF(P) has <//, elements, for all p.
Fi maps multiple loops to maximal loops. Fi exists with the required properties

by (2.4).
F 2 maps a = (niCtj) to

where [x] denotes the integral part of x. So

|n;a,|>M|F2(a)|,

some constant M.
F3 maps Im (F2) into the simple loops as follows. For a € Im (F2), let j8M be as /3

in (2.4'). Note that we can, and do, choose /?„ so that \fia\ is minimal among the
lengths of all loops obtained by twisting /3a around the a,-, if a = (n,a,). (All such
loops cross all a, at most D times, D as in (2.4').) Let F3(a) be obtained by twisting
Pa («, +D + 3) times round each a,. (It does not matter in which direction we twist.)
The necessary upper bound on F3(a) is clear. The lower bound holds because no
twist round an a, can be unwound more than once at each end, so F3(ot) has at
least the order of magnitude of all the |n,a,|, which are all of the order of |a|. Also,
any loop not intersecting F3(a) must cross at least one a,- (because a is maximal),
hence must wind round a, at least n, + l times, hence have order of magnitude
>|ot|. If we take F4(F3(a)) to be a maximal loop obtained by (2.4), F»F3(a) will
have all components of the same magnitudes, as required. It remains to show that
F3 is boundedly finite-ro-one.
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The idea is that nh a, can be reconstructed from F3(a). Each a, has the property
that there are between R{nt+D + 2) and R(ni+D + 4) adjacent strands of F3(a)
(some R^D) such that the loop traced by F3(a) between one strand and another
one R strands away is a, (figure 6). No other loop, apart from the a,, has this
property with respect to F3(a), with n, replaced by any number >1. For if there
were such a loop, we could reverse the twists round the a, and obtain a loop with
this property with respect to /?„ instead of F3(a). But no loop can be traced D +1
times by /8a - because /?„ crosses no a, more than D times. •

2K + 1 2R + 2

FIGURE 6

For the proof of (2.3) we need (2.6), (2.7), and (2.8), of which we omit the complete
proofs.
(2.6) Note that for if s M^(Mgfi) as described, an a e if has no component separat-
ing Mgi0 - for a component a, of a in if is oriented, and as shown in figure 7,
restricted to a holed sphere in Mg,0 - e, it is possible to travel from a 'left' side of
a segment of a, to a 'right' side without crossing a - which means that the 'left'
side surface is the same as the 'right' side surface, and a, does not separate.

Loops of e

FIGURE 7

Loops of e

(2.7) LEMMA. A loop a in if has a maximal number of distinct isotopy components
if and only if all components ofMg,0-a. are holed spheres containing one singularity
each.
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Idea of proof . A component of Mg>0 — a is cut by e into star shapes, each containing
one singularity, and with an even number of (square-ended) points (figure 8). The
orientation on e, and on Mg-0, assigns a direction to each prong in each star, in

Next attached star

FIGURE 8

which a loop of ££ lying in Mg>0-a must travel. The directions alternate round
singularities. When a loop arrives at a singularity, it can only pass into the adjacent
prongs. It suffices to show that if there is more than one singularity or if there is
homology, then there is a loop of i£ in Afg,0 —a non-isotopic to a component of a.
In the case of 2 singularities we proceed as shown in figure 9.

2 n - l

FIGURE 9

Moving straight to tracing boundary component 2r, if in tracing round component
2s, s<r, we arrive at the corner of 2r - 1 . We simply claim that, with such a rule,
the loop is never forced to intersect itself. The same lemma occurs, with different
language, in [5]. •

(2.8) LEMMA. If a component ofMg-0 - a ( a e i f ) is a holed sphere with one singularity,
a non-self-intersecting path can be drawn from one point in the component to any
other, without crossing the singularity, and respecting the orientation.

Idea of proof. The configuration of prongs is something like figure 10. In words, if
prongs x and y are identified, and z and w are identified, then z, w lie on 'the
same' side of x, y (because attaching handles cannot decrease genus).
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FIGURE 10

Suppose starting at point a, you want to arrive at b. Each time you arrive at the
singularity, you have a choice of two prongs. Choose the one 'closest' to b.
Eventually, you arrive at b. •

Proof of (2.3). The idea is the same as for (2.2). Fu F2 are constructed as before.
But F4°F3 is replaced by a composition F4iS =f3>! ° • • • »F4J °F3|1. Im (F4jI)
has the property that a e Im (F4j() is maximal, and has at least t isotopy components
occurring singly and of the same order of magnitude as a.

Assume F-j,,-, F4ii have been constructed, / ̂  t. Define

F3, ,+i(a) = F 4 , t + i (a) = (au . . . , a,),

if a = («,«,) and all the a, have the same order of magnitude as a. If not, assume
without loss of generality |«i|« |a| and let (M g , 0 -a)u{ai , . . . , ar} have one com-
ponent a holed torus, with ai a, in the interior of the holed torus. a 2 , . . . , ar

can be found because all the components of Mg,o—a are holed spheres (2.7) and
ai does not separate Mg>0 (2.6). Then ya is obtained by 'skewing' (n, +4)a, as shown
in figure 11, where a = (n,a,).

Figure 11 gives an example when r = 2. Identification of the circles marked-^
gives the one-holed torus. In general, suppose a,_i, a,+i are the components adjacent
to a,. Break across a, at some point, and skew as shown in figure 12. By (2.8), you

FIGURE 11
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FIGURE 12

can continue the loose ends to meet a,-_j, a,+i, forming a simple loop of length
proportional to that of a. Then define

F3,,+i (a) = {nr+iar+i,..., «sas}u ya.

F3,,+i is boundedly finite-to-one, and F3,,+i (a) has the same order of magnitude
as a, in the same way as F 3 did for (2.2). F4 > ( + 1 (a) is obtained by completing
F3>(+i (a) to a maximal loop, in the same way as F4 . •

We now use proportions (2.2), (2.3), to construct certain subsets of Diff0 (Mg_b).

(2.9) PROPOSITION. / / a = ( a i , . . . , a3g_3+f,) is a prime maximal loop with |a , | / |a | >
B, and <f>e = a, for some <$> e Diffo (Mgj), then there exist e, L, M independent of a,
and a Dehn twist ip round e, such that

P(<t> o t/f) < L | a | on

and

Proof. Write e = ( e i , . . . , e3g_3+i). Fix another prime multiple loop e' =
(e3g-2+b, • • • ,e6g-6+2b) with none of the same isotopy components - which
necessarily means that e, e' cut the surface into cells. For the first part, by (1.8),
we only have to find a Dehn twist ip round e for which

to bound P(4> ° </0 on yMSF. a cuts Mg-b into 3-holed spheres. We merely have
to choose i/f so that the arcs of <j> ° ip2 e' in each holed sphere of Mg>fc - a do not
wind round the boundary more than once (figure 13). In this way, \<f> ° ipe'\ will
be bounded by Li|a| , for some universal L\.

Arc of <t> ° </*'

F I G U R E 13
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For the second part, note that, for any e >0, 2?,(e, e) will be contained in

{9: d{&, (\kek)) < v for some (\kek) e y>M&\

for some 17 >0, for d a fixed metric on yMSF. By (1.6) \y ° if/?F\ is boundedly
proportional toproportional to

6g-6+26

I
-6+26 6g-6+2(>
I i(<(>°il,&,ei)= X 1(^ , (^0^

y=i , = 1

So we may choose e, using (1.11), so that for ?E5,(e, e),

inf | | * + * l
)

for a suitable constant ax.
The bound on |a,| = \4> ° tye\ gives, for f sB , (e , e),

6g-6+2fc

where ai can be taken small compared with M2, for suitable s. By (1.8) we can bound

8 £ + 1(0 ° ^r^yl by M3 sup |(0

hence by M4|a|. Thus for suitable e we obtain

| 0 ° < ^ | > M | a | on B,{e,e), someM D

We are now ready to prove:

(2.10) PROPOSITION. Let e be any fixed prime maximal loop such that, for constants
A, B, there exist >BA(6g~6+2b)n loops 0e of length >A", <An+\ with all components
(pet of 4>e of length >BA" for nsF^N, F infinite, (e exists by (2.2), since
up to homeomorphism there are only finitely many ways a prime maximal loop
can decompose Mgyb into pairs of pants - all homeomorphisms of a pair of pants are
isotopic to the identity.) Then, for any TJ > 0, there exists a neighbourhood £/„ of
{(A,e,): all A, > 77} and disjoint sets $„ s Diff0 (Mg,b) with:

(i) sup&£yM!?P<t>(&) boundedly proportional to A" (<t> 6 9Hn);
(ii) P<f> boundedly proportional to A" on Uv u { e i , . . . , e3g-3+b};

(iii) {4>Un: <f>e@n} disjoint;
(iv) #(®n)>BA(6g-6+2b)";
(v) (i)-(iv) imply measure (LUsi n 4>UV) == C > 0, some C, for all n (1.9).

Proof. This comes directly from (2.2), (2.9), except for disjointness which is obtained
by suitable choice of [/„. But, clearly, we may assume the <£e (cf>e@)n) are all
distinct. Take

[/„ = {&: d(&, (A,e,)) < S, some (A,) with all A, > 77},

for some 5 yet to be determined. Suppose (j/tWe <£[/„, <{>, ip e 98n, &e [/„. Then

where ^ e Uv and /(«, e)<d5(1.10). Hence
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So i{9, ^"V)=£ C3S, sincePty(&)^ C4P<f>(e)=O(An). By (1.10), if d{3F, (\iei))<8,

Thus

If <• is as in (2.9), and C5S/ri<e, then

and

so

Thus

that is,

If CeXsS/T) < 1, this implies i(< ê, </>e) = 0, so
i/<e = <£e, and <fr — ft. d

We shall need an analogue of (2.10) for the interval exchange result. First a
definition:

(2.11) Definition. Let if be a set of orientable foliations transverse to a prime
multiple loop e as described just after (2.2). Let a s if be a maximal loop as an
element of if, that is, no isotopy components can be added to give another loop
in if. Let iftt denote the set of orientable foliations transverse to a, and having the
same configuration as e in each holed sphere of Mg>0 - a and as the 3> in if near
e (we say this simply because, e being a loop, there are relations between the
singularities of the associated foliation). Clearly,

if a, (/KX are both loops with all components transverse to e. So there are finitely

many possibilities for £m up to conjugation. Also,

so since clearly dim iftt > dim if, if and ifa have the same dimension.

(2.12) PROPOSITION. Let ifbe a set of orientable foliations associated to e, as above.
Then there exist e', if' with dim if = dim if', disjoint subsets 0Hn £ Diff0 (Mgy0),
constants A, B, and (for r)>0)a neighbourhood Un of {(A,<?,): A, > 77} in
such that (i)-(v) of (2.10) hold, with (iv) replaced by:

(iv) #{®n)>BAidimX)n-and
(vi) 4>Uv<=<e'(<i>e®n).

Proof. Using (2.3), let <£„ denote a set of prime maximal loops in if with
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with lengths in bounded proportion and

#(«„) >BAndim£e.

As remarked above, there are only finitely many possibilities for ifa up to conjuga-
tion, so we may assume S£a = t/v^f, some fixed f. We may assume all a € "#„ are in
Xs,e (1.7) for some 8>0 independent of n (otherwise we would be unable to find
>BA" dimX of them). In this case there is a fixed open

which is contained in Z£a, « e lMn - because an a € %, is boundedly transverse to
an 2F e U, and the configuration of first hitting points of singular prongs of & on
a e #„ is constant for &eU. Since Z£i is invariant under Dehn twists round f, we
may make

SUp l^a^i

boundedly proportional to |a|, by an analogous argument to that in (2.9). Then by
(1.8),

SUP llAa^l

is also boundedly proportional to |a|. The lower bound on iPiAaN on U is just as
in (2.9), since

ibit'1 e, f) = i(e, tlfj) = i(e, a) = O(|a|),

so

l^ehOflal).

Takee' = f,if'= if,.
Ucga = <j,agt so ^ [ /c i f , .

We take ffln ={i/'a1: a e ^ n } . We may assume the i/f^e are all distinct, because if
ij/al e = <Ao2 e, then ^tt2 ° 4>a\ is a Dehn twist round e. There are only finitely many
such Dehn twists T with

sup {| T9\: T9/\ T&\ e U} < M

(for any constant M). Since

and l^ail, liAa'l are boundedly proportional on U, the map ot>-»</'̂ 1 is at most
boundedly finite-to-one. The argument making {ij/^1 Un:as 58,,} disjoint for suitable
Uv is then exactly as in (2.10). •

3. Proofs of theorems 1, 2 and 3
We claim that, in order to prove theorem 1, it suffices to prove the following:

(3.1) PROPOSITION. There exists open U<^$>M&, and subsets 3Bn{n<=F) of
Diffo(Mg>b) with F^N infinite, {cj>U: (/>£$}„} all disjoint, d^^X/dX proportional on
U to i4-»<6*-6+26> (some A), (U.*eg8n 4>U) > C > 0 and such that the following holds.
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For each S > 0 there exists N = N(S) such that, for n^N, there exists @}n,s with

U

and there exists, for each 4>U (</> E S8n>5) a d-ball of radius 8 such that, if U4, denotes
the intersection of <f>U with this d-ball, then A (£/,*,)/A(<j>U) > 1 - 5 .

Note. U, F, and the S8n will be subsets of the U, F, $ftn constructed in proposition
(2.10). (17 can be taken just so that Un contains the projection of e on yMSF, for
the measured foliations result. It is for the interval exchange result that we need
to be able to vary TJ.) F, U, 36n will be made to have properties additional to those
listed in (2.10). d denotes one of the natural Lipschitz-equivalent metrics on 8PM3F.
It will be convenient to choose d so that rf-balls have piecewise smooth boundary
(d given piecewise by Euclidean norm metrics, for example). It will also be
convenient to choose U with piecewise smooth boundary.

Proof of sufficiency for theorem 1. Choose {en} with en-*0. Inductively construct
Sn <§em rn>N(Sn), rn e 9, and 3S'rn s ®,n,Sn with

U
3)rn-9

and such that, for any U^, U+, <j> e %Tn, $ e %Tm, m<n, either

£/•££/* or U+nUt = 0.

This is possible. For, inductively, we can choose Sn+i so that the 35n+i-neighbour-
hood of

U {Boundary U^.iffe U 38'A = X

has measure <en+i/D. We can then cover Xn by 8n+i -balls so that the sum of the
measures of 3Sn+i-balls with the same centres is <\en+i. (D depends only on the
choice of metric.) Then take 38',n c 3§rn<Sn to be those <f> for which U^, does not lie
in one of the 35n+i-balls. Let

00 00

E=D u u £/•.
N=l n=N(t>e3B'rn

neF

Then A ( J B ) 2 : C ' > 0 . TO prove theorem 1, it suffices to show that the orbit of E
under Diff0 (Mgtt,) has full measure, and that Diffo (Afg>(,) acts ergodically on this
orbit - the same idea as in [6]. But for any positive measure E\ s E, we can find
arbitrarily close coverings by disjoint U&, <f>&^Jn»N^'rn (because any covering has
a refinement of disjoint U^). So for any e >0, and any N, we can find U4, with

\(E1nUd>)/\(U<t>)>l-e,

Then

? 1 (Ei)n U)/\(U)>l-Be,

for some constant B, by the boundedness of the variation of P<f> on U, and closeness
in measure of U4 to <££/. So U is almost all contained in the orbit of E\. By
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minimality of the action of Diff0 (Mg,b) on 0>M2F [2], 9>M2F is almost all contained,
which is what we need. D

Theorem 2 will follow from the method of proof of (3.1). In fact, we shall prove
that all & in

n u u *u
N=I « > N <t>&mn

are uniquely ergodic - and then use of theorem 1 to deduce that the set of uniquely
ergodic foliations has full measure.

(3.2) The metric on SPMS*. One of the main ingredients in the proof of (3.1) is to
reinterpret closeness of foliations in the ^-metric, for d one of the natural Lipschitz-
equivalent metrics. Suppose 3F, 3F' are transverse to a fixed prime maximal loop e.
(3.2.1), (3.2.2) give sufficient conditions for &, 2F' to be close in the ^-metric.

(3.2.1). For each et, the set of different homotopy classes occurring for arcs of
^-leaves with endpoints on e, and crossing just e, in between the endpoints, is the
same as the set for 9'. For example, for the surface M2,o, and e as shown, the set
of homotopy classes for e2 might be as shown in figure 14. We allow free homotopy

The four arcs

FIGURE 14

of the endpoints of the arcs along e. Note that the arcs in the set are always
non-intersecting, up to homotopy. Now, the different homotopy classes determine
a partition of eit for each /. The partition intervals are intervals between first hitting
points on e, of singular prongs of &. Let fu ..., fk be an enumeration of the
characteristic functions of these partition intervals, for all et. Then (i&(fi),..., n&{fk)
are determined by the m,(^), Pj(&) of (1.1). Conversely, the set of homotopy classes
plus the (JL&ifi) determine the m,(^), Pj(?F).
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The second condition for 3F, SF' to be close is:
(3.2.2) Assuming (3.2.1) holds, \(i.&(fi) -/u.sK/*)l is small for each i, with the notation
above.

(3.3) The restrictions of F, %„. In addition to the restrictions of (2.10) on U open
in &M&, mn cDiffo (Mg,b) {neF),F^N infinite, we can assume:
(3.3.1) 4>e (</> e 9Bn) all lie in XB,V, for some fixed v > 0 (Xe,v as in (1.7)).

This is because, if v is sufficiently small,

#{a: a is a multiple loop, a£Xe,v, A" < |a| < A" + 1 }<eA" ,

given e (because, associating a to the (m,, p,-) coordinates of (1.1) taken with respect
to the loop e, a£Xe>(, means at least one mt/pi is small). But then the sums of
measures of 4>U, 4>e & X*,v will be much less than the C for which Y.<t>emn A (<f>U) > C.
Reducing C slightly, and reducing the size of the 38n slightly, we have the result.
(3.3.2) Regarding </>e as a measured foliation, first hitting points of singular prongs
of </>e on e, are all distinct, for each /, and in each pair of pants defined by e,
singularities are 3-pronged, for all <f> e U* @ln-

This can be done because the set of foliations for which singular prongs coincide
on d, as shown in figure 15, or for which singularities have more than three prongs,
is of proper codimension in the set of measured foliations.

FIGURE 15

(3.3.3) Regarding </>e as a measured foliation, for each eh the set of homotopy arcs
associated to e, and <f>e, as in (3.2.1), is the same for all </> e Un 8&n-

This can be done because, once we know all </»e are in Xe<v by (3.3.1), there is
only a finite number of possible sets of homotopy arcs. Reduce F, and the constant
C if necessary.

Note. If / i , . . . ,fk is an enumeration of the characteristic functions described in
(3.2.1) for one and hence (by (3.3.3)) for all </>e, then fi^e,(fi) are defined as well
as M*e(/i) - although some of the /^.( /y) may be 0.
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We shall use the following form of the:

(3.4) Birkhoff ergodic theorem. Let {X, T, (JL) be a probability measure space, T
measure-preserving invertible, f e V ° { n ) . Let

Sn,m(f) = -^— "l f°T', n>m.
n —m i=m

Then for any a > 0,

> W = f [ sup Sn,m{f)~ inf Sn,m(f)]dix^0 as N-><x>.

n-mzan n-mman

Also, fi(f) is sandwiched between inf and sup.

Proof.

n-m n—m
So

A N , o s - I supS n , 0 ( / ) - \niNSn,0{f)) dn

+ - [ ( sup - 5 m , 0 ( / ) - inf -Sm,0{f)) d/x.

Both terms tend to 0. The second term tends to 0 because, when m is small, m/n
is small, and

When m is larger, the usual form of the Birkhoff theorem makes the term tend to
0. •
We now claim that (3.1) (hence theorem 1) and theorem 2 are implied by:

(3.5) PROPOSITION. For a suitable choice of U, all 2F in <j>U are 'close' enough to
<f>e for (3.2.1) to be satisfied with &' = <£e. That is, all & in 4>U give the same sets
of homotopy arcs as <j>e {hence the same as all if/e, ip e U ^ « by (3.3.3)). Further, let
/ i , . . . ,fkbe an enumeration of the characteristic functions as in {3.2A).Let e x { - l , 1}
denote the inverse image of e in the orientable cover of 2F. {If 2F is already orientable,
take two copies.) Let T& denote the first return map of the cover of 3^ to e x {—1,1}.
Let

n — m i

Then, for constants Du D2,

inf Sn,m

for all k, j , where <£eeS8p. Here, we normalize the measure fi^ei to let e x { - l , 1}
have measure 1.

https://doi.org/10.1017/S0143385700001383 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001383


Measured foliations on surfaces 485

Proof of sufficiency of (3.5) for (3.1). Let /J.& be the transverse measure of £F, which
can be regarded as a 7>-invariant measure on e x { - l , 1}. Write A N ( f , k) for the
quantity AN_a occurring in (3.4), with /J. = ii&, f = fk and a =Di. Then, by (3.4),

AN(&,k) + 0 asiV->oo

for k, and all ^ e U n e F L J ^ e ^ <$>U. AN(&,k) is a measurable function of SF. So,
given S, we can choose N = N(S) so that

for all k, and all & e YN, where

A ( U U <fiU\YN)<82.

Then put

iorDlA
p>N. Then

A( U
V<»e9lp-38P.S

By the last part of (3.4), and (3.5), we have

for all k, j , and for all &€<frUnYN,(f>e @p, D^A">AT. This gives (3.1) due to the
interpretation of the metric in (3.2). •

Proof of sufficiency of (3.5) for theorem 2. Take any & in P)^=i {Jn>N,neF<l>U. Let
Vf be any transverse ^-invariant measure, regarded as a measure on ex{—1,1}
invariant under 7>. If AN{SF, k) as above is defined with V& in place of fx,&, we
again have

lim AN(&,k) = 0 for all k.
N-»co

Using the last part of (3.4) and (3.5), as in the proof of sufficiency for (3.1), we
deduce:

lim kaf(A)-M*e/(/fc)l=:0 for ally, k.
t 3 }

Thus (§ 1, before (1.12)) vF is unique, so & is uniquely ergodic. D

(3.5) follows from:

(3.6) PROPOSITION. We can choose U so that for a constant L, for all p, for each
S'G. 4>U (cf> e 99p), each segment of a leaf of & which passes through ^LA" of the
pairs of pants defined by e contains, for each j , a subsegment with both ends lying
on an e,, such that the subsegment gives a loop isotopic to twice <f>ej when joined along
a segment of e{ which twists round et less than once.
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Proof of (3.5) from (3.6). (3.6) shows that the set of homotopy arcs associated to
<fie, regarding <f>e as a measured foliation (3.2.1), is contained in the set associated
to &, for each SF in 4>U. But (3.3.2) says that the set of arcs for cf>e cannot be
enlarged - so tFecfrU and cfe are close in the sense of (3.2.1). (3.6) implies the
second part of (3.5) because </>e; passes through between K\AP and K2A

P pairs of
pants durings its circuit, by (3.3.1). So for each xsex{-l, 1}, there exist n, m,
0<m<n<LA", n-m>KxA

p, such that

Sn,m,&{fk)(x) = (J-dtejifk)-

(Of course, n, m vary with x.) •

For (3.6) we need:

(3.7) LEMMA. Under the assumption that all <fie lie in Xe,v (3.3.1), all <j>~le lie in
Xe,^, some v\ > 0.

Proof. Since </>eeXe,,,, and the \<f>ek\ are in bounded proportion (2.10), there exists
Hi such that

Since

\4>e\ ^ Hii(4>ek, e) for all k, <p.

|</.e|>//2 sup \<f>9f\ by (2.10) and (1.8),

D

Proof of (3.6). Recall that, so far, the only restriction on U is that it be contained
in a sufficiently small neighbourhood of {(A,e,): all A, 2:17}, for any fixed 17 > 0 . By
(3.7), the integral twist of <f>~1e round each et ((f>€$ln) is <G, some constant G.
Restrict the open set U to a set of foliations for which all leaves crossing et twist
round e, > G + 3 times for all / - take U as a sufficiently small neighbourhood of
e, for example. Then, for all leaves crossing eh we can find a segment of the leaf
for which both endpoints lie on a segment of <f>~1ei, for some /, and such that the

loop formed by the union of the leaf-segment and the </>
twice ej (figure 16).

- 1
e,-segment is isotopic to

Leaf of foliation

FIGURE 16
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Restrict U further to a neighbourhood of a minimal foliation 3F0, where all leaves
of 3F0 cross all et before passing through M of the pairs of pants defined by e, for
some M. This is possible by (1.13), and we can clearly make the same property
hold for all ^ e U, by the choice of U. So, by (3.7), all leaves cross eh hence twist
round e, >G + 3 times, before crossing <f>~1 e L\<fie\ times, for some constant L.
Acting by <f>, we see that this implies that all leaves of SFeQU wind twice around
faj before crossing e L\4>e\ times, as required. D

Modifications for theorem 3
As in Masur's paper, the problem of showing that almost all interval exchanges
are uniquely ergodic is equivalent to another problem about orientable foliations.
In fact, we need:

(3.8) THEOREM. Let 56 be a set of orientable foliations with configuration fixed with
respect to a prime loop e, as described at the beginning of § 2. Then almost all
foliations in if are uniquely ergodic.

We should explain why we need this. We first claim that a minimal oriented foliation
with no leaves connecting different singularities lies in an if. This is exactly the
same argument as in [4] theorem II. 1 (but simpler-for minimal foliations we do
not need lemma II. 1). Conversely, non-minimal foliations in if form a countable
union of lower dimensional subvarieties. For, by the same argument as in § 2 (2.6),
no foliation in if contains a separating cycle of leaves - but a non-separating cycle
can always be lost inside if, by a small Dehn twist round a loop not intersecting
singularities. (We only give this sketch, as we do not really need to know the fact
for the proof of theorem 3.)

We can now claim that a suspension of an interval exchange fKa (with the notation
of the introduction) lies in an if, since a residual full measure set of /XiO. consists
of minimal interval exchanges with the orbits of discontinuities infinite and distinct
[3]. The suspension (for definition see [1] or [4], for example) of such an fKa. is
thus minimal with no liaisons between singularities - and at such an fK<T, the map
from the interval exchanges to their suspensions in an if is clearly open - which is
why it suffices to prove (3.8).

Proof of (3.8). Let e be the prime multiple loop occurring in the definition of if
given in § 2. Since if is invariant under Dehn twists round e, it suffices to prove
unique ergodicity almost everywhere on a neighbourhood U&0 of every minimal
foliation ^ 0 in if sufficiently close to {(A,-e,-) € SfM&: A, > 0}. This is done by applying
(3.1) to U*o, and {@n} of (2.11) in place of Uu and {$„} of (2.10). Note that the
Radon-Nikodym derivative of (j>:UFo-><f>Upo is boundedly proportional to
\/\P<t>9'\s, s= dim if. All the <j>U&0 lie in a fixed s-dimensional space if' (as in
(2.11)). Apart from this, (3.1) needs no modification. •
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