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ABSTRACT

High-rate lithium ion batteries with long cycling lives can provide electricity grid stabilization services in the presence of large fractions 
of intermittent generators, such as photovoltaics. Engineering for high rate and long cycle life requires an appropriate selection of 
materials for both electrode and electrolyte and an understanding of how these materials degrade with use. High-rate lithium ion batteries  
can also facilitate faster charging of electric vehicles and provide higher energy density alternatives to supercapacitors in mass transport 
applications.

High-rate lithium ion batteries can play a critical role in decarbonizing our energy systems both through their underpinning of the 

transition to use renewable energy resources, such as photovoltaics, and electrification of transport. Their ability to be rapidly and 

frequently charged and discharged can enable this energy storage technology to play a key role in stabilizing future low-carbon elec-

tricity networks which integrate large fractions of intermittent renewable energy generators. This decarbonizing transition will require 

lithium ion technology to provide increased power and longer cycle lives at reduced cost. Rate performance and cycle life are ultimately 

limited by the materials used and the kinetics associated with the charge transfer reactions and ionic and electronic conduction.  

We review material strategies for electrode materials and electrolytes that can facilitate high rates and long cycle lives and discuss the 

important issues of cost, resource availability and recycling.
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REVIEW

DISCUSSION POINT
	•	� In our review, we consider the important contribution  

that electrochemical energy storage, and in particular lithium 
ion batteries, can make to increase the stability and reliability  
of electricity grids in the presence of high fractions of 
renewable energy generators and, in particular, photovoltaics. 
Unlike other energy storage applications, where energy 
density may be paramount, we propose that for the electricity 

grid stabilization functionality what is important is high rate 
and long cycle life. The attributes of high rate and long cycle 
life are also required for increased electric vehicle adoption. 
Material strategies that may be able to address these 
requirements are critically reviewed and an assessment is 
provided of economic considerations and resourcing  
problems that may be incurred with large volume battery 
manufacturing for renewable energy integration into  
electricity grids.
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Introduction
In an 1883 interview, Thomas Edison said of energy storage1:

“Scientifically, storage is all right, but, commercially, as ab-
solute a failure as one can imagine. You can store it and hold 
it, but it is gradually lost, and will all go in time. Its efficiency, 
after a certain number of charges have been sustained, begins 
to diminish, and its capacity and efficiency both diminish af-
ter a certain time in use, necessitating an increased number of 
batteries to maintain a constant output.”

More than 130 years on, electrochemical energy storage is 
now poised to play a critical role in decarbonizing our energy 
systems, both through its underpinning of the transition to 
use renewable energy resources, such as photovoltaics (PV), 
and its central role in electrification of transport.2 Although, 
to-date, battery technology development has been driven by 
the miniaturization of mobile electronics and, more recently, 
energy storage for electric vehicles (EVs), it is becoming 
increasingly important to consider also its role in electricity 
generation from low-carbon energy resources. Without wide-
scale replacement of fossil fuels with near-zero carbon energy 
sources for electricity generation, the life cycle emission 
damages that result from battery production and charging 
can be greater for plug-in hybrid and full-battery EVs than 
for hybrid EVs due to the emissions from coal-fired power 
plants used for electricity generation.3,4

PV is the fastest growing renewable energy technology 
(40% per year over the last decade5–7) and has the fastest manu-
facturing experience (learning) rate of all renewable energy 
technologies (22.8% over the past 40 years8). By 2050, PV 
could supply 30–50% of the world’s electricity, with the 
levelized cost of electricity from PV expected to be in the 
range of US$0.02–$0.06/kWh.7 Especially for regions in the 
“sun belt” (see Fig. 1), PV provides a valuable and cost-effective 
means to contribute to the decarbonization of the electricity 
sector, especially if part of a mix of near-zero carbon electric-
ity generators.7,9–11 Unlike fossil fuel resources, solar energy 
is ubiquitous, and so once a PV system has been installed, the 
price of the electricity generated is predictable and not sub-
ject to resource pricing changes.12 This can provide a global 
energy stability that has not previously been possible with 
energy systems that rely on resources distributed unevenly 
across the world.2

The energy storage attributes required to facilitate increased 
integration of PV in electricity grids are not generally well 
understood. While load shifting and peak shaving of residential 
PV generation13–17 may be achieved using batteries with relatively 
low power rates, power generation from solar PV can change 
unpredictably on sub-second time scales18–22 and destabilize 
electricity networks. In the absence of technological solutions, 
this unpredictable intermittence can limit penetration levels of 
PV and indeed also other intermittent resources, such as wind. 
However, there is another view that use of wind and PV in 
concert with parallel grid-forming inverters23–26 and rapidly 

responding frequency stabilization services that utilize energy 
storage17,22,27–33 can enable more flexible and resilient electric-
ity grids.2,17 With the rapid reduction in costs of PV that are 
occurring, reduced and sustainable electricity prices may be 
possible and the full advantages of transport electrification can 
be realized.

Lithium ion batteries (LIBs)34–36 have been identified as 
the most promising option for high-rate energy storage (i.e., 
fast charging and high power) at acceptable cost.22,30,33,35,37–41  
In a comparison of the ability of selected electrochemical 
energy storage technologies to maintain the inherent power 
f luctuations of PV systems to within acceptable ramp rates of 
<10%/min, Jiang et al. found that high-rate LIBs required a 
smaller battery volume compared to other energy storage 
technologies when high compliance levels were required.22 
For the particular case of a 7.2 MW PV system (covering an 
area of 52 Ha), use of a high-rate LIB required only ∼40% and 
∼4% of the volume of a high-energy LIB and a lead acid bat-
tery, respectively, to maintain the ramp rate within <10%/
min with 99% compliance (see Fig. S1). This significantly 
reduced volume, taken together with the longer cycle life of 
the high-power LIB (>104 compared with <1000 cycles for the 
high-energy density LIB and the lead acid battery), suggests 
the potential for lower “service” costs, or costs per cycle,  
of high-power LIBs with long cycle lives compared to other 
alternatives. High-power LIBs can also allow faster charging 
of EVs, thereby promoting greater adoption of consumer 
EVs.36,42

Although economically competitive, cost-per-cycle services 
will require the design and engineering of battery modules 
(from cells), and associated thermal and power management 
systems, rate performance, and cycle life are ultimately lim-
ited by the materials used in cells and the kinetics associated 
with the charge transfer reactions and ionic and electronic 
conduction. The requirement of long cycling life, which 
necessitates that parasitic side reactions are minimized, will 
be critical for the cost-effectiveness of LIB solutions for 
future f lexible electrical power systems due to the need for 
rapid charging/discharging on a much more frequent basis 
than expected for most other LIB applications (e.g., EVs,  
residential storage, and portable electronics). This paper 
first reviews technological strategies that can be used to 
enhance the rate capability of LIBs; then subsequent sections 
discuss the projected costs of LIBs, the resource availability 
and recycling that would be required for high-volume manu-
facturing of LIBs to support high penetration levels of PV 
generation.

LIB technology
LIBs are based on the “rocking-chair” concept introduced by 

Armand and others in the 1970s36,43 The cell technology (see 
Fig. 2), which was first commercialized by Sony in the 1990s,34–36 
comprises a graphite anode, a layered metal oxide intercalation 
cathode, and an electrolyte comprising a Li ion salt dissolved 
in organic liquid. Commercially produced LIBs can achieve 
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volumetric energy densities exceeding 770 Wh/L,44 allowing  
for driving ranges of more than 500 km (Tesla Model S P100D, 
Tesla, Fremont, California). Power densities for these cells tend 
to be limited to <1 kW/L, but new high-power 21700-format 

cells may be able to push this toward 1.5+ kW/L.45 Limitations 
to charging/discharging rates can arise from anode and cathode 
materials, electrolyte selection, and fabrication process.

The low lithiation potential of graphite (∼0.1 versus Li+/Li) 
results in the formation of a solid electrolyte interphase (SEI) at 
the graphite surface due to the reductive decomposition of elec-
trolyte species at low potentials.46–48 The SEI electronically pas-
sivates the graphite anode but still allows the transport of Li 
ions to the electrode surface on charging; however, ionic trans-
port is partially restricted by the SEI, which limits charging 
rates. The continued growth of the SEI during cycling, espe-
cially at high charging rates,49 limits the number of times the 
battery can be cycled. Additionally, at high rates, Li has a pro-
pensity to “plate” on the graphite electrode, resulting in Li den-
drites that propagate through the separator and cause short 
circuits, leading to thermal runaway and fires.50–55 These limi-
tations are exacerbated at high rates due to large Li-ion concen-
tration overpotentials49,56,57 that can evolve as the ions diffuse 
along the tortuous pathways presented by the flake-like graph-
ite particles of electrodes.58

There have been numerous developments since the 1990s in 
layered metal oxide intercalation cathode materials, especially 
with regard to increased capacity and/or voltage, both design 
attributes leading to increased energy density.59,60 Cathode 
materials used in commercially produced LIBs include LiCoO2 
(LCO), LiMn2O4 (LMO), LiFePO4 (LFP), LiNi0.8Co0.15Al0.05O2 
(NCA), and LiNixMnyCo1−x−yO2 (NMC). Although typically LIB 
cathodes are not rate limiting, use of higher charging rates can 
result in significant reductions in capacity and increased battery 
impedance.55,61

Figure 1.  Map of annual mean net surface solar radiation. The differences in solar radiation over different regional areas are highlighted with a color 
gradient (reproduced from ECMWF; available at https://software.ecmwf.int/static/ERA-40_Atlas/docs/section_B/parameter_nsfosrpd.html).

Figure 2.  Schematic diagram of an intercalation Li ion rechargeable battery. 
Most commercially produced LIBs comprise a graphite anode, a metal oxide 
cathode (e.g., LCO, LMO, NCA, and NMC), and an organic electrolyte with a Li 
ion salt (from Dunn et al.37 and reprinted with permission from AAAS).
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Technological design strategies
The key advantage of LIBs for high-rate applications lies is 

the fast diffusion rates of Li in electrode materials combined 
with its low mass and high electronegativity, allowing for high 
gravimetric and volumetric energy and power densities.62 
Although the rate capabilities of battery cells are best discussed 
in terms of the specific gravimetric and/or volumetric power  
and energy densities which take into account the mass/volume of 
all components of the entire cell, the rate capability of electrode 
materials is useful to report and consider in terms of capacity and 
cyclability at comparative C-rates or current densities with appro-
priate consideration for areal loading and active material con-
tent. The C-rate is the rate at which an electrode (or device) is 
discharged relative to its theoretical capacity [e.g., a 1C rate 
means that the (dis)charge current will fully (dis)charge an elec-
trode or device in 1 h; 10C is 10 (dis)charges per hour or 6 min per 
complete (dis)charge]. The term “high-rate” is often used with-
out a clear definition; however, for this article, we assume that it 
applies to batteries that can be operated with a C-rate exceeding 
1C, which is consistent with the definition used by Eftekhari,63 
and is a reasonable definition for large-scale applications, such as 
grid scale and EVs, though we acknowledge that high-rate is a rel-
ative term and a value of 5C–10C may be more appropriate for 
smaller battery cells in portable devices with more manageable 
strategies for heat generation.

Electrode materials

Since dendritic growth of Li on graphite anodes is enhanced 
at larger current densities,64,65 high-rate LIBs tend to use anode 
materials that can be cycled at higher potentials for increased 
safety. Crystalline materials on the binary Li2O–TiO2 composi-
tion line [e.g., the spinel form Li4Ti5O12 (LTO)66–68] have been 
used as an alternative anode material for high-rate LIBs due to 
their higher Li ion insertion potential of ∼1.5 V versus Li+/Li.69–71 
Although the higher reaction potential decreases the energy 
density of the battery and in doing so increases the cost per kilo-
watt hour stored, it diminishes the risk of Li plating and dendrite 
formation during cycling at high rates. Additionally, electrolyte  
decomposition is thermodynamically less favorable at the higher  
voltages. This minimizes SEI formation and reduces impedance  
on charging/discharging thus improving rate capability. The 
higher voltage also permits the use of the Al as a current collec-
tor (which is lighter and cheaper than Cu) as Li alloying with Al 
does not occur until 0.3 V versus Li+/Li.72

Spinel LTO has an excellent cycle life due to its thermal sta-
bility and negligible volume change on cycling.56,68,70 It was 
the first commercialized non-carbonaceous anode material for 
LIBs, with Toshiba and Altairnano employing anodes compris-
ing micrometer-sized secondary LTO particles for higher rates 
and longer cycle lives in their higher rate LIB products, which 
have achieved power densities of 4 kW/kg (6.5 kW/L).73–76 
However, the specific reversible capacity of LTO electrodes is 
limited to less than 175 mAh/g (Li4+xTi5O12, 0 ≤ x ≤ 3),70,77 with 
its charging/discharging rate being limited by the poor conduc-
tivity of the micrometer-sized particles used in the electrodes.67 

In recent years, these issues have been addressed through 
use of C-coating and nanostructuring, allowing LTO capacities 
exceeding 150 mAh/g to be achieved at rates of 10C78,79; how-
ever, these strategies negatively impact the volumetric capacity 
and may not be commercially viable for some applications.

Various crystalline TiO2 polymorphs have also been explored 
as alternatives to LTO. Fully lithiated TiO2 (i.e., LiTiO2 corre-
sponding to 100% reduction of Ti4+ to Ti3+ on lithiation) has a 
theoretical capacity of 335 mAh/g, which is only slightly less 
than that of graphite (372 mAh/g). Among the many crystalline 
TiO2 polymorphs reported, rutile, anatase, brookite, and the 
“bronze” form TiO2–B80 have been shown to have Li electro-
chemical activity, and all have theoretical volumetric capacities 
that significantly exceed that of LTO (see Table S1).70 However, 
full lithiation of these TiO2 polymorphs can only be approached 
using nanostructures,70,71,81,82 and it has been largely through 
the study of nanostructured TiO2 polymorphs that differences 
in Li ion charging/discharging rates and capacities arising from 
crystal structure have been observed. Of particular interest, has 
been the high rate and cycle life reported for the bronze poly-
morph TiO2–B.70,83–86 The faster charge storage reported for 
this form has been attributed to freely accessible parallel chan-
nels for Li ion transport perpendicular to the (010) face83 in the 
relatively open bronze polymorph.70

Another strategy for increasing the energy density of Ti-based 
anodes without significantly compromising their rate capability is 
to incorporate additional transition metals.87–93 Higher capaci-
ties are theoretically possible, especially if the valence of the  
added metal can change by more than one (e.g., through use of 
Mo, W, V, and Nb). The addition of heavier metals may not 
necessarily increase the specific energy density of the resulting 
cells;61 it is more likely to lead to gains in volumetric perfor-
mance. Of particular interest has been the family of TiO2–Nb2O5 
(TNO) materials due to their high theoretical capacity (up to 
400 mAh/g with multielectron redox; see Table S1) arising from 
the idealized Ti4+/Ti3+ and Nb5+/Nb3+ redox couples.87,88,92–94 
Toshiba have adopted this strategy in their high-power SciB 
cells, which employ a TiNb2O7 anode comprising C-coated 
micrometer-sized particles and an LiNi0.6Co0.2Mn0.2O2 (NCM) 
cathode to achieve power and energy densities of 10 kW/L 
(charging for 10 s at 50% state of charge) and ∼350 Wh/L, 
respectively.93 Although this energy density surpasses that of 
similar cells with LTO anodes (177 Wh/L),40 it is still only half 
that possible with state-of-the-art high-energy density cells.

This approach of using open structural motifs can present 
advantages over nanostructuring in achieving higher rate elec-
trodes without compromising capacity because volumetric 
energy density is not reduced due to pore volume (i.e., they have 
greater tap density). Griffith et al. adopted this approach with  
NbxWyOz 3D open lattice structures. The multielectron redox 
capabilities of both Nb5+ and W6+ lead to theoretical capacities 
for NbxWyOz compounds of 300–400 mAh/g (similar to the  
titanium niobium oxides); however it remains open as to whether 
full two electron redox will be accessible under stable cycling 
conditions (especially at high rates) even though multielectron is 
achievable in both individual metal oxide families. With electrodes 
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comprising Nb18W16O93 micrometer-sized solid particles, 
capacities of ∼150 mAh/g at 10C and ∼75 mAh/g at 100C 
were realized (see Fig. 3).95 Nanostructuring or the use of 
amorphous forms of mixed metal oxides96 may provide paths 
to further increases in (gravimetric) capacity for these multiple 
transition metal anode materials.

Although this discussion has focused more on anode materi-
als due to the need to find alternative safe anode materials for 
high-rate devices, achievement of high rate in cells requires that 
the Li insertion and extraction processes and electron transport 
are rapid in both the anode and cathode materials. Currently, 
most cathode materials are limited by the conduction of Li ions 
in the crystalline cathode material. Consequently, large concen-
tration overpotentials occur at high lithiation rates, resulting in 
electrolyte oxidation, dissolution of cathode materials, and cor-
rosion of the current collector.50,97 Metals released by cathode 
oxidative decomposition can diffuse through the electrolyte to  
deposit on the anode and/or contribute to SEI growth and fur-
ther degrade battery performance.55,61 Collectively, these aging 

mechanisms result in increased impedance and reduced cycle 
life of the battery and may necessitate a narrowed cycling volt-
age (thus smaller utilized capacity) to be used for high-rate  
operation. The material strategies that have been discussed 
above could also be applied to the engineering of high-rate 
cathode materials, although additional research is required to 
understand the electrode degradation mechanisms with high 
rate usage at high oxidation potentials.

The rate capability of both anode and cathode materials can 
also be enhanced through the use of carbon coating and nanosiz-
ing. An often-quoted example of the value of carbon coating is 
the story of FePO4, a material that was initially considered to be a 
low-rate cathode material due the poor electronic conductivity of 
both oxidized and reduced forms and poor ionic conductivity of 
micron-size particles.98,99 The use of nanomaterials decreases 
both the Li and electron transport lengths. Additionally it reduces 
the probability that Fe antisite defects block ion transport in the 
1D tunnels (aligned in the [010] crystallographic direction). It 
was found that the rate of charging/discharging these electrodes 

Figure 3.  Structure of the bronze-like Nb18W16O93. (a) Crystallographic structure of the bronze-like Nb18W16O93 showing open the structural motif that 
facilitates fast Li ion diffusion through the lattice, (b) electrochemical voltage profiles as a function of lithium concentration and C-rate, (c) derivative curve 
of the voltage profiles, (d) electron microscope image showing the micrometer-sized particles of the mixed metal oxide, and (e) gravimetric capacity as a 
function of C-rate for two different NbxWyOz materials and cycling limits (reproduced with permission from Griffith et al.95).
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was also dependent on the Li ion transport across the surface of 
the particles as the ions can only move into the bulk of the crys-
talline FePO4 in 1D channels.99–101 By carbon coating the 
surfaces of the particles, charging capacity was significantly 
increased.102,103 Herle et al. proposed that the increased rate 
capability was due to the formation of a highly conductive sur-
face layer of iron phosphide (FeP) arising from the carbother-
mal reduction of Fe at C-contaminated FePO4surfaces.104 Kang 
and Ceder reported the fabrication of a conductive Li4P2O7-like 
amorphous phase on the surface of the particles using a heat 
treatment to improve the rate capability of LFP cathodes. With 
this process, they were able to achieve electrode capacities of 
>100 mAh/g at 200C and 60 mAh/g at 400C, although using an 
electrode with a very dilute concentration of active material.99 
In view of these remarkable results, they concluded that elec-
trode materials with extremely high-rate capability will “blur the 
distinction between supercapacitors and batteries,”99 a point 
that we will return to later in this article. More recent work has 
shown that the high rates achieved in LFP are associated with 
the ability of the material to operate via a metastable LixFePO4 
solution during high-rate cycling; the classical model of interca-
lation in material that operates via a two-phase reaction, involv-
ing nucleation, growth, and movement of a phase boundary is 
no longer appropriate, at least at high rates.105–108

Electrode morphology and structuring

Micro- and nanostructuring of electrode particles can be 
used to achieve higher capacity and rate capability in LIBs.109,110 
In particular, it can (i) increase the electrode/electrolyte inter-
face area thereby enabling increased charge storage; (ii) pro-
vide shorter path lengths for both electron and Li ion diffusion 
that can improve high-rate performance; and (iii) more readily 
accommodate the strain associated with Li insertion/removal,  
which can enable increased cycle life. However, set against these 
advantages are some disadvantages, which include (i) increased 
undesirable electrode/electrolyte reactions due to higher sur-
face area leading to higher impedance, reduced rate, and dimin-
ished cycle life; (ii) less-dense packing of active material (i.e., 
lower “tap density”), leading to lower volumetric energy densi-
ties; and (iii) potentially more complex and/or costly electrode 
synthesis, which preclude use in large-scale battery manufac-
turing.109 When optimizing electrode materials specifically for 
high-rate performance, the contribution of micro- and nanos-
tructuring to the kinetics of charge storage can be complicated 
by how the porosity is introduced in the electrode. For electrode 
materials in which electronic conductivity and charge transfer 
reactions are not rate limiting, ion transport in the host materi-
als and/or the percolating electrolyte of 3D porous materials 
can become limiting.111

Numerous approaches have been proposed to structure elec-
trode materials at the microscale to increase electrolyte access. 
These include laser structuring,112,113 hard templating (e.g., 
colloidal crystal),114–116 and soft templating114,117; however, it is 
necessary to establish the C-rates over which the structuring or 
templating process effectively increases capacity or capacity 
retention with high rates.112 If the Li ion concentration becomes 

depleted at surfaces due to fast cycling, this can result in large 
concentration overpotentials, which limit the rate of the charge 
transfer reactions.112 At high charging/discharging rates, highly 
tortuous Li ion diffusion paths can restrict access to some 
regions of the current collecting surface, which can significantly 
curtail the capacity.118 One approach by which high capacity can 
be retained with high-rate cycling is to use a dual-scale porosity, 
which combines channels, coated with a porous matrix, aligned 
to be perpendicular to the current collector.111 This arrangement 
can facilitate Li ion access to a 3D volume without depletion of ions 
at the electrode surface. It can also allow for thicker electrodes to 
be used for increased capacity.118 It is important that both elec-
trodes in a device can support high charging and discharging rates. 
For example, although laser structuring of a graphite anode can 
increase capacity over the range of 1–3C, at faster rates, the device 
performance can become limited by the cathode.112

Nanoscale structuring, through formation of nanoparticles, 
nanotubes, nanofibers, and nanowires, can also be used to 
increase Li ion flux at surfaces.109,119–127 Additional benefits can 
arise from (i) space charge effects at the electrode/electrolyte  
interfaces and (ii) spatial confinement, both factors having 
the potential to change the thermodynamics of charge transfer 
reactions from that observed in bulk materials.109,125,128,129 
Nanoconfinement (see Fig. 4) can impact ion transport in the 
electrolyte, phase transitions, and solvation structures.125,130–132 
It has been shown to enhance charge storage in electrochemical 
capacitors, which have emerged as high-rate complementary 
energy storage solutions to batteries.133–135

Hierarchical micro-nanostructured electrodes can exploit 
the positive attributes of nanostructures for increased surface 
area, nanometer diffusion lengths, nano-confinement effects, 
and microstructures for improved stability and ease of handling 
during electrode preparation.119,136 They can be fabricated 
through the aggregation of nanosized crystallites to form larger, 
porous agglomerates, which can be then further grouped into 
micrometer-sized grains (e.g., see Fig. 5).79 The resulting mul-
tiscale porosity can enable effective penetration of the electrolyte, 
with the distance for Li ion diffusion lengths being minimized 
within the electrochemically active nanoparticles. The applica-
tion of this hierarchical structuring process using LTO nano-
particles enabled the achievement of a capacity of 170 mAh/g 
at 50C with minimal capacity fading after 1000 cycles.79 The 
higher capacities observed in the hierarchically structured elec-
trode in comparison with bulk LTO were partially attributed to 
the formation of a Ti-rich surface layer.79,137 This highlights 
that nanostructuring may also introduce benefits in terms of 
metal–oxide surface stoichiometry138 in addition to improved 
electrolyte access and greater accommodation of strain. Under-
standing the surface atomic structure is also critical to the 
understanding of electrolyte decomposition side reactions that 
result in gas generation and SEI formation.138

Another common approach to fabricating hierarchical 
micro-nanostructures is to coat 3D microstructured current col-
lectors (e.g., metal foams), which provide a percolating network 
for both electron and ion pathways with an electroactive nanoma-
terial.136 Coating can be achieved by thermal oxidation,139,140 
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electrodeposition,141 casting of a slurry,136,142,143 or surface 
anodization.144,145 With processes where the active material is 
directly grown on the metal scaffold, the need for binder can be 
eliminated. Typical fluoropolymer binders are insulating and 
electrochemically inactive; they decrease gravimetric energy 
density and increase the resistive losses and hence power losses, 
especially under high-rate operating conditions. Binder mate-
rial can also swell in commonly used organic electrolytes, 
leading to poor stability and irreversible capacity losses.146,147 
Anodization of metal foams in fluoride-containing electrolytes 
to form nanotube arrays on the foam surface is one approach 
that has been successfully used to fabricate hierarchically struc-
tured electrodes.144,145 Figure 6 depicts the growth of TiO2−x 
nanotubes directly on a Ti foam current collector. The foam 
allows increased Li ion access to the surface structures and the 
20–50 nm thickness of the TiO2−x nanotube walls improves elec-
tronic conductivity of the electrode.145

A key practical concern for all structuring methods is whether 
a process can be practically scaled to manufacturing and whether 
the improvements in rate or cycle life that can be achieved result 
in a commercial advantage. Nanostructuring generally reduces 

tap density and so it is necessary to consider volumetric as well 
as gravimetric energy and power densities.95,148 Also, although 
the larger surface area introduced by nano/micro-structuring 
can be beneficial for high-rate performance, it can increase 
the probability of undesirable side reactions and consequently 
reduce cycle life. To minimize this possibility, as is the case for 
supercapacitors, highly pure materials will be required and this 
can increase battery cost.

Electrolyte selection

The rate and cycle life of LIBs depend strongly on the electro-
lyte used.149 Most currently produced LIBs utilize electrolytes 
comprising Li ion salts (e.g., 1.0 M LiPF6) in a mixture of organic 
solvents. Common solvents used include ethylene carbonate 
(EC), dimethyl carbonate (DMC), diethyl carbonate, propylene 
carbonate (PC), and ethyl methyl carbonate.62,150 Organic sol-
vents permit a voltage operating window that is approximately 
three times larger than that possible with equivalent salt con-
centrations in aqueous electrolytes due to their greater oxida-
tive and reductive stability compared with water. This wider 
voltage window results in LIBs having enhanced gravimetric 

Figure 4.  Nanoconfinement of a hydrated ion in a 3D carbon nanopore. Schematics showing (a) a low level (i.e., retention of some hydration) and (b) a higher 
level of nanoconfinement. The light blue, red and dark blue circles represent the bare ion, the hydrated ion, and the cutoff radius for which the degree of 
confinement is determined, respectively. In this model, the ions are assumed to be hard spheres that can approach the electrode surface as close as their 
bare ion radius (reproduced with permission from Prehal et al.135).

Figure 5.  Hierarchical micro-nanostructure through aggregation. Schematic depicting the hierarchical aggregation of crystalline nanoparticles into the 
progressively larger microparticles used for electrode fabrication (adapted from Odziomek et al.79 and reproduced under Creative Commons Attribution 
4.0 International License).
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and volumetric energy densities compared with batteries that 
use aqueous electrolytes. However, the ionic conductivities of 
the organic electrolytes are lower (e.g., 1–12 mS/cm for 1.0 M 
LiPF6 in EC/DMC62,151) than those of aqueous electrolytes 
[(e.g., 600–825 mS/cm for ∼1.2 g/cm3 H2SO4 (aq.) used in 
lead acid batteries152]. To help compensate for the low conduc-
tivity of the electrolyte, high-rate Li-ion cells typically use thin 
electrode stacks (e.g., ≤100 μm thick).118

One rate-limiting property of the organic electrolytes is their 
low Li+ transference number, t+, of <0.5.153,154 This means that 
the ionic current is carried predominantly by the counter ion 
and not the Li+ on charging and discharging. The low transfer-
ence number arises from the preferential solvation of Li+ com-
pared with its counter ion in carbonate solvents and results in a 
concentration gradient that limits the rate at which the battery 
may be charged or discharged. It also limits the charging voltage, 
and hence energy density of the battery, through an increased 
concentration overpotential and this, in turn, places an upper 
limit to the thickness of the electrodes used. Doyle et al. showed 
(by simulation) the importance of using an electrolyte with a 
high t+ for high-power batteries and demonstrated significant 

enhancement in terms of rate capability when using a t+ = 1.0 Li 
ion polymer electrolyte over an electrolyte with t+ ≈ 0.2 even 
with an order-of-magnitude decrease in electrolyte conductivity 
in the former.153 Improvements in energy density were especially 
evident at high charging/discharging rates when Li ions became 
depleted with low t+ electrolyte due to their slower transport to 
the electrode surface.

One approach to increasing the Li ion transference number 
in organic electrolytes is to use larger and hence lower mobility 
polymeric anions.155 Design of such electrolytes requires maxi-
mizing both the free Li ion concentration and localized charge 
density of the anion groups on the polymer backbone, while 
keeping the polymer content as low as possible so as to not 
overly increase the electrolyte viscosity.155 However, to-date, 
very few attempts at improving ion conductivity have been real-
ized through this approach because the choice of anions suita-
ble for Li ion electrolytes is limited62 and anion suitability also 
depends on their electrochemical stability at electrode surfaces. 
Instead, solvent composition tailoring has been the main tool 
for manipulating electrolyte ion conductivity due to the availa-
bility of a vast number of candidate solvents. For solvated Li 

Figure 6.  Hierarchically structured TiO2−x anode formed by anodization of a Ti foam current collector. (a) and (d) Low- and high-magnification images of the 
Ti foam, (b) scanning electron microscope image of amorphous TiO2−x nanotubes formed on the foam surface, and (c) distribution of pore sizes as deter-
mined by X-ray computed tomography. Galvanostatic charge/discharge curves are shown in (e) and (f) for amorphous and crystalline TiO2−x nanotube arrays 
on Ti foams, respectively (adapted from Jiang et al.145).
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ions to migrate quickly under an electric field, ideally the sol-
vent molecules prevent the Li cations and the electrolyte anions 
from forming close ion pairs. Solvents with a higher dielectric 
constant screen ion interactions; however, these solvents typi-
cally have a higher viscosity, which acts to slow ion movement in 
an electric field. Consequently, solvent mixtures are used, with 
one component selected for ion shielding (i.e., high dielectric 
constant) and the other(s) selected for their low viscosity.62

As mentioned in the earlier discussion of LIB Technology, an 
SEI typically forms at LIB anode surfaces due to reduction reac-
tions involving the chemical species in the electrolyte. Migration 
of ions through this surface layer is typically the rate-limiting step 
for most LIB chemistries.46,47,62 An analogous layer called the 
cathode–electrolyte interface (CEI) forms on cathodes by oxida-
tion reactions involving electrolyte components at high poten-
tials but the impact of this thin or possibly transient layer on 
battery cell performance is generally considered to be less signif-
icant.50,97 The nature of the formed SEI depends on many factors,  
including the anode material and electrolyte composition. When 
the SEI continues to grow on cycling, it increases the cell imped-
ance and eventually consumes the finite quantity of Li, limiting 
the cycling life of the battery. Consequently, some control over 
SEI formation and growth is critical for the achievement of 
LIBs with high rate capability and cycle life. One option is to use 
electrode materials with a higher (i.e., less negative) reduction 
potential (e.g., those based on early transition metals, as dis-
cussed previously for electrode materials), so that the parasitic 
reactions and hence SEI formation can be minimized; however, 
the increased rate and cyclability are achieved at the cost of 
capacity due to the significantly reduced lower cell voltage. 
Furthermore, the less-passivated surfaces of the high poten-
tial anodes can give rise to challenges, such as gas generation 
and pressure buildup in the cell.156–158

Another option is to engineer an artificial SEI to achieve 
high and stable conduction of Li ions to the electrode surface.48 
The SEI composition can be tuned by using additives in the elec-
trolyte that will react at the surface before the electrolyte sol-
vent and anion species.47 Another option is to carefully select 
the choice of solvent as some solvent species have been shown 
to form more stable insulating layers without seriously impact-
ing the Li ion conduction. Takenaka et al. confirmed, using 
atomistic simulations (see Fig. 7), that an EC-based SEI film can 
prevent excess reduction of electrolyte on a graphite anode sur-
face while still allowing Li ions to pass through. In contrast, a 
PC-based film could not sufficiently insulate the anode surface, 
allowing continued electrolyte reaction despite PC only differ-
ing from EC molecules by the presence of their methyl side 
groups.159 This example highlights the need for a greater under-
standing of SEI formation and, in particular, use of simulations 
to guide the development of electrolytes for stable SEI layers 
with high conductivity for high-rate LIBs.47,48,159

Another electrolyte strategy that may offer a path toward 
longer cycle life and perhaps also higher rate is to use super-
concentrated, or high ion-to-solvent ratio, electrolytes.160–162 
Although lowering ionic conductivity,160 this newer class of 
electrolyte has been proposed to provide greater oxidative 

stability (allowing higher cycling voltages and commensurately 
larger energy densities), reduced volatility and f lammability, 
and enhanced Li ion interfacial transport.161 A key reason for 
the continued use of the 1.0 M LiPF6 electrolyte in commer-
cially produced LIBs has been the ability for this salt to protect 
against the corrosion of the Al current collectors by forming an 
AlF3 coating on the cathode through the reaction of hydrogen 
f luoride (HF, a breakdown product of PF6

−)163 with Al.61,164 
However, HF also acts to dissolve the metal oxide cathode mate-
rial,165 releasing metal ions, which can subsequently deposit on 
the anode where they further catalyze the reduction of electrolyte 
solvent.166,167 This degradation process consumes Li ions and 
thickens the SEI for graphite anodes and, in doing so, decreases 
both the rate capability and cycle life of the battery.

Wang et al. have demonstrated the use of the more stable 
LiN(SO2F)2 (LiFSA) salt mixed with DMC at very high salt: 
solvent molar ratios of 1:1.1 (compared with 1:10.6 for the 1.0 M 
LiPF6 in EC/DMC) to achieve cathode stabilities at potentials 
of up to 5 V versus Li+/Li, promising long cycle life and high 
rate capability with enhanced safety. This superconcentrated 
electrolyte forms a 3D network of anions and solvent molecules 
that coordinates the Li ions and effectively inhibits the dissolution 
of both the Al cathode current collector as well as the transition 
metal oxides at potentials of up to 5 V.160 In electrolytes with 
salt-to-solvent molar ratios of >1:2, the solvent molecules are 
mostly coordinated by Li ions in the primary solvation shell, 
and this decreases the reactivity of the solvents molecules at 
the electrolyte surfaces.162 Although some sacrifice in electro-
lyte conductivity results with high salt-to-solvent electrolytes 
(∼1.1 mS/cm for LiFSA at 30 °C with 1:1.1 molar ratio)160 

Figure 7.  Atomistic models of SEI films formed over a graphite anode. 
Models showing (a) an EC-based electrolyte, and (b) a PC-based electrolyte 
(green = SEI film; blue = Li+; gray = PF3, C2H4, or C3H6; purple = EC or PC; 
orange = PF6) (reproduced with permission from Takenaka et al.159).
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compared with ∼6 mS/cm (1:10.6 molar ratio) for 1.0 M LiPF6 
in EC/DMC,151 the improvement in cycle life that may result 
from the diminished reactivity at electrode surfaces may be val-
uable for services, such as grid stabilization, depending on the 
cost of the salt.

Strategies considered together

Typically, any high-rate LIB device design will draw upon 
more than one of the aforementioned design strategies; how-
ever, there are also interdependencies. For example, changes in 
electrolyte to optimize SEI formation need to take into account 
the materials used for the electrode. If an anode comprising an 
early transition metal is adopted, specifically for increased cycle 
life, then additives or specific solvent combinations to enhance 
the formation of an ion conductive SEI may not be required 
as the higher voltage minimizes reactions involving electrolyte 
species. Similarly, if electrode structuring is used, consider-
ation should be directed at how a structured electrode volume 
with different diffusion length scales impacts the electronic and 
ionic conductivity of the electrode and even SEI formation. 
Identifying the rate-limiting steps and processes on charging 
and discharging both the anode and cathode becomes the key to 
optimizing battery cells for improved rate and cycle life.

This independency of strategies highlights the importance of 
improving our understanding of all mechanistic aspects of LIBs 
if we are to effectively engineer storage devices capable of high 
rates and very long cycle lives at costs that are competitive for 
grid stabilization services. The above discussion of SEI forma-
tion highlights the importance of simulation and modeling in 
this next phase of LIB design and evolution. The electrochemi-
cal reactions involved in these cells are complex, and greater 
understanding of the rate-limiting steps in fast charge transfer 
reactions is required. For many years, it has been assumed that 
Li ion diffusion limits charging/discharging rates168; however, 
recent reports are now suggesting that the charge transfer 
kinetics may also become limiting in cases where Li ion diffu-
sion may be rapid.145,169 This suggests that more advanced sim-
ulation models may be required to predict ionic and electronic 
flow though percolating porous networks and rates of charge 
transfer reactions.169,170

Integration into systems
A possibly advantageous attribute of high-rate LIB electrodes 

is that the linearly responsive capacitive-shaped (potential ver-
sus charge) discharge curves typically observed with fast elec-
trode reactions can enable energy storage control systems to 
more reliably determine the state-of-charge (SoC) of the  
battery. Figure 8(a) shows discharge curves for a TNO/NCM 
LIB (1C capacity = 49 Ah) at different C-rates. Unlike typical 
flat battery discharge profiles, for the range of rates shown, it is 
possible to determine the SoC of the battery due to the con-
stantly declining voltage with discharge. Knowledge of the SoC 
during charging and discharging can reduce the complexity of 
integrating energy storage functionality in power electronics and 
facilitate more flexible grid stabilization systems that maintain 

the LIB in an optimal SoC by rapid-response charging from the 
grid when demand for electricity is low. We note, however, that 
too large variations in voltage require additional circuitry to 
manage. Integration of energy storage SoC into optimization 
algorithms for ramp rate control31,32 and frequency stabiliza-
tion29,33 may provide a way to increase the battery lifetime by 

Figure 8.  Capacitive-shaped discharge curves of high-rate LIBs allowing 
the SOC to be beneficially used when integrating energy storage with power 
electronics. (a) Capacitive-shaped discharge curves for a high density  
TNO/NCM LIB at different C-rates at 25 °C (reproduced with permission from 
Takami et al.93), (b) configuration of a PV system with an energy storage 
system (ESS) integrated in the PV module junction box for ramp rate control, 
and (c) compliance (%) for a range of different ESS technologies to achieve 
a power ramp rate of 10% per min power assuming that the ESS in (b) has 
a maximum volume of 0.1 L (adapted with permission from Jiang et al.22).
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decreasing the frequency and duration of deep discharges or 
charges, which tend to degrade LIBs.50 If the cost of LIBs can 
be decreased significantly (see later discussion), then it may 
become possible to integrate compact storage elements within  
smart junction boxes of PV modules (e.g., in DC–DC power 
optimizers or microinverters) to limit the ramp rate of gener-
ated power in the presence of intermittent insolation [see 
Figs. 8(b) and 8(c)].22 This can contribute to the smoothing 
of high-frequency power changes when exporting power to 
the grid.

The linearly responsive capacitive-shaped discharge curves 
and the higher discharge rates that can be achieved with high-
rate LIBs present an opportunity for high-rate LIBs to replace 
higher cost electrochemical capacitors in industrial applica-
tions.95,99 Kang and Ceder reported the ability for LIB electrode 
materials to support volumetric power densities of ∼65 kW/L 
(∼25 kW/L at a battery level),99 which exceeds that of a Maxwell  
BCAP3000 P270 supercapacitor (∼7.5 kW/L, Maxwell Technolo-
gies, San Diego, California).171 Provided that such high-rate LIB 
materials can also approach the long cycle lives of supercapaci-
tors, they may find applications in regenerative breaking, emer-
gency power supplies, and heavy transport.172 Their increased 
energy density compared with carbon-based supercapacitors may 
also enable new solar-powered applications, which use embedded 
localized power sources. Examples include solar-powered tools 
and devices for remote areas and compact integrated solar- 
powered devices for space operation (e.g., energy buffers for 
solar-powered antennae for CubeSats).173

Cost considerations
Schmidt et al. recently reported product energy and power 

price manufacturing experience curves for four categories of Li 
ion technology: (i) electronic (C ∼ 1); (ii) EV (C > 1); (iii) residential 
(C ∼ 1); and (iv) utility (C ∼ 1).174 Of these categories, the product 
power price of EV LIB packs were lowest [<US2015$100/kW 
(capacity)], with an experience rate of 16%. From the indicative 
C rates for each category, it is assumed that the residential and 
utility categories are focused more on “energy” or capacity 
applications (e.g., load shifting) and that the higher power EV 
category is perhaps the best indicator of manufacturing experi-
ence for high-rate LIBs that could be used for grid stabilization 
applications. EV LIBs are expected to approach material costs 
(currently estimated at <US$100/kWh) and so it is reasonable 
to expect that product costs of electrochemical storage for elec-
trical grid stabilization could approach similar values.174

However, what is critical for grid stabilization is the “service 
cost” of providing power stabilization. If alternative options for 
frequency stabilization are costly, then higher energy storage  
system costs may be tolerated for this application than for EVs 
and longer term storage.36 Service costing is further compli-
cated by the fact that the expected cycle life of LIBs performing 
high-rate charging/discharging for grid stabilization may differ 
from that when the same battery technology is used for other 
applications. For example, as mentioned above, if control systems 
implement strategies, which maintain the SoC at an optimal 

state, then deep cycling may be minimized, thereby prolonging 
the battery life over use cases where batteries are fully dis-
charged/recharged.

In Lazard’s 2016 analysis of cost of storage,175 LIBs were 
assessed to be the most cost-effective technology for frequency 
regulation (lower end electricity cost of US$159/MWh) and 
one of the cheaper options for peaker replacement (lower end 
electricity cost of US$285/MWh). In 2017, Lazard revised their 
reporting structure to consider (i) in front of the meter use cases 
(microgrid, peaker replacement, and distribution) and (ii) behind 
the meter use cases (residential and commercial).176 They 
viewed frequency regulation as a service that could be provided 
by each of peaker replacement, microgrid, and commercial 
(behind the meter) use cases and concluded that LIBs are the 
only energy storage technology that can span this operational 
range with a cost-competitive service. Further reduction in 
costs from manufacturing experience and increased cycle life is 
expected to increase this advantage even further.

Resource availability
An often-cited concern for large-scale adoption of LIBs for 

portable electronics, EVs, and renewable energy integration 
is the availability of Li. Lithium is the 25th most abundant 
element in the earth’s crust and it is found all over the world, 
including in the oceans.177 However, extraction of Li requires 
both favorable environmental surroundings and scientific 
expertise. Most Li production, typically in the form of Li2CO3 
or LiOH,178 comes from Australia, Chile, Argentina, and 
China. It is extracted from continental brines in salt lakes, peg-
matite minerals, such as spodumene (LiAlSi2O6) and petalite 
(LiAlSi4O10), or clays.177,179,180 Global economically extracta-
ble reserves are heavily concentrated in these four countries, 
but additional resources exist in Bolivia, United States, Canada,  
Congo, Russia, and Serbia, with smaller reserves and production  
in Portugal, Brazil, and Zimbabwe.179,180 Driven by the growth 
in manufacturing of LIBs, global Li production has increased 
by about 20% per annum since 2000,178 and in 2017, the LIB 
market accounted for about 50% of the 43,000 metric tons of Li 
consumed.180 The economically recoverable global Li reserves 
are estimated to be 16 million tons, with total resources of 53 
million tons being estimated by the 2018 U.S. Geological 
Survey analysis.180 Figures for available reserves are constantly 
changing and the fraction of total resources that are economi-
cally extractable depends on the maturity of extraction tech-
nology177,181–183 and value of the commodity, the latter having 
more than tripled in the last five years for Li.184

Recent analysis suggests that total demand for Li could 
increase to 80,000 tons per annum by 2030,179 and consequently, 
a number of new Li mining projects are already underway.178 
Lithium is also extensively used in glasses and ceramics (appli-
cations that are also predicted to increase in the future); how-
ever, availability of Li is not expected to significantly impact LIB 
production in the next 20 years. Narins suggests that the world 
could triple its 2016 production and still have enough Li  
for 135 years solely from currently known reserves and not 
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considering new sources of Li that are being investigated.185 
Despite these abundant reserves, Li2CO3 prices rose from 
approximately US$5,000 per metric ton in 2010178 to US$15,000–
24,000 per ton early in 2018.180 This increase was due to a sup-
ply–demand imbalance,178 and the correction of this imbalance 
is already being observed as prices are falling. Morgan Stanley 
are predicting a 45% cost reduction by 2021 due to production 
exceeding demand,186 though there is some concern that the 
required ramp-up in production may not be fast enough to meet 
demand.187,188

Greater concern should arguably be directed at other metals 
that are required by LIBs and, in particular, Cu and Co. Due to 
its thermal and electrical conductivity and its resistance to cor-
rosion, Cu is a major industrial metal, ranking third after Fe and 
Al, in terms of quantities consumed. The electronics industry is 
the largest consumer of Cu and accounted for 39% of global  
demand in 2015.189 Copper is required for electrical connectors 
and cables, a demand that is expected to increase with grow-
ing adoption of LIBs to support transport electrification and 
renewable energy integration. Each EV requires four times as 
much Cu as its gasoline counterpart, and this comparison does 
not include the Cu used for recharging infrastructure and elec-
tricity generation.185 In addition, renewable energy generation 
is estimated to require 11–40 times as much Cu as conventional 
fossil fuel-based power generation.190,191 In an assessment of 
the resources required to support future large-scale implemen-
tation of solar PV, wind, and concentrated solar thermal power, 
Hertwich et al. concluded that Cu was the only material for 
which supply may be a concern.190 Copper is currently one of the 
most recycled metals192; however, the projected future demand 
suggests that improved recycling processes may be required as 
the average recycled content remains below 50%.192,193

In 2017, 48,000 metric tons of Co was consumed by the bat-
tery industry (from a total world production of 110,000–117,000 
metric tons194,195) and this usage is expected to increase to 
127,000 metric tons by 2025 based on estimates of LIB produc-
tion for transport electrification.195,196 As for Li, Co is not 
extraordinary rare, but it is difficult to extract in purities high 
enough to justify production, and so currently, most Co is 
extracted as a by-product of Cu and Ni mining. Additionally,  
unlike the reasonable geographical diversity of Li resources,  
the Democratic Republic of Congo (DRC) extracted more than 
50% of the world’s Co in 2017.188,196,197 Added to concerns about  
the political stability of the DRC, China is dominant in Co refin-
ing188,198 and relies on the DRC for over 90% of its Co supply.197 
These supply chain factors make for a risky situation for LIB 
producers, and this situation may be reflected in the Co price 
rapidly increasing from ∼US$30,000 per metric ton in 2014 
to over US$80,000 in 2017.196 From the long-term perspec-
tive of global economic reserves or total resources, there is 
only about half as much Co as Li and a LiCoO2 LIB requires 
several times more Co than Li by mass. In consideration of  
these factors, a global shift is occurring in the research and 
commercial battery communities toward less Co-intensive 
cathode materials, such as NCA (LiNi0.8Co0.15Al0.05O2) and 
Ni-rich NMC (LiNi0.8Mn0.1Co0.1O2), however there are already 

concerns about the long-term sustainability of Ni. One advan-
tage that high-rate LIBs may leverage is that they can make 
use of the less resource-constrained LiFePO4 cathode mate-
rials, as energy density may not be such a premium for grid sta-
bilization functionality. Additionally, by using higher voltage 
anode materials, Al can substitute for Cu as the anode current 
collecting metal, which decreases the total electrode cost and 
mass and eases the demand on Cu resources.

Recycling
Lead-acid batteries are extensively recycled due to the toxic-

ity of Pb, the relatively simple recycling process, and govern-
ment regulations. In the United States, they are managed as 
Universal Waste and must be recycled.199 However, similar recy-
cling regulations do not exist for LIBs, and currently, most LIBs 
are landfilled as recycling has not been proven to be economi-
cally viable at scale.184 Recycling of LIBs is complex because of 
the mix of materials used in the batteries. If spent LIBs are 
burned as a general type of solid waste, they will produce haz-
ardous gases, such as HF due to the fluorinated electrolyte.200 
In addition, Li is extremely reactive with water, making fire a 
risk for both landfilling and also recycling. Recycling of LIBs 
typically involves pyrometallurgical (smelting) and/or hydro-
metallurgical (chemical separation) processes.184,201,202 Pyro-
metallurgical methods are usually limited to recovering Co, Ni, 
and Cu; however Al, Mn, and Li are lost in the slag.184 Addition-
ally, these processes require a large amount of energy with 5000 
MJ of heat being required per metric ton of battery treatment 
(for smelter and gas cleanup).184 Hydrometallurgical processes 
can comprise many different chemical treatments (e.g., precip-
itation, solvent extraction, ion exchange, and electrowin-
ning).184,203 Typically, they have a lower energy budget and also 
allow the recovery of Al and Li, but they require batteries to be 
mechanically crushed before treatment and can generate a large  
volume of process effluent that must be disposed of or recycled.184 
Most industrialized LIB recycling processes can only recover 
secondary raw materials, which are not suitable for direct reuse 
in new batteries.204 Direct recycling, where battery materials 
(e.g., electrodes) are recovered and reintroduced into the man-
ufacturing process with little additional processing methods,  
has been demonstrated at laboratory scale. This approach, 
which often employs supercritical CO2 to first remove the flam-
mable electrolyte, can recover most battery materials.184

In 2016, almost 95% of the spent batteries from consumer 
electronics products were landfilled.204 To add to this disposal 
load, in 2018 end-of-life LIBs from EVs are expected to start 
contributing to landfill. China alone will produce 2.5 billion used 
LIBs with a mass of about 500,000 metric tons by 2020.200 
Although disposing of LIBs in landfill can result in heavy metals 
and toxic electrolytes leaching into the groundwater202 and 
fires,204 to date, there has been limited environmental regula-
tion and support from governments for collecting, sorting, and 
recycling spent LIBs.184 This situation is compounded by the 
fact that there is a large uncertainty regarding the cost of LIB 
recycling and hence the economic viability. If the cost of raw 
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materials is less than the economically viable price for recycled 
materials, then there remains little incentive to recycle. To add 
to this situation, there is also uncertainty about the material 
composition of future LIBs. For example, if current efforts to 
reduce Co usage in batteries are successful, then the economic 
viability of recycling processes may be reduced even further.204 
This uncertainty discourages development of highly specialized 
processes as they may become obsolete with material changes.

A number of recent reviews conclude that a regulatory driver 
may be necessary to develop and maintain a viable LIB recycling 
industry.184,205,206 Of particular concern is the treatment of 
spent LIBs, so that they are less hazardous to the environment. 
Current recycling processes, both pyrometallurgical and hydro-
metallurgical, can introduce additional environmental concerns 
(e.g., contaminated wastewater, gas eff luent), and so further 
research is required to develop alternative recycling processes 
that do not introduce secondary pollution.202 Recycling could 
be especially beneficial to LIB manufacturers that lack an eco-
nomic raw material supply. So, for example, to become a major 
LIB manufacturer, the United States may need to build new sup-
ply chain capabilities around recycled materials.184

Conclusions and future perspectives
High-rate LIBs can play a critical role in decarbonizing our 

energy systems both through their underpinning of the transi-
tion to use renewable energy resources and electrification of 
transport. In particular, they can play a key role in future flexible 
and resilient low-carbon electricity networks. PV is the fastest 
growing renewable energy technology, growing 40% per year 
over the last decade and having the fastest manufacturing expe-
rience rate of all renewable energy technologies. Because demand 
and generation are constantly varying with a high fraction of PV 
generators connected to the electricity grid, fast-reacting energy  
storage systems can be used to inject and withdraw power to 
stabilize electricity supply. The energy-power balance of current- 
generation LIBs suggests their suitability for this application; 
however, emerging material systems that can respond rapidly and 
have a long cycle life will be required for future grid-stabilization 
services to be provided at low cost.

Although high-rate LIBs require the design and engineering of 
battery modules and associated thermal and power management 
systems, rate performance and cycle life are ultimately limited by 
the materials used in cells and the kinetics associated with the 
charge transfer reactions and ionic and electronic transport. This 
review has summarized the technological strategies that can be 
used to enhance the rate capability of LIBs and, in particular, we 
reviewed the electrode and electrolyte material selection, elec-
trode morphology, or structuring for enhanced electrolyte access 
to electrochemically active surfaces and electrode fabrication pro-
cesses. Recent reports of high-rate electrodes are highlighting the 
need for advanced simulation models to predict ionic and elec-
tronic conduction though percolating materials and rates of charge 
transfer reactions to identify and address rate-limiting processes.

The linearly responsive capacitor-shaped discharge curves of 
new materials combined with high-rate charging and discharging 

can simplify integration with power electronics as the SoC is 
more easily determined. This is particularly relevant for integra-
tion with PV-generated power and may enable embedded distrib-
uted storage elements in electronic control systems. Finally, 
reduced battery cost will be critical for competitively priced 
PV-generated electricity. Manufacturing of high-rate LIBs for 
grid stabilization can directly build on the EV manufacturing 
experience for LIBs, and so costs are expected to approach mate-
rial cost limits, which have been estimated to be in the order of 
US$100/kWh. However, what is critical for grid stabilization is 
the service cost, and if alternative options for this service come at 
a high cost, then higher LIB costs may be tolerated here than for 
other battery applications. Recent reports suggest that LIBs are 
the only currently available energy storage technology able to 
provide support for the peaker, microgrid, and commercial 
(behind the meter) use cases, and this already competitive posi-
tion can only be improved by LIBs with increased rate perfor-
mance and perhaps more importantly increased cycle life.

Supplementary material
To view supplementary material for this article, please visit 

https://doi.org/10.1557/mre.2019.4.

Acknowledgments
This work has been supported by the Australian Research 

Council (ARC) through grants DP170103219 and FT170100447 
(Future Fellowship—Alison Lennon). Yu Jiang and Charles Hall 
acknowledge the support of the Australian Government through 
their Research Training Program Scholarships. Kent J. Griffith 
acknowledges funding from the Winston Churchill Foundation 
of the United States and a Herchel Smith Scholarship. Kent J. 
Griffith and Clare P. Grey thank the EPSRC for a LIBATT grant 
(EP/M009521/1). The views expressed herein are not necessar-
ily the views of the Australian Government, and the Australian 
Government does not accept responsibility for any information 
or advice contained herein.

REFERENCES:

	1.	� Edison T.: Storage Batteries (New York, 1883). Available at: https://
archive.org/stream/pacruralpres25unse/pacruralpres25unse_djvu.txt 
(accessed October 22, 2018).

	2.	� Tsao J.Y., Schubert E.F., Fouquet R., and Lave M.: The electrification of energy: 
Long-term trends and opportunities. MRS Energy Sustain. 5, E7 (2018).

	3.	� Michalek J.J., Chester M., Jaramillo P., Samaras C., Shiau C.-S.N.,  
and Lave L.B.: Valuation of plug-in vehicle life-cycle air emissions  
and oil displacement benefits. Proc. Natl. Acad. Sci. U. S. A. 108(40), 
16554–16558 (2011).

	4.	� Traut E., Hendrickson C., Klampfl E., Liu Y., and Michalek J.J.: Optimal 
design and allocation of electrified vehicles and dedicated charging 
infrastructure for minimum life cycle greenhouse gas emissions and cost. 
Energy Policy 51, 524–534 (2012).

	5.	� IRENA: Electricity Storage and Renewables: Costs and Markets to (2030). 
Available at: http://www.irena.org (accessed July 1, 2018).

	6.	� IRENA: Renewable Energy Statistics. Available at: http://www.irena.org/-/
media/Files/IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_
Energy_Statistics_2018.pdf (accessed March 8, 2019).

	7.	� Creutzig F., Agoston P., Goldschmidt J.C., Luderer G., Nemet G., and 
Pietzcker R.C.: The underestimated potential of solar energy to mitigate 
climate change. Nat. Energy 2, 17140 (2017).

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

https://doi.org/10.1557/mre.2019.4
https://archive.org/stream/pacruralpres25unse/pacruralpres25unse_djvu.txt
https://archive.org/stream/pacruralpres25unse/pacruralpres25unse_djvu.txt
http://www.irena.org
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_Energy_Statistics_2018.pdf
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_Energy_Statistics_2018.pdf
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_Energy_Statistics_2018.pdf
https://doi.org/10.1557/mre.2019.4


14  n  MRS ENERGY & SUSTAINABILITY  //  V O L U M E  6   //  e 2   //  www.mrs.org/energy-sustainability-journal

	8.	� ITRPV: International Technology Roadmap for Photovoltaic Results 
(2017). Available at: http://www.itrpv.net/Reports/Downloads/ 
(accessed October 6, 2018).

	9.	� Jacobson M.Z., Delucchi M.A., Bazouin G., Bauer Z.A.F., Heavey C.C., 
Fisher E., Morris S.B., Piekutowski D.J.Y., Vencill T.A., and Yeskoo T.W.: 
100% clean and renewable wind, water, and sunlight all-sector energy 
roadmaps for 139 countries of the world. Joule 1(1), 108–121 (2017).

	10.	� Clack C.T.M., Qvist S.A., Apt J., Bazilian M., Brandt A.R., Caldeira K., 
Davis S.J., Diakov V., Handschy M.A., Hines P.D.H., Jaramillo P., 
Kammen D.M., Long J.C.S., Granger Morgan M., Reed A., Sivaram V., 
Sweeney J., Tynan G.R., Victor D.G., Weyant J.P., and Whitacre J.F.: 
Evaluation of a proposal for reliable low-cost grid power with 100% wind, 
water, and solar. Proc. Natl. Acad. Sci. U. S. A. 114(26), 6722–6727 (2017).

	11.	� Rogelj J., Popp A., Calvin K.V., Luderer G., Emmerling J., Gernaat D., 
Fujimori S., Strefler J., Hasegawa T., Marangoni G., Krey V., Kriegler E., 
Riahi K., van Vuuren D.P., Doelman J., Drouet L., Edmonds J., Fricko O., 
Harmsen M., Havlík P., Humpenöder F., Stehfest E., and Tavoni M.: 
Scenarios towards limiting global mean temperature increase below 1.5 °C. 
Nat. Clim. Change 8(4), 325–332 (2018).

	12.	� Jones-Albertus R., Cole W., Denholm P., Feldman D., Woodhouse M., and 
Margolis R.: Solar on the rise: How cost declines and grid integration shape 
solar’s growth potential in the United States. MRS Energy Sustain. 5, E4 
(2018).

	13.	� Babrowski S., Heinrichs H., Jochem P., and Fichtner W.: Load shift potential 
of electric vehicles in Europe. J. Power Sources 255, 283–293 (2014).

	14.	� López M.A., de la Torre S., Martín S., and Aguado J.A.: Demand-side 
management in smart grid operation considering electric vehicles load 
shifting and vehicle-to-grid support. Int. J. Electr. Power Energy Syst. 64, 
689–698 (2015).

	15.	� Aziz M., Oda T., Mitani T., Watanabe Y., and Kashiwagi T.: Utilization of 
electric vehicles and their used batteries for peak-load shifting. Energies 
8(5), 3720 (2015).

	16.	� Gnann T., Klingler A.-L., and Kühnbach M.: The load shift potential of 
plug-in electric vehicles with different amounts of charging infrastructure. 
J. Power Sources 390, 20–29 (2018).

	17.	� Byrne R.H., Nguyen T.A., Copp D.A., Chalamala B.R., and Gyuk I.: Energy 
management and optimization methods for grid energy storage systems. 
IEEE Access 6, 13231–13260 (2018).

	18.	� Marcos J., Marroyo L., Lorenzo E., Alvira D., and Izco E.: Power output 
fluctuations in large scale pv plants: One year observations with one second 
resolution and a derived analytic model. Prog. Photovoltaics Res. Appl. 
19(2), 218–227 (2011).

	19.	� Pourmousavi S.A., Cifala A.S., and Nehrir M.H.: Impact of high 
penetration of PV generation on frequency and voltage in a distribution 
feeder. In Proceedings of the 2012 North American Power Symposium 
(NAPS) (IEEE, 2012); pp. 1–8.

	20.	� Shah R., Mithulananthan N., Bansal R.C., and Ramachandaramurthy V.K.: 
A review of key power system stability challenges for large-scale PV 
integration. Renewable Sustainable Energy Rev. 41, 1423–1436 (2015).

	21.	� Anvari M., Lohmann G., Wächter M., Milan P., Lorenz E., Heinemann D., 
Tabar M.R.R., and Joachim P.: Short term fluctuations of wind and solar 
power systems. New J. Phys. 18(6), 063027 (2016).

	22.	� Jiang Y., Fletcher J., Burr P., Hall C., Zheng B., Wang D.-W., Ouyang Z., 
and Lennon A.: Suitability of representative electrochemical energy 
storage technologies for ramp-rate control of photovoltaic power. J. Power 
Sources 384, 396–407 (2018).

	23.	� Kroposki B., Johnson B., Zhang Y., Gevorgian V., Denholm P., Hodge B., 
and Hannegan B.: Achieving a 100% renewable grid: Operating electric 
power systems with extremely high levels of variable renewable energy. 
IEEE Power Energy Mag. 15(2), 61–73 (2017).

	24.	� Serban I. and Ion C.P.: Microgrid control based on a grid-forming inverter 
operating as virtual synchronous generator with enhanced dynamic 
response capability. Int. J. Electr. Power Energy Syst. 89, 94–105 (2017).

	25.	� Denis G., Prevost T., Debry M., Xavier F., Guillaud X., and Menze A.: The 
migrate project: The challenges of operating a transmission grid with only 
inverter-based generation. A grid-forming control improvement with transient 
current-limiting control. IET Renew. Power Gener. 12(5), 523–529 (2018).

	26.	� Chunsheng W., Hua L., Zilong Y., Yibo W., and Honghua X.: Voltage and 
frequency control of inverters connected in parallel forming a micro-grid. 
In Proceedings of the 2010 International Conference on Power System 
Technology (IEEE, 2010); pp. 1–6.

	27.	� Carrasco J.M., Franquelo L.G., Bialasiewicz J.T., Galvan E., 
PortilloGuisado R.C., Prats M.A.M., Leon J.I., and Moreno-Alfonso N.: 
Power-electronic systems for the grid integration of renewable energy 
sources: A survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006).

	28.	� Marcos J., Marroyo L., Lorenzo E., and García M.: Smoothing of PV power 
fluctuations by geographical dispersion. Prog. Photovoltaics Res. Appl. 
20(2), 226–237 (2012).

	29.	� Delille G., Francois B., and Malarange G.: Dynamic frequency control 
support by energy storage to reduce the impact of wind and solar generation 
on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4), 
931–939 (2012).

	30.	� Swierczynski M., Stroe D.I., Stan A.I., Teodorescu R., and Sauer D.U.: 
Selection and performance-degradation modeling of LiMO2/Li4Ti5O12 and 
LiFePO4/C battery cells as suitable energy storage systems for grid 
integration with wind power plants: An example for the primary frequency 
regulation service. IEEE Trans. Sustain. Energy 5(1), 90–101 (2014).

	31.	� Marcos J., Storkël O., Marroyo L., Garcia M., and Lorenzo E.: Storage 
requirements for PV power ramp-rate control. Sol. Energy 99, 28–35 (2014).

	32.	� Schnabel J. and Valkealahti S.: Energy storage requirements for PV power 
ramp rate control in northern Europe. Int. J. Photoenergy 2016, 11 (2016).

	33.	� Greenwood D.M., Lim K.Y., Patsios C., Lyons P.F., Lim Y.S., and Taylor P.C.: 
Frequency response services designed for energy storage. Appl. Energy 203, 
115–127 (2017).

	34.	� Nishi Y.: The development of lithium ion secondary batteries. Chem. Rec. 
1(5), 406–413 (2001).

	35.	� Goodenough J.B. and Park K.-S.: The Li-ion rechargeable battery:  
A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013).

	36.	� Blomgren G.E.: The development and future of lithium ion batteries.  
J. Electrochem. Soc. 164(1), A5019–A5025 (2017).

	37.	� Dunn B., Kamath H., and Tarascon J.-M.: Electrical energy storage for the 
grid: A battery of choices. Science 334(6058), 928–935 (2011).

	38.	� Zaghib K., Mauger A., Groult H., Goodenough J., and Julien C.: Advanced 
electrodes for high power Li-ion batteries. Materials 6(3), 1028 (2013).

	39.	� Thorbergsson E., Knap V., Swierczynski M., Stroe D., and Teodorescu R.: 
Primary frequency regulation with Li-ion battery based energy storage 
system—Evaluation and comparison of different control strategies.  
In Proceedings of the 35th International Telecommunications Energy 
Conference (IEEE, 2013); pp. 1–6.

	40.	� Hesse H., Schimpe M., Kucevic D., and Jossen A.: Lithium-ion battery storage 
for the grid—A review of stationary battery storage system design tailored for 
applications in modern power grids. Energies 10(12), 2107 (2017).

	41.	� ARPA-E: Duration Addition to Electricity Storage (DAYS): Technical 
Overview Document. Available at: https://arpa-e.energy.gov/sites/
default/files/documents/files/DAYS_ProgramOverview_FINAL.pdf 
(accessed March 8, 2019).

	42.	� Sbordone D., Bertini I., Di Pietra B., Falvo M.C., Genovese A., and 
Martirano L.: EV fast charging stations and energy storage technologies:  
A real implementation in the smart micro grid paradigm. Electr. Power 
Syst. Res. 120, 96–108 (2015).

	43.	� Armand M.B.: Intercalation electrodes. In Materials for Advanced Batteries, 
Murphy D., ed. (Springer US, Boston, Massachusetts, 1980); pp. 145–161.

	44.	� Janek J. and Zeier W.G.: A solid future for battery development. Nat. Energy 
1, 16141 (2016).

	45.	� Quinn J.B., Waldmann T., Richter K., Kasper M., and Wohlfahrt-Mehrens M.: 
Energy density of cylindrical Li-ion cells: A comparison of commercial 
18650 to the 21700 cells. J. Electrochem. Soc. 165(14), A3284–A3291 
(2018).

	46.	� An S.J., Li J., Daniel C., Mohanty D., Nagpure S., and Wood D.L.: The state 
of understanding of the lithium-ion-battery graphite solid electrolyte 
interphase (SEI) and its relationship to formation cycling. Carbon 105, 
52–76 (2016).

	47.	� Peled E. and Menkin S.: Review—SEI: Past, present and future. J. Electrochem. 
Soc. 164(7), A1703–A1719 (2017).

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

http://www.itrpv.net/Reports/Downloads/
https://arpa-e.energy.gov/sites/default/files/documents/files/DAYS_ProgramOverview_FINAL.pdf
https://arpa-e.energy.gov/sites/default/files/documents/files/DAYS_ProgramOverview_FINAL.pdf
https://doi.org/10.1557/mre.2019.4


MRS ENERGY & SUSTAINABILITY  //  V O L U M E  6   //  e 2   //  www.mrs.org/energy-sustainability-journal  n  15

	48.	� Wang A., Kadam S., Li H., Shi S., and Qi Y.: Review on modeling of  
the anode solid electrolyte interphase (SEI) for lithium-ion batteries. 
npj Comput. Mater. 4(1), 15 (2018).

	49.	� Somerville L., Bareño J., Trask S., Jennings P., McGordon A., Lyness C., 
and Bloom I.: The effect of charging rate on the graphite electrode of 
commercial lithium-ion cells: A post-mortem study. J. Power Sources 335, 
189–196 (2016).

	50.	� Vetter J., Novák P., Wagner M.R., Veit C., Möller K.C., Besenhard J.O., 
Winter M., Wohlfahrt-Mehrens M., Vogler C., and Hammouche A.: Ageing 
mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269–281 
(2005).

	51.	� Zhao K., Pharr M., Vlassak J.J., and Suoa Z.: Fracture of electrodes in 
lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(7), 073517 
(2010).

	52.	� Wen J., Yu Y., and Chen C.: A review on lithium-ion batteries safety issues: 
Existing problems and possible solutions. Mater. Express 2(3), 197–212 
(2012).

	53.	� Downie L.E., Krause L.J., Burns J.C., Jensen L.D., Chevrier V.L., and 
Dahn J.R.: In situ detection of lithium plating on graphite electrodes by 
electrochemical calorimetry. J. Electrochem. Soc. 160(4), A588–A594 
(2013).

	54.	� Deng D.: Li-ion batteries: Basics, progress, and challenges. Energy Sci. 
Eng. 3(5), 385–418 (2015).

	55.	� Liu K., Liu Y., Lin D., Pei A., and Cui Y.: Materials for lithium-ion battery 
safety. Sci. Adv. 4(6), eaas9820 (2018).

	56.	� Takami N., Satoh A., Hara M., and Ohsaki T.: Structural and kinetic 
characterization of lithium intercalation into carbon anodes for secondary 
lithium batteries. J. Electrochem. Soc. 142(2), 371–379 (1995).

	57.	� Levi M.D. and Aurbach D.: Diffusion coefficients of lithium ions during 
intercalation into graphite derived from the simultaneous measurements 
and modeling of electrochemical impedance and potentiostatic intermittent 
titration characteristics of thin graphite electrodes. J. Phys. Chem. B 
101(23), 4641–4647 (1997).

	58.	� Kaskhedikar N.A. and Maier J.: Lithium storage in carbon nanostructures. 
Adv. Mater. 21(25-26), 2664–2680 (2009).

	59.	� Nitta N., Wu F., Lee J.T., and Yushin G.: Li-ion battery materials: Present 
and future. Mater. Today 18(5), 252–264 (2015).

	60.	� Schipper F., Erickson E.M., Erk C., Shin J.-Y., Chesneau F.F., and Aurbach D.: 
Review—Recent advances and remaining challenges for lithium ion battery 
cathodes: I. Nickel-rich, LiNixCoyMnzO2. J. Electrochem. Soc. 164(1), 
A6220–A6228 (2017).

	61.	� Tarascon J.M. and Armand M.: Issues and challenges facing rechargeable 
lithium batteries. Nature 414, 359 (2001).

	62.	� Xu K.: Nonaqueous liquid electrolytes for lithium-based rechargeable 
batteries. Chem. Rev. 104(10), 4303–4418 (2004).

	63.	� Eftekhari A.: Lithium-ion batteries with high rate capabilities. ACS 
Sustainable Chem. Eng. 5(4), 2799–2816 (2017).

	64.	� Liu Q., Du C., Shen B., Zuo P., Cheng X., Ma Y., Yin G., and Gao Y.: 
Understanding undesirable anode lithium plating issues in lithium-ion 
batteries. RSC Adv. 6(91), 88683–88700 (2016).

	65.	� Jansen A.N., Kahaian A.J., Kepler K.D., Nelson P.A., Amine K., Dees D.W., 
Vissers D.R., and Thackeray M.M.: Development of a high-power lithium-ion 
battery. J. Power Sources 81–82, 902–905 (1999).

	66.	� Ferg E., Gummow R.J., de Kock A., and Thackeray M.M.: Spinel anodes for 
lithium-ion batteries. J. Electrochem. Soc. 141(11), L147–L150 (1994).

	67.	� Colbow K.M., Dahn J.R., and Haering R.R.: Structure and electrochemistry 
of the spinel oxides LiTi2O4 and Li43Ti53O4. J. Power Sources 26(3), 397–402 
(1989).

	68.	� Ohzuku T., Ueda A., and Yamamoto N.: Zero-strain insertion material of 
Li [ Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142(5), 
1431–1435 (1995).

	69.	� Sandhya C.P., John B., and Gouri C.J.I.: Lithium titanate as anode material 
for lithium-ion cells: A review. Ionics 20(5), 601–620 (2014).

	70.	� Yang Z., Choi D., Kerisit S., Rosso K.M., Wang D., Zhang J., Graff G., and 
Liu J.: Nanostructures and lithium electrochemical reactivity of lithium 
titanites and titanium oxides: A review. J. Power Sources 192(2), 588–598 
(2009).

	71.	� Madian M., Eychmüller A., and Giebeler L.: Current advances in 
TiO2-based nanostructure electrodes for high performance lithium ion 
batteries. Batteries 4(1), 7 (2018).

	72.	� Wen C.J., Boukamp B.A., Huggins R.A., and Weppner W.: Thermodynamic 
and mass transport properties of  “ LiAl ”.  J. Electrochem. Soc. 126(12), 
2258–2266 (1979).

	73.	� Takami N., Kosugi S., and Inagaki H.: New SCiB™ high-safety rechargeable 
battery for HEV application. Toshiba Rev. 63(12), 54–57 (2008).

	74.	� Takami N., Inagaki H., Kishi T., Harada Y., Fujita Y., and Hoshina K.: 
Electrochemical kinetics and safety of 2-volt class Li-ion battery system using 
lithium titanium oxide anode. J. Electrochem. Soc. 156(2), A128–A132 (2009).

	75.	� Manev V. and John Shelburne J.: Method for preparing a lithium ion cell. 
U.S. Patent No. 8420264, April 16, 2013.

	76.	� Toshiba: SCiB™ Cells. Available at: https://www.scib.jp/en/product/cell.
htm (accessed October 22, 2018).

	77.	� Ge H., Li N., Li D., Dai C., and Wang D.: Study on the theoretical capacity 
of spinel lithium titanate induced by low-potential intercalation. J. Phys. 
Chem. C 113(16), 6324–6326 (2009).

	78.	� Wang C., Wang S., Tang L., He Y.-B., Gan L., Li J., Du H., Li B., Lin Z., and 
Kang F.: A robust strategy for crafting monodisperse Li4Ti5O12 
nanospheres as superior rate anode for lithium ion batteries. Nano Energy 
21, 133–144 (2016).

	79.	� Odziomek M., Chaput F., Rutkowska A., Świerczek K., Olszewska D., 
Sitarz M., Lerouge F., and Parola S.: Hierarchically structured lithium 
titanate for ultrafast charging in long-life high capacity batteries.  
Nat. Commun. 8, 15636 (2017).

	80.	� Marchand R., Brohan L., and Tournoux M.: TiO2(B) a new form of titanium 
dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 
1129–1133 (1980).

	81.	� Brumbarov J., Vivek J.P., Leonardi S., Valero-Vidal C., Portenkirchner E., 
and Kunze-Liebhäuser J.: Oxygen deficient, carbon coated self-organized 
TiO2 nanotubes as anode material for Li-ion intercalation. J. Mater. Chem. 
A 3(32), 16469–16477 (2015).

	82.	� Auer A., Steiner D., Portenkirchner E., and Kunze-Liebhäuser J.: 
Nonequilibrium phase transitions in amorphous and anatase TiO2 
nanotubes. ACS Appl. Energy Mater. 1(5), 1924–1929 (2018).

	83.	� Zukalová M., Kalbáč M., Kavan L., Exnar I., and Graetzel M.: 
Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17(5), 
1248–1255 (2005).

	84.	� Ren Y., Liu Z., Pourpoint F., Armstrong A.R., Grey C.P., and Bruce P.G.: 
Nanoparticulate TiO2(B): An anode for lithium-ion batteries. Angew. Chem. 
51(9), 2164–2167 (2012).

	85.	� Arrouvel C., Parker S.C., and Islam M.S.: Lithium insertion and transport 
in the TiO2–B anode material: A computational study. Chem. Mater. 21(20), 
4778–4783 (2009).

	86.	� Dalton A.S., Belak A.A., and Van der Ven A.: Thermodynamics of lithium 
in TiO2(B) from first principles. Chem. Mater. 24(9), 1568–1574 (2012).

	87.	� Tian B., Xiang H., Zhang L., Li Z., and Wang H.: Niobium doped lithium 
titanate as a high rate anode material for Li-ion batteries. Electrochim. Acta 
55(19), 5453–5458 (2010).

	88.	� Han J.-T., Huang Y.-H., and Goodenough J.B.: New anode framework for 
rechargeable lithium batteries. Chem. Mater. 23(8), 2027–2029 (2011).

	89.	� Anh L.T., Rai A.K., Thi T.V., Gim J., Kim S., Shin E.-C., Lee J.-S., and  
Kim J.: Improving the electrochemical performance of anatase titanium 
dioxide by vanadium doping as an anode material for lithium-ion batteries. 
J. Power Sources 243, 891–898 (2013).

	90.	� Lin C., Wang G., Lin S., Li J., and Lu L.: TiNb6O17: A new electrode material 
for lithium-ion batteries. Chem. Commun. 51(43), 8970–8973 (2015).

	91.	� Lee Y.-S. and Ryu K.-S.: Study of the lithium diffusion properties and high 
rate performance of TiNb6O17 as an anode in lithium secondary battery. 
Sci. Rep. 7(1), 16617 (2017).

	92.	� Griffith K.J., Senyshyn A., and Grey C.P.: Structural stability from 
crystallographic shear in TiO2–Nb2O5 phases: Cation ordering and 
lithiation behavior of TiNb24O62. Inorg. Chem. 56(7), 4002–4010 (2017).

	93.	� Takami N., Ise K., Harada Y., Iwasaki T., Kishi T., and Hoshina K.: 
High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 
anodes for automotive applications. J. Power Sources 396, 429–436 (2018).

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

https://www.scib.jp/en/product/cell.htm
https://www.scib.jp/en/product/cell.htm
https://doi.org/10.1557/mre.2019.4


16  n  MRS ENERGY & SUSTAINABILITY  //  V O L U M E  6   //  e 2   //  www.mrs.org/energy-sustainability-journal

	94.	� Wu X., Miao J., Han W., Hu Y.-S., Chen D., Lee J.-S., Kim J., and Chen L.: 
Investigation on Ti2Nb10O29 anode material for lithium-ion batteries. 
Electrochem. Commun. 25, 39–42 (2012).

	95.	� Griffith K.J., Wiaderek K.M., Cibin G., Marbella L.E., and Grey C.P.: 
Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 
559(7715), 556–563 (2018).

	96.	� Daramalla V., Venkatesh G., Kishore B., Munichandraiah N., and Krupanidhi 
S.B.: Superior electrochemical performance of amorphous titanium niobium 
oxide thin films for Li-ion thin film batteries. J. Electrochem. Soc. 165(5), 
A764–A772 (2018).

	97.	� Wohlfahrt-Mehrens M., Vogler C., and Garche J.: Aging mechanisms of 
lithium cathode materials. J. Power Sources 127(1), 58–64 (2004).

	98.	� Padhi A.K., Nanjundaswamy K.S., and Goodenough J.B.: Phospho-olivines 
as positive-electrode materials for rechargeable lithium batteries.  
J. Electrochem. Soc. 144(4), 1188–1194 (1997).

	99.	� Kang B. and Ceder G.: Battery materials for ultrafast charging and 
discharging. Nature 458(7235), 190–193 (2009).

	100.	� Morgan D., Van der Ven A., and Ceder G.: Li conductivity in LixMPO4  
(M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 
7(2), A30–A32 (2004).

	101.	� Islam M.S., Driscoll D.J., Fisher C.A.J., and Slater P.R.: Atomic-scale 
investigation of defects, dopants, and lithium transport in the LiFePO4 
olivine-type battery material. Chem. Mater. 17(20), 5085–5092 (2005).

	102.	� Ravet N., Chouinard Y., Magnan J.F., Besner S., Gauthier M., and 
Armand M.: Electroactivity of natural and synthetic triphylite. J. Power 
Sources 97–98, 503–507 (2001).

	103.	� Doeff M.M., Hu Y., McLarnon F., and Kostecki R.: Effect of surface carbon 
structure on the electrochemical performance of LiFePO4. Electrochem. 
Solid-State Lett. 6(10), A207–A209 (2003).

	104.	� Herle P.S., Ellis B., Coombs N., and Nazar L.F.: Nano-network electronic 
conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004).

	105.	� Bai P., Cogswell D.A., and Bazant M.Z.: Suppression of phase separation 
in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11(11), 
4890–4896 (2011).

	106.	� Malik R., Zhou F., and Ceder G.: Kinetics of non-equilibrium lithium 
incorporation in LiFePO4. Nat. Mater. 10, 587 (2011).

	107.	� Wagemaker M., Singh D.P., Borghols W.J.H., Lafont U., Haverkate L., 
Peterson V.K., and Mulder F.M.: Dynamic solubility limits in nanosized 
olivine LiFePO4. J. Am. Chem. Soc. 133(26), 10222–10228 (2011).

	108.	� Liu H., Strobridge F.C., Borkiewicz O.J., Wiaderek K.M., Chapman K.W., 
Chupas P.J., and Grey C.P.: Capturing metastable structures during 
high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344(6191), 
1252817 (2014).

	109.	� Aricò A.S., Bruce P., Scrosati B., Tarascon J.-M., and van Schalkwijk W.: 
Nanostructured materials for advanced energy conversion and storage 
devices. Nat. Mater. 4, 366 (2005).

	110.	� Bandaru P.R., Yamada H., Narayanan R., and Hoefer M.: Charge transfer 
and storage in nanostructures. Mater. Sci. Eng., R 96, 1–69 (2015).

	111.	� Bae C.-J., Erdonmez C.K., Halloran J.W., and Chiang Y.-M.: Design of 
battery electrodes with dual-scale porosity to minimize tortuosity and 
maximize performance. Adv. Mater. 25(9), 1254–1258 (2013).

	112.	� Habedank J.B., Kraft L., Rheinfeld A., Krezdorn C., Jossen A., and  
Zaeh M.F.: Increasing the discharge rate capability of lithium-ion  
cells with laser-structured graphite anodes: Modeling and simulation.  
J. Electrochem. Soc. 165(7), A1563–A1573 (2018).

	113.	� Mangang M., Seifert H.J., and Pfleging W.: Influence of laser pulse 
duration on the electrochemical performance of laser structured LiFePO4 
composite electrodes. J. Power Sources 304, 24–32 (2016).

	114.	� Petkovich N.D. and Stein A.: Controlling macro- and mesostructures with 
hierarchical porosity through combined hard and soft templating. Chem. 
Soc. Rev. 42(9), 3721–3739 (2013).

	115.	� Osiak M., Geaney H., Armstrong E., and O’Dwyer C.: Structuring 
materials for lithium-ion batteries: Advancements in nanomaterial 
structure, composition, and defined assembly on cell performance.  
J. Mater. Chem. A 2(25), 9433–9460 (2014).

	116.	� Sakamoto J.S. and Dunn B.: Hierarchical battery electrodes based on 
inverted opal structures. J. Mater. Chem. 12(10), 2859–2861 (2002).

	117.	� Li W., Liu J., and Zhao D.: Mesoporous materials for energy conversion and 
storage devices. Nat. Rev. Mater. 1, 16023 (2016).

	118.	� Delattre B., Amin R., Sander J., De Coninck J., Tomsia A.P., and Chiang Y.-M.: 
Impact of pore tortuosity on electrode kinetics in lithium battery 
electrodes: Study in directionally freeze-cast LiNi0.8Co0.15Al0.05O2 (NCA). 
J. Electrochem. Soc. 165(2), A388–A395 (2018).

	119.	� Guo Y.-G., Hu J.-S., and Wan L.-J.: Nanostructured materials for electrochemical 
energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008).

	120.	� Bruce P.G., Scrosati B., and Tarascon J.-M.: Nanomaterials for rechargeable 
lithium batteries. Angew. Chem., Int. Ed. 47(16), 2930–2946 (2008).

	121.	� Sun Y.-K., Chen Z., Noh H.-J., Lee D.-J., Jung H.-G., Ren Y., Wang S.,  
Yoon C.S., Myung S.-T., and Amine K.: Nanostructured high-energy cathode 
materials for advanced lithium batteries. Nat. Mater. 11, 942 (2012).

	122.	� Wu H.B., Chen J.S., Hng H.H., and Wen Lou X.: Nanostructured metal 
oxide-based materials as advanced anodes for lithium-ion batteries. 
Nanoscale 4(8), 2526–2542 (2012).

	123.	� Lee K., Mazare A., and Schmuki P.: One-dimensional titanium dioxide 
nanomaterials: Nanotubes. Chem. Rev. 114(19), 9385–9454 (2014).

	124.	� Zhang J. and Yu A.: Nanostructured transition metal oxides as advanced 
anodes for lithium-ion batteries. Sci. Bull. 60(9), 823–838 (2015).

	125.	� Palacin M.R., Simon P., and Tarascon J.M.: Nanomaterials for electrochemical 
energy storage: The good and the bad. Acta Chim. Slov. 63(3), 7 (2016).

	126.	� Li X. and Sun X.: Nanostructured materials for Li-ion batteries and beyond. 
Nanomaterials 6(4), 63 (2016).

	127.	� Zhang X., Porras-Gutierrez A.-G., Mauger A., Groult H., and Julien C.: 
Nanotechnology of positive electrodes for Li-ion batteries. Inorganics 5(2), 
25 (2017).

	128.	� Obrovac M.N. and Dahn J.R.: Implications of finite-size and surface effects 
on nanosize intercalation materials. Phys. Rev. B 61(10), 6713–6719 (2000).

	129.	� Delmer O., Balaya P., Kienle L., and Maier J.: Enhanced potential of amorphous 
electrode materials: Case study of RuO2. Adv. Mater. 20(3), 501–505 (2008).

	130.	� Pean C., Daffos B., Rotenberg B., Levitz P., Haefele M., Taberna P.-L., 
Simon P., and Salanne M.: Confinement, desolvation, and electrosorption 
effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. 
Chem. Soc. 137(39), 12627–12632 (2015).

	131.	� Kondrat S. and Kornyshev A.A.: Pressing a spring: What does it take to 
maximize the energy storage in nanoporous supercapacitors? Nanoscale 
Horiz. 1(1), 45–52 (2016).

	132.	� Fichtner M.: Nanoconfinement effects in energy storage materials. Phys. 
Chem. Chem. Phys. 13(48), 21186–21195 (2011).

	133.	� Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.L., Grey C.P., 
Dunn B., and Simon P.: Efficient storage mechanisms for building better 
supercapacitors. Nat. Energy 1, 16070 (2016).

	134.	� Augustyn V. and Gogotsi Y.: 2D materials with nanoconfined fluids for 
electrochemical energy storage. Joule 1(3), 443–452 (2017).

	135.	� Prehal C., Koczwara C., Jäckel N., Schreiber A., Burian M., Amenitsch H., 
Hartmann M.A., Presser V., and Paris O.: Quantification of ion confinement 
and desolvation in nanoporous carbon supercapacitors with modelling and 
in situ X-ray scattering. Nat. Energy 2, 16215 (2017).

	136.	� Yue Y. and Liang H.: 3D current collectors for lithium-ion batteries:  
A topical review. Small Methods 2(8), 1800056 (2018).

	137.	� Wang Y.-Q., Gu L., Guo Y.-G., Li H., He X.-Q., Tsukimoto S., Ikuhara Y., 
and Wan L.-J.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a 
lithium-ion battery. J. Am. Chem. Soc. 134(18), 7874–7879 (2012).

	138.	� Lu X., Gu L., Hu Y.-S., Chiu H.-C., Li H., Demopoulos G.P., and Chen L.: 
New insight into the atomic-scale bulk and surface structure evolution of 
Li4Ti5O12 anode. J. Am. Chem. Soc. 137(4), 1581–1586 (2015).

	139.	� Wang L., Liang K., Wang G., and Yang Y.: Interface-engineered hematite 
nanocones as binder-free electrodes for high-performance lithium-ion 
batteries. J. Mater. Chem. A 6(28), 13968–13974 (2018).

	140.	� Choi H., Park H., Um J.H., Yoon W.-S., and Choe H.: Processing and 
characterization of titanium dioxide grown on titanium foam for potential 
use as Li-ion electrode. Appl. Surf. Sci. 411, 363–367 (2017).

	141.	� Cui Y. and Zhang H.: Synthesis of MoO2 and nitrogen-doped carbon 
nanotubes composite materials by electrodeposition as binder-free 
electrode for lithium-ion batteries. In ECS Meeting Abstracts MA2015-
02(8) (The Electrochemical Society, 2015); p. 542.

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

https://doi.org/10.1557/mre.2019.4


MRS ENERGY & SUSTAINABILITY  //  V O L U M E  6   //  e 2   //  www.mrs.org/energy-sustainability-journal  n  17

	142.	� Ji H., Zhang L., Pettes M.T., Li H., Chen S., Shi L., Piner R., and Ruoff R.S.: 
Ultrathin graphite foam: A three-dimensional conductive network for 
battery electrodes. Nano Lett. 12(5), 2446–2451 (2012).

	143.	� Yao M., Okuno K., Iwaki T., Awazu T., and Sakai T.: Long cycle-life 
LiFePO4/Cu–Sn lithium ion battery using foam-type three-dimensional 
current collector. J. Power Sources 195(7), 2077–2081 (2010).

	144.	� Bi Z., Paranthaman M.P., Menchhofer P.A., Dehoff R.R., Bridges C.A.,  
Chi M., Guo B., Sun X.-G., and Dai S.: Self-organized amorphous TiO2 
nanotube arrays on porous Ti foam for rechargeable lithium and sodium 
ion batteries. J. Power Sources 222, 461–466 (2013).

	145.	� Jiang Y., Hall C., Song N., Lau D., Burr P., Patterson R., Wang D.-W., 
Ouyang Z., and Lennon A.: Evidence for fast lithium-ion diffusion and 
charge transfer reactions in amorphous TiOx nanotubes: Insights for high 
rate electrochemical energy storage. ACS Appl. Mater. Interfaces 10(49), 
42513–42523 (2018).

	146.	� Yoo M., Frank C.W., Mori S., and Yamaguchi S.: Effect of poly(vinylidene 
fluoride) binder crystallinity and graphite structure on the mechanical 
strength of the composite anode in a lithium ion battery. Polymer 44(15), 
4197–4204 (2003).

	147.	� Bülter H., Peters F., Schwenzel J., and Wittstock G.: In situ quantification 
of the swelling of graphite composite electrodes by scanning electrochemical 
microscopy. J. Electrochem. Soc. 163(2), A27–A34 (2016).

	148.	� Zhang X., Cheng X., and Zhang Q.: Nanostructured energy materials for 
electrochemical energy conversion and storage: A review. J. Energy Chem. 
25, 967–984 (2016).

	149.	� Logan E.R., Tonita E.M., Gering K.L., Li J., Ma X., Beaulieu L.Y.,  
and Dahn J.R.: A study of the physical properties of Li-ion battery 
electrolytes containing esters. J. Electrochem. Soc. 165(2), A21–A30 
(2018).

	150.	� Nishi Y., Azuma H., and Omaru A.: Non aqueous electrolyte cell. U.S. 
Patent No. 4959281, 1990.

	151.	� Valøen L.O. and Reimers J.N.: Transport properties of LiPF6-based li-ion 
battery electrolytes. J. Electrochem. Soc. 152(5), A882–A891 (2005).

	152.	� Pavlov D., Naidenov V., and Ruevski S.: Influence of H2SO4 concentration 
on lead-acid battery performance: H-type and P-type batteries. J. Power 
Sources 161(1), 658–665 (2006).

	153.	� Doyle M., Fuller T.F., and Newman J.: The importance of the lithium ion 
transference number in lithium/polymer cells. Electrochim. Acta 39(13), 
2073–2081 (1994).

	154.	� Capiglia C., Saito Y., Kageyama H., Mustarelli P., Iwamoto T., Tabuchi T., 
and Tukamoto H.: 7Li and 19F diffusion coefficients and thermal 
properties of non-aqueous electrolyte solutions for rechargeable lithium 
batteries. J. Power Sources 81–82, 859–862 (1999).

	155.	� Diederichsen K.M., McShane E.J., and McCloskey B.D.: Promising routes 
to a high Li+ transference number electrolyte for lithium ion batteries. ACS 
Energy Lett. 2(11), 2563–2575 (2017).

	156.	� Buannic L., Colin J.-F., Chapuis M., Chakir M., and Patoux S.: 
Electrochemical performances and gassing behavior of high surface 
area titanium niobium oxides. J. Mater. Chem. A 4(29), 11531–11541 
(2016).

	157.	� Lv W., Gu J., Niu Y., Wen K., and He W.: Review—Gassing mechanism and 
suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J. Electrochem. 
Soc. 164(9), A2213–A2224 (2017).

	158.	� Rodrigues M.-T.F., Kalaga K., Trask S.E., Shkrob I.A., and Abraham D.P.: 
Anode-dependent impedance rise in layered-oxide cathodes of lithium-ion 
cells. J. Electrochem. Soc. 165(9), A1697–A1705 (2018).

	159.	� Takenaka N., Suzuki Y., Sakai H., and Nagaoka M.: On electrolyte-
dependent formation of solid electrolyte interphase film in lithium-ion 
batteries: Strong sensitivity to small structural difference of electrolyte 
molecules. J. Phys. Chem. C 118(20), 10874–10882 (2014).

	160.	� Wang J., Yamada Y., Sodeyama K., Chiang C.H., Tateyama Y., and Yamada A.: 
Superconcentrated electrolytes for a high-voltage lithium-ion battery. 
Nat. Commun. 7, 12032 (2016).

	161.	� Drozhzhin O.A., Shevchenko V.A., Zakharkin M.V., Gamzyukov P.I., 
Yashina L.V., Abakumov A.M., Stevenson K.J., and Antipov E.V.: 
Improving salt-to-solvent ratio to enable high-voltage electrolyte stability 
for advanced Li-ion batteries. Electrochim. Acta 263, 127–133 (2018).

	162.	� Zeng Z., Murugesan V., Han K.S., Jiang X., Cao Y., Xiao L., Ai X., Yang H., 
Zhang J.-G., Sushko M.L., and Liu J.: Non-flammable electrolytes with high 
salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3(8), 
674–681 (2018).

	163.	� Sloop S.E., Pugh J.K., Wang S., Kerr J.B., and Kinoshita K.: Chemical 
reactivity of  PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate 
solutions. Electrochem. Solid-State Lett. 4(4), A42–A44 (2001).

	164.	� Zhang X. and Devine T.M.: Identity of passive film formed on aluminum in 
li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 153(9), B344–B351 
(2006).

	165.	� Aurbach D., Markovsky B., Levi M.D., Levi E., Schechter A., Moshkovich M., 
and Cohen Y.: New insights into the interactions between electrode materials 
and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 
81–82, 95–111 (1999).

	166.	� Kim J.-H., Pieczonka N.P.W., Li Z., Wu Y., Harris S., and Powell B.R.: 
Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite 
Li-ion batteries. Electrochim. Acta 90, 556–562 (2013).

	167.	� Pieczonka N.P.W., Liu Z., Lu P., Olson K.L., Moote J., Powell B.R., and 
Kim J.-H.: Understanding transition-metal dissolution behavior in 
LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. 
Chem. C 117(31), 15947–15957 (2013).

	168.	� Jiang F. and Peng P.: Elucidating the performance limitations of 
lithium-ion batteries due to species and charge transport through five 
characteristic parameters. Sci. Rep. 6, 32639 (2016).

	169.	� Bai P. and Bazant M.Z.: Charge transfer kinetics at the solid–solid interface 
in porous electrodes. Nat. Commun. 5, 3585 (2014).

	170.	� Yamada H. and Bandaru P.R.: Electrochemical kinetics and dimensional 
considerations, at the nanoscale. AIP Adv. 6(6), 065325 (2016).

	171.	� Goubard-Bretesché N., Crosnier O., Favier F., and Brousse T.: Improving 
the volumetric energy density of supercapacitors. Electrochim. Acta 206, 
458–463 (2016).

	172.	� Miller J.R. and Burke A.K.: Electrochemical capacitors: Challenges and 
opportunities for real-world applications. Electrochem. Soc. Interface 17(1), 
53057 (2008).

	173.	� Gao S., Rahmat-Samii Y., Hodges R.E., and Yang X.: Advanced antennas for 
small satellites. Proc. IEEE 106(3), 391–403 (2018).

	174.	� Schmidt O., Hawkes A., Gambhir A., and Staffell I.: The future cost of 
electrical energy storage based on experience rates. Nat. Energy 2, 17110 
(2017).

	175.	� Lazard: Levelized Cost of Storage Analysis (2016). Available at: https://
www.lazard.com/perspective/levelized-cost-of-storage-analysis-20/ 
(accessed September 5, 2018).

	176.	� Lazard: Levelized Cost of Storage Analysis (2017). Available at: https://
www.lazard.com/perspective/levelized-cost-of-storage-2017/ (accessed 
September 5, 2018).

	177.	� Meshram P., Pandey B.D., and Mankhand T.R.: Extraction of lithium from 
primary and secondary sources by pre-treatment, leaching and separation: 
A comprehensive review. Hydrometallurgy 150, 192–208 (2014).

	178.	� Martin G., Rentsch L., Höck M., and Bertau M.: Lithium market 
research—Global supply, future demand and price development. Energy 
Storage Mater. 6, 171–179 (2017).

	179.	� Perotti R. and Coviello M.F.: Governance of Strategic Minerals in Latin 
America: The Case of Lithium. Available at: https://repositorio.cepal.org/
bitstream/handle/11362/38961/S1500861_en.pdf (accessed July 1, 2017).

	180.	� Jaskula B.W.: U.S. Geological Survey, Mineral Commodity Summaries 
(2018). Available at: https://minerals.usgs.gov/minerals/pubs/
commodity/lithium/mcs-2018-lithi.pdf (accessed October 22, 2018).

	181.	� Loganathan P., Naidu G., and Vigneswaran S.: Mining valuable minerals 
from seawater: A critical review. Environ. Sci.: Water Res. Technol. 3(1), 
37–53 (2017).

	182.	� Paranthaman M.P., Li L., Luo J., Hoke T., Ucar H., Moyer B.A., and 
Harrison S.: Recovery of lithium from geothermal brine with 
lithium–aluminum layered double hydroxide chloride sorbents. 
Environ. Sci. Technol. 51(22), 13481–13486 (2017).

	183.	� Li L., Deshmane V.G., Paranthaman M.P., Bhave R., Moyer B.A., and 
Harrison S.: Lithium recovery from aqueous resources and batteries:  
A brief review. Johnson Matthey Technol. Rev. 62(2), 161–176 (2018).

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

https://www.lazard.com/perspective/levelized-cost-of-storage-analysis-20/
https://www.lazard.com/perspective/levelized-cost-of-storage-analysis-20/
https://www.lazard.com/perspective/levelized-cost-of-storage-2017/
https://www.lazard.com/perspective/levelized-cost-of-storage-2017/
https://repositorio.cepal.org/bitstream/handle/11362/38961/S1500861_en.pdf
https://repositorio.cepal.org/bitstream/handle/11362/38961/S1500861_en.pdf
https://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2018-lithi.pdf
https://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2018-lithi.pdf
https://doi.org/10.1557/mre.2019.4


18  n  MRS ENERGY & SUSTAINABILITY  //  V O L U M E  6   //  e 2   //  www.mrs.org/energy-sustainability-journal

	184.	� Mayyas A., Steward D., and Mann M.: The case for recycling: Overview and 
challenges in the material supply chain for automotive li-ion batteries. 
Sustainable Mater. Technol. 19, e00087 (2019).

	185.	� Narins T.P.: The battery business: Lithium availability and the growth of 
the global electric car industry. Extr. Ind. Soc. 4(2), 321–328 (2017).

	186.	� Sanderson H.: Lithium Prices to Fall 45% by 2021, Morgan Stanley Says. 
Available at: https://www.ft.com/content/66012fe2-1ae1-11e8-aaca-
4574d7dabfb6 (accessed July 1, 2018).

	187.	� Kushnir D. and Sandén B.A.: The time dimension and lithium  
resource constraints for electric vehicles. Resour. Policy 37(1), 93–103 
(2012).

	188.	� Olivetti E.A., Ceder G., Gaustad G.G., and Fu X.: Lithium-ion battery 
supply chain considerations: Analysis of potential bottlenecks in critical 
metals. Joule 1(2), 229–243 (2017).

	189.	� Charles R.G., Douglas P., Hallin I.L., Matthews I., and Liversage G.:  
An investigation of trends in precious metal and copper content of  
RAM modules in WEEE: Implications for long term recycling potential.  
Waste Manag. 60, 505–520 (2017).

	190.	� Hertwich E.G., Gibon T., Bouman E.A., Arvesen A., Suh S., Heath G.A., 
Bergesen J.D., Ramirez A., Vega M.I., and Shi L.: Integrated life-cycle 
assessment of electricity-supply scenarios confirms global environmental 
benefit of low-carbon technologies. Proc. Natl. Acad. Sci. U. S. A. 112(20), 
6277 (2015).

	191.	� Energy Matters: Solar PV and Electric Vehicles to Boost Copper Demand 
(2016). Available at: https://www.energymatters.com.au/renewable-news/
solar-pv-copper-em5729/ (accessed September 7, 2018).

	192.	� Ciacci L., Vassura I., and Passarini F.: Urban mines of copper: Size and 
potential for recycling in the EU. Resources 6(1), 6 (2017).

	193.	� Graedel T.E., Allwood J., Birat J.-P., Buchert M., Hagelüken C., Reck B.K., 
Sibley S.F., and Sonnemann G.: What do we know about metal recycling 
rates? 15(3), 355–366 (2011).

	194.	� Weight D.: Cobalt Production Statistics: 2017 Production Statistics. 
Available at: https://www.cobaltinstitute.org/statistics.html (accessed 
October 23, 2018).

	195.	� Shedd K.B.: U.S. Geological Survey, Mineral Commodity Summaries 
(2018). Available at: https://minerals.usgs.gov/minerals/pubs/
commodity/cobalt/mcs-2018-cobal.pdf (accessed October 22, 2018).

	196.	� King A.: Battery Builders Get the Cobalt Blues. Available at: https://www.
chemistryworld.com/news/battery-builders-get-the-cobalt-
blues/3008738.article (accessed July 1, 2018).

	197.	� Sanderson H.: China Tightens Grip on Global Cobalt Supplies. Available at: 
https://www.ft.com/content/86dc1306-27a4-11e8-b27e-cc62a39d57a0 
(accessed July 1, 2018).

	198.	� INN: The Critical Need for Cobalt Supply Diversification. Available at: 
https://investingnews.com/innspired/cobalt-drc-supply-chain-risk/ 
(accessed July 1, 2018).

	199.	� Call2Recycle: Recycling Laws by State. Available at: https://www.
call2recycle.org/recycling-laws-by-state/ (accessed March 8, 2019).

	200.	� Zeng X., Li J., and Singh N.: Recycling of spent lithium-ion battery: A 
critical review. Crit. Rev. Environ. Sci. Technol. 44(10), 1129–1165 (2014).

	201.	� Ordoñez J., Gago E.J., and Girard A.: Processes and technologies for the 
recycling and recovery of spent lithium-ion batteries. Renewable 
Sustainable Energy Rev. 60, 195–205 (2016).

	202.	� Zheng X., Zhu Z., Lin X., Zhang Y., He Y., Cao H., and Sun Z.:  
A mini-review on metal recycling from spent lithium ion batteries. 
Engineering 4(3), 361–370 (2018).

	203.	� Lv W., Wang Z., Cao H., Sun Y., Zhang Y., and Sun Z.: A critical review and 
analysis on the recycling of spent lithium-ion batteries. ACS Sustainable 
Chem. Eng. 6(2), 1504–1521 (2018).

	204.	� Heelan J., Gratz E., Zheng Z., Wang Q., Chen M., Apelian D., and Wang Y.: 
Current and prospective li-ion battery recycling and recovery processes. 
JOM 68(10), 2632–2638 (2016).

	205.	� Zeng X., Li J., and Liu L.: Solving spent lithium-ion battery problems in 
China: Opportunities and challenges. Renewable Sustainable Energy Rev. 
52, 1759–1767 (2015).

	206.	� Zhang W., Xu C., He W., Li G., and Huang J.: A review on management of 
spent lithium ion batteries and strategy for resource recycling of all 
components from them. Waste Manag. Res. 36(2), 99–112 (2018).

https://doi.org/10.1557/mre.2019.4 Published online by Cambridge University Press

https://www.ft.com/content/66012fe2-1ae1-11e8-aaca-4574d7dabfb6
https://www.ft.com/content/66012fe2-1ae1-11e8-aaca-4574d7dabfb6
https://www.energymatters.com.au/renewable-news/solar-pv-copper-em5729/
https://www.energymatters.com.au/renewable-news/solar-pv-copper-em5729/
https://www.cobaltinstitute.org/statistics.html
https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/mcs-2018-cobal.pdf
https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/mcs-2018-cobal.pdf
https://www.chemistryworld.com/news/battery-builders-get-the-cobalt-blues/3008738.article
https://www.chemistryworld.com/news/battery-builders-get-the-cobalt-blues/3008738.article
https://www.chemistryworld.com/news/battery-builders-get-the-cobalt-blues/3008738.article
https://www.ft.com/content/86dc1306-27a4-11e8-b27e-cc62a39d57a0
https://investingnews.com/innspired/cobalt-drc-supply-chain-risk/
https://www.call2recycle.org/recycling-laws-by-state/
https://www.call2recycle.org/recycling-laws-by-state/
https://doi.org/10.1557/mre.2019.4

