
Canad. Math. Bull. Vol. 66 (2), 2023, pp. 553–567
http://dx.doi.org/10.4153/S0008439522000522
© The Author(s), 2022. Published by Cambridge University Press on behalf of The
Canadian Mathematical Society

Group actions on local moduli space of
holomorphic vector bundles

An-Khuong Doan

Abstract. We prove that actions of complex reductive Lie groups on a holomorphic vector bundle
over a complex compact manifold are locally extendable to its local moduli space.

1 Introduction

Since the foundational work of Kodaira–Spencer [11] and Kuranishi [13] on the
existence of local moduli space parameterizing all the nearby structures of complex
compact manifolds with respect to a given one, many similar existence theorems of
such a kind have been proved for various other geometric objects among which we can
mention algebraic varieties [19], complex compact spaces [8], isolated singularities
[9], holomorphic vector bundles [16], and so forth. This space and the associated
family are usually known under the names Kuranishi space and Kuranishi family,
respectively, or sometimes semi-universal deformation for the latter. A natural ques-
tion to pose is whether the automorphism group of the object under deformation
could be lifted to an action on the Kuranishi space, which is compatible with the
associated family. This is indeed the case when the associated family is universal.
However, if the object in question has nontrivial automorphisms, which often happens
in practice, then the family cannot be universal in general.

There are several attempts to answer this question, among which the work of Rim
[18] is outstanding. Namely, he gave an affirmative answer for a large class of local
moduli problems (or equivalently for a large class of functors of Artinian rings in
Schlessinger’s language). A vivid corollary of this beautiful work is the existence of
equivariant structure on semi-universal deformation of projective schemes equipped
with linearly reductive actions, unique up to noncanonical equivariant isomorphism.
This is even more surprising that a counterexample constructed in [4] or [5] confirms
the formal un-extendability for the nonreductive case in general. This is the reason
why we shall focus only on reductive group actions.

The main disadvantage of Rim’s method is that his constructions are merely formal
and that it only works well in the algebraic world but not in the analytic world in
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which we have to deal with deformations problems associated with analytic objects
where the convergence is naturally needed. This is the principal difference between
the two worlds. Therefore, the group extension problem seems even harder on the
analytic side. In some specific situations, we can expect to prove the convergence.
We can mention the case where the object under deformation is a complex compact
manifold equipped with actions of a reductive complex Lie group, of which the main
ingredient of the proof is a combination of an equivariant version of Kuranishi’s
classical construction of local moduli spaces of complex compact manifolds and
representations of reductive complex Lie group (cf. [7]). Inspired by this result, we
continue to consider the case where the analytic object under deformation is a holo-
morphic vector bundle on which a reductive complex Lie group acts holomorphically.
It should be noted as well that our main result in this paper is the existence of group
operations on local moduli space for reductive subgroups of the automorphism group
of the considered bundle without any further assumption on the bundle (cf. Theorem
4.1 and Corollary 4.1), whereas Buchdahl and Schumacher in [1] proved that the
whole automorphism group can be lifted to a compatible group action on its local
moduli space provided that the Kählerianness on the given complex manifold and the
poly-stability assumption on the holomorphic vector bundle under consideration are
added (see [1, Theorem 5]). This suggests once again that the group extension problem
is not feasible in general unless some additional hypothesis is imposed on either the
group or on the considered geometric structure. It would be of great interest if one
could find a counterexample in either case.

Let us now outline the organization of this article. First, we give a general descrip-
tion of holomorphic vector bundles and their deformations in Sections 2 and 3,
respectively. Next, we prove the existence of reductive group actions on Kuranishi
spaces of vector bundle in Section 4. The main techniques are essentially inspired
from those in [7]. In Section 5, we compute the differential graded Lie algebra (dgLa)
associated with the deformation problem of holomorphic vector bundles, from which
a formal version of reductive group actions on local moduli space of holomorphic
vector bundles, obtained in Section 4, follows easily. At last, in Section 6, we introduce
a general philosophy hidden behind our work.

2 Holomorphic vector bundles

Let E be a differentiable vector bundle of rank r over a compact complex manifold X.
Let Ap,q(E) be the space of (p, q)-forms with values in E.

Definition 2.1 A semiconnection on E is a C-linear map D ∶ A0,0(E) → A0,1(E)
satisfying the Leibnitz rule, i.e.,

D( f s) = (∂ f )s + f ⋅ Ds

for f ∈ C∞(X) and s ∈ A0,0(E).

It is evident that each semiconnection D can be extended to a first-order differ-
ential operator D ∶ Ap,q(E) → Ap,q+1(E). Moreover, if we let D(E) be the space of
semiconnections on E, then it is well known that for a fixed semiconnection D0, D
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Group actions on local moduli space of holomorphic vector bundles 555

can be identified with D0 + A0,1(End(E))where End(E) is the group of differentiable
endomorphisms of E (inducing the identity on the base manifold) and thus an affine
space.

Definition 2.2 A semiconnection D is called a holomorphic structure if

D ○ D = 0.

This condition is called the integrability condition.

Now, let H(E) be the subset of D(E), consisting of holomorphic semiconnections
D. Then H(E) is nothing but the set of holomorphic bundle structure on the
differentiable complex vector bundle E. If we denote the group of differentiable
automorphisms of E (inducing the identity on the base manifold X) by GL(E), then
End(E) be thought of as the Lie algebra of GL(E) and an action of GL(E) on D(E)
is given by

g .D = g−1 ○ D ○ g ,

where g ∈ Aut(E) and D ∈D(E).

Remark 2.1 If E is a holomorphic vector bundle whose holomorphic structure
is uniquely determined by a holomorphic connection D, then g .D = D for any
holomorphic automorphism of E.

Proposition 2.1 Let D be a holomorphic connection on E and α, α1, α2 ∈
A0,1(End(E)).
(i) D + α defines a structure of holomorphic vector bundle on E if and only if

PD(α) ∶= Dα + α ∧ α = 0,

where the wedge product α ∧ α is given by the usual wedge product in the form
part and the usual composition of endomorphisms in End(E).

(ii) Let g ∈ GL(E). Then g .(D + α2) = D + α1 if and only if

g ○ α1 − α2 ○ g − Dg = 0.

3 Deformation of holomorphic vector bundles

We first recall some basic definitions in deformation theory of holomorphic vector
bundles (cf. [16] for more details). Let B be the category of germs of pointed
complex spaces (B, 0) (a complex space with a reference point) whose associated
reduced complex space is a point and X a complex compact manifold. Let E be a
holomorphic vector bundle over X, whose associated holomorphic semiconnection
and underlying differentiable complex vector bundle will be denoted by DE and E,
respectively. We fix once for all a sufficiently large integer k. Consider the Hilbert space
A0,1(End(E))k (resp. A0,2(End(E))k−1) obtained by completing A0,1(End(E)))
(resp. A0,2(End(E)))) with respect to the Sobolev k-norm (resp. (k − 1)-norm).
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We have an induced analytic map coming from Proposition 2.1

PDE ∶ A0,1(End(E))k → A0,2(End(E))k−1

α ↦ DE .α + α ∧ α,

which then gives a germ of a Banach analytic space (P−1
DE
(0), 0).

Definition 3.1 (i) A local deformation of E over a germ of pointed complex spaces
(B, 0) is a pair (π, (B, 0)) where π is a holomorphic map π from (B, 0) to the
germ of Banach analytic spaces (P−1

DE
(0), 0) which is of class C∞ on X × D

where D is the ambient space of (B, 0).
(ii) Two local deformations (π, (B, 0)) and (σ , (B, 0)) of E are equivalent if there

exists an analytic map

ρ ∶ (B, 0) → (GL(E)k+1 , IdE)

which is of class C∞ such that

ρ(t) ○ π(t) − π(t) ○ ρ(t) − Dρ(t) = 0

in A0,1(End(E)).

Remark 3.1 In other words, if (π, (B, 0)) is a local deformation of E, then we
obtain a family of holomorphic vector bundles {Eπ(b)}b∈B varying holomorphically
in b. Here, Eπ(b) is the differentiable complex vector bundle E equipped with the
holomorphic structure DE + π(b). In addition, it defines a holomorphic vector
bundle EB → X × B such that the restriction on X × {0} is nothing but the initial
holomorphic vector bundle E. We call EB → X × B the associated bundle to the local
deformation (π, (B, 0)).

If (π, (B, 0)) is a local deformation of E and f ∶ (S , 0) → (B, 0) is an analytic map
of germs of complex spaces, then the pullback of (π, (B, 0)) by f is defined to be the
local deformation (π ○ f , (S , 0)), which we shall denote by f ∗(π, (B, 0)).

Definition 3.2 A local deformation (π, (B, 0)) of E is semi-universal if any other
local deformation (ρ, (S , 0)) of E is defined by the pullback of (π, (B, 0)) under some
holomorphic map from (T , 0) to (S , 0), whose differential at the reference point is
unique.

The following fundamental theorem is essentially due to Kuranishi [16, Theorem 1].

Theorem 3.1 Let E be a holomorphic vector bundle defined over a compact complex
manifold X. Then there exists a semi-universal local deformation of E, unique up to
noncanonical isomorphisms.

Next, let us take a moment to recall the definition of group actions on complex
spaces. For the sake of completeness, we recall first that a mapping α from a real
analytic (resp. complex) manifold W to a Fréchet space F over C is called real analytic
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(resp. holomorphic) if, for each point w0 ∈W , there exists an open coordinate neigh-
borhood Nw0 and a real analytic (resp. holomorphic) coordinate system t1 , . . . , tn in
N such that t i(w0) = 0 and for all w ∈ N , we have that

α(w) = ∑ a i1 , . . . , in t i1
1 (w) . . . t in

n (w),

where a i1 , . . . , in ∈ F and the convergence is absolute with respect to any continuous
seminorm on F. Furthermore, by a C p-map, we insinuate a p-times continuously
differentiable function. Let G be a real (resp. complex) Lie group, and let X be
a complex space. A G-action on X is given by a group homomorphism Φ ∶ G →
Aut(X), where Aut(X) is the group of biholomorphisms of X.

Definition 3.3 The G-action determined by Φ is said to be real analytic (resp.
holomorphic) if, for each open relatively compact U ⋐ X and for each open V ⊂ X,
the following conditions are satisfied:
(i) W ∶=WU ,V ∶= {g ∈ G ∣ g ⋅U ⊂ V} is open in G,
(ii) the map

∗ ∶W → O(U)
g ↦ f ○ g ∣U

is real analytic (resp. holomorphic) for all f ∈ O(V),
where U is the closure of U and O(P) is the set of holomorphic functions on P for
any open subset P of X (O(P) is equipped with the canonical Fréchet topology).

Finally, it is time for us to introduce G-equivariant deformations, which are of
central interest of the article. As before, let X be a complex compact manifold over
which a holomorphic vector bundle E is defined. Let G be a subgroup of the group of
holomorphic automorphisms of E.

Definition 3.4 A real analytic (resp. holomorphic) G-equivariant local deformation
of E is a usual local deformation of (π, (B, 0)) of E whose associated bundle EB can
be equipped with a real analytic (resp. holomorphic) G-action extending the given
(resp. holomorphic) G-action on E and a real analytic (resp. holomorphic) G-action
on B in a way that the projection EB → X × B is a G-equivariant map with respect
to these actions. We call these extended actions a real analytic (resp. holomorphic)
G-equivariant structure on EB → X × B.

Remark 3.2 We make the following convention. Whenever we have a G-action on
(B, 0), the G-action on X × B in Definition 3.4 is defined by

g(x , b) = (x , g .b)

for g ∈ G and (x , b) ∈ X × B. This is exactly the action with respect to which we
want the projection EB → X × B to be G-equivariant. Moreover, the restriction of the
G-action on EB on the EB ,0 is nothing but the initial G-action on E.
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As a matter of course, the main goal of this paper is to construct a real analytic (resp.
holomorphic) G-equivariant semi-universal local deformation of a complex vector
bundle with a real analytic (resp. holomorphic) G-action. Intuitively, the expected
extended G-action on the “Kuranishi space” permutes the nearby holomorphic struc-
tures and keeps the central one untouched.

Remark 3.3 For simplicity, by G-actions (resp. G-equivariant local deformations),
we really mean real analytic G-actions (resp. real analytic G-equivariant local defor-
mations).

4 Existence of group operations on local moduli spaces

In this section, we shall follow strictly the construction given in [16], in which the
G-action can be naturally integrated along the lines. As usual, let X be a compact
complex manifold over which a holomorphic vector bundle E is defined, and let G
be a subgroup of the group of holomorphic automorphisms of E. The case that G is
a compact Lie group shall be treated first. It should be noted that G will induce a
holomorphic G-action on the bundle End(E) given by

g .σ = g−1 ○ σ ○ g(4.1)

for g ∈ G and σ ∈ End(E). Consequently, we obtain natural G-action on A0,1(End(E)),
A0,2(End(E)), and then on H1(X , End(E)). The compactness of G permits us to
impose a G-invariant Hermitian metric on End(E), by the unitary trick. This metric
induces a G-invariant metric on A0,1(End(E))with respect to which a formal adjoint

D∗E ∶ Ap,q(End(E)) → Ap,q−1(End(E))
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of

DE ∶ Ap,q−1(End(E)) → Ap,q(End(E))
is provided. Since the G-action is holomorphic, then the connection DE is a G-
equivariant differential operator. The equivariance of D∗E follows from the one of DE
and from the G-invariance of the imposed metric. As a matter of fact, the Laplace–
Beltrami operator associated with End(E),

◻E ∶= D∗E DE + DE D∗E ,

is G-equivariant as well. Moreover, the principal part of ◻E coincides with that of
the usual Laplace–Beltrami operator. The latter is well known to be a strongly elliptic
self-adjoint operator of second order. Hence, so is ◻E . This is where we can make
use of the Hodge theory for the bundle End(E). Namely, if we denote the space of
harmonic (0, 1)-form with coefficients in End(E) by H0,1, then H0,1 can be naturally
identified with the first cohomology H1(X , End(E)) and the following orthogonal
decomposition is available:

A0,1(End(E)) =H0,1 ⊕◻E A0,1(End(E))
=H0,1 ⊕ DE A0,0(End(E)) ⊕ D∗E A0,2(End(E))

together with two linear operators:
(i) the Green operator: G ∶ A0,1(End(E)) → ◻E A0,1(End(E)),
(ii) the harmonic projection: PH0,1 ∶ A0,1(End(E)) →H0,1

such that

IdA0,1(End(E)) = PH0,1 + ◻EG.(4.2)

Lemma 4.1 The operators PH0,1 and G are G-equivariant.

Consider the map

PDE ∶ A0,1(End(E))k → A0,2(End(E))k−1

α ↦ DE .α + α ∧ α

defined the previous section.

Lemma 4.2 PDE is G-equivariant.

Proof Indeed, it suffices to prove that for g ∈ G and α ∈ A0,1(End(E)), we have

g .(α ∧ α) = g .α ∧ g .α.

However, this follows immediately from the fact that G acts trivially on the form part
and acts on the endomorphism part by the rule (4.1). ∎

Now, we are ready to state our main result.

Theorem 4.1 Let X be a compact complex manifold over which a holomorphic vector
bundle E is defined. Let G be a compact real Lie subgroup of the automorphism group
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of E. Then there exists a real analytic G-equivariant semi-universal local deformation
of E.

Proof We consider the following set:

Q ∶= {α ∈ A0,1(End(E))k ∣ ∥α∥k < ε, D∗E α = 0, D∗E ○PDE (α) = 0}.
Each α ∈ Q is a solution of the elliptic partial differential equation

◻E α + D∗E(α ∧ α) = 0.(4.3)

Thus, Q is actually a subset of A0,1(End(E)). We claim further that Q is a direct finite-
dimensional submanifold of an open neighborhood of 0 in A0,1(End(E))k . Indeed,
let us take into account the following auxiliary analytic function

γ ∶ A0,1(End(E))k →H0,1 ⊕ D∗E A0,1(End(E))k ⊕ D∗E A0,2(End(E))k−1

α ↦ (PH0,1(α), D∗E α, D∗E ○PDE (α)) .

The differential of γ at 0 is

dγ0 = (PH0,1 , D∗E , D∗E DE)
whose inverse can be explicitly given by

(dγ0)−1(α0 , α1 , α2) = α0 + GDE(α2) + G(α2),
so that γ is a local analytic isomorphism around 0 due to the inverse mapping theorem
for Banach manifolds. Therefore, locally,

Q = γ−1(H0,1 × 0 × 0),
where H0,1 is known to be a finite-dimensional vector space over C. This justifies the
claim for ε small enough. Now, on the one hand, note that because each component
of γ is G-equivariant, then so is γ. On the other hand, H0,1 × 0 × 0 is G-invariant.
Thus, after shrinking Q (if necessary), we obtain a G-action on Q. For the sake of
G-equivariance of PDE , the germ of Banach analytic spaces (P−1

DE
(0), 0) carries as

well a G-action. Let T = Q ∩P−1
DE
(0). Then the germ of complex space (T , 0) and the

inclusion

ω ∶ (T , 0) → (P−1
DE
(0), 0)(4.4)

will determine a semi-universal local deformation E→ X × (T , 0) of E. This can be
carried out in a similar way as in the rest of the proof of [16, Theorem 1]. What is new
here is the fact that the analytic map ω is further G-equivariant.

Now, we would like to equip E with a compatible G-action so that the local
deformation E→ X × (T , 0) becomes G-equivariant in the sense of Definition 3.4.
First, as a complex space, the bundle E is nothing but E × T equipped with the
complex structure induced by the holomorphic semiconnection ω. In addition, each
fiber Es is exactly E equipped with a structure ω(s) of holomorphic vector bundles
and in particular a structure Js of complex manifolds on the differentiable manifold
E. Thus, the G-equivariance of ω implies that

dg .Js = Jgs .dg ,(4.5)
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where g ∈ G and dg is the differential of g. At this point, it should be noted that g is a
biholomorphism with respect to the complex structure J0 of the initial holomorphic
bundle E and that elsewhere we think of g just as a diffeomorphism of E. These
discussions allow us to define the following G-action on E × T :

g ∶ E × T → E × T
(e , t) ↦ (ge , gt)

for each g ∈ G. We claim that the diffeomorphism g defined in this way is actually a
biholomorphism of E. It is the same as verifying that the differential of g at the point
(e , t)

dg(e ,t) ∶ TZar
(e ,t)E = Te E ⊕ TZar

t T → TZar
g .(e ,t)E = Tg .e E ⊕ TZar

g t T

is C-linear, where for each complex space S and for each point s ∈ S, TZar
s S denotes

the Zariski tangent space of S at s. On the one hand, dg(e ,t) = (dge , dgt) is diagonal.
On the other hand, the G acts on T by biholomorphisms. Therefore, it is reduced to
checking that

dge ∶ (Te E , Je ,t) → (Tge E , Jge , g t)

is C-linear. However, this follows immediately from (4.5), the fact that g is biholo-
morphic on the central fiber and [7, Lemma 3.1]. In brief, we have just defined a
compatible G-action on E by biholomorphisms, satisfying all the conditions given
in Definition 3.4. ∎

Remark 4.1 A local chart of Q is given by the harmonic projection

PH0,1 ∶ Q →H0,1

whose target can be identified withC
dimC H0,1

. This map turns out to be the restriction
of the usual Kuranishi map on Q

K ∶ Q ⊂ A0,1(End(E))k → A0,1(End(E))k

α ↦ α − 1
2

D∗EG[α, α],

by the definition of PDE and by the decomposition (4.2).

Corollary 4.1 Let X be a compact complex manifold over which a holomorphic vector
bundle E is defined. Let G be a complex reductive Lie subgroup of the automorphism
group of E. Then there exists a holomorphic G-equivariant semi-universal local defor-
mation of E where the extended holomorphic G-actions are local.

Proof Let K be the connected real maximal compact subgroup of G such that its
complexification is G. We repeat the proof of Theorem 4.1 to obtain a K-equivariant
analytic maps of germs of (Banach) analytic spaces

ω ∶ (T , 0) → (P−1
DE
(0), 0).
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By [7, Theorem 5.1], we can equip local G-actions on (T , 0) and on (P−1
DE
(0), 0)

(extending the initial K-actions), with respect to which the map ω is G-equivariant.
Finally, we can use the same argument as in the proof of Theorem 4.1 to construct
a holomorphic G-equivariant semi-universal local deformation E of E where the
extended holomorphic G-actions are local. ∎

Remark 4.2 The extended G-actions constructed in the proof of Theorem 4.1 are
global, whereas those in that of Corollary 4.1 are only local.

Corollary 4.1 tells us that if the automorphism group Aut(E) of a holomorphic
vector bundle E is reductive, then Aut(E) acts holomorphically on the base (T , 0)
of its semi-universal local deformation. A somehow natural question arising along
this story is to describe the local structure of the moduli space in terms of Kuranishi
spaces. More precisely, if we think of E as a point in the “moduli space” M(E)
of holomorphic complex bundle structures on E, it would be interesting to know
whether a neighborhood of E in M(E) can be modeled on the quotient T/Aut(E)
in some sense. We refer the curious reader to the papers [2, 3] of Catanese and [15] of
Meerssemann for an analog discussion where Teichmüller space and Kuranishi space
of complex structures on a given differentiable manifold are taken into account.

5 The associated differential graded Lie algebra

Over a field of characteristic zero, a well-known theorem of Lurie in [14] (obtained
independently by Pridham in [17]) claims that any reasonable moduli problem is
controlled by a dgLa. The philosophy hidden behind this theorem is often credited
to many big names in the domain: P. Deligne and V. Drinfeld first and foremost, then
M. Kontsevich, J. Stasheff, M. Schlessinger, S. Barannikov, V. Schechtman, V. Hinich,
and M. Manetti. In this approach, given an object X of which one wishes to study small
variations (complex compact manifolds, algebraic schemes, vector bundles, isolated
singularities, etc.), the philosophy suggests that there exists a dgLa gX governing
deformations of X in the sense that the deformation functor, which to each local
Artin algebra A associates the set of Maurer–Cartan solutions modulo the gauge
action (defined by means of gX), is isomorphic to the set of isomorphism classes of
deformations of X over Spec(A). One of the classic illustrations of this phenomenon
is when X is a complex compact manifold. In this case, the controlling dgLa is nothing
but the Dolbeault complex with values in the holomorphic tangent bundle of X. This
allows us to transform a purely geometric problem to a purely algebraic one in the
view that the associated dgLa gives almost all information about the initial local
moduli problem: its 0th, 1st, and 2nd cohomology groups are nothing but the space
of infinitesimal automorphisms, that of first-order infinitesimal deformations (or
equivalently, the tangent space) and that of obstructions to the (formal) smoothness,
respectively. For more historical details about this direction, the interested reader is
referred to the exceptionally beautiful seminar paper [20] of Toën.

Continuing this spirit, in this section, we first translate the deformation problem
of vector bundle in Section 3 into the language of functors of Artinian rings and
then compute the dgLa associated with the local moduli problem of holomorphic
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vector bundle. Hence, a formal version of Corollary 4.1 follows immediately from the
mechanism that we developed in [6]. Let us first recall some standard conventions:
(1) Set is the category of sets.
(2) Grp is the category of groups.
(3) ArtC is the category of local Artinian C-algebras with residue field C. For each

A ∈ ArtC, we denote its associated germ of complex spaces and its maximal ideal
by Spec(A) and mA, respectively.

In the language of Artinian rings, Definition 3.1 can be read as follows.

Definition 5.1 (i) A deformation of E over A ∈ ArtC is a section α ∈ A0,1(End(E))
⊗mA such that

DE .α + α ∧ α = 0(5.1)

in A0,2(E) ⊗mA.
(ii) Two deformations α1 , α2 of E over A are equivariant if there exists a section

ρ ∈ A0,0(GL(E)) ⊗mA

inducing the identity section on E such that

ρ−1 ○ (DE + α2) ○ ρ = DE + α1 .

Now, consider the Dolbeault complex with values in the endomorphism bundle
End(E) of E

A0,0(End(E)) DE�→ A0,1(End(E)) DE�→ A0,2(End(E)) DE�→⋯ DE�→ A0,n(End(E)),

which can be further equipped with a graded Lie structure by using the following Lie
bracket:

[ϕdz̄I , ψdz̄J] = (ϕ ○ ψ − (−1)∣I∣.∣J∣ψ ○ ϕ)dz̄I ∧ z̄J ,(5.2)

where n ∶= dim X, I, J ⊂ {1, . . . , n} and z1 , . . . , zn are local holomorphic coordinates.
We denote this dgLa by g∗. Observe that the relation (5.1) becomes

DE α + 1
2
[α, α] = 0,

which is in the form of a Maurer–Cartan equation. As a matter of fact, the functor of
Artinian rings corresponding to the local moduli problem of E is given by

Def E ∶ ArtC → Set

A↦ {α ∈ A0,1(End(E)) ⊗mA ∣ DE α + 1
2
[α, α] = 0}/ ∼,

where the equivalence relation ∼ is given in Definition 5.1(ii).
Finally, for the completeness, we recall the classical deformation functor MCg∗

associated with g∗, defined via the Maurer–Cartan equation. We have two functors:
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(1) The Gauge functor

Gg∗ ∶ ArtC → Grp
A↦ exp(g0 ⊗mA).

(2) The Maurer–Cartan functor MCg∗ ∶ ArtC → Set defined as

MCg∗ ∶ ArtC → Grp

A↦ {x ∈ g1 ⊗mA ∣ DE x + 1
2
[x , x] = 0} .

For each A, the gauge action of Gg∗(A) on the set MCg∗(A) is functorial in A and
gives an action of the group functor Gg∗ on MCg∗ . This allows us to define the
quotient functor

MCg∗ ∶ ArtC → Set
A↦ MCg∗(A)/Gg∗(A).

Theorem 5.1 As a consequence, there is an isomorphism

MCg∗ ≅ Def E

as functors of Artinian rings. As a sequence, the differential graded Lie algebra control-
ling the deformations of E is

A0,0(End(E)) DE�→ A0,1(End(E)) DE�→ A0,2(End(E)) DE�→⋯ DE�→ A0,n(End(E)),

where the differential is given by the connection DE and the Lie bracket given by the rule
(5.2).

Proof The local isomorphism

exp ∶ (A0,0(End(E)), 0) → (A0,0(GL(E)), IdE)

and the fact that (A0,0(GL(E)), IdE) acts on A0,1(End(E)) by conjugations permit us
to conclude that the equivalence relation ∼ is given in Definition 5.1(ii) is the same as
the one induced by the gauge action of Gg∗(A). Therefore, the desired isomorphism
follows immediately. ∎

Corollary 5.1 Let X be a compact complex manifold over which a holomorphic vector
bundle E is defined. Let G be a complex reductive Lie subgroup of the automorphism
group of E. Then there exists a compatible formal G-action on the local moduli space
of E.

Proof The functor MCg∗ can be naturally upgraded to a derived formal moduli
problem Fg∗ in Lurie’s sense (cf. [14]) via a simplicial version of the Maurer–Cartan
equation (see [10] for such a construction). Moreover, the associated dgLa of Fg∗ is
nothing but g∗. Consequently, Fg∗ is a naturally extension of Def E in the derived
world.
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Now, note that the action of G on E induces a natural G-action on E. By the same
argument as in [6, Lemma 3.1], we can write g∗ as a homotopic colimit of “simple”
dgLas, i.e.,

g∗ = colimi g(i)∗ ,

where
(i) each g(i)k is finite-dimensional,
(ii) g(i)∗ is cohomologically concentrated in [0,+∞),
(iii) each g(i)∗ carries a G-action and the colimit of these G-actions gives back the

initial G-action on g∗.
A remark is in order. Even in the formal aspect, to make the above G-approximation
of the associated dgLa g∗ possible, the G-equivariant Hodge decomposition

A0,n(End(E)) =H0,n ⊕◻E A0,n(End(E)),
which is purely analytic, still plays a crucial role.

By [6, Theorem 2.3], the semi-prorepresentable object of Fg∗ carries a G-action.
Hence, the restriction of Fg∗ on ArtC (which is nothing but Def E ) has a semi-universal
element whose base is equipped with a compatible G-action. This finishes the proof.

∎

Remark 5.1 Corollary 5.1 reflects the fact that for deformation problems, a formal
solution is somehow easy to produce, whereas Corollary 4.1 tells us that among formal
solutions, we can extract a convergent one.

6 Perspectives

In this final section, we summarize what we did in this paper and in [7] in a more
general setting in terms of associated dgLas (we also refer the reader to [12] for a
version without group actions).

To start, we consider the deformation problem of an analytic object X0, whose
associated controlling differential graded Lie algebra is (g∗, d). As usual, the space
of infinitesimal deformations and that of obstructions are the first and the second
cohomology of g∗, i.e., H1(g∗) and H2(g∗), respectively. Let

MCg∗ ∶ g1 → g2

α ↦ dα + 1
2
[α, α]

be the Maurer–Cartan equation associated with g∗. Any subgroup G of the automor-
phism group of X0 induces a natural G-action on each component of g∗ compatible
with the differential d. We assume further that there are good analytic structures on
g0, g1, and g2 where the implicit function theorem is available (for example, Banach
analytic spaces) and there exists a G-invariant metric on g∗, with respect to which we
are able to compute the formal adjoint d∗ of degree −1. Let us denote ◻ ∶= dd∗ + d∗d.
Supposedly, we have a decomposition

g1 = ker◻⊕ Im◻
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together with two linear operators:
(i) the “Green operator”: G ∶ g1 → Im◻,
(ii) the “harmonic projection”: Pker◻ ∶ g1 → ker◻
such that

Idg1 = Pker◻ + ◻G
and ker◻ can be naturally identified with H1(g∗). Consider the following “Kuranishi
map”:

K ∶ g1 → g1

α ↦ α + 1
2

d∗G[α, α].

Theorem 6.1 There exists a compatible G-action on the local moduli space of X0.

Proof Let us denote by N the following space:

{α ∈ g1 ∣ (K − Pker◻) (α) = 0}.
Then it can be checked that the germ of analytic space

(T , 0) ∶= (N , 0) ∩ (MC−1
g (0), 0)

is the desired “Kuranishi space” (see [12, Theorem 3.1] for such a verification). The
existence of group operations on (T , 0) follows immediately from the G-equivariance
of all the maps and of all the operators involved. ∎

Remark 6.1 The key point here is the existence of the G-invariant metric and that
of the splitting

Idg1 = Pker◻ + ◻G.

The former is assured if G is a compact Lie group by the unitary trick, whereas the
latter can come from the Hodge theory if we deal with complex compact manifolds.
In general, we do not have such powerful tools.

The existence of reductive group operations on the Kuranishi space of complex
compact manifolds (cf. [7]) and that on the Kuranishi space of holomorphic vector
bundles, dealt in this paper, can be thought of as living illustrations of the following
philosophy.

“Reductive subgroups of the automorphism group of the analytic object under defor-
mation can be (at least locally) analytically extended to its semi-universal deformation.”

In other words, there should be a compatible extended action on the “Kuranishi
space,” which permutes nearby complex structures and the initial group action might
be regarded as the stabilizer group with respect to the prescribed complex structure
(corresponding to the reference point). The formal aspect of this philosophy was
systematically treated in the groundbreaking work of Rim, as mentioned in the intro-
duction, in which a formal extendability of reductive actions is guaranteed, unique up
to noncanonical equivariant isomorphisms, for any homogeneous fibered category in
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groupoid. However, the convergence of his construction, which is necessarily required
in the analytic setting, is extremely hard to prove even in simple cases. Therefore,
analytically speaking, a rigorously mathematical formulation of this philosophy might
be a good problem to work on.
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