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Machine learning (ML) and artificial intelligence (AI) have been applied to determine the physical 

mechanisms involved in phenomena encoded within microscopy data [1], enabling ML/AI to rapidly 

become an indispensable part of physics research. However, the real-time connection between ML and 

microscopy—which enables automated and autonomous experiments for microscopy imaging and 

spectroscopy measurements—still lags. Until now, the search for interesting functionalities in 

microscopy experiments has been guided by auxiliary information from microscopy to identify potential 

objects of interest based on human intuition; the exploration and verification of physical mechanisms 

depend on human-based decision making, i.e., operators determine the parameters for subsequent 

experiments according to the previous experiment. Here, we developed a ML-driven automated 

experiment (AE) scanning probe microscopy (SPM) workflow (Figure 1) to learn the functionality and 

mechanism in materials in an automatic manner. We demonstrate the application of these ML-AE 

workflows by investigating ferroelectric materials, including studies of domain wall dynamics, domain 

switching mechanism, and the conductivity of topological defects. 

 

First, we deployed a Deep Kernel Learning (DKL) framework in Piezoresponse Force Microscopy 

(PFM) to explore the domain structure and physical properties of ferroelectric materials during the 

experiment, which allows problem-specific tuning of workflow and operation in real-time [2]. The 

structure of the DKL kernel provides insight into the physics of the process. This approach is used to 

explore the relationship between polarization switching or nonlinearity and domain structure in 

ferroelectric materials (Figure 2). Second, we developed a hypothesis-learning-driven SPM workflow 

for the exploration of domain switching in classical ferroelectric materials, which allows autonomous 

identification of mechanisms of bias-induced domain switching [3]. In this workflow, several possible 

hypotheses describing the system’s behavior are available to complement the automated experiment, the 

ML algorithm aims to establish the best model of the system’s behavior within the smallest number of 

steps following a certain optimization policy. Third, a workflow is developed to study predefined objects 

in SPM measurements [4]. This workflow first maps a large field of view and identifies the objects of 

interest, it subsequently performs zoomed-in measurements on the objects automatically to investigate 
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their properties. 

 

We implemented these approaches in SPM for ferroelectric materials investigation, however, these 

approaches can be applied for a broad range of physical and chemical microscopy experiments.  The 

workflows can be adapted to apply to a broad range of imaging and spectroscopy methods, e.g., electron 

microscopy, optical microscopy, and chemical imaging [5]. 

 

 

 
 

Figure 1. A schematic of the ML-driven automated SPM platform components. The platform includes 

an Oxford Instrument Asylum Cypher, an in-house LabView-based National Instruments hardware 

(LabView-NI), a Field Programmable Gate Arrays (FPGA), one computer for measurement control, and 

another computer with GPU (supercomputer) for machine learning analysis. In ML-SPM measurement, 

the FPGA controls the tip position by sending position as electrical signals to the Asylum Cypher and 

simultaneously sends a trigger to LabView-NI for measurement; LabView-NI generates excitation 

waveform and acquires data; The data transfer between analysis computer and measurement computer is 

enabled through a LAN cable. 
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Figure 2. (a-c) DKL-PFM results of a PbTiO3 thin film, the DKL exploration used (a) a PFM amplitude 

image as structure image, which indicates both a/c and c/c domains in the film. During experiment, DKL 

actively explores the relationship between domain structure and local hysteresis loop. (b-c) show the 

DKL predictions of hysteresis loop area based on 200 hysteresis loops and the corresponding DKL 

uncertainty, respectively. (d-f) Hypotheses-learning results of a BiFeO3 thin film, which demonstrate the 

domain switching mechanism in relation to applied voltage and time. (d), experiment data of written 

domain size as a function of writing parameters including writing voltage and time. (e), model rewards 

during the hypotheses learning, indicating that model 3 gained a higher reward than other models, and 

its reward gradually increased at the latter part of the experiment. (f), prediction of domain size as a 

function of writing parameters by four different model 3. 
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