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Abstract
We analyse a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic
liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion
enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the
well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer,
regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred ori-
entation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system
converges to a steady state. In this work, we rigorously establish the existence of steady state and also the finite-
time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic
expansion to derive a homogenised model for the collective swimming of squirmers as they reach their steady-state
orientation and speed.

1. Introduction

Microswimmers are objects of micron size which are immersed in a fluid and capable of autonomous
motion. They are ubiquitous in nature, as exemplified by bacteria and eukaryotic cells. Recently, syn-
thetic microswimmers for applications in medicine and material repair have been introduced in [1], see
also reviews [2, 3]. Transport of microswimmers, both living and synthetic, as well as effective prop-
erties of suspensions populated by many such microswimmers, largely depends on how they respond
to surrounding environment. Modelling microswimmers has become a growing area of research. The
case when microswimmers are immersed in a Newtonian fluid has been intensively studied – see
[4–10] and reviews [11–14]. However, bacteria often swim in biofluids which demonstrate viscoelas-
tic or anisotropic properties very different from those of isotropic Newtonian fluids. For example,
Helicobacter pylori bacteria are present in stomach and are associated with diseases such as chronic
atrophic gastritis and ulcer [15, 16]. The ‘success’ in the inflammation of stomach walls by H. Pylori
depends on how the bacterium reorients itself in the mucous protective layer. Note that mucus is a
viscoelastic fluid which exhibits properties of a liquid crystal for a certain range of macroscopic param-
eters [17, 18]. In addition to medical relevance, experimental realisation which combines bacteria with
a nematic water-based and non-toxic (to bacteria) liquid crystal led to a wealth of intriguing observa-
tions such as collective phenomena for small bacterial concentrations, moving topological defects and
visualisation of flagella beating [19–24].
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Modelling self-propulsion of microswimmers in both Newtonian and non-Newtonian fluids has
received much attention in applied mathematics. These modelling approaches range from minimal one
when microswimmers are modelled as point dipoles, or rigid bodies with point motors, or rigid dumb-
bells, e.g., [6, 7, 25–30], to more detailed ones with, for example, explicit description of self-propelling
with flagella or cilia in both viscous and viscoelastic fluids, see, e.g., reviews [31–33] and the book [34].

One of the most well-established model of microswimmer is the so-called squirmer. The model
was initially introduced in [35] for Paramecium, a micro-organism which swims with the help of small
elastic appendages called cilia. The main modelling assumption for squirmers is that the body is non-
deformable and the swimming effect is introduced via a given slip velocity profile on the body surface
that models the cilia’s activity. Analysis of squirmers immersed in a Newtonian fluid, from the well-
posedness to the relation between the slip profile and the resulting velocity, has been the focus of many
authors [36–42].

To describe a nematic liquid crystal, we use the well-established Beris–Edwards model [43], a highly
nonlinear partial differential equation (PDE) model coupling Navier–Stokes (or Stokes) equation with a
PDE for the tensor order parameter which indicates the preferred local orientation as well as the strength
of the local alignment of the liquid crystal molecules. Well-posedness of the Beris–Edwards model in
R

2 and R
3 was first studied in [44, 45]. Existence of weak and strong solutions in a bounded domain

with a fixed boundary and both homogeneous and inhomogeneous boundary conditions for the tensor
order parameter were established in [46, 47].

In our work, we consider a model which combines a Beris–Edwards liquid crystal with a squirmer.
Such a system was, for example, used as a computational model in [48] to study orientation dynamics of
the spherical squirmer with respect to the preferred orientation of the liquid crystal. In [49], we extended
this model to elongated squirmers and studied how the long-term orientation dynamics of the squirmer
depends on physical and geometrical parameters. To the best of our knowledge, there are no analytical
results, such as well-posedness or model reductions via multi-scale limits for squirmers immersed in
a liquid crystal environment. On the other hand, there are classical multi-scale results for particles in
isotropic fluids, e.g., dilute, Brinkman’s and Darcy’s regimes via homogenisation limits by G. Allaire
[50, 51]. We also refer to [52–56] for some recent works on analysis of fluid suspensions with solid
particles.

The structure of this paper is as follows. In Section 2, we present the Beris–Edwards model cou-
pled with a squirmer for both the time-dependent and steady-state problems. The latter corresponds to a
squirmer moving with a constant velocity. In Section 3, we formulate our main results on the existence
of solutions to both the steady-state and time-dependent problems as well as a two-scale homogeni-
sation limit resulting in an effective model for a suspension of squirmers swimming parallel to each
other. The last statement can be considered as a steady motion of a bacterial colony. Proof of the main
results is presented in Sections 4, 5 and 6. Some calculations and non-dimensionalisation are relegated
to Appendix.

2. Model
2.1. Time-dependent PDE system

Consider a rigid squirmer swimming in a liquid crystal with translational and angular velocities V(t)
and ω(t), respectively. In the context of the Beris–Edwards model, the liquid crystal is described by a
velocity field u(x, t) : Rd ×R+ �→R

d and a tensor order field Q(x, t) : Rd ×R+ �→R
d×d taking values in

symmetric traceless d × d matrices. Here, d = 2, 3 is the spatial dimension. The functions u = (uj)d
j=1

and Q = (Qij)d
i,j=1 satisfy the following system of PDEs and boundary conditions, written in the frame

moving with velocity V(t), so the squirmer is always centred at 0:

ρ(∂t + u · ∇)u + ρ
dV
dt

= ∇ · (σhydro + σela), in � \P(t) (1)

https://doi.org/10.1017/S0956792523000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000177


European Journal of Applied Mathematics 227

∇ · u = 0, in � \P(t), (2)

u = usq(α(t), x)τ +ω(t) × x, on ∂P(t), (3)

∂tQ + (u · ∇)Q − S(∇u, Q) = �
(

K�Q + Ĥ(Q)
)

+ Fext(Q, Q∞), in � \P(t), (4)

Q, u, ∇p periodic in� (5)

K∂νQ = W(Qpref − Q) on ∂P(t). (6)

Here, �= (−L, L)d is a periodic box, P(t) and ∂P(t) are the domain occupied by the squirmer and
its surface in the moving frame. We assume that P(t) ⊂� for all t ≥ 0. We will also use the notation
	(t) := � \P(t) to denote the fluid region.

Equation (1) is a modified Navier–Stokes equation for the velocity u(x, t) which satisfies the
divergence-free condition (2). To this effect, we have σhydro = η(∇u + (∇u)T) − pI to be the standard
isotropic stress tensor where p(x, t) is the pressure of the liquid crystal with uniform density ρ and vis-
cosity η. The internal structure of the liquid crystal, i.e., local preferred direction and order, affects the
flow through an additional elastic stress σela given by

σela = K
[
(Q�Q −�Q Q) − ∇Q 	 ∇Q

]
−ξ
[

H(Q + I

d
) + (Q + I

d
)H − 2(Q + I

d
)Tr(QH)

]
. (7)

Here, K is the elastic constant and ∇Q 	 ∇Q is a d × d matrix with the (k, l) component
∑
i,j

∂xk Qij∂xl Qij.

The parameter ξ measures the ratio between tumbling and aligning that a shear flow exerts on the liquid
crystal molecules. The matrix-valued function H = H(Q) is defined as H(Q) = Ĥ(Q) + K�Q, where
Ĥ(Q) is

Ĥ(Q) := aQ − cQTr(Q2) = −∇Q

( c

4
‖Q‖4 − a

2
‖Q‖2

)
= −∇QF̂(Q). (8)

The scalar potential F̂(Q) is the polynomial part of the Landau–de Gennes free energy whose coefficients
a and c depend on macroscopic parameters of the liquid crystal such as temperature. The potential F̂(Q)
attains minima at Q = 0, corresponding to the isotropic state when the liquid crystal flows as a Newtonian

fluid, and at tensor order parameters Q with q∞ := ‖Q‖ =
√

a

c
, corresponding to the equilibrium liquid

crystalline states.
Boundary conditions (3) describes how the squirmer interacts with the flow u of the liquid crystal.

The orientation of the squirmer is described by a vector α(t) ∈ Sd−1. We also let τ to be a tangent vector
field to the surface of the squirmer which can be chosen to be τ := (α× ν) × ν, where ν is the inward
normal vector on the squirmer’s surface ∂P(t). A typical example of the slip velocity usq is given by
[35] (which is also used in the computational work [48, 49])

usq(α(t), x) = vprop sin θ (1 + β cos (θ )), where θ = cos−1

[
x · α
‖x‖

]
.

Here, θ is the polar angle between the direction vector α and the vector connecting the squirmer centre
and the boundary point x, the parameter vprop is proportional to propulsion strength and β quantifies
the type of the squirmer (puller vs pusher; see [49] for details). In this work, we consider usq(α(t), x) =
sin(θ )g(θ ) with a smooth function g(θ ). Note that such usq vanishes at points of singularity of the vector
field τ .

The instantaneous angular velocity of the squirmer is denoted by ω(t). Then any material point x on
the squirmer surface ∂P(t) will move with velocity ω(t) × x in the moving frame for which the system
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(1)–(6) is written. Then the boundary condition (3) states that there is a given slip velocity usq(α(t), x)τ
with the no-penetration condition:

[u −ω× x] × ν = usq(α(t), x)τ × ν,

[u −ω× x] · ν = 0.

The given non-zero slip velocity models self-propulsion of the squirmer. Such a condition was originally
derived for micro-organisms swimming with the help of small elastic appendages (cilia) distributed on
the surface [35].

The matrix-valued equation (4) describes the dynamics of Q(x, t). While the two first terms in the
left-hand side of (4) are the advection derivative, the third term S(∇u, Q) describes how the flow gradient
∇u rotates and stretches the order parameter Q and is given by

S(∇u, Q) = (ξD + A)

(
Q + I

d

)
+
(

Q + I

d

)
(ξD − A) − 2ξ

(
Q + I

d

)
tr(Q∇u), (9)

where D = 1

2

[∇u + (∇u)T
]

and A = 1

2

[∇u − (∇u)T
]

are symmetric and anti-symmetric parts of ∇u,
respectively. The right-hand side of (4) consists of the term leading to the minimisation of the total
Landau–de Gennes energy

ELdG(Q) =
∫
	(t)

F̂(Q) + K

2
|∇Q|2 dx (10)

with the relaxation parameter � > 0 and the term Fext(Q, Q∞) describing the aligning effect with an
external field. This term imposes the equilibrium condition for liquid crystal, that is, in the absence of
squirmer we have Q ≡ Q∞. We chose Q∞ = q∞(ex ⊗ ex − I

d
) which means that if the liquid crystal is not

perturbed by a squirmer then its molecules are oriented parallel to ex (the unit basis vector parallel to
x-axis). In this work, we will use the example of Fext(Q, Q∞) from [21] for d = 2, given by

Fext(Q, Q∞) = −ζQRπ/2Tr[QQ∞Rπ/2], (11)

where ζ ≥ 0 is the aligning parameter and Rπ/2 is the matrix of counterclockwise rotation by π/2. For
d = 3, the formula for Fext(Q, Q∞) is

Fext(Q, Q∞) = ζ
(
tr(Q2)Q∞ − tr(QQ∞)Q

)
(12)

We note that if one considers dynamics Q̇ = Fext(Q, Q∞) then the Euclidean norm of Q is preserved,
i.e. tr(Q2) ≡ const, and Q(t) converges to a multiple of Q∞ as t increases, so that Q · Q∞ = tr(QQ∞)> 0.
One can also show that (12) is equivalent to (11) in the case of two-dimensional Q and Q∞ (with zero
third row and column).

We impose anchoring boundary condition (6) on Q along the squirmer surface ∂P(t) which forces
Q to be close to a given tensor Qpref = q∞(npref ⊗ npref − I

d
). Here, npref = ν in the case of homeotropic

anchoring when the surface orients liquid crystal molecules perpendicular to it or equivalently, parallel
to the normal vector ν. On the other hand, npref = τ in the case of the planar anchoring when molecules
are aligned with the tangential vector field τ . The boundary condition (6) indeed penalises the difference
Qpref − Q in the sense that if we drop all terms in (4) except �

(
K�Q + Ĥ(Q)

)
, then the solution Q to

this truncated version of (4) with boundary condition (6) minimises the energy

ELdG(Q) + W
∫

∂P(t)

|Qpref − Q|2 dSx. (13)

The coefficient W in front of the penalisation term in the energy functional (13) and also the right-hand
side of (6) measures the anchoring strength. Mathematically, depending on if W → ∞ or 0, (6) reduces
to Dirichlet or Neumann boundary condition for Q.
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To determine the trajectory of the squirmer, that is, its velocity V(t) and angular velocity ω(t), we
consider force and torque balances for the squirmer:

m
dV
dt

=
∫

∂P(t)

σν dSx, (14)

d[I(t)ω]

dt
=
∫

∂P(t)

x × σν + � dSx. (15)

Here, σ = σhydro + σela is the total stress, whereas m and I(t) = {Iij

}d

i,j=1
are the mass and inertia tensor of

the squirmer, defined via

m = ρP |P(t)|,

Iij(t) = ρP

∫
P(t)

[ei × x] · [ej × x
]
dx.

Here, ρP is the squirmer’s density. The additional torque � comes from the internal structure of the
liquid crystal, namely from that there is a preferred direction. It translates into the non-zero asymmetric
part of the stress tensor σ . The formula for this additional torque is [49]

�=μν, where μ= (μij)
d
i,j=1 and μij = −2K

d∑
m,l,k=1

εilkQlmQmk,j. (16)

Here, εilk is the Levi–Civita symbol. Finally, we note that the orientation α(t) and the angular velocity
ω are related via

α̇ =ω× α. (17)

Remark 2.1. Note that the term � admits a simplified form:∫
∂P

�i dSx = −2K
d∑

l,m,k=1

∫
∂P
εilkQlmQmk,jνj dSx

= −2W
d∑

l,m,k=1

∫
∂P
εilkQlm(Qpref,mk − Qmk) dSx.

Here, we used boundary conditions (6). Next, for any symmetric matrix B = (Bij)d
i,j=1 we have∑

l,m,k

εilkBlmBmk = 0. (18)

Indeed, from properties of the Levi–Civita symbol we have∑
l,m,k

εilkBlmBmk = −
∑
l,m,k

εilkBkmBml.

On the other hand, due to symmetry of B we have∑
l,m,k

εilkBlmBmk =
∑
l,m,k

εilkBkmBml.

Thus, we have (18), from which we have the simplified form expression (simplified because it is linear
in Q as opposed to (16) which is quadratic in Q):∫

∂P

�i dSx = −2W
d∑

l,m,k=1

∫
∂P

εilkQlmQpref,mk dSx. (19)
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Remark 2.2. We end the introduction of the time-dependent problem with the energy identity satisfied
by solutions of this problem. First, consider the energy functional:

E(t) = mV2

2
+ Iω ·ω

2
+ ρ

2

∫
	(t)

|u + V|2 dx

+
∫
	(t)

F̂(Q) + K

2
|∇Q|2 dx + W

2

∫
∂P(t)

|Qpref − Q|2 dSx. (20)

Note that in the absence of the squirmer P(t) = ∅ (or when the squirmer is passive, i.e., usq = 0) and if
the external field Fext equals zero, then the system is dissipative, that is, the energy is non-increasing:

d
dt
E(t) = −D(t) ≤ 0, where D(t) := η

∫
	(t)

|∇u|2 dx + �

∫
	(t)

|H|2 dx. (21)

On the other hand, when the system experiences the energy input from the self-propulsion mechanism
and external field Fext, the energy identity takes the following form:

d
dt
E(t) = −D(t) +

∫
∂P(t)

σν · usqτ dSx +
∫
	(t)

H : Fext dx. (22)

Note that boundary integral
∫
∂P(t)

σν · usqτ dSx contains nonlinear terms in Q which in turn depends on
the higher order regularity property of Q. This causes difficulty in the analysis of the time-dependent
problem. Hence in this paper, we will only present a short-time existence result and leave the long-time
behaviour to future work.

2.2. Steady-state PDE system

In this work, we are also interested in the steady translational motion of the squirmer in the liquid crystal.
In the context of the model (1)–(6)(14)–(15), the steady motion is described by the stationary solution
of this system:

ρu · ∇u = ∇ · (σhydro + σela), in � \Pst, (23)

∇ · u = 0, in � \Pst, (24)

u = usq(αst, x)τ , on ∂Pst, (25)

(u · ∇)Q − S(∇u, Q) = �
(

K�Q + Ĥ(Q)
)

+ Fext(Q, Q∞), in � \Pst, (26)

Q, u, ∇p periodic in� (27)

K∂νQ = W(Qpref − Q) on ∂Pst. (28)

Here, we assume that the squirmer moves with the velocity Vst with the orientation angle αst, both
of which are independent of time. As equations (23)–(28) are written in the squirmer’s frame, the
domain Pst occupied by the squirmer will then be stationary. Similar to the time-dependent case, we use
	=� \Pst to denote the fluid region in the steady-state case.

In this setting, the force and torque balances (14), (15) become

0 =
∫
∂Pst

σν dSx, (29)
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0 =
∫
∂Pst

x × σν + � dSx. (30)

The force balance (29), in view of periodic boundary conditions for u and Q together with u · ν = 0 on
∂Pst (follows from (25)), leads to

0 =
∫
∂Pst

σν dSx = −
∫
∂�

σν dSx + ρ

∫
	

u · ∇u dx = −
∫
∂�

pν dSx. (31)

Therefore, since ∇p is periodic, as imposed in (27), it follows from (31) that p(x) is periodic in �.
Indeed, the fact that ∇p is periodic implies that

p(x) = m · x + pper(x), (32)

where pper(x) is a function which is periodic in � and m ∈R
d. Substitution of (32) into (31) implies

that m = 0 and p(x) = pper(x). In this case, the force balance (29) is satisfied regardless of squirmer’s
velocity Vst.

We note that if an external force F(e) = {F(e)
i

}d

i=1
is applied on the squirmer, then the force balance in

stationary case becomes ∫
∂Pst

σν dSx + F(e) = 0 (33)

which due to the same arguments as in derivation of (31) is equivalent to

−
∫
∂�

pν dSx + F(e) = 0. (34)

Using (32) and the divergence theorem for the first term in the equation above, we get

|�|m = F(e). (35)

Therefore, an external force results in the pressure difference

F(e)
i = L

2
[p]i, i = 1, . . . , d, where [p]i = p|xi=L − p|xi=−L. (36)

In terms of the force balance, the periodic problem (23)–(28) is in contrast with the analogous problem in
the exterior domain�=R

d. Namely, for the latter, we need to impose additional boundary conditions at
|x| → ∞ : u = −V st and Q = Q∞, where V st is the steady velocity of the squirmer. Then we would have
obtained a Stokes-law-like force–velocity relation instead of the force–pressure relation (36). Another
difference between the periodic problem (23)–(28) and its counterpart in �=R

d is that the squirmer’s
velocity V st nowhere enters the problem neither in (23)–(28) nor in the force or torque balances
(29)–(30). Physically, this is due to that an infinite periodic grid of squirmer without any connection
to a reference point immovable in the inertial frame (as boundary conditions at |x| → ∞ would have
provided) under no external influence can move with a steady velocity, of any direction and magnitude.
Thus, the couple (u(x + V stt) − V st, Q(x − V stt)), where (u, Q, αst) solve (23)–(28)(29)–(30), is a travel-
ling wave solution of the time-dependent problem (1)–(6)(14)–(15) for any constant vector V st. We note
that applications of the model (1)–(6)(14)–(15) in [48, 49] concern with orientation squirmer dynam-
ics for which periodic boundary conditions are sufficient. If one needs to study spatial dynamics of the
squirmer, boundary conditions at |x| → ∞ are necessary.

In this work, the squirmer swims due to self-propulsion only, without an external force, F(e) = 0.
Thus, we impose periodicity for the pressure p. Taking this into account, we define a weak solution of
(23)–(28) as a couple (u, Q) ∈ H1

per(	; Rd) × H2
per(	; Rd×d) such that equations (24), (25) as well as the

following two equalities hold for allψ ∈ H1
per(	; Rd) ∩{ψ |∂Pst = 0 and ∇ ·ψ = 0

}
and� ∈ H1

per(	; Rd×d)
and every integral term is finite:
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η

∫
	

∇u : ∇ψ dx + ρ

∫
	

(u · ∇)u ·ψ dx +
∫
	

σela : ∇ψ dx = 0. (37)

�

⎡
⎣−K

∫
	

∇Q : ∇� dx + W
∫
∂Pst

(Qpref − Q) :� dSx

⎤
⎦

−
∫
	

((u · ∇)Q − S(∇u, Q)) :� dx +
∫
	

Fext :� dx = 0. (38)

3. Main results

Here, we present our three main results.
Our first main result is the existence of a weak solution of the steady-state problem (23)–(28). Note

that (23)–(28) is a boundary-value problem for the couple (u, Q). Force balance (29) results into periodic
boundary conditions for pressure p and torque balance (30) is not included in the system (23)–(28) so the
orientation vector αst enters the problem (23)–(28) as a parameter. As discussed below in Remark 3.2,
to find specific values of orientation vector αst with which the squirmer can swim steadily, one needs
to additionally impose the torque balance (30). Provided that couples (u, Q) solving (23)–(28) exist for
all orientation vectors αst, the equation (30) possesses at least one solution αst, which corresponds to
swimming along the LC preferred orientation ex.

For the steady-state problem, we restrict ourselves to the case ξ = 0. In this case, we can establish the
maximum principle formulated in Lemma 4.1. Under this simplification, we can represent σela as

σela = −K∇Q 	 ∇Q + σa, where σa(Q, H) = QH − HQ = K(Q�Q −�QQ) (39)
and the term S given by (9) satisfies the following equality:

S(∇u, Q) : Q = Tr(S(∇u, Q)Q) = 0. (40)
We also impose

Fext(Q, Q∞) : Q = 0. (41)
This condition holds for our specific choices of Fext(Q, Q∞) given by (11) or (12).

Theorem 3.1. Suppose ξ = 0. There is a constant C> 0 independent of K, W, Qpref, Q∞, η, ρ, usq, �,
αst such that if

η > 2Cρ‖usq‖L∞(	) and � > 2C

(
1√
K

‖usq‖L∞(	) + ‖usq‖W1,∞(	)

)
, (42)

then there is a weak solution (u, Q) ∈ (H1(	), H2(	)) of (23)–(28).

Remark 3.1. The condition (42) holds when parameters η and � are sufficiently large, given all other
parameters. The condition (42) also holds when usq is sufficiently small which means that self-propulsion
is small. In the limit usq → 0, we recover existence of steady state for a passive swimmer without a
condition on parameters.

Remark 3.2. Theorem 3.1 states the existence of a weak solution of (23)–(28) for all orientation angles
αst. As discussed in Section 4, the force balance (29) is satisfied since weak solutions of (23)–(28)
have periodic pressure p. To determine the steady orientation αst, one needs to consider additionally

the torque balance (30) which is satisfied for αst = kπ

2
(k is an integer). We note that it follows from

our numerical studies in [49] that a squirmer can swim steadily only if it is oriented parallel, αst = kπ ,
or perpendicularly, αst = (2k − 1) π

2
, to the vector ex, the liquid crystal orientation in the absence of the

squirmer.
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Our second main result is the local-in-time existence for the time-dependent problem (1)–(6) with
(14) and (15). Here, we simplify the system by considering a spherical squirmer P(t) in its own moving
frame so that	 and P are independent of time. Under this assumption, the torque balance equation can
be simplified into

I
dω
dt

=
∫
∂P

x × σν + � dSx, (43)

where the rotating inertia I(t) = II becomes also independent of time and isotropic.

Theorem 3.2. Suppose that (usq, Qpref) ∈ H5/2(∂P) × H5/2(∂P), ξ is not necessarily 0, and the initial
data (u0, Q0) ∈ H2

σ
(	) × H3(	), where H2

σ
(	) = H2(	) ∩{∇ · u = 0}. Then there exists T > 0 and a

unique solution (u, Q) to the system (1)–(6) with (14) and (43) such that

u ∈ H1(0, T; H2
σ
(	)) ∩ H2(0, T; L2

σ
(	)),

Q ∈ H1(0, T; H3(	)) ∩ H2(0, T; H1(	)).

Remark 3.3. We adapt techniques from [47] to prove this result in Section 5. The main idea is to rewrite
the problem in a suitable Banach space and then use the Banach’s fixed point theorem. However, the
difference from [47] is an additional difficulty coming from the presence of the squirmer which requires
to consider inhomogeneous boundary conditions as well as force and torque balances (14) and (43). The
terms in balance equations involve boundary integrals with derivatives in integrands. It led to that the
spatial regularity of the solution couple (u, Q) is higher than it is required by a weak solution of the PDE
problem (1)–(6).

Our third main result is a formal homogenisation limit in the system (23)–(28). This result can be
considered as the derivation of a simplified model describing motion of a colony with periodically
distributed squirmers (e.g. bacterial colony) in the liquid crystal.

Specifically, we introduce a small parameter ε := L
δL

, where L is the linear size of a periodic box con-
taining a single squirmer and δL is the observation scale. Next, we consider the problem (23)–(28) where
all the parameters are written in physical dimensions. Details of non-dimensionalisation are relegated
to Appendix C. After the non-dimensionalisation, we consider the steady-state problem (23)–(28) in a
periodic box �ε = [−ε, ε]d. The squirmer occupies domain Pε whose linear size is ∼ ε. Consider the
domain U which is Rd or a sub-domain of Rd composed of many periodic boxes�ε such that the linear
size of U is of the order 1 with respect to ε. Then (23)–(28) becomes (see Appendix C for details):

εγ�Q + ã Q − c̃ QTr(Q2) + S(∇ũ, Q) − ũ · ∇Q + ζ̃ F̃ext = G(x) in 	ε, (44)

∂νQ = W̃(Qpref − Q) on ∂Pε, (45)

ερ̃(ũ · ∇)ũ − εη̃�ũ + ∇p̃ = ε2κ∇ · (∇Q 	 ∇Q + Q�Q −�QQ) + F(x) in 	ε, (46)

ũ = εũsqτ on ∂Pε. (47)

Here, 	ε =�ε \Pε and ∇ · ũ = 0. Here, for simplicity, we assume that the orientation vector αst is
independent of ε. This physically means that the bacterial colony has reached the steady state when
every squirmer swims along a stable direction which is related to the preferred direction of liquid crystal
ex and is independent of ε (e.g. αst = ex). G and F are given external fields, varying spatially at the scale
1 (independent of ε). Parameters γ , ã, c̃, ζ̃ , W̃, ρ̃, η̃, κ are explained in Appendix C.

Our contribution in this regard is the identification of the homogenised limit (u(h), Q(h)) of (ε−1ũ, Q).
We relegate the presentation of the limiting equations as well as their derivation via formal two-scale
asymptotic expansions to Section 6. We comment here that Q(h) solves an algebraic equation (187),
whereas u(h) admits the representation (197) similar to that in the Darcy’s law.
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4. Existence of steady state − proof of Theorem 3.1

In this section, we address solvability of steady-state PDE system (23)–(28). To this end, we first show
in Subsection 4.1 that if a solution of the system (23)–(28) exists (with ξ = 0), then it satisfies a maxi-
mum principle for |Q|. Next, in Subsections 4.2, 4.3, 4.4 and 4.5, we prove the existence for the system
(23)–(28) where nonlinearities Ĥ and Fext are truncated for large values of Q. Finally, combination of
the maximum principle and solvability of the truncated system implies the existence of a solution to the
original system (23)–(28).

4.1. L∞-bound on Q

Here, we adapt the strategy from [57]. First, we introduce the number q∗ > 0 such that

�Ĥ(Q) : Q ≤ 0 for all |Q| ≥ q∗. (48)

Such a finite number q∗ exists since Fext(Q, Q∞) is a quadratic polynomial of Q whereas Ĥ is the third-
order polynomial with a definite negative sign in front the highest power.

Lemma 4.1. Let (u, Q) be a solution of (23)–(28). Then ‖Q‖L∞ ≤ α, where

α := max
{|Qpref|, q∗

}
. (49)

Proof. Recall the equation for Q:

(u · ∇)Q − S(∇u, Q) − K��Q − �Ĥ(Q) − Fext(Q, Q∞) = 0. (50)

By multiplying the above by Q, taking the trace of the resulting expression and using (40) and (41),
we get

1

2
u · ∇(|Q|2) − �K

2

(
�(|Q|2) − 2|∇Q|2

)− �Ĥ(Q) : Q = 0.

As |∇Q|2 is non-negative, we obtain the inequality:

u · ∇(|Q|2) − �K�(|Q|2) − 2�Ĥ(Q) : Q ≤ 0. (51)

Now introduce ψ(Q) := (|Q|2 − α2)+ (α is from (49)). Note that

ψ(Q) D(|Q|2) =ψ(Q) D(|Q|2 − α2) =ψ(Q) Dψ(Q),

where D is either � or ∇.
Next, we multiply (51) by ψ(Q) and integrate over � \Pst. Then, we have

1

2

∫
∂P

u · νψ 2 dsx − �K
∫
∂P

∂ψ(Q)

∂ν
ψ(Q) dsx

+ �K‖∇ψ(Q)‖2
L2(	) − 2�

∫
	

(Ĥ(Q) : Q)ψ(Q) dx ≤ 0. (52)

The first term in the left-hand side of the above inequality vanishes due to (25) while the second term is
negative:

https://doi.org/10.1017/S0956792523000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000177


European Journal of Applied Mathematics 235

K
∫
∂P

∂ψ(Q)

∂ν
ψ(Q) dsx = 2K

∫
∂P∩{|Q|>α}

(
∂Q
∂ν

: Q)(|Q|2 − α2) dsx

= 2W
∫
∂P∩{|Q|>α}

((Qpref − Q) : Q)(|Q|2 − α2) dsx

= 2W
∫
∂P∩{|Q|>α}

((Qpref : Q) − |Q|2)(|Q|2 − α2) dsx

≤ W
∫
∂P∩{|Q|>α}

(|Qpref|2 − |Q|2)(|Q|2 − α2) dsx

≤ 0.

Hence,

K‖∇ψ(Q)‖2
L2(	) ≤ 2

∫
	

(
Ĥ(Q) : Q

)
ψ(Q) dx.

Next, by (48), we have

K‖∇ψ(Q)‖2
L2(	) ≤ 2

∫
	

(
Ĥ(Q) : Q

)
ψ(Q) dx ≤ 0.

so that ‖∇ψ(Q)‖2
L2(	) = 0. The lemma is thus proved.

4.2. Galerkin approximation for pair (u, H)

We introduce here Galerkin approximations for the system (23)–(28). For each m ∈N, we define

um = uos + ûm = uos +
m∑

k=1

ukm�k and Hm =
m∑

k=1

hkm�k. (53)

Note that the domain � is a bounded periodic box and both Laplacian and Stokes operators have a
discrete spectrum implying existence of bases:{

�k

∣∣�k|∂Pst = 0, ∇ ·�k = 0, �k is�− periodic
}∞

k=1
and {�k|�k is�− periodic }∞

k=1 (54)

in L2
σ
(	; Rd) and L2(	; Rd×d), respectively. (Recall that 	=� \Pst and L2

σ
means L2-space with

divergence-free condition.)
The function uos above is an offset function used to take care of non-zero boundary conditions for u.

It solves Stokes equation: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η�uos + ∇pos = 0, in 	 (55)

∇ · uos = 0, in 	, (56)

uos = usq(αst, x)τ on ∂Pst, (57)

uos, pos periodic in�. (58)

Anticipating that u = uos + û, from (57) and (25), we have

û = 0 on ∂Pst. (59)

To continue, for an appropriately large constant M> 0, we introduce a truncated potential F̂M ≥ 0 as
follows:
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F̂M(Q) =

⎧⎪⎪⎨
⎪⎪⎩
F̂(Q), for |Q| ≤ M

∂F̂
∂|Q|

∣∣∣∣∣
|Q|=M

|Q| +
(
F̂
∣∣∣
|Q|=M

− ∂F̂
∂|Q|

∣∣∣∣∣
|Q|=M

M

)
for |Q|>M

. (60)

or, more explicitly,

F̂M(Q) =

⎧⎪⎨
⎪⎩

c

4
|Q|4 − a

2
|Q|2, for |Q| ≤ M

M(cM2 − a)(|Q| − M) + c

4
M4 − a2

2
M2, for |Q|>M

.

The functional derivative of F̂M is given by

ĤM(Q) = −∇QF̂M =

⎧⎪⎨
⎪⎩

Ĥ(Q), |Q| ≤ M,

γM

Q
|Q| , |Q|>M,

where γM = ∂F̂
∂|Q|

∣∣∣∣∣
|Q|=M

. (61)

We have the following bound on ĤM(Q):

‖ĤM(Q)‖L∞(	) ≤ �M, where �M = max{‖Ĥ‖L∞(BM (0)), γM}. (62)

We now define the function Qm, corresponding to the Galerkin approximation Hm as the solution to
the following system: ⎧⎪⎪⎨

⎪⎪⎩
K�Qm + ĤM(Qm) = Hm, in 	

K∂νQm = W(Qpref − Qm) on ∂Pst,

Qm periodic in�

(63)

Below, we will need a priori estimates for the solution to the problem (63), formulated in the following
lemma. Its proof is given in Appendix A.

Lemma 4.2. Let Hm ∈ L2(	). Then there exists a solution Qm for (63). Moreover, there exists a constant
C> 0 such that

√
K‖∇Qm‖L2(	) + ‖Qm‖L2(	) +

√
W‖Qm‖L2(∂Pst)

≤ C
(
‖Hm‖L2(	) +

√
W‖Qpref‖L2(∂Pst) + 1

)
(64)

‖Qm‖H2(	) ≤ C
(
γ1‖Hm‖L2(	) + γ2‖Qpref‖C1 + γ3�M

)
, (65)

where

γ1 = γ3 = W + K

W
and γ2 =

√
W + K

K
.

We define Galerkin approximations (um, Hm) as solutions of the two equations below for each
k = 1, ..., m:

η

∫
	

∇ûm : ∇�k dx + η

∫
	

∇uos : ∇�k dx + ρ

∫
	

(um · ∇)um ·�k dx

−
∫
	

(
K∇Qm 	 ∇Qm − σa(Qm, Hm)

)
: ∇�k dx = 0, (66)
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�

∫
	

Hm :�k dx −
∫
	

(
(um · ∇)Qm − S(∇um, Qm)

)
:�k dx

+
∫
	

Fext,M:�k dx = 0. (67)

Here, Fext,M is defined as a continuous function such that:

Fext,M =
⎧⎨
⎩

Fext, |Fext| ≤ M,

M
Fext

|Fext| , |Fext|>M.
(68)

Next, we will prove the existence and a priori estimates for (um, Hm).

4.3. Energy estimate for Galerkin approximations

Lemma 4.3. There is a constant C0 > 0 independent of K, W, Qpref, Q∞, η, ρ, usq, �, αst such that if

η > 2C0ρ‖usq‖L∞(	) and � > 2C0

(
1√
K

‖usq‖L∞(	) + ‖usq‖W1,∞(	)

)
, then

‖∇ûm‖2
L2(	) + ‖Hm‖2

L2(	) <C. (69)

Proof. Using test function ûm and Hm instead of �k and �k in (66)–(67) and taking the sum of two
equalities, we obtain the following energy equality:

η

∫
	

|∇ûm|2 dx + �

∫
	

|Hm|2 dx

= −ρ
∫
	

(um · ∇)um · ûm dx − η

∫
	

∇uos : ∇ûm dx

−
∫
	

(
σa(Qm, Hm) : ∇ûm + S(∇ûm, Qm) : Hm

)
dx

+ K
∫
	

(∇Qm 	 ∇Qm : ∇ûm + (ûm · ∇)Qm :�Qm

)
dx

+ K
∫
	

(uos · ∇)Qm :�Qm dx +
∫
	

(um · ∇)Qm : ĤM(Qm) dx

−
∫
	

S(∇uos, Qm) : Hmdx −
∫
	

Fext,M : Hm dx. (70)

Next, we estimate each integral. Below, C denotes a generic constant independent of
K, W, Qpref, η, ρ, uos, �, m which may change from line to line, whereas C∗ is a generic constant
which is independent of m only and may also change from line to line.
1. We use the representation um = uos + ûm to write

−ρ
∫
	

(um · ∇)um · ûm dx = −ρ
∫
	

(um · ∇)ûm · ûm dx − ρ

∫
	

(um · ∇)uos · ûm dx. (71)
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Next, using integration by parts, the non-penetration condition ûm · ν = 0 on ∂Pst and the divergence-free
condition ∇ · um = 0, we get∫

	

(um · ∇)ûm · ûm dx = 1

2

∫
	

um · ∇|ûm|2 dx = 0. (72)

To estimate the second integral in the right-hand side of (71), we integrate by parts and use the non-
penetration condition again on ∂Pst to get:

−ρ
∫
	

(um · ∇)uos · ûm dx = ρ

∫
	

(um · ∇)ûm · uos dx. (73)

Finally, we use the Poincaré estimate for ûm (one can also use (199) with ûm instead of Q) as well as that
the offset function uos is a smooth function with bounded derivatives:

−ρ
∫
	

(um · ∇)um · ûm dx = ρ

∫
	

(ûm · ∇)ûm · uos dx + ρ

∫
	

(uos · ∇)ûm · uos dx

≤ ρ
∫
	

|∇ûm|(|ûm||uos| + |uos|2) dx

≤ Cρ‖uos‖L∞(	)

⎛
⎝∫
	

|∇ûm|2 dx

⎞
⎠+ C∗. (74)

2. Here, we bound the second integral in the right-hand side of (70) by the Cauchy–Schwarz
inequality:

−η
∫
	

∇uos : ∇ûm dx ≤ η

4

∫
	

|∇ûm|2 dx + C∗. (75)

3. We have the equality σa(A, B) : D + S(D, A) : B = 0 which holds for all matrices A, B and D such that
A and B are symmetric: ∫

	

(
σa(Qm, Hm) : ∇ûm + S(∇ûm, Qm) : Hm

)
dx = 0. (76)

4. Note that the integral in the 4th line of (70) vanishes. Indeed, using integration by parts, ∇ · ûm = 0
and (59), we get∫

	

∇Qm 	 ∇Qm : ∇ûm dx

= −1

2

∫
	

(ûm · ∇)|∇Qm|2 dx −
∫
	

(ûm · ∇)Qm :�Qm dx +
∫
∂Pst

[(∇Qm 	 ∇Qm

)
ν
] · ûm dSx

= −1

2

∫
∂Pst

(ûm · ν)|∇Qm|2 dSx + 1

2

∫
	

(∇ · ûm)|∇Qm|2 dx −
∫
	

(ûm · ∇)Qm :�Qm dx

= −
∫
	

(ûm · ∇)Qm :�Qm dx. (77)
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5. We use the Cauchy–Schwarz inequality, (59), and the a priori bound (64) to estimate the 5th line
of (70):

K
∫
	

(uos · ∇)Qm :�Qm dx +
∫
	

(um · ∇)Qm : ĤM(Qm) dx

=
∫
	

(uos · ∇)Qm : Hm dx +
∫
	

(ûm · ∇)F̂M(Qm) dx

≤ C‖uos‖L∞(	)(
√

K‖∇Qm‖2
L2(	) +

1√
K

‖Hm‖2
L2(	)) +

∫
∂Pst

(ûm · ν)F̂M(Qm) dSx

≤ C‖uos‖L∞(	)(
√

K‖∇Qm‖2
L2(	) +

1√
K

‖Hm‖2
L2(	))

≤ C√
K

‖uos‖L∞(	)‖Hm‖2
L2(	) + C∗. (78)

6. We use again the a priori bound (64) and the Cauchy–Schwarz inequality to estimate the first term in
the 6th line of (70): ∫

	

S(∇uos, Qm) : Hmdx < C‖uos‖W1,∞(	)(‖Qm‖2
L2(	) + ‖Hm‖2

L2(	))

< C‖uos‖W1,∞(	)‖Hm‖2
L2(	) + C∗. (79)

7. Finally, the last term in (70) is estimated as follows:∫
	

Fext,M : Hmdx<
�

4
‖Hm‖2

L2(	) + C∗. (80)

Collect (74)–(80) and substitute them in (70):(
3η

4
− Cρ‖uos‖L∞(	)

)
‖ûm‖2

L2(	)

+
(

3�

4
− C√

K
‖uos‖L∞(	) − C‖uos‖W1,∞(	)

)
‖Hm‖2

L2(	) ≤ C∗.

Under the restrictions (42), the inequality (69) holds proving the lemma.

4.4. Existence of Galerkin approximations

We will use the following result [58, Lemma IX.3.1, p. 597]:

Theorem 4.1. Let P : Rp →R
p be a continuous mapping such that for some R> 0:

P(ξ ) · ξ ≥ 0 for all ξ ∈R
p with |ξ | = R. (81)

Then there exists ξ 0 ∈R
p with |ξ 0| ≤ R such that P(ξ 0) = 0.

Next, we introduce the mapping P for problem (66)–(67) with unknowns ûm =
m∑

k=1

ukm�k and Hm =
m∑

k=1

hkm�k, defined in (53). Given m ≥ 1, let

ξ = (u1m, . . . , umm, h1m, . . . , hmm) ∈R
2m

and the kth component mapping P : R2m →R
2m (p = 2m) is the left-hand side of (66) for 1 ≤ k ≤ m and

the left-hand side of (67) for m + 1 ≤ k ≤ 2m. We obtain that
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P(ξ ) · ξ = η‖∇ûm‖2
L2(	) + �‖Hm‖2

L2(	) −R(um, Hm),

where R(um, Hm) is the right-hand side of (70). In the proof of Lemma 4.3, we showed that

|R(um, Hm)| ≤
(η

4
+ Cρ‖uos‖L∞(	)

)
‖ûm‖2

L2(	)

+
(
�

4
+ C√

K
‖uos‖L∞(	) + C‖uos‖W1,∞(	)

)
‖Hm‖2

L2(	) + C∗.

Therefore, using this inequality we obtain the following:

Lemma 4.4. Assume η > 2C0ρ‖usq‖L∞(	) and � > 2C0

(
1√
K

‖usq‖L∞(	) + ‖usq‖W1,∞(	)

)
, with C0 from

Lemma 4.3. Then there exists constants C1, C2 > 0 independent of m such that

P(ξ ) · ξ ≥ C1

(‖∇ûm‖2
L2(	) + ‖Hm‖2

L2(	)

)− C2.

The condition (81) is satisfied for large R> 0 and thus we have the following existence result for our
Galerkin approximations:

Theorem 4.2. Assume η > 2C0ρ‖usq‖L∞(	) and � > 2C0

(
1√
K

‖usq‖L∞(	) + ‖usq‖W1,∞(	)

)
, with C0 from

Lemma 4.3. Then there exists a solution (ûm, Hm) of (66)–(67). Moreover, if Qm is defined via (63), then
the solution satisfies

‖ûm‖2
H1(	) + ‖Qm‖2

H2(	) + F̂M(Qm) + ‖Qpref − Qm‖2
L2(∂Pst)

+ ‖Hm‖2
L2(	) <C. (82)

4.5. Passing to limit m → ∞
From (82), we get that there is a sub-sequence of

{
(ûm, Hm)

}
such that

ûm ⇀ û in H1(	) (83)

Hm ⇀H in L2(	) (84)

Qm ⇀Q in H2(	). (85)

Next, we will use the following auxiliary lemma [59, Lemma 1.3]:

Lemma 4.5. Let O be a bounded domain. Let pm(x) and p(x) be such functions from Lq(O), 1< q<∞,
such that

‖pm‖Lq(O) ≤ C and pm → p a.e. in O. (86)

Then pm ⇀ p in Lq(O).

From (82) and Lemma 4.5, we get

ĤM(Qm)⇀ ĤM(Q) in L2(	). (87)

Using (84), (85) and (87) as well as the trace theorem, we can pass to the limits m → ∞ in the weak
formulation of (63):

K
∫
	

∇Q · ∇G dx + W
∫
∂Pst

(Qpref − Q) : G dSx +
∫
	

ĤM(Q) : G dx =
∫
	

H : G dx (88)

for all smooth test functions G.
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Next, we pass to the limit in (66)–(67) using (83), (85), H2(	) ↪→ H1(	) ↪→ L2(	), and the prop-
erty that product of strongly and weakly converging sequences weakly converges to the product of
corresponding limits. We get (u = uos + û):

η

∫
	

∇û : ∇�k dx + η

∫
	

∇uos : ∇�k dx + ρ

∫
	

(u · ∇)u ·�k dx

+
∫
	

σa(Q, H) : ∇�k dx = K
∫
	

∇Q 	 ∇Q : ∇�k dx. (89)

�

∫
	

H :�k dx −
∫
	

((u · ∇)Q − S(∇u, Q)) :�k dx +
∫
	

Fext,M :�k dx = 0. (90)

Finally, we can drop subscript M in ĤM(Q) and Fext,M(Q, Q∞) due to the L∞-a-priori bound on solution
of (23)–(28) in Lemma 4.1.

5. Well-posedness of time-dependent problem − Proof of theorem 3.2

In this section, we prove the local-in-time existence of the unique solution with additional regularity
by using Banach fixed point theorem. In Section 5.1, we will write the time-dependent problem in the
operator form. In Sections 5.2 and 5.3, we will address the Lipschitz properties of the nonlinear part and
the solvability of the linear part of PDE system. In Section 5.3, we will prove the local-in-time existence
and uniqueness by Banach fixed point theorem.

5.1. Operators and function spaces

We first define the projection operator Pσ : H−1(	) → H−1
σ

(	) onto the space of divergence-free func-
tions so that if we apply Pσ to (1), the pressure p is eliminated. Specifically, the equation (1) becomes

∂tu + Pσ (∇ · (u ⊗ u)) + dV
dt

− ρ−1ηPσ (�u) = ρ−1Pσ (∇ · σela(Q)). (91)

Now we consider the problem consisting of (91), (2)–(6) with force and torque balances (14), (43).
The tuple of unknowns is U = (u, Q,ω, V)T. We rewrite the problem as

LU =N (U ), (92)

where we define linear operator L and nonlinear operator N as

L

⎛
⎜⎜⎜⎜⎝

u

Q

ω

V

⎞
⎟⎟⎟⎟⎠= ∂t

⎛
⎜⎜⎜⎜⎝

u

Q

ω

V

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝
ρ−1ηPσ (�u)

�K�Q

0

0

⎞
⎟⎟⎟⎟⎠ (93)

and

N

⎛
⎜⎜⎜⎜⎝

u

Q
ω

V

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

ρ−1Pσ (∇ · (σela(Q) − ρu ⊗ u))− dV
dt

−u · ∇Q + �Ĥ(Q) + S(∇u, Q) + Fext(Q, Q∞)
1
I

∫
∂P x × σν + � dSx

1
m

∫
∂P σν dSx

⎞
⎟⎟⎟⎟⎟⎠ . (94)
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To handle the nonlinear and inhomogeneous boundary conditions, we represent unknown functions
u and Q as

u = uh + uos and Q = Qh + Qos.

The offset function uos is given by

−η�uos + ∇pos = 0 in 	 (95)

uos = usq(α(t), x)τ +ω(t) × x on ∂P (96)

uos periodic in � (97)

The offset function Qos is defined such that

K∂νQos = W(Qpref − Qos) on ∂P (98)

Qos periodic in � (99)

Specifically, we define

Qos(x) = Qpref

(
x
|x|
)
ψ(|x|), x ∈� \P (100)

Here, ψ(|x|) ≥ 0 is a smooth function such that ψ(|x|) = 1 for x ∈(∂P + Br∗ (0)
)∩� \P with r∗ =

dist(∂�, ∂P)/4, and ψ(|x|) = 0 when |x|> 2r∗. Boundary condition (98) is satisfied since ∂νQos =
∂|x|Qos = 0 and Qos

∣∣
∂P = Qpref. The offset function Qos can be extended periodically so it satisfies (99)

since Qos ≡ 0 on ∂�. We point out that Qos is the solution of the Poisson problem with boundary

conditions (98)–(99) and the PDE −�Qos = f with f = −�
(

Qpref

(
x
|x|
)
ψ(|x|)

)
. Note that the offset

function uos depends on unknown orientation angle α(t) and angular velocity ω(t), whereas Qos does
not. Therefore, uos changes in time t while Qos is independent of time t.

With the above, the functions uh and Qh satisfy homogeneous boundary conditions. Their equations in
	 are similar to the original (91) and (4). More precisely, these equations with force and torque balances
in the form of (92) look as follows:

L

⎛
⎜⎜⎜⎜⎝

uh

Qh

ω

V

⎞
⎟⎟⎟⎟⎠=J

⎛
⎜⎜⎜⎜⎝

uh

Qh

ω

V

⎞
⎟⎟⎟⎟⎠ =: N

⎛
⎜⎜⎜⎜⎝

uh + uos

Qh + Qos

ω

V

⎞
⎟⎟⎟⎟⎠−L

⎛
⎜⎜⎜⎜⎝

uos

Qos

0

0

⎞
⎟⎟⎟⎟⎠ (101)

To describe the domains of the operator L, we introduce the following Banach spaces:

Xu =
{

u ∈ H2(0, T; L2
σ
(	)) ∩ H1(0, T; H2

0,σ (	))

∣∣∣∣∣
u = 0 on ∂P ,

u periodic in �

}
(102)

XQ =
{

Q ∈ H2(0, T; H1(	)) ∩ H1(0, T; H3(	))

∣∣∣∣∣
∂νQ = −WQ on ∂P ,

Q periodic in �

}
(103)

with corresponding norms

‖u‖Xu =
(
‖u‖2

H2(0,T;L2
σ (	)) + ‖u‖2

H1(0,T;H2
0,σ (	)) + ‖u

∣∣
t=0

‖2
H2

0,σ (	) + ‖∂tu
∣∣

t=0
‖2

H1
0,σ (	)

) 1
2

‖Q‖XQ =(‖Q‖2
H2(0,T;H1(	)) + ‖Q‖2

H1(0,T;H3(	)) + ‖Q
∣∣

t=0
‖2

H3(	) + ‖∂tQ
∣∣

t=0
‖2

H2(	)

) 1
2 .
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Introduce also

Yu = H1(0, T; L2
σ
(	)), YQ = H1(0, T; H1(	)).

Then X = Xu × XQ × H2(0, T) × H2(0, T) and Y = Yu × YQ × H1(0, T) × H1(0, T) are the domain and
the range of the operator L. The corresponding norms are

‖(u, Q,ω, V)‖X = (‖u‖2
Xu

+ ‖Q‖2
XQ

+ ‖ω‖2
H2(0,T) + ‖V‖2

H2(0,T))
1
2 ,

‖(u, Q,ω, V)‖Y = (‖u‖2
Yu

+ ‖Q‖2
YQ

+ ‖ω‖2
H1(0,T) + ‖V‖2

H1(0,T))
1
2 .

5.2. Lipschitz property of the nonlinear part

In this section, we show the Lipschitz property of the nonlinear operator J with respect to the norms of
the spaces X and Y . Below, we will use short notations for spaces of functions depending on both t and x.
Namely, let V and W stand by either of L∞, L2, L2

σ
, W1,∞ and Hs for s ≥ 0. We will denote V(0, T; W(	))

by VtWx and the corresponding norm by ‖ · ‖VtWx . For example, H2(0, T; L2(	)) will be denoted by H2
t L2

x
and the norm by ‖ · ‖H2

t L2
x
. We start with the following estimates with constants vanishing as T → 0.

Proposition 5.1. There exists a constant C(T) such that C(T) → 0 as T → 0 and each of inequalities
(i)-(iv) below holds for all f and g as long as the left-hand side of the inequality is finite:

(i) ‖f ‖L∞
t L∞

x
≤ C(T)‖f ‖H1

t H2
x , (104)

(ii) ‖f ‖H1
t L∞

x
≤ C(T)(‖f ‖H1

t H2
x
+‖f ‖H2

t L2
x

), (105)

(iii) ‖fg‖H1
t H1

x ≤ C(T)(‖f ‖H1
t H2

x
+‖f ‖H2

t L2
x

) · (‖g‖H1
t H2

x
+‖g‖H2

t L2
x

), (106)

(iv) ‖fg‖H1
t H1

x ≤ C(T)(‖f ‖H1
t H3

x
+‖f ‖H2

t H1
x

) · ‖g‖H1
t H1

x
. (107)

Proof. In the proof, below C is independent from T unless the dependence is indicated via the fol-
lowing notation C(T). All constants C(T) vanish as T → 0. We will use the following inequalities in the
proof:

‖f ‖L∞(	) ≤ C‖f ‖H2(	) (General Sobolev Inequality, [60]) (108)

‖f ‖L∞(0,T) ≤ C‖f ‖1/2
L2(0,T)‖f ‖1/2

H1(0,T) (Agmon’s inequality in 1D) (109)

‖f ‖L∞(	) ≤ C‖f ‖1/4
L2(	)‖f ‖3/4

H2(	) (Agmon’s inequality in 2D and 3D) (110)

‖f ‖L2(0,T) ≤ T1/2‖f ‖L∞(0,T) (111)

‖f ‖L∞(0,T) ≤ C‖f ‖H1(0,T) (112)

‖fg‖H1(	) ≤ C
(‖f ‖H1(	)‖g‖L∞(	) + ‖f ‖L∞(	)‖g‖H1(	)

)
(113)

‖fg‖H1(	) ≤ C
(‖f ‖L2(	)‖g‖W1,∞(	) + ‖f ‖W1,∞(	)‖g‖L2(	)

)
(114)
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Proof of (i):

‖f ‖L∞
t L∞

x
≤‖f ‖L∞

t H2
x

(use (108)

≤‖f ‖ 1
2

L2
t H2

x
‖f ‖ 1

2

H1
t H2

x
(use (109))

≤ CT1/4‖f ‖ 1
2

L∞
t H2

x
‖f ‖ 1

2

H1
t H2

x
(use (111))

≤ CT1/4‖f ‖H1
t H2

x
(use (112)). (115)

Proof of (ii):

‖f ‖H1
t L∞

x
≤ C

(‖f ‖L2
t L∞

x
+‖∂tf ‖L2

t L∞
x

)
≤ C(T1/2‖f ‖L∞

t H2
x
+‖∂tf ‖1/4

L2
t L2

x
· ‖∂tf ‖3/4

L2
t H2

x
) (use (108), (111), and (110))

≤ C(T1/2‖f ‖L∞
t H2

x
+ T1/8‖∂tf ‖1/4

L∞
t L2

x
· ‖∂tf ‖3/4

L2
t H2

x
) (use (111))

≤ C(T1/2‖f ‖H1
t H2

x
+ T1/8‖∂tf ‖1/4

H1
t L2

x
· ‖∂tf ‖3/4

L2
t H2

x
) (use (112))

≤ C(T1/2‖f ‖H1
t H2

x
+ T1/8‖f ‖1/4

H2
t L2

x
· ‖f ‖3/4

H1
t H2

x
)

≤ C(T)(‖f ‖H1
t H2

x
+‖f ‖H2

t L2
x

). (116)

Proof of (iii):

‖fg‖H1
t H1

x ≤ ‖f ‖H1
t L∞

x ‖g‖L∞
t H1

x + ‖g‖H1
t L∞

x ‖f ‖L∞
t H1

x

+ ‖f ‖H1
t H1

x ‖g‖L∞
t L∞

x + ‖g‖H1
t H1

x ‖f ‖L∞
t L∞

x (use (113)) (117)

Next, estimate each term in the right-hand side of (117):

‖f ‖H1
t L∞

x ‖g‖L∞
t H1

x ≤ C(T)(‖f ‖H1
t H2

x
+‖f ‖H2

t L2
x

) · ‖g‖H1
t H1

x (use (116) and (112)) (118)

‖g‖H1
t L∞

x ‖f ‖L∞
t H1

x ≤ C(T)(‖g‖H1
t H2

x
+‖g‖H2

t L2
x

) · ‖f ‖H1
t H1

x (use (116) and (112)) (119)

‖f ‖H1
t H1

x ‖g‖L∞
t L∞

x ≤ C(T)‖f ‖H1
t H1

x ‖g‖H1
t H2

x (use (115)) (120)

‖g‖H1
t H1

x ‖f ‖L∞
t L∞

x ≤ C(T)‖g‖H1
t H1

x ‖f ‖H1
t H2

x (use (115)). (121)

Combining (117)–(121), we obtain (106).
Proof of (iv):

‖fg‖H1
t H1

x ≤ ‖f ‖H1
t W1,∞

x
‖g‖L∞

t L2
x + ‖f ‖H1

t L∞
x ‖g‖L∞

t H1
x

+ ‖f ‖L∞
t W1,∞

x
‖g‖H1

t L2
x + ‖f ‖L∞

t L∞
x ‖g‖H1

t H1
x (use (114)). (122)

Next, estimate each term in the right-hand side of (122):

‖f ‖H1
t W1,∞

x
‖g‖L∞

t L2
x ≤ C(T)(‖f ‖H1

t H3
x
+‖f ‖H2

t H1
x

) · ‖g‖H1
t L2

x (use (116) and (112)) (123)

‖f ‖H1
t L∞

x ‖g‖L∞
t H1

x ≤ C(T)(‖f ‖H1
t H2

x
+‖f ‖H2

t L2
x

) · ‖g‖H1
t H1

x (use (116) and (112)) (124)

‖f ‖L∞
t W1,∞

x
‖g‖H1

t L2
x ≤ C(T)‖f ‖H1

t H3
x · ‖g‖H1

t L2
x (use (115)) (125)

‖f ‖L∞
t L∞

x ‖g‖H1
t H1

x ≤ C(T)‖f ‖H1
t H2

x · ‖g‖H1
t H1

x (use (115)). (126)

Combining (122)–(126), we obtain (107).
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Remark 5.1. It is useful to rewrite (107) with the norm of space XQ:

‖fg‖H1
t H1

x ≤ C(T)‖f ‖XQ
‖g‖H1

t H1
x

. (127)

Lemma 5.1. For all R> 0, there exists a time T > 0 such that for all (u(i)
h , Q(i)

h ,ω(i), V(i)) ∈ BX(0, R) =
{(uh, Qh,ω, V) ∈ X

∣∣‖(uh, Qh,ω, V)‖X ≤ R}, i = 1, 2, then

‖J (u(1)
h , Q(1)

h ,ω(1), V(1)) −J (u(2)
h , Q(2)

h ,ω(2), V(2))‖Y

≤ C(T , R)‖(u(1)
h , Q(1)

h ,ω(1), V(1)) − (u(2)
h , Q(2)

h ,ω(2), V(2))‖X . (128)

Moreover, the constant coefficient C(T , R) → 0 when T → 0.

Proof.
STEP 1. We first establish the Lipschitz continuity of uos, the solution of (95),(96),(97), with respect to
α and ω. For given α(i)(t) and ω(i)(t), i = 1, 2, such that α(1)(0) = α(2)(0), one has

− η�
(
u(1)

os − u(2)
os

)+ ∇(p(1)
os − p(2)

os

)= 0 in 	,

u(1)
os − u(2)

os =(usq(α
(1)(t), x) − usq(α

(2)(t), x)
)
τ + (ω(1)(t) −ω(2)(t)) × x on ∂P ,

u(1)
os , u(2)

os periodic in �.

Due to the stability of the Stokes operator (similar to [58, Theorem IV.6.1])

‖uos‖H2(	) ≤ Cη−1
(‖usq‖L2(∂P) + |ω(t)|) (129)

and smooth dependence of usq in α(t), we have

‖u(1)
os − u(2)

os ‖H2
t L2

x + ‖u(1)
os − u(2)

os ‖H1
t H2

x

≤ Cη−1
(‖α(1) − α(2)‖H2(0,T) + ‖ω(1) −ω(2)‖H2(0,T)

)
. (130)

‖u(1)
os − u(2)

os ‖H1
t H2

x ≤ Cη−1
(‖α(1) − α(2)‖H1(0,T) + ‖ω(1) −ω(2)‖H1(0,T)

)
. (131)

Since α(i)(t) = α(i)(0) + ∫ t

0
ω(i)(τ ) × α(i)(τ )dτ (see (17)) and |α(i)(t)| = 1, i = 1, 2 as well as

T∫
0

|h(t)|2 dt ≤

T2
T∫

0

|ht(0, T)|2 dt for all h ∈ H1(0, T), one gets

‖α(1) − α(2)‖H2(0,T) ≤ T‖ω(1) −ω(2)‖H2(0,T), (132)

‖ω(1) −ω(2)‖H1(0,T) ≤ C(T)‖ω(1) −ω(2)‖H2(0,T). (133)

Then (130) and (131) become

‖u(1)
os − u(2)

os ‖H2
t L2

x + ‖u(1)
os − u(2)

os ‖H1
t H2

x ≤ Cη−1(1 + T)‖ω(1) −ω(2)‖H2(0,T), (134)

‖u(1)
os − u(2)

os ‖H1
t H2

x ≤ C(T)η−1‖ω(1) −ω(2)‖H2(0,T). (135)

Applying (129) to ∂ k
t u(i) with k = 0, 1, 2 and using the definition of time-independent Qos (100), there

is a C> 0 depending on 	 and q∞ such that

‖u(i)
os‖H2

t L2
x + ‖u(i)

os‖H1
t H2

x ≤ Cη−1(‖ω(i)‖H2(0,T) + 1), i = 1, 2. (136)

‖Qos‖H2
t H1

x + ‖Qos‖H1
t H3

x ≤ C. (137)

(Though Qos is independent of time, here we use its H2
t H1

x and H1
t H3

x norms for the clarity of arguments
below.) We will also need the following inequality:

‖Q(i)‖H1
t H3

x + ‖Q(i)‖H2
t H1

x ≤ C + R, i = 1, 2. (138)
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Indeed,

‖Q(i)‖H1
t H3

x + ‖Q(i)‖H2
t H1

x ≤ ‖Q(i) − Qos‖H1
t H3

x + ‖Q(i) − Qos‖H2
t H1

x

+‖Qos‖H1
t H3

x + ‖Qos‖H2
t H1

x

≤ ‖Q(i)
h ‖XQ + ‖Qos‖H1

t H3
x + ‖Qos‖H2

t H1
x

≤ C + R.

STEP 2. Here, we establish the following inequality:

‖ρ−1Pσ∇ · [σela(Q(1)) − σela(Q(2))
] ‖H1

t L2
σ ,x ≤ C(T)‖Q(1)

h − Q(2)
h ‖XQ . (139)

To this end, we first note that since Pσ∇ · : H1(	) → L2
σ
(	) is a bounded operator [60, Lemma

II.2.5.2], the inequality (139) follows from

‖σela(Q(1)) − σela(Q(2))‖H1
t H1

x ≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ . (140)

We decompose σela into five parts σela = σK + σa + σ 1
s + σ 2

s + σ 3
s , where

σK = −K∇Q 	 ∇Q

σa = K(Q�Q −�QQ)

σ 1
s = −2ξ

d
H

σ 2
s = −ξ[HQ + QH

]+ 2ξ

d
Tr(QH)

σ 3
s = 2ξ

[
QTr(QH)

]
.

Here, σ 1
s , σ 2

s , σ 3
s are the linear, bilinear and trilinear part of σs := σ 1

s + σ 2
s + σ 3

s , respectively.

Part 1: σK(Q).

‖σK(Q(1)) − σK(Q(2))‖H1
t H1

x = ‖(K∇Q(1) 	 ∇Q(1) − K∇Q(2) 	 ∇Q(2))‖H1
t H1

x

≤ CK
(‖∇Q(1) 	 ∇(Q(1) − Q(2))‖H1

t H1
x + ‖∇(Q(1) − Q(2)) 	 ∇Q(2)‖H1

t H1
x

)
= CK

(‖∇Q(1) 	 ∇(Q(1)
h − Q(2)

h )‖H1
t H1

x + ‖∇(Q(1)
h − Q(2)

h ) 	 ∇Q(2)‖H1
t H1

x

)
. (141)

Using (106), (137) and that (u(i)
h , Q(i)

h ,ω(i), V (i)) ∈ BX(0, R), we get

CK
(‖∇Q(1) 	 ∇(Q(1)

h − Q(2)
h )‖H1

t H1
x + ‖∇(Q(1)

h − Q(2)
h ) 	 ∇Q(2)‖H1

t H1
x

)
≤ C(T)K

(‖∇(Q(1)
h − Q(2)

h )‖H1
t H2

x + ‖∇(Q(1)
h − Q(2)

h )‖H2
t L2

x

)
[(‖∇Q(1)‖H1

t H2
x + ‖∇Q(1)‖H2

t L2
x

)+(‖∇Q(2)‖H1
t H2

x + ‖∇Q(2)‖H2
t L2

x

)]
≤ C(T)K(R + 1)‖Q(1)

h − Q(2)
h ‖XQ

≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ . (142)

We note that the generic constant C(T) may change from line to line and may depend on, for example, K,
R, C from (137) and T (but recall that notation C(T) also means that C(T) → 0 as T → 0). We sometimes
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do not merge a parameter, for example, K in the second line of the above chain of inequalities, to indicate
what we used to obtain a bound.

Part 2: σa(Q).

‖σa(Q(1)) − σa(Q(2))‖H1
t H1

x

≤ K‖Q(1)�Q(1) − Q(2)�Q(2)‖H1
t H1

x + K‖�Q(1)Q(1) −�Q(2)Q(2)‖H1
t H1

x . (143)

Applying (107) for the first term in the right-hand side of (143), one can get

‖Q(1)�Q(1) − Q(2)�Q(2)‖H1
t H1

x

≤ ‖(Q(1)
h − Q(2)

h )�(Q(1)
h + Qos)‖H1

t H1
x + ‖(Q(2)

h + Qos)�(Q(1)
h − Q(2)

h )‖H1
t H1

x

≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ · ‖�(Q(1)
h + Qos)‖H1

t H1
x

+ C(T)‖Q(2)
h + Qos‖XQ‖�(Q(1)

h − Q(2)
h )‖H1

t H1
x

≤ C(T)(R + 1)‖Q(1)
h − Q(2)

h ‖XQ . (144)

Applying same arguments for the second term in the right-hand side of (143), one can obtain

‖σa(Q(1)) − σa(Q(2))‖H1
t H1

x ≤ KC(T , R)‖Q(1)
h − Q(2)

h ‖XQ .

Part 3: σ 1
s (Q).

‖σ 1
s (Q(1)) − σ 1

s (Q(2))‖H1
t H1

x = 2ξ

d
‖H(Q(1)) − H(Q(2))‖H1

t H1
x

≤ 2ξK

d
‖�Q(1) −�Q(2)‖H1

t H1
x + 2ξ |a|

d
‖Q(1) − Q(2)‖H1

t H1
x

+2ξ |c|
d

‖Q(1)Tr((Q(1))2) − Q(2)Tr((Q(2))2)‖H1
t H1

x . (145)

The first two terms in the right-hand side of (145) are bounded as follows:
2ξK

d
‖�Q(1) −�Q(2)‖H1

t H1
x + 2ξ |a|

d
‖Q(1) − Q(2)‖H1

t H1
x ≤ C‖Q(1) − Q(2)‖XQ .

Next, we bound the third (cubic) term in the right-hand side of (145). Note

‖Q(1)Tr((Q(1))2) − Q(2)Tr((Q(2))2)‖H1
t H1

x ≤ ‖(Q(1) − Q(2))Tr(Q(1)Q(1))‖H1
t H1

x

+ ‖Q(2)Tr((Q(1) − Q(2))Q(1))‖H1
t H1

x

+ ‖Q(2)Tr(Q(2)(Q(1) − Q(2)))‖H1
t H1

x (146)

We show how to bound the first term in the right-hand side of (146). Other terms are bounded in the
same way. Apply (127) twice to obtain

‖(Q(1) − Q(2))Tr(Q(1)Q(1))‖H1
t H1

x

≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ‖|Q(1)||Q(1)|‖H1
t H1

x

≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ

(‖Q(1)
h ‖XQ + ‖Qos‖L2

t H3
x

)(‖Q(1)
h ‖H1

t H1
x + ‖Qos‖H1

t H1
x

)
≤ C(T)(R + 1)2‖Q(1)

h − Q(2)
h ‖XQ . (147)

Thus, we have

‖H(Q(1)) − H(Q(2))‖H1
t H1

x ≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ , (148)
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which, in view of (145), implies

‖σ 1
s (Qi) − σ 1

s (Qj)‖H1
t H1

x ≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ . (149)

Part 4: σ 2
s (Q). In this part, we will need the following bound:

‖H(Q(i))‖H1
t H1

x ≤ C(T , R), i = 1, 2. (150)

which can be obtained by applying same arguments as in (145)–(147) for i = 1, 2

‖H(Q(i))‖H1
t H1

x ≤ C(‖�Q(i)‖H1
t H1

x + ‖Q(i)‖H1
t H1

x + ‖Q(i)Tr((Q(i))2)‖H1
t H1

x )

≤ C(T)(‖Q(i)
h ‖XQ + ‖Q(i)

h ‖3
XQ

+ 1) ≤ C(T , R).

Now, we can estimate,

‖σ 2
s (Q(1)) − σ 2

s (Q(2))‖H1
t H1

x ≤ ξ‖Q(1)H(Q(1)) − Q(2)H(Q(2))‖H1
t H1

x

+ ξ‖H(Q(1))Q(1) − H(Q(2))Q(2)‖H1
t H1

x

+ 2ξ

d
‖Tr(Q(1)H(Q(1)) − Q(2)H(Q(2)))‖H1

t H1
x

≤ C‖Q(1)H(Q(1)) − Q(2)H(Q(2))‖H1
t H1

x . (151)

Next, we use the triangle inequality, (127), (148) and (150):

‖Q(1)H(Q(1)) − Q(2)H(Q(2))‖H1
t H1

x

≤ C(T)‖Q(1)
h − Q(2)

h ‖XQ‖H(Q(1))‖H1
t H1

x

+ C(T)‖Q(2)
h + Qos‖XQ‖H(Q(1)) − H(Q(2))‖H1

t H1
x

≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ .

Therefore,

‖σ 2
s (Q(1)) − σ 2

s (Q(2))‖H1
t H1

x ≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ . (152)

Part 5: σ 3
s (Q).

‖σ 3
s (Q(1)) − σ 3

s (Q(2))‖H1
t H1

x ≤ 2ξ‖Q(1)Tr(Q(1)H(Q(1))) − Q(2)Tr(Q(2)H(Q(2)))‖H1
t H1

x

≤ C‖(Q(1) − Q(2))Tr(Q(1)H(Q(1)))‖H1
t H1

x

+ C‖Q(2)Tr((Q(1) − Q(2))H(Q(1)))‖H1
t H1

x

+ C‖Q(2)Tr(Q(2)(H(Q(1)) − H(Q(2))))‖H1
t H1

x . (153)

Next, applying the same arguments as in (147) with bounds (148) and (150) we get

‖σ 3
s (Q(1)) − σ 3

s (Q(2))‖H1
t H1

x ≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ . (154)

STEP 3. Here, we establish the following inequality:

‖S2(∇u(1), Q(1)) − S2(∇u(2), Q(2))‖H1
t H1

x

≤ C(T)
(‖Q(1)

h − Q(2)
h ‖XQ + ‖u(1)

h − u(2)
h ‖Xu + ‖ω(1) −ω(1)‖H2(0,T)

)
. (155)

To this end, similar to how we treated σs in STEP 2, we split S(∇u, Q) into three parts:

S(∇u, Q) = (ξD + A)

(
Q + I

d

)
+
(

Q + I

d

)
(ξD − A) − 2ξ

(
Q + I

d

)
tr(Q∇u)

= S1 + S2 + S3, (156)
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where

S1(∇u) = 2ξ

d
D

S2(∇u, Q) = ξ (DQ + QD) + (AQ − QA) − 2ξ

d
tr(Q∇u)

S3(∇u, Q) = −2ξQtr(Q∇u)

are correspondingly the linear, bilinear and trilinear part of S. First note that using (134), (135) and
(136), one gets

‖u(1) − u(2)‖H1
t H2

x∩H2
t L2

x ≤ ‖u(1)
h − u(2)

h ‖Xu + ‖u(1)
os − u(2)

os ‖H1
t H2

x∩H2
t L2

x

≤ ‖u(1)
h − u(2)

h ‖Xu + Cη−1(1 + T)‖ω(1) −ω(2)‖H2(0,T) (157)

and

‖u(i)‖H1
t H2

x∩H2
t L2

x ≤ ‖u(i)
h ‖Xu + ‖u(i)

os‖H1
t H2

x∩H2
t L2

x

≤ ‖u(i)
h ‖Xu + Cη−1(‖ω(i)‖H2(0,T) + 1), i = 1, 2. (158)

Part 1: S1(∇u, Q).
Since D(u) = 1

2
(∇u + (∇u)T), using (135) one gets

‖D(u(1)) − D(u(1))‖H1
t H1

x ≤ ‖u(1) − u(2)‖H1
t H2

x

≤ ‖u(1)
h − u(2)

h ‖H1
t H2

x + ‖u(1)
os − u(2)

os ‖H1
t H2

x

≤ ‖u(1)
h − u(2)

h ‖Xu + C(T)η−1‖ω(1) −ω(2)‖H2(0,T). (159)

Then

‖S1(∇u(1), Q(1)) − S1(∇u(2), Q(2))‖H1
t H1

x

≤ C(T)
(‖Q(1)

h − Q(2)
h ‖XQ + ‖u(1)

h − u(2)
h ‖Xu + ‖ω(1) −ω(2)‖H2(0,T)

)
. (160)

Part 2: S2(∇u, Q).

‖S2(∇u(1), Q(1)) − S2(∇u(2), Q(2))‖H1
t H1

x ≤ C‖∇u(1)Q(1) − ∇u(2)Q(2)‖H1
t H1

x

≤ C‖(∇u(1) − ∇u(2))Q(1)‖H1
t H1

x + C‖∇u(2)(Q(1) − Q(2))‖H1
t H1

x (161)

Apply (107), (138) and (157) to obtain

‖(∇u(1) − ∇u(2))Q(1)‖H1
t H1

x

≤ C(T)‖∇u(1) − ∇u(2)‖H1
t H1

x

(‖Q(1)‖H1
t H3

x + ‖Q(1)‖H2
t H1

x

)
≤ C(T)‖u(1) − u(2)‖H1

t H2
x

(‖Q(1)‖H1
t H3

x + ‖Q(1)‖H2
t H1

x

)
≤ C(T)(R + 1)

(‖u(1)
h − u(2)

h ‖Xu + ‖ω(1) −ω(2)‖H2(0,T)

)
.

Applying the similar arguments to the second term in the right-hand side of (161), we obtain

‖S2(∇u(1), Q(1)) − S2(∇u(2), Q(2))‖H1
t H1

x

≤ C(T)
(‖Q(1)

h − Q(2)
h ‖XQ + ‖u(1)

h − u(2)
h ‖Xu + ‖ω(1) −ω(2)‖H2(0,T)

)
. (162)
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Part 3: S3(∇u, Q).

‖S3(∇u(1), Q(1)) − S3(∇u(2), Q(2))‖H1
t H1

x

≤ 2ξ‖Q(1)tr
(∇u(1)Q(1)

)− Q(2)tr
(∇u(2)Q(2)

) ‖H1
t H1

x

≤ 2ξ‖(Q(1) − Q(2)
)

tr
(∇u(1)Q(1)

) ‖H1
t H1

x

+2ξ‖Q(2)tr
(∇(u(1) − u(2)

)
Q(1)
) ‖H1

t H1
x

+2ξ‖Q(2)tr
(∇u(2)

(
Q(1) − Q(2)

)) ‖H1
t H1

x . (163)

Using same arguments as in (147) and taking into account (136) and (138), we obtain

‖(Q(1) − Q(2)
)

tr
(∇u(1)Q(1)

) ‖H1
t H1

x

≤ C(T)‖Q(1) − Q(2)‖H1
t H3

x∩H2
t H1

x ‖Q(1)‖H1
t H3

x∩H2
t H1

x ‖∇u(1)‖H1
t H1

x

≤ C(T)(R2 + 1)‖Q(1)
h − Q(2)

h ‖XQ .

Applying similar arguments for the other two terms in the right-hand side of (163), we obtain

‖S3(∇u(1), Q(1)) − S3(∇u(2), Q(2))‖H1
t H1

x

≤ C(T , R)
(‖Q(1)

h − Q(2)
h ‖XQ + ‖u(1)

h − u(2)
h ‖Xu + ‖ω(1) −ω(2)‖H2(0,T)

)
. (164)

STEP 4. Finally, we show the Lipschitz properties of all the remaining terms in J .

Part 1: Pσ (∇ · (u ⊗ u)).
We again use the fact that Pσ∇ · :H1(	) → L2

σ
(	) is a bounded operator:

‖Pσ (∇ · (u(1) ⊗ u(1))) − Pσ (∇ · (u(2) ⊗ u(2)))‖H1
t L2
σ ,x

≤ ‖u(1) ⊗ u(1) − u(2) ⊗ u(2)‖H1
t H1

x

= ‖(u(1) − u(2)) ⊗ u(1) − u(2) ⊗ (u(1) − u(2))‖H1
t H1

x . (165)

We apply the same arguments in Part 1 of STEP 2, that is, apply (106), along with (157) and (158),
to get:

‖u(1) ⊗ (u(1) − u(2))‖H1
t H1

x + ‖(u(1) − u(2)) ⊗ u(2)‖H1
t H1

x

≤ C(T)
(‖u(1) − u(2)‖H1

t H2
x + ‖u(1) − u(2)‖H2

t L2
x

)
×[(‖u(1)‖H1

t H2
x + ‖u(1)‖H2

t L2
x

)+(‖u(2)‖H1
t H2

x + ‖u(2)‖H2
t L2

x

)]
≤ C(T)

(‖u(1)
h − u(2)

h ‖Xu + C
(‖ω(1) −ω(2)‖H2(0,T)

))
×[(‖u(1)

h ‖Xu + C(‖ω(1)‖H2(0,T) + 1)
)+(‖u(2)

h ‖Xu + C(‖ω(2)‖H2(0,T) + 1)
)]

≤ C(T)(R + 1)
(‖(u(1)

h , Q(1)
h ,ω(1), V (1)) − (u(2)

h , Q(2)
h ,ω(2), V (2))‖X

)
.

Thus, we obtained

‖Pσ (∇ · (u(1) ⊗ u(1))) − Pσ (∇ · (u(2) ⊗ u(2)))‖H1
t L2
σ ,x

≤ C(T , R)
(‖(u(1)

h , Q(1)
h ,ω(1), V (1)) − (u(2)

h , Q(2)
h ,ω(2), V (2))‖X

)
.

Part 2: u · ∇Q.

‖u(1) · ∇Q(1) − u(2) · ∇Q(2)‖H1
t H1

x

≤ ‖(u(1) − u(2)) · ∇Q(1)‖H1
t H1

x + ‖u(2) · ∇(Q(1) − Q(2))‖H1
t H1

x . (166)
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Apply the same arguments as in Part 1 of STEP 2, that is, apply (106):

‖u(1) · ∇(Q(1) − Q(2))‖H1
t H1

x + ‖(u(1) − u(2)) · ∇Q(2)‖H1
t H1

x

≤ C(T)
(‖u(1)‖H1

t H2
x + ‖u(1)‖H2

t L2
x

)(‖∇Q(1)
h − ∇Q(2)

h ‖H1
t H2

x + ‖∇Q(1)
h − ∇Q(2)

h ‖H2
t L2

x

)
+ C(T)

(‖u(1) − u(2)‖H1
t H2

x + ‖u(1) − u(2)‖H2
t L2

x

)(‖∇Q(2)‖H1
t H2

x + ‖∇Q(2)‖H2
t L2

x

)
≤ C(T)

(‖u(1)‖H1
t H2

x + ‖u(1)‖H2
t L2

x

) ‖Q(1)
h − Q(2)

h ‖XQ

+ C(T)
(‖u(1) − u(2)‖H1

t H2
x + ‖u(1) − u(2)‖H2

t L2
x

)(‖Q(2)‖H1
t H3

x + ‖Q(2)‖H2
t H1

x

)
. (167)

Using (157), (158) and (138) one gets

C(T)
(‖u(1)‖H1

t H2
x + ‖u(1)‖H2

t L2
x

) ‖Q(1)
h − Q(2)

h ‖XQ

+ C(T)
(‖u(1) − u(2)‖H1

t H2
x + ‖u(1) − u(2)‖H2

t L2
x

)(‖Q(2)‖H1
t H3

x + ‖Q(2)‖H2
t H1

x

)
≤ C(T)

(‖u(1)
h ‖Xu + C(‖ω(1)‖H2(0,T) + 1)

)(‖Q(1)
h − Q(2)

h ‖XQ

)
+ C(T)

(‖u(1)
h − u(2)

h ‖Xu + C
(‖ω(1) −ω(2)‖H2(0,T)

))(‖Q(2)‖H1
t H3

x + ‖Q(2)‖H2
t H1

x

)
≤ C(T)(R + 1)‖(u(1)

h , Q(1)
h ,ω(1), V (1)) − (u(2)

h , Q(2)
h ,ω(2), V (2))‖X . (168)

Thus, we obtained

‖u(1) · ∇Q(1) − u(2) · ∇Q(2)‖H1
t H1

x

≤ C(T , R)‖(u(1)
h , Q(1)

h ,ω(1), V (1)) − (u(2)
h , Q(2)

h ,ω(2), V (2))‖X .

Part 3: Ĥ(Q). Here, we need to show

‖H(Q(1)) − H(Q(2))‖H1
t H1

x ≤ C(T , R)‖(u(1)
h , Q(1)

h ,ω(1), V (1)) − (u(2)
h , Q(2)

h ,ω(2), V (2))‖X .

This bound follows directly from the proof on Part 3 of STEP 2.

Part 4:
dV
dt

.

‖dV (1)

dt
− dV (2)

dt
‖H1(0,T) ≤ ‖V (1) − V (2)‖H2(0,T)

≤ C(T)(‖(u(1)
h , Q(1)

h , V (1),ω(1)) − (u(2)
h , Q(2)

h , V (2),ω(2))‖X). (169)

Part 5: Fext(Q, Q∞). We first note that for both definitions (11) and (12), Fext(Q, Q∞) is a quadratic
function of Q:

Fext(Q, Q∞) =B(Q, Q) =
d∑

k,l,m,n=1

bklmnQklQmn,

where coefficients bklmn depend on Q∞. Then use of the triangle inequality and (127):

‖Fext(Q(1), Q∞) − Fext(Q(2), Q∞)‖H1
t H1

x ≤ ‖B(Q(1) − Q(2), Q(1))‖H1
t H1

x

+ ‖B(Q(2), Q(1) − Q(2))‖H1
t H1

x

≤ C(T)‖Q(1) − Q(2)‖XQ (‖Q(1)‖H1
t H1

x + ‖Q(2)‖H1
t H1

x )

≤ C(T , R)‖Q(1)
h − Q(2)

h ‖XQ .
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Part 6: 1
I

∫
∂P x × σν + � dSx.

Since σ = σhydro + σela we use (140) and (159)

‖σ (∇u(1), Q(1)) − σ (∇u(1), Q(1))‖H1
t H1

x

≤ C(T , R)(‖(u(1)
h , Q(1)

h , V (1),ω(1)) − (u(2)
h , Q(2)

h , V (2),ω(2))‖X .

Using trace theorem, we get∥∥∥∥1

I

∫
∂P

x × σ (Q(1))νdSx − 1

I

∫
∂P

x × σ (Q(2))νdSx

∥∥∥∥
H1(0,T)

≤ C‖σ (Q(1)) − σ (Q(2))‖H1
t H1

x

≤ C(T , R)‖(u(1)
h , Q(1)

h , V (1),ω(1)) − (u(2)
h , Q(2)

h , V (2),ω(2))‖X . (170)

To estimate the term with �, recall its simplified form (19):∥∥∥∥∥∥
∫
∂P

�(Q(1)) dSx −
∫
∂P

�(Q(2)) dSx

∥∥∥∥∥∥
H1(0,T)

≤ C‖Q(1) − Q(2)‖H1(0,T;L1(∂P))

≤ C‖Q(1)
h − Q(2)

h ‖H1
t H1

x

≤ C(T)‖Q(1)
h − Q(2)

h ‖H2
t H1

x

≤ C(T)‖(u(1)
h , Q(1)

h , V (1),ω(1)) − (u(2)
h , Q(2)

h , V (2),ω(2))‖X . (171)

Part 7: 1
m

∫
∂P σνdSx. The same argument for Part 6 also works for 1

m

∫
∂P σνdSx.

Part 8: ∂tuos. Using (135), we have

‖∂tu(1)
os − ∂tu(2)

os ‖H1
t L2
σ ,x ≤ C(T)‖ω(1) −ω(2)‖H2(0,T). (172)

Now, collecting all bounds from STEPS 2–4, we have (128) and thus Lemma 5.1 is proved.

5.3. Proof of Theorem 3.2 (local-in-time existence)

In this section, we prove the well-posedness of the time-dependent problem. The equation (101) can be
rewritten as KUh = Uh where K := L−1J : X → X and Uh = (uh, Qh,ω, V). The inverse linear operator
L−1 is bounded, as stated in the following proposition.

Proposition 5.2. For all (fu, fQ, fω, fV) ∈ Y , and time T ∈ (0, 1], linear system

L(uh, Qh,ω, V) = (fu, fQ, fω, fV) (173)

has a unique solution such that uh|t=0 = 0, Qh|t=0 = 0, ω|t=0 = V|t=0 = 0 and

‖(uh, Qh,ω, V)‖X ≤ C‖(fu, fQ, fω, fV)‖Y , (174)

where the constant C is independent of time T and choice of (fu, fQ, fω, fV).

To prove this proposition, one can follow [47]. Specifically, for the first two components, uh and Qh,
of system (173), we adapt the proof from [47, Proposition 4.2]. For the last two components, which
are not present in [47], the statement naturally follows from the classical ordinary differential equation
theory.

Next, according to Propositions 5.1 and 5.2, we have that

‖K(u(1)
h , Q(1)

h ,ω(1), V (1)) −K(u(2)
h , Q(2)

h ,ω(2), V (2))‖X

≤ C(T)‖(u(1)
h , Q(1)

h ,ω(1), V (1)) − (u(2)
h , Q(2)

h ,ω(2), V (2))‖X . (175)
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Recall that C(T) depends on T in such a way that C(T) → 0 when T → 0. Choose T such that C(T)< 1.
Then using Banach’s fixed point theorem, we obtain that there exists a unique fixed point (uh, Qh,ω, V)
of operator K. Next, define uos via (95)–(97). Finally, the tuple (uh + uos, Qh + Qos,ω, V) is a solution
to the original system (91), (2)–(6) with force and torque balances (14), (43) for 0 ≤ t ≤ T . Theorem 3.2
is proved.

6. Homogenisation: two-scale expansion

In this section, we will perform formal two-scale expansion for (44)–(47). To this end, we introduce fast
variable y = ε−1x and represent the unknowns as

⎧⎪⎨
⎪⎩

u(x; ε) = ū(x, y) = u(0)(x, y) + εu(1)(x, y) + · · ·
p(x; ε) = p̄(x, y) = p(0)(x, y) + εp(1)(x, y) + · · ·
Q(x; ε) = Q̄(x, y) = Q(0)(x, y) + εQ(1)(x, y) + · · ·

(176)

We will frequently use following identities for f (x, ε) = f̄ (x, y) with y = ε−1x:

∇f = ∇x f̄ + ε−1∇y f̄ , (177)

�f =�x f̄ + 2ε−1∇y · ∇x f̄ + ε−2�y f̄ . (178)

The derivation of the homogenised limit consists of the following steps.

STEP 1. Show that u(0) = 0. Substitute two-scale representations (176) for u, Q, and p into (46) and
∇ · u = 0. We get that at level ε−1:

−η̃�yu(0) + ∇yp
(0) = 0 and ∇y · u(0) = 0,

with the boundary condition u(0) = 0 on ∂Pε. Thus, we can conclude that u(0) = 0.

STEP 2. Find an equation for Q(0). In this step, we expand equations (44) and (45) in ε. To this end, we
write the weak formulation of these two equations for arbitrary test function � ∈ H1(	ε; Rd×d):

−γ ε
∫
	ε

∇Q · ∇� dx + εW̃
∫
∂Pε

(Qpref − Q) :� dSx

+
∫
	ε

[
ãQ − c̃QTr(Q2)

]
:� dx +

∫
	ε

S(∇ũ, Q) :� dx

−
∫
	ε

(ũ · ∇)Q :� dx + ζ̃

∫
	ε

F̃ext :� dx =
∫
	ε

G :� dx. (179)

Introduce 	1 = ε−1	ε and P1 = ε−1Pε. We now consider two-scale representation for the test
function �:

�(x; ε) = �̄(x, y) =�(0)(x, y) + ε�(1)(x, y) + · · · .

Rewrite the first integral in (179) in domain 	1:

https://doi.org/10.1017/S0956792523000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000177


254 L. Berlyand et al.

−γ ε
∫
	ε

∇Q · ∇� dx = −γ ε1+d

∫
	1

∇Q(εy) · ∇�(εy) dy

= −γ ε1+d

∫
	1

[∇xQ̄(εy, y) + ε−1∇yQ̄(εy, y)
] · [∇x�̄(εy, y) + ε−1∇y�̄(εy, y)

]
dy

= −�Kε1+d

⎧⎨
⎩ε−2

∫
	1

∇yQ(0) · ∇y�
(0) dy +

+ ε−1

∫
	1

[∇xQ(0) + ∇yQ(1)
] · ∇�(0) + ∇Q(0) · [∇x�

(0) + ∇y�
(1)
]
dy + · · ·

⎫⎬
⎭. (180)

Expanding analogously other terms in (179) and using that u(0) = 0, we get at level εd−1:∫
	1

∇yQ(0) · ∇y�
(0) dy = 0,

which implies, together with periodicity in y, that Q(0)(x, y) = Q(0)(x).
At level εd, accounting for ∇yQ(0) = 0, we have

−γ
∫
	1

[∇xQ(0) + ∇yQ(1)
] · ∇y�

(0) dy + W̃
∫
∂P1

(Qpref − Q(0)) :�0 dSy

+
∫
	1

[−ãQ(0) + c̃Q(0)Tr((Q(0))2)
]

:�(0) dy

+
∫
	1

S(∇yu(1), Q(0)) ·�(0) dy + ζ̃

∫
	1

F̃ext(Q(0), Q∞) :�(0) dy

=
∫
	1

G(x) :�(0) dy. (181)

Note that the above integral relation is the weak formulation for the following boundary-value
problem: {−γ�yQ(1) = f 1, y in �1,

γ (∇yQ(1)) · νy = g1, y on ∂P1.
(182)

Here,
f 1 = γ�yxQ(0) − ãQ(0) + c̃Q(0)Tr((Q(0))2) + S(∇yu(1), Q(0)) + ζ̃ F̃ext(Q(0), Q∞) − G(x),

g1 = −γ∇xQ(0) · νy + W̃(Qpref − Q(0)),

and �yxh = ∇y · ∇xh for arbitrary h.
Next, we have the solvability condition for (182) given as:∫

∂P1

g1 dSy =
∫
	1

f 1 dy. (183)

To evaluate the right-hand side, we use the fact that Q(0) is independent of y and∫
	1

∇yu dy =
∫
∂P1

usqτν
T dSy. (184)
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Hence, we have ∫
	1

f 1 dy = |	1|
(
−ãQ(0) + c̃Q(0)Tr((Q(0))2) + ζ̃ F̃ext(Q(0), Q∞) − G(x)

)

+ S

⎛
⎝∫
∂P1

usqτν
T dSy, Q(0)

⎞
⎠ , (185)

∫
∂P1

g1 dSy = W̃
∫
∂P1

Qpref dSy − W̃|∂P1|Q(0). (186)

Substituting (185) and (186) into (183), we get the equation for Q(0):

−
[

ã − W̃|∂P1|
|	1|

]
Q(0) + c̃Q(0)Tr((Q(0))2)

+ ζ̃ F̃ext(Q(0), Q∞) + S(Gsq, Q(0)) = G(x) − W̃

|	1|Qpref. (187)

Here, we denote Gsq = ∫
∂P1

usqτν
T dSy and Qpref =

∫
∂P1

Qpref dSy. The function Q(0) is the limit of Q as

ε→ 0; thus, the algebraic equation (187) determines Q(h) = Q(0).

STEP 3. Find an equation for u(1). At level ε0 in the expansion of (46), accounting for that u(0) = 0, Q(0)

is independent of y, and

ε2κ∇ · (∇Q 	 ∇Q + Q�Q −�QQ) = ε0κ∇y · (Q(0)�yQ(1) −�yQ(1)Q(0)
)+
⎡
⎢⎣

higher

order

terms

⎤
⎥⎦

we get

−η̃�yu(1) + ∇xp
(0) + ∇yp

(1) = κ∇y · (Q(0)�yQ(1) −�yQ(1)Q(0)
)+ F(x), y in 	1, (188)

u(1) = usqτ , y on ∂P1. (189)

Next, we aim to remove Q(1) from the right-hand side of (188). To this end, we notice that due to
(182) we have that −γ�yQ(1) = f 1 and

�yxQ(0) = 0 and Q(0), Q(0)Tr(Q(0)), ζ̃ F̃ext(Q(0), Q∞), G(x) are independent of y.

Thus, we can rewrite (188) as

−η̃�yu(1) + ∇xp
(0) + ∇yp

(1)

= −κγ −1∇y · (Q(0)S(∇yu(1), Q(0)) − S(∇yu(1), Q(0))Q(0)
)+ F(x). (190)

The above can be rewritten in component-wise form as

d∑
m,j,l=1

ηklmju
(1)
m,jl + ∂xk p

(0) + ∂yk p
(1) = Fk(x), k = 1, .., d, (191)
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where

u(1)
m,jl = ∂2u(1)

m

∂yj∂yl

and ηklmj = −η̃δkmδjl + κξ

2γ

d∑
n=1

[
Q(0)

kn Q(0)
nmδjl − Q(0)

mnQ
(0)
nl δjk − Q(0)

jn Q(0)
nl δkm

]

+ κξ
dγ

[
Q(0)

kmδjl − Q(0)
ml δjk − Q(0)

jl δkm

]+ κ

γ

[
Q(0)

kj Q(0)
ml − Q(0)

kmQ(0)
jl

]

+ κ
γ

d∑
n=1

[
Q(0)

kn Q(0)
nmδjl − Q(0)

mnQ
(0)
nl δjk + Q(0)

jn Q(0)
nl δkm

]
. (192)

Next, rewrite (191) in a vectorial form:

−η(Q(0))∇2
y u(1) + ∇yp

(1) = F(x) − ∇xp
(0). (193)

Taking into account the boundary condition u(1)(x, y) = ũsqτ on P1, we obtain the following representa-
tion for u(1):

u(1) =Aη(Q(0))(y)
[
F(x) − ∇xp

(0)
]+ usq, (194)

where Aη(Q(0))(y) is a y-dependent d × d matrix such that u(y) =Aη(Q(0))(y)ei (ei is the ith basis vector) is
the solution of the following cell problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−η(Q(0))∇2
y u + ∇yp = ei, in 	1,

∇ · u = 0,

u = 0, on P1,

u is 2-periodic.

(195)

The term usq is defined as the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−η(Q(0))∇2
y usq + ∇yp = 0, in 	1,

∇ · usq = 0,

usq = ũsqτ , on P1,

usq is 2-periodic.

(196)

Finally, we define the homogenised function u(h) by averaging u(1) and using the fact that Q(h) = Q(0):

u(h) =Bη(Q(h))

[
F(x) − ∇xp

]+ 1

|	1|
∫
	1

ūsq dy, (197)

where Bη = 1
|	1|
∫
	1

Aη(y) dy and the pressure p can be found from the divergence-free condition ∇ · u =
0.

To conclude, we have derived a system of homogenised equations in the form of (187), an algebraic
equation for Q and (197) for u in the form of Darcy’s law.

7. Concluding remarks

In this work, we initiated the theoretical justification of the active microswimmer model, also known as
a squirmer, in a liquid crystal. This model has been recently developed to explore a non-trivial response
of the microswimmer to surrounding environment possessing a liquid crystalline structure. As com-
putational studies [48, 49] clearly show that the squirmer eventually converges to an equilibrium, both
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time-dependent solutions and steady states are important and were in the focus of our work. In investi-
gating well-posedness of the corresponding equations, we started with combining techniques from the
two fields, the squirmer in Newtonian fluids and the Beris–Edwards model of liquid crystal. However,
such a combination is not straightforward. As explained in Remark 2.2, one of the main difficulties,
besides that our model is complex and highly nonlinear, is that it is not dissipative: there is a permanent
energy input (not necessarily constant) coming from the activity of the squirmer. It makes application
of a priori energy bounds established for the Beris–Edwards model not possible here. Therefore, the
considered model requires novel approaches for its analysis. For the steady-state problem, using suit-
able offset functions, we first proved the existence of a steady state for a truncated system via Galerkin
approximations and careful energy bounds using specific properties of the Beris–Edwards system (see,
e.g., (76)) and then extended the well-posedness from the truncated system to the original one using the
L∞ result formulated in Lemma 4.1. For the time-dependent problem, in order to exploit the contrac-
tion mapping principle, we considered higher regularity solutions (instead of weak ones) which allowed
us to obtain all the necessary bounds including the one for integrals where activity of squirmer enters
as well as the force and torque balances for the squirmer (see, e.g., (170)(171)). Periodic settings, in
which we considered our model, allowed us to pose a question of homogenisation limit which would
be a model describing a colony of synchronously moving squirmers. We found a scaling which, on the
one hand, is consistent with experimental data (see Appendix C) and, on the other hand, allows for a
non-trivial two-scale expansions so that the homogenised limit takes the form of Darcy’s law perturbed
by an algebraic expression for the liquid crystal order parameter (see equations (187) and (197)).

Natural extensions of our work are:

(i) Stability analysis of steady states. Namely, we would like to find conditions on parameters when
a steady state corresponding to swimming either parallel or perpendicular to the liquid crystal is
stable. This analytical result will be compared with the main observation from [49] on bifurca-
tions with respect to anchoring strength parameter. It would be also important to show that there
is no steady state other than corresponding to swimming parallel or perpendicular to the liquid
crystal.

(ii) Force–velocity relation for steady swimming. Though in the squirmer’s frame and periodic con-
ditions, squirmer’s velocity is not well-defined, we can consider the so-called superficial velocity
[61] V = − 1

|	|
∫
	

u dx, which can be understood as the velocity of the squirmer with respect to
the surrounding flow, and show how it depends on propulsion force entering the problem via usq.
Specifically, given the profile of the active slip velocity usq (with all other physical parameters
fixed), what is the resulting velocity V? This question is related to the evaluation of the squirmer
efficiency in Stokes fluid as a function of usq [38, 42].

(iii) Rigorous justification of the homogenisation limit. We plan to justify the two-scale limit formally
derived in Section 6 and in more general stochastic settings based on techniques developed for
Newtonian fluids [52-56].

(iv) Extension to more general boundary conditions. It is also reasonable, from the physical point of
view, to describe self-propulsion by a prescribed tangential force, σν × ν = f prop, on the squirmer’s
surface, like it was implemented in [62, 63], as an alternative to the prescribed tangential velocity
as in the classical squirmer’s model [35]. We plan to extend our results to the case when we allow
prescribed tangential stress on a part of surface and tangential slip (or no slip) on the remaining
part.
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Appendix

A. Proof of Lemma 4.2
Proposition A.1 (A Poincaré-type estimate). There exists cP > 0 such that

‖Q‖2
L2(	) ≤ cP

(
K

2
‖∇Q‖2

L2(	) +
W

2
‖Q‖2

L2(∂Pst)

)
. (198)

for all Q ∈ H1
per(	).

Proof. Here, we first show that there exists ĉP > 0 such that for arbitrary Q ∈ H1
per(	) the following

inequality holds:

‖Q‖2
L2(	) ≤ ĉP(‖∇Q‖2

L2(	) + ‖Q‖2
L2(Pst)

). (199)

By contradiction, we assume that there exists a sequence {Qn}∞
n=1:

‖Qn‖2
L2(	) = 1 and ‖∇Qn‖2

L2(	) + ‖Qn‖2
L2(Pst)

≤ 1

n
. (200)

From boundedness of Qn in L2(	), it follows that the sequence {Qn}∞
n=1 possesses a weakly converging

sub-sequence in L2(	). Consider any such weakly converging sub-sequence {Qnk
}∞

k=1, Qnk
⇀Q∗ and a

function ψ ∈ H1
per(	):∫

	

Qnk
∂xiψ dx =

∫
∂Pst

Qnk
ψνi dSx −

∫
	

∂xiQnk
ψ dx → 0, 1 ≤ i ≤ d.

The convergence to 0 follows from strong convergences of Qnk
in L2(∂Pst) and ∇Qnk

in L2(	) which in
turn follow from (200). Then ∫

	

Q∗∂xiψ dx = 0 ∀ψ ∈ H1
per(	).

Using integration by parts, we get∫
∂Pst

Q∗ψνi dSx −
∫
	

∂xiQ
∗ψ dx = 0 ∀ψ ∈ H1

per(	).

By taking first ψ ∈ C∞
c (	), we get ∂xiQ

∗ ≡ 0 so the second integral in the equality above vanishes. Next,
we get that the first integral is zero as well by taking ψ with various non-zero traces. We conclude
Q∗ ≡ 0. Moreover, since for any weakly converging sub-sequence the limit is 0, then entire sequence
{Qn}∞

n=1 weakly converges to 0.
Note that H1

per(	) ⊂ H1(	) and thus H1
per(	) is compactly embedded in L2(	). Hence, Qn is strongly

converging in L2(	) and since the weak limit is 0, we conclude Qn → 0 strongly in L2(	). However,
it contradicts to (200) since it implies that if Qn → Q∗ strongly in L2(	), then ‖Q∗‖2

L2(	) = 1. Thus,
inequality (199) is shown.

Finally, to prove (198) take cP = 2ĉP

min{K, W} .

Next we turn to the proof of Lemma 4.2. We note that an equivalent way to define Qm from (63) is
via minimisation of the following energy functional:

E(Q) =
∫
	

K

2
|∇Q|2 + F̂M(Q) dx + W

2

∫
∂Pst

|Qpref − Q|2 dSx +
∫
	

Hm : Q dx (201)

among functions Q ∈ H1
per(	). The minimiser Q of the energy functional E(Q) exists.
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From (198), the Cauchy inequality, and ‖Q − Qpref‖2 ≥ 1

2
‖Q‖2 − ‖Qpref‖2 we obtain that E(Q) is

bounded from below:

E(Q) ≥ K

2
‖∇Q‖2

L2(	) +
W

2
‖Qpref − Q‖2

L2(∂Pst)
− 1

2cP

‖Q‖2
L2(	) −

cP

2
‖Hm‖2

L2(	)

≥ −W

2
‖Qpref‖L2(∂Pst) −

cP

2
‖Hm‖2

L2(	).

Thus, there exists a minimising sequence Q(�) weakly converging in H1
per(	). Then using the lim inf

property of a weakly converging sequences, we get the existence of minimiser Q = Qm.
From E(Qm) ≤ E(Q∞) and (198), we get that there exists C> 0 such that

K

8
‖∇Qm‖2

L2(	) +
1

8cP

‖Qm‖2
L2(	) +

W

4
‖Qpref − Qm‖2

L2(∂Pst)
≤ 3cP‖Hm‖2

L2(	) + C. (202)

This shows (64). Next, due to the elliptic regularity result (see Appendix B){
�Q = K−1(Hm − ĤM(Qm)) in 	,

∂νQ|∂Pst = WK−1(Qpref − Q)

we have

‖Qm‖2
H2(	) ≤ C

(
(W + K)2

W2
‖Hm − ĤM(Qm)‖2

L2(	) +
W + K

K
‖Qpref‖2

C1

)
. (203)

Next, using (62) we get (65) and it completes the proof of Lemma 4.2.

B. Elliptic regularity for the squirmer boundary conditions
Here, we consider the following auxiliary elliptic problem:⎧⎪⎨

⎪⎩
�q = F in 	,

∂νq|∂Pst = β(γ (x) − q),

q is �-periodic.

(204)

Here, F = F(x), γ = γ (x) and β > 0 are given. We aim to prove the elliptic regularity for (204):

Theorem B.1. Let q be the solution of (204). Then

‖q‖2
H2(	) ≤ C

(
(1 + β)2

β2
‖F‖2

L2(	) + (1 + β)‖γ ‖2
C1

)
(205)

for some constant C independent of β and γ .

This result is well known from PDE textbooks [64], Theorem 8.12] and [65], Theorem 4 in Section
6.3.2] for the Dirichlet boundary conditions. However, we need to re-visit this result due to our specific
boundary conditions for which the afore-mentioned results are not applicable. For the sake of clarity,
the proof below is written for two-dimensional case, d = 2.

Proof. We first address a priori estimates for regions near the boundary ∂Pst of the squirmer. Choose
any point x0 on ∂Pst. Suppose its vicinity on the boundary can be described by equation x2 = ϕ(x1) so
the domain x2 >ϕ(x1) is the interior of domain 	. Then introduce change of variables

y =�(x)⇔
{

y1 = x1,

y2 = x2 − ϕ(x1).
(206)
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In variable y, the problem (204) has the form:{∇y · (L(y)∇yq) = F, y2 > 0

L(y)∇yq · νy = β
√

1 + (ϕ ′)2 (γ − q), y2 = 0,

where

L =
[

1 −ϕ ′

−ϕ ′ (1 + (ϕ ′)2)

]
, νy =

[
0

1

]
.

We note that L is a positive definite symmetric matrix with the smallest eigenvalue

λmin(y) = 1

2

(
2 + (ϕ ′)2 −√(2 + (ϕ ′)2)2 − 4

)
≥ 1. (207)

Thus, L is uniformly positive definite:

(L(y)u · u) ≥ |u|2 for all y, u ∈R
2. (208)

Lemma B.1. Let q be the solution of{∇y · (L(y)∇yq) = F̂, y ∈R
2
+ = {(y1, y2) : y2 > 0}

L(y)∂yq · νy = β̂(γ̂ − q), y2 = 0,
(209)

for some f ∈ L2
loc(R

2
+), γ̂ = γ̂ (y1) ∈ H1(R) and β̂(y1) ≥ β0 > 0 and matrix L(y) satisfying uniform posi-

tivity condition (208). Denote also U = B1(0) ∩{y2 > 0} and V = B1/2(0) ∩{y2 > 0}.
Then we have the following bound:

‖q‖2
H2(V) ≤ C

(
‖F̂‖2

L2(U) + ‖q‖2
H1(U) + ‖q‖2

L2(U0) + β2‖γ ‖2
C1

)
. (210)

Here U0 = {y2 = 0} ∩ U.

Proof. We adapt arguments from [65]. All gradients ∇ in the proof of this lemma are taken with
respect to variable y. First, we write the weak formulation of (209) for all v ∈ H1(U):∫

�̃

L∇q · ∇v dy −
∫

{y2=0}∩�̃

β̂(γ̂ − q)v dSy = −
∫
�̃

F̂v dy. (211)

Here, �̃ is the image of � \Pst under transformation (206). Next, we introduce ζ (y) such that ζ ∈ C∞

and ζ ≡ 1 in V and ζ ≡ 0 outside of W = B3/4(0) ∩{y2 > 0}. Take test function v = D−h
1 (ζ 2Dh

1q), where
Dh

1 is the difference quotient operator:

Dh
1g = g(y1 + h, y2) − g(y1, y2)

h
. (212)

Integration by parts for the difference quotient allows us to rewrite the first integral in (211) as
follows: ∫

�̃

L∇q · ∇v dy = −
∫
U

ζ 2 (LDh
1(∇q) · Dh

1(∇q)) dy − 2
∫
U

ζDh
1q(∇ζ · LDh

1(∇q)) dy

−
∫
U

ζ 2(
[
Dh

1L
]

(∇q) · Dh
1(∇q)) dy − 2

∫
U

ζDh
1q(∇ζ · [Dh

1L
]

(∇q)) dy

≤ −1

2

∫
U

ζ 2|Dh
1(∇q)|2 dy + C

∫
W

|Dh
1q|2 dy + C

∫
U

|∇q|2 dy. (213)

Here, to obtain the estimate we used (208), uniform boundedness of ∇ζ and [Dh
1L] and Cauchy–Schwarz

inequality.
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Similarly, we rewrite the second integral in (211):

−
∫

{y2=0}∩�̃

β̂(γ̂ − q)v dSy = −
∫
R

β̂(γ̂ − q)D−h
1 (ζ 2Dh

1q) dy1

=
∫
R

Dh
1(β̂γ̂ − β̂q) (Dh

1q)ζ 2 dy1

=
∫
R

ζ 2
[
Dh

1(β̂γ̂ )
]

Dh
1q dy1 −

∫
R

ζ 2q(Dh
1β̂)Dh

1q dy1 −
∫
R

β̂ζ 2|Dh
1q|2 dy1

≤ −β0

2

∫
R

ζ 2|Dh
1q|2 dy1 + C

∫
R

ζ 2q2 dy1 + C
∫
R

ζ 2|Dh
1(γ̂ β̂)|2 dy1. (214)

Finally, we estimate the third integral in (211) using [65], Theorem 3 from Section 5.8.2] as
follows:

−
∫
�̃

F̂v dy ≤ C

⎛
⎝∫

U

|F̂|2dy

⎞
⎠

1/2⎛
⎝∫

U

|∇(ζ 2Dh
1q)|2 dy

⎞
⎠

1/2

≤ C
∫
U

|F̂|2 dy + 1

8

∫
U

|∇(ζ 2Dh
1q)|2 dy

≤ C
∫
U

|F̂|2 dy + 1

4

∫
U

ζ 2|∇(Dh
1q)|2 dy + 1

4

∫
U

|∇(ζ )2 · Dh
1q|2 dy

≤ C
∫
U

|F̂|2 dy + 1

4

∫
U

ζ 2|∇(Dh
1q)|2 dy + C

∫
W

|Dh
1q|2 dy. (215)

Combining (211) with estimates (213), (214) and (215), we get

1

4

∫
U

ζ 2|Dh
1(∇q)|2 dy + β0

2

∫
R

ζ 2|Dh
1q|2 dy1

≤ C

⎡
⎣∫

U

|F̂|2 dy +
∫
W

|Dh
1q|2 dy +

∫
U

|∇q|2 dy

+
∫
R

ζ 2q2 dy1 +
∫
R

ζ 2|Dh
1(γ̂ β̂)|2 dy1

⎤
⎦ .

Using [65, Theorem 3(i) from Section 5.8.2] we get

1

4

∫
V

|Dh
1(∇q)|2 dy + β0

2

∫
R∩V

|Dh
1q|2 dy1

≤ C

⎡
⎣∫

U

|F̂|2 dy +
∫
U

|∇q|2 dy +
∫
R

ζ 2q2 dy1 +
∫
R

ζ 2|∂y1 (γ̂ β̂)|2 dy1

⎤
⎦ .
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Then [65, Theorem 3(ii) from Section 5.8.2] implies

1

4

∫
V

|∂y1 (∇q)|2 dy + β0

2

∫
R∩V

|∂y1 q|2 dy1

≤ C

⎡
⎣∫

U

|F̂|2 dy +
∫
U

|∇q|2 dy +
∫
R

ζ 2q2 dy1 +
∫
R

ζ 2|∂y1 (γ̂ β̂)|2 dy1

⎤
⎦ . (216)

Now write ∂y1 (γ̂ β̂) = β

(
ϕ ′ ′ϕ ′

√
1 + (ϕ ′)2

γ + √
1 + (ϕ ′)2(γx1 + γx2ϕ

′)

)
. Thus,

∫
R

ζ 2|∂y1 (γ̂ β̂)|2 dy1 ≤ Cβ2‖γ ‖2
C1 .

Analogous estimate is valid for ∂2
x2

q since

∂2
y2

q = − 1

1 + (ϕ ′)2

[
F̂ − ∂2

y1
q + 2ϕ ′∂2

y1y2
q − ϕ ′ ′∂y2 q + 2ϕ ′ϕ ′ ′∂y2 q

]
and then

|∂2
y2

q| ≤ C
(
|F̂| + |∂y1 (∇q)| + |∇q|

)
and thus (210) is proved.

Next from (210) and interior regularity [64], Theorem 8.8] we have for 	̃⊂⊂	 that:

‖q‖H2(	̃) ≤ C
(‖F‖L2(	) + ‖q‖L2(	)

)
. (217)

To obtain a bound on ‖q‖L2(	), we will use that q from (204) minimises the energy functional

E0(q) = 1

2

∫
	

|∇q|2 dx + β

2

∫
	

|γ − q|2 dSx +
∫
	

Fq dx. (218)

From E0(q) ≤ E0(0), we get for all δ > 0∫
	

|∇q|2 dx + β

∫
	

|q|2 dSx ≤ Cβ‖γ ‖2
C + Cδ−1‖F‖2

L2(	) + δ‖q‖2
L2(	).

Next, we use Poincaré estimate (199):

‖q‖2
L2(	) ≤ C

(
1 + 1

β

)(
β‖γ ‖2

C + Cδ−1‖F‖2
L2(	) + δ‖q‖2

L2(	)

)
.

Take δ := 1

2C

(
1 + 1

β

)−1

and we get

‖q‖2
L2(	) ≤ C(β + 1)‖γ ‖2

C + C

(
1 + 1

β

)2

‖F‖2
L2(	).

Finally, we conclude that

‖q‖2
H2(	) ≤ C(β + 1)‖γ ‖2

C + C

(
1 + 1

β

)2

‖F‖2
L2(	).
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Table B.1. Values of physical parameters, taken from [21, 49]
Physical parameter Value Unit Representation in δ’s
K 10−8 N 10−8 δf

η 1 N · s/m2 10−4 δTδf/δ
2
L

W 10−6 N/m 10−8 δf/δL

� 1 m2/(N · s) 104 δ2
L/δf δT

a 0.4 N/m2 4 × 10−5δf/δ
2
L

c 0.8 N/m2 8 × 10−5δf/δ
2
L

ρ 1.0 g/mL 10−5 δf δ
2
T/δ

4
L

ζ 2.0 s−1 2 δ−1
T

vprop 10−6 m/s 10−4 δL/δT

L 10−6 m 10−4δL

C. Rescaling
In this Appendix, we present non-dimensionalisation of the steady-state problem, showing how the scal-
ings in (44)–(47) arise. We will assume that all quantities are in their physical dimensions. Representative
values of physical parameters can be found in Table B.1.

Introduce characteristic length δL = 10−2 m, time δT = 1 s and force δf = 1 N. Non-dimensional flow
velocity and pressure are

u = ũ
δL

δT

and p = p̃
δf

δ2
L

. (219)

Note that tensor order parameter Q is non-dimensional and does not require a non-dimensionalisation.
We also represent the external alignment field Fext as

Fext = ζ F̃ext,

where F̃ext is non-dimensional.
Using ∇x = δ−1

L ∇x̃, PDEs (23) and (26) reduce to
δT�K

δ2
L

�Q + δT�a Q − δT�c QTr(Q2) + S(∇ũ, Q) − ũ · ∇Q + δTζ F̃ext = 0, (220)

ρδ4
L

δ2
Tδf

(ũ · ∇)ũ − ηδ2
L

δTδf

�ũ + ∇p̃ = K

δf

∇ · (∇Q 	 ∇Q + Q�Q −�QQ). (221)

Here and below in this section, all spatial derivatives are taken with respect to x̃.
Boundary condition (25) and (28) becomes

ũ = δT

δL

vpropu
(p)
sq τ and ∂νQ = WδL

K
(Qpref − Q). (222)

Here, we represented usq = vpropu(p)
sq where u(p)

sq is the profile of the propulsion such that max u(p)
sq = 1 and

vprop is the propulsion strength. Introduce rescaled parameters:

ε= L

δL

, γ = δT�K

LδL

, ã = δT�a, c̃ = δT�c, ζ̃ = δTζ ,

ρ̃ = ρδ5
L

Lδ2
Tδf

, η̃= ηδ3
L

LδTδf

, κ = Kδ2
L

L2δf

, W̃ = W

δL

K, ṽprop = δT

L
vprop. (223)

Specific values of these parameters can be found in Table C.1.
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Table C.1. Values of non-dimensional
parameters introduced in (223) corre-
sponding to values of physical parame-
ters from Table 1
Rescaled parameter Value
ε 10−4

γ 1
ã 0.4
c̃ 0.8
ζ̃ 2.0
ρ̃ 0.1
η̃ 1.0
κ 1.0
W̃ 1.0
ṽprop 1.0

Then PDEs (220) and (221) become

εγ�Q + ã Q − c̃ QTr(Q2) + S(∇ũ, Q) − ũ · ∇Q + ζ̃ F̃ext = 0 in 	ε,

ερ̃(ũ · ∇)ũ − εη̃�ũ + ∇p̃ = ε2κ∇ · (∇Q 	 ∇Q + Q�Q −�QQ) in 	ε,

with boundary conditions

ũ = εũsq τ and ∂νQ = W̃(Qpref − Q) in ∂Pε,

ũ and Q are 2ε− periodic.

Here, ũsq = ṽpropu(p)
sq , 	ε = δ−1

L 	 and Pε = δ−1
L P .
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