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Abstract

We describe the dynamical behavior of isolated old (> 1Gyr) objects-like Neutron Stars (NSs). These objects are evolved
under smooth, time-independent, gravitational potentials, axisymmetric and with a triaxial dark halo. We analysed the
geometry of the dynamics and applied the Poincaré section for comparing the influence of different birth velocities. The
inspection of the maximal asymptotic Lyapunov (1) exponent shows that dynamical behaviors of the selected orbits are
nearly the same as the regular orbits with 2-DOF, both in axisymmetric and triaxial when (¢, g,)= (0,0). Conversely, a
few chaotic trajectories are found with a rotated triaxial halo when (¢, g,)= (90, 1.5). The tube orbits preserve direction of
their circulation around either the long or short axis as appeared in the triaxial potential, even when every initial condition
leads to different orientations. The Poincaré section shows that there are 2-D invariant tori and invariant curves (islands)
around stable periodic orbits that bound to the surface of 3-D tori. The regularity of several prototypical orbits offer the
means to identify the phase-space regions with localized motions and to determine their environment in different models,
because they can occupy significant parts of phase-space depending on the potential. This is of particular importance in
Galactic Dynamics.

Keywords: Neutron Stars: general — galaxies: galactic potentials — galaxy: disk — galaxies: kinematics and dynamics —
Hamiltonian systems — ordered and chaotic motion — stars: statistics

1 INTRODUCTION Treves et al. 2000; Pavlov, Sanwal, & Teter 2004; De Luca

2008; Halpern & Gotthelf 2010) . As a consequence, little

Neutron stars (NSs) manifest the most extreme values of
many stellar and physical parameters including spin pe-
riod, orbital parameters, magnetic field, and kick velocity.
These are typically old systems (1-10 Gyr) and relatively
short timescales (~ 10° yr) (e.g. Yakovlev & Pethick 2004;
Lorimer 2008) and show a concentration towards the Galactic
centre bulge (which is at ~8 kpc) and in the globular clus-
ters (Caranicolas & Zotos 2009; Taani et al. 2012a; Kalamkar
2013; Taani 2016).

It is generally believed that Millisecond Pulsar (MSPs)
are very old NSs spun up owing to mass accretion during the
phase of mass exchange in binaries (Alpar et al. 1982). These
systems are detectable as active radio pulsars only when they
recycled (spun up). While the isolated old NSs have not been
identified (Haberl 2007; Kaplan 2008), and we define them
here by their steady flux, predominantly thermal X-ray emis-
sion, lack of optical or radio counterparts, and the absence
of a surrounding pulsar wind nebula (e.g. Ostriker, Rees, &
Silk 1970; Shvartsman 1971; Neuhduser & Triimper 1999;
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is known about their physical and statistical properties. One
would hope that the isolated old NSs may be detected as
soft X-ray sources (0.5-2 keV) in the eRosita all-sky sur-
vey (Merloni et al. 2012; Doroshenko et al. 2014). However,
the estimation of the pulsar velocities depends on the direct
distance measurements (Hobbs et al. 2005) which can be
obtained by the dispersion measure and a Galactic density
model (Paczynski 1990; Hansen & Phinney 1997; Cordes &
Chernoff 1998; Lorimer 2008; Sartore et al. 2010). These
studies give a mean birth velocity 100-500 km s~!, with pos-
sibly a significant population having v > 1 000 km s~!. Ar-
zoumanian, Chernoff, and Cordes (2002) favour a bimodal
pulsar velocity distribution, with peaks around 100 and 500
km s~!. However, the mechanisms of high velocity are still
open questions (Wang & Han 2010).

Isolated old NSs have attracted much attention because
of the hope that their properties could be used to constrain
the poorly understood behaviour. Studying their orbital dy-
namics in known gravitational potential is very significant to


https://doi.org/10.1017/pasa.2017.17
mailto:ali82taani@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1017/pasa.2017.17&domain=pdf
https://doi.org/10.1017/pasa.2017.17

2

our understanding the Galactic gravitational field, as well as
the evolution of the Galactic disk structure itself. Paczyriski
(1990) (hereafter P90) simulated the motion of NSs in a galac-
tic potential and calculated the NS space density distribution.
In the same work, P90 also suggested a simplified expression
for the gravitational potential which is still often applied in
the simulation of NS distribution.

This paper is the third in a series of papers. Wei et al.
(2010a, hereafter Paper I) used this potential, and they also
adopted a Galactic distribution with one-component initial
random velocity models. Wei et al. (2010b) investigated the
above gravitational potential of the Galactic disk and several
prototypical orbits of stars, and found that all of the orbits
are symmetric with respect to the galactic plane. Taani et al.
(2012b, hereafter Paper II) constructed a phenomenological
model with the same gravitational potential, but under a two-
component Maxwellian initial random velocity distribution
following P90 and Faucher-Giguere & Kaspi (2006). The
conclusion was that there are some non-symmetric orbits.
When the motion ranges in the vertical direction and hence
becomes larger than the one in the radial direction, the or-
bits become more regular. It was also found that the irregular
character of the motion of NSs increases when the vertical
direction becomes larger than radial direction. We mean here
when the motion is out of the disk plane. The large Galac-
tic radial expansion (understood as R ~ 15 Kpc) could give
hints to the distribution of NS progenitors. The majority of
them (80%) falls within R <25 kpc from the Galactic rotation
axis.

In the present paper, we extend and complete the study of
the old NS sample by describing the dynamical orbital evolu-
tion of the isolated old NSs. These isolated NSs are evolved
under a smooth, time-independent, 3-D axisymmetric gravi-
tational potential that represents a non-rotated galactic disk.
In addition, we extend the purpose of the present study to
explore the orbital dynamics of realistic triaxial potential in
a systematic way. We focus on plotting the 3-D trajectories
and their 2-D projections under a variety of initial conditions.
These initial conditions are obtained by performing Monte
Carlo simulations to develop perturbation approximations of
the 3-D orbits.

Our main objective is to investigate the regular or chaotic
nature of the computed trajectories. It is noteworthy to men-
tion that Evans (1994) found some semi-stochastic orbits in
triaxial potentials, because the chaos was tentatively associ-
ated with linear instability of the short- and intermediate-
axis orbits, while Goodman & Schwarzschild (1981) dis-
cussed the importance of stochastic orbits in triaxial
models.

The structure of the paper is as follows. First, we in-
troduce the model and the Monte Carlo technique we
have used. Then, we will analyse the dynamical proper-
ties of a set of selected initial conditions, including the
Poincaré sections, Lyapunov Asymptotic Exponents, and
dark triaxial haloes case. Finally, we will end with some
conclusions.
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2 SIMULATION AND NUMERICAL SETUP

2.1. Galactic gravitational potential

The equations presented in this paper describe how could
the motion and position of NSs be affected by the Galactic
gravitational potential. We will follow papers I and II in their
procedures to introduce the P90 Galactic gravitational po-
tential. This model is time independent and very simple. The
integration of the orbit, using this model, is very rapid and
can achieve high numerical precision.

It is noteworthy to mention here that the P90 model is
taken to be a homogeneous function of the density, and ig-
nore the interstellar friction. This is a reliable approxima-
tion for our axisymmetric model, because the steady state
distribution of old NSs depends only weakly on the non-
homogeneous part of the galactic potential (Frei, Huang, &
Paczyniski 1992). Using P90 may not be a good approxima-
tion when studying non-axisymmetric models, because ro-
tating non-axisymmetric components (like bars or spirals)
can introduce resonances (Patsis et al. 2002). This model
is time independent and very simple. The integration of the
orbit, using this model, is very rapid and can achieve high
numerical precision. This model combines three axisymmet-
ric potential-density forms to produce a model of the mat-
ter distribution and its gravitational potential of the Milky
Way. The basic components of the Milky Way are the visi-
ble disk and spheroid, and the invisible dark matter halo. For
the bulge (spheroid), we adopt a Plummer sphere (Plummer
1911) in order to increase the central mass of the galaxy. For
the disk, we adopt Miyamoto—Nagai potential (Miyamoto &
Nagai 1975) which is added in order to reproduce the scale
length of the disk corresponding to n = 0. However, Evans
& Bowden (2014) and Evans & Williams (2014) presented
new analytical families of axisymmetric dark matter haloes,
based on interesting modifications of the Miyamoto—Nagai
potential, called Miyamoto—Nagai sequence. And for the dark
matter halo, we adopt a logarithmic (modified sphere) poten-
tial, which produces a flat rotation curve at large radius, since
for strongly flattened systems it is more natural to work in
cylindrical coordinates R, z, ¢ rather than spherical r, 6, ¢
(Binney, Merrifield, & Shu 1988; Flynn, Sommer-Larsen, &
Christensen 1996).

D = Dy + Dyisk + Phato (D

where @y, Phato, and Py define the spheroid, halo, and
disk components, respectively.

The first two components are described by the same law.
For the disk component, we follow a Miyamoto—Nagai po-
tential:

GMisk

\/Rz + A+ (2 +BHiRE
where it depends on two variables, namely R, which denotes
the radial distance perpendicular to the Galactic central axis,
R?*= x? + y? and z, which denotes the vertical distance from
the Galactic plane. The parameter A is a measure of the radial

Dk (R, 2) = ()
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scale length of the disc while the parameter B is a measure of
the disc thickness in the z direction. Galactic discs are much
larger in the radial than in the vertical directions, thus the
values A will be greater than those of the B parameter in our
models. The corresponding values for the disk component are
A =3.7 kpc, B =0.20 kpc, and Mg = 8.01 x 10'© M.

Using Poisson’s equation, V2¢ = 47 oG, we can obtain
the expression for the disc density as

BZM) AR+ (A+3V2 + B)(A + V2 + B?)?
4m )[R+ (A + V22 + B PPV + B2
3

Note that when A = 0, the potential reduces to a spherical
potential on the galactic plane (z = 0). The spheroid compo-
nent of the Galactic gravitational potential is similar to the
above:

PR, 2) = (

GMgy,
\/Rz A+ (2 + B)I22

O (R, 2) = @)

The spheroid component, A = 0.0 kpc, B = 0.28 kpc,
and My, = 1.12 x 1010 Mg. Here, we must point out, that
this potential is not intended to represent a black hole nor
any other compact object, but a dense and massive bulge.
Therefore, we do not include any relativistic effects (Jung &
Zotos 2015).

Regarding the halo component of the Galactic gravitational
potential, is given by the following equation:

GM, 1 R+ 7
By = halo |:5 In (1 + +z )

e re
/RZ 2
+ S arctan yR+Z (®)]
A/ R>+ 72 e

where rpyo = 12 kpe and My, = 5.0 X 100 Mg.

While in a spherically symmetric potential, the x, y, and z
components of the angular momentum and the total angular
momentum are conserved, out potential only admits two con-
served quantities, the total energy E, and the z-component of
the angular momentum vector. Therefore, the motion of the
objects are in the plane and perpendicular to the vector of the
total angular momentum. We assume that the rotation curve
is composed of a spheriod, disk, averaged circular velocity,
and triaxial halo components in the Galaxy (see Figure 1),
and is calculated at any radius by v2(r) = r%’. It is clearly
seen from the same figure that each contribution prevails in
different distances form the galacto-centric R. In particular,
at small distances when R > 3 kpc, the contribution from the
spheriod dominates, while at distances of 3 < R < 19 kpc the
disk contribution is the dominant factor. On the other hand, at
large enough galacto-centric distances, R > 19 kpc, we see
that the contribution from the triaxial halo prevails, thus forc-
ing the rotation curve to remain at with increasing distance
from the centre (Zotos 2014).
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Figure 1. Rotation curve of the axisymmetric potential includes a
Miyamoto—Nagai disk and spheriod, triaxial halo, and averaged circular
velocity in the galactic plane.

2.2. NS initial velocities

The initial velocities of the NSs are calculated as the vec-
tor addition of three different velocities: (1) a Maxwellian
distribution, (2) a constant kick, and (3) the circular rotation
velocities at the birth place. The details on their calculation
can be found in Arzoumanian et al. (2002) and Hobbs et al.
(2005) and are summarised here.

Concerning the density distribution of the total number of
NSs which we used in this simulation, it is about ~1 x 107,
and it distributes uniformly in the age >1 Gyr. This is equiva-
lent to a simulating birthrate of one NS per century (Kulkarni
& van Kerkwijk 1998; Lyne & smith 2007). However, the
precise estimates of both the number and lifetime of the NS
population are hard to obtain especially at larger distances
(see e.g. Keane & Kramer 2008; Ofek 2009) because they
may have been heavily biased by a number of observational
selection effects (Lorimer 2008).

Regarding the kicks simulation, the kick velocity imparted
to an NS at birth is one of the major problems in the the-
ory of stellar evolution. However, the physical mechanism
that causes this kick is presently unknown and a number
of physical models have been described and evaluated (see
e.g. Kalogera 1996; Wang & Han 2010; Meng, Chen, &
Han 2009). But it is presumably the result of some asym-
metry in the core collapse or subsequent SNe explosion (see
e.g. Pfahl, Rappaport, & Podsiadlowski, 2002; Podsiadlowski
et al. 2004). However, the distribution of the kick amplitudes
is usually obtained from the analysis of radio pulsar proper
motions (Hobbs et al. 2005).

The short-lived sudden kick in the phase space has a kick
direction uncorrelated with the orientation of the plane and
the system velocity that the object acquires because the ex-
plosion is also uncorrelated with the rotation in the Galaxy.


https://doi.org/10.1017/pasa.2017.17
https://doi.org/10.1017/pasa.2017.17

Table 1. Selected representative orbits, 0 and ® in degrees, || inkm s™'.

Taani and Vallejo

1

Orbit label  Initial position (xo, yo, Xo)  Initial position (rg, 6y, o)  Initial velocity (vx0, vy0, 020) [o]

0Ol (—=1.11,-9.2,0.008) (9.267,0.049, —96.87) (172.4, —53.0, —121.2) 217.302
02 (—2.14, -4.0,0.1) (4.538,1.26, —118.14) (15.8, —161.8, —137.4) 212.856
03 (6.88, —6.78,0.2) (9.661, 1.18, —44.58) (48.5, —44.7, —123.7) 140.185

Therefore, we follow Hansen & Phinney (1997) and find that
the distribution is consistent with Maxwellian distribution
of kick velocity. Finally, regarding the third element used in
the calculation of the initial condition, we choose the initial
circular rotation velocity of the NS before a kick. A plot of
averaged circular velocity for every parts of our galactic po-
tential model presented is in Figure 1. It rises linearly up to
a maximum value and then they become constant for larger
radii.

A distinct approach to the analysis of location and veloc-
ity of old NSs is based on the Monte Carlo simulation of
the evolution of a simulated sample with different initial pa-
rameters, and then their orbits are numerically integrated. We
would utilise the method of the Poincaré sections to explore
their motions. This has been studied in detail in Papers I and
II). Once we have selected the above, we can chose a set
of initial conditions. We will consider isolated NSs (exclud-
ing the MSPs and GCs), being of ages older than 10° yrs
and with large radial expansions, 10 > R > 25 Kpc. The ra-
dial distribution has an exponential scale length of Ae >,
where A = 1/0.07" kpc~'. Here, we assumed a maximum
birth height off the plane, z,x of 150 pc.

3 NUMERICAL RESULTS

3.1. Selection of initial conditions

We deal in this section with the analysis of the dynamical
evolution of a representative set of NSs’ Orbits in the Galaxy
calculated following the previously described distribution of
velocities. We aim to obtain a set of different orbits repre-
senting NSs at given distances from the axis. Our method
follows Arzoumanian (2002). We start by choosing a ran-
domly selected initial position, with boundaries located at
the Galacto-centric distance in the » < 25 kpc.

The initial velocity components of the NSs are also ob-
tained from a random sample, following the vector addition of
the three different velocities described in the previous section:
the Maxwellian distribution, the constant kick, and the circu-
lar motion velocities at the birth place. The direction of the
initial velocity vector is chosen randomly within the geomet-
ric shape of the potential. We start from a vector based on the
circular velocity. Then we add a random kick, in the form of
a local perturbation, with modulus following the Maxwellian
distribution (Hansen & Phinney 1997) and direction to the
radial direction. Finally, we add the third vector. This is a
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velocity vector with a modulus fulfilling a Maxwellian dis-
tribution with o, = 265 km s~' (Hobbs et al. 2005; Story
& Gonthier 2007) and o, =190 km s~! (Hansen & Phinney
1997). The direction is given by selecting randomly a di-
rection specified by choosing two angles, 0 < ® < 360 and
—90 < 6 < 90 (Kiel & Hurly 2009).

The equations above were solved numerically in three di-
rections using the -order Runge—Kutta method with adaptive
control step sizes (Press et al. 1992). The initial step size is
dt = 10~*Myr, and calculations of position and velocity in 3-
D then continue until 0.1 Myr with adjusted step sizes accord-
ing to the required accuracy. The data are recorded every 0.1
Myr and the total energy E, = %(vf + 0}2, + 1)12) + ®(R, 2)
is checked. The position and velocity then are used for input
of the next 0.1 Myr. The procedure used here enabled us to
control and achieve required levels of accuracy by using the
energy integral.

The Monte Carlo simulations were run and the results are
given here. One hundred initial conditions were obtained.
Different families are identified and we have selected O1, 02,
03. These orbits are listed in Table 1. A periodic orbitis found
when the initial and final coordinates coincide with an accu-
racy at least 10713, This is a representative set because they
show the typical behaviour of the whole distribution, with
very large Galactic radial expansion and they are rosette-like
type orbits. In addition, the orbits lie essentially in the plane of
the long and intermediate axes and so reinforces the shape of
the potential to some extent. The most general trajectory for
an object in this potential, which allowed us to clarify prop-
erties on the structure and configuration of the invariant tori
that we encounter in the vicinity of the periodic orbits. The
exact initial conditions for the periodic orbit are calculated
and listed in Table 1. The trajectories and 2-D projections
corresponding to the integration of every initial condition up
to a timescale of 10% yr are presented in Figures 2—5.

As we can see from Figure 2, the different initial heights
have an influence on z-direction due to the perturbations and
will naturally cause different trajectories, while if the objects
are located at different R, trajectories can be less different
and may prone to instability through the gravitational pertur-
bation.

It is noteworthy to mention here that if the sun received
a kick velocity (50 km s~!) in the Galactic plane (Repetto,
Davies, & Sigurdsson 2012), the typical orbit (considered as
a circular in the Galactic potential) would turn into a rosette
orbit.
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Figure 2. Trajectories corresponding to the different initial conditions of Table 2. These conditions are given in
enlarged scale, in order to better view the corresponding morphology. The upper-left panel corresponds to orbit O1.
The upper-right panel corresponds to orbit O2. The trajectory is recognised as a precessing banana orbit (see Evans &
Bowden 2014). The bottom-left panel corresponds to orbit O3.

3.2. Dynamical analysis

3.2.1. Poincaré sections

In Poincaré sections, periodic orbits appear in the surface of
section as a finite set of points. The amount of points depends
from the multiplicity of the periodic orbit. This method has
been extensively applied to 2-D Hamiltonians in a 2-D plane
(Lichtenberg & Lieberman 1992; Wei et al. 2010a; Taani et al.
2012b). While in 3-D systems, we have to project the Poincaré
surface to spaces with lower dimensions (Contopoulos 2004).

By setting y, v, equal to zero at t = 0 (remaining zero at all
times) in the Hamiltonian equation, the 3-D Poincaré sections
can be found in Figure 3. The points in these figures show the
3-D section. We generate 2 500 consequents of the orbits in
3-D (x, vy, 2). We find that there are sometimes several or-
bits from the same family plotted very close to each other.
This happens when the sequence of orbits within the family
reverses its progression in the x—z plane towards a given di-
rection and very close to the current space position, causing
an accumulation of orbits near this position with different
local velocities. The stable periodic orbits are surrounded by
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quasi-periodic orbits that bound to the surface of 3-D tori in a
3-D Hamiltonian system. These quasi-periodic orbits are rep-
resented in the surface of section by 2-D tori (Manos, Skokos,
& Antonopoulos 2012).

Aiming to gain a better picture, Figure 4 shows the 2-D
projection in x—z plane, meanwhile Figure 5 shows the 2-D
projection in x — v,. In the first figure, the intersection points
distribute in some regular lines on the Poincaré hyper-surface
section, while the x — v, projections are tend to have enclosed
curves. This behaviour could indicate a regular motion and
a quasi-periodic orbit. All the points along the orbits form
ensembles of invariant subset of phase space. The ensemble of
old NSs along given orbits for invariant blocks of the galaxy,
since the galaxies are seen as built not of stars, but of orbits
(Guarinos 1992).

3.2.2. Lyapunov asymptotic exponents

‘We can conclude from the inspection of these figures all orbits
seem to be regular orbits, because they are represented by a
tori in the surface of sections (Katsanikas & Patsis 2011).
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Figure 3. The 3-D Poincaré section x > 0, at y = 0 of the 3-D trajectories corresponding to the selected initial conditions. The upper-left
panel corresponds to orbit O1. The upper-right panel corresponds to orbit O2. The bottom left panel corresponds to orbit O3.

In order to crosscheck the results, we have computed the
Lyapunov asymptotic exponent for the selected orbits. The
ordinary, or asymptotic Lyapunov exponent can be defined
as

A(x,v) = lim ;111 1D (x, V]| ©6)

provided this limit exists (Ott & Yorke 2008). Here, ¢(x, t)
denotes the solution of the flow equation, such that ¢ (xy, 0) =
X, and D is the spatial derivative in the direction of an in-
finitesimal displacement v.

A system trajectory is chaotic if it shows at least one posi-
tive Lyapunov exponent, the movement is confined within
certain limited region, and the w-limit set is not periodic
neither composed of equilibrium points (Alligood, Sauer, &
Yorke 1996). Conversely, if the maximum asymptotic Lya-
punov exponent is zero, this reflects the existence of a regu-
lar motion (that is, a quasi-periodic orbit). Finally, a negative
value will reflect the existence of one attractor, but this is not
possible in a conservative system like the Hamiltonian we are
analysing.

The Lyapunov exponents are computed by calculating the
growth rate of the orthogonal semi-axes (equivalent to the
initial deviation vectors) of one ellipse centred at the initial
position as the system evolves. By solving at the same time,
the flow equation and the fundamental equation of the flow
(that is, the distortion tensor evolution), we can follow the
evolution of the vectors, or axes, along the trajectory, and in
turn, their growth rate. This method is described in Benettin
et al. (1980).
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The selection of the initial deviation vectors is of impor-
tance when computing the Lyapunov exponents during finite
integrations, leading to the so-called finite-time Lyapunov
exponents (Vallejo, Aguirre, & Sanjuan 2003). But when
one uses long enough integration times, the axes evolve to-
wards the fastest growing direction and the computation of the
growth rates return the asymptotic Lyapunov values (Vallejo,
Viana, & Sanjuan 2008).

We have used integration of up T = 10° time-units and the
resulting maximal Lyapunov values have been nearly zero in
all cases, confirming the analysis done using the Poincaré
section methods, it is seen that all orbits retain their regular
characteristics along the stellar evolution, the regular orbit
bound to the surface of 3-D torus (Kovar et al. 2013) in the
phase space forms a narrow curve with zero width. This may
be due to a different kick velocities due to SNe mass-loss
and natal kicks to the newly formed NS (Podsiadlowski et al.
2004). By examining the Poincaré section in each case, we
found that the system looks integrable and its trajectories lie
mostly on tori. These tori are represented by 2-D tori in the
surface of section. This is known the KAM (Kolmogorov—
Arnold-Moser) theorem (Kolmogorov 1954; Moser 1962;
Arnold 1963).

3.3. Orbits in the dark triaxial halo case

To investigate the possible effects of spiral structure on the
orbital characteristics of trajectory and projections, we adopt
the triaxial model of Law, Majewski, & Johnston (2009), that
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Figure 4. The projection on x—z plane of the 3-D Poincaré section. The upper left panel corresponds to orbit O1. The upper right panel
corresponds to orbit O2. The bottom left panel corresponds to orbit O3.

uses a triaxial halo as follows:
z
Do = U}%aloln(cl-xz + Coy? + Cixy + (;)2 + rﬁa.o) @)

where vhao = 128 km s™!, g, represents the flattening per-
pendicular to the Galactic plane. The various constants Cj,

C,, and C; are given by

cos? sin?
C = (—f’ + f’) )
qi 93
cos? sin?
G = ( i f) ©)
q5 qi
. 1 1
C; = 2sin¢gcos¢ (—2 - —2> (10)
q1 9>

The control parameters of this model are the orientation of
the major axis of the triaxial halo ¢ and its flattening ¢.. (A
detailed discussion on the effects of dark haloes and their
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role in the dynamics of the galaxies is presented in Vallejo &
Sanjaun 2015 and references there.)

This potential is triaxial, rotated, and more realistic. As
consequent, it reproduces the flat rotation curve for a Milky
Way-type galaxy and it can be easily shaped to the axial ra-
tios of the ellipsoidal isopotential surfaces (see Vallejo &
Sanjuan 2015 for details). We include computations of the
three orbits correspondence to O1, O2, and O3 which can be
found in realistic galactic-type potentials that incorporates
spiral arms (see Figures 6 and 7). The main parameters to
play with are the flattening (q.) and the orientation (¢) of the
dark halo, since the efficiency of bar formation depends very
strongly on the initial orientation of the galaxy disk (Lokas
et al. 2015). A lot of work on periodic orbits in the plane
of a rotating barred galaxy was carried out by Contopou-
los & Papayannopoulos (1980), Papayannopoulos & Petrou
(1983), Mulder & Hooimeyer (1984), Harsoula et al. (201 1a,
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2 4 6 8 10

Figure 5. The projection on x—v, plane of the 3-D Poincaré section. The upper-left panel corresponds to orbit O1. The upper-right panel
corresponds to orbit O2. The bottom left panel corresponds to orbit O3.

2011b), and Zotos (2014). All integrable triaxial potentials
have a similar orbital structure (e.g. de Zeeuw 1985; Val-
luri & Merritt 1998; Skokos 2001; Contopoulos 2004; Patsis
et al. 2009; Zotos & Carpintero 2013; Patsis et al. 2014).

Table 2. Maximum asymptotic Lyapunov exponents
for the selected representative orbits, two different ori-
entations of dark halo.

. . . . Orbit label Mo =0 A =90

The plots we delivered were done in spherical coordinates @=9 @ )
by two different values of the dark halo orientation (¢ = 0 o1 0.00015160387 0.00015288824

and ¢ = 90). Figures 6 and 7 (¢ = 0, g, = 1.25, and A rel- 02 4.5184949 4.3155085

03 1.9746514 2.0018652

atively small value and close to zero for O1) show regular
orbits (tube orbits with short and long axes) for oblate and
prolate cases, respectively. The effect of spiral structure is
presented for all orbits and seems to be chaotic regions on
the Poincaré sections (¢ = 90, ¢, = 1.5, and A > 1 for O2
and O3 in Figures 6 and 7). Thus, NSs in this potential follow
harmonic and rotating motion in each of the x, y, z directions
independently. These control parameter values are given in
Table 2 for all orbits. In Figures 6 and 7 (O1), when ¢ =0
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(stationary) g is then aligned at stable equilibrium point with
the Galactic x-axis, and the motion is stable along its axis. The
results in this case are comparable with non-triaxial, purely
logarithmic potentials. When ¢ = 90, g; (see Figures 6 and
7 for O2 and O3) is then aligned with the Galactic y-axis and
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Figure 6. Physical trajectories and the corresponding Poincaré sections y—vy, with plane x = 0 and v, > 0, for the selected representative

orbits, for a dark halo orientation of ¢ = 0.

it takes the role of g,. We note that tube tori appear in the
3-D projections of the spaces of section as soon as a pertur-
bation is introduced, even if it is a small one (Katsanikas &
Patsis 2011). At (¢, g,) = (0,1.25) the outer long-axis tube
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in Figure 6 is wider in the x direction than Figure 7 when
seen in projection. It is noteworthy to mention that Figure 6
is symmetric in the v,—y plane, while Figure 7 is not due to
the Coriolis force (Gajda, Lokas, & Athanassoula 2016).
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Figure 7. Physical trajectories and the corresponding Poincaré sections y—vy, with plane x = O and v, > 0, for the selected representative
orbits, for a dark halo orientation of ¢ = 90.

4 CONCLUSIONS itational potential models of normal non-barred galaxies. The
models consist of axisymmetric and a triaxial dark halo po-
We have found many interesting aspects for simulation of  tentials with three components: bulge, disc, and dark halo.

several prototypical orbits of isolated old NSs and their con- These are relatively simple potentials that can show complex
nections with the spatial distribution phenomena, through the ~ behaviours, which are found in more realistic galactic-type
long-term stellar dynamics. We employed 3-D Galactic grav- potentials. Then we found that orbits can rotate around the
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axis of symmetry of the phase space on a surface of section,
in the same direction in 3-D and 2-D loops for various val-
ues of the initial conditions for the family of axisymmetric
and triaxial models. We have used the Poincaré technique to
study the 3-D NS trajectories and their 2-D projections. It
is shown that both loop and family of orbits arise as a natu-
ral consequence of the dynamics of the stable periodic orbits
(with regular motion). In addition, the morphology of orbits
in triaxial potentials can determine the structure of triaxial
galaxy itself. There are 3-D invariant tori containing quasi-
periodic motions, these tori are represented by 2-D tori on
the surface of the section associated with phase space. In ad-
dition, the Lyapunov asymptotic exponent is equal to zero
in case of non-triaxial. However, it is clear that the chaotic
orbit have a non-zero real exponent, since the finite-time Lya-
punov exponents distributions reflect the underlying dynam-
ics (Vallejo et al. 2003). We also show that the phase space
in triaxial galaxies with a rotated halo is rich in regular and
chaotic regions, which is consistent with the analysis done by
the Poincaré cross-sections. The results of these motions are
strongly affected by the gravitational potential of the galactic
disk associated with the effect of kick velocities on the orbital
parameters. This can provide us a better visualisation of the

old NS dynamics.

The conclusions of the present research are considered as
an initial effort and also as a promising step in the task of
understanding the underlying dynamics of the phase space by
mapping the regular regimes in 3-D axisymmetric potential.
Future work will go steps further in detection of the old NSs
via accretion of the interstellar medium material which may
make them shine, and their weak luminosity could be detected
as soft X-ray sources (0.5-2 keV). However, eROSITA all-sky
survey have an excellent capabilities of available survey for
this kind of studies, and it should improve our knowledge of
Galactic NSs phenomenally for the next decade. eROSITA
will be about 20 times more sensitive than the ROSAT all sky
survey in the soft X-ray band (Merloni et al. 2012).
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