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Abstract
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the
Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric
group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of an
open problem by Stanley from 2000 and an open problem by Kirillov from 2004 about combinatorial interpretations
of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced
Kronecker coefficients is NP-hard, and computing them is #P-hard under parsimonious many-one reductions. Our
proof also provides an explicit isomorphism of the corresponding highest weight vector spaces.
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1. Introduction

The Kronecker coefficients k(𝜆, 𝜇, 𝜈) of the symmetric group 𝑆𝑛 are some of the most classical, yet
largely mysterious, quantities in algebraic combinatorics and representation theory. The Kronecker
coefficient is the multiplicity of the irreducible 𝑆𝑛 representation S𝜈 in the tensor product S𝜆 ⊗ S𝜇

of two other irreducible 𝑆𝑛 representations. Murnaghan defined them in 1938 as an analogue of the
Littlewood-Richardson coefficients 𝑐𝜆𝜇𝜈 of the general linear group 𝐺𝐿𝑁 , which are the multiplicity of
the irreducible Weyl modules 𝑉𝜆 in the tensor products 𝑉𝜇 ⊗ 𝑉𝜈 . Yet, the analogy has not translated
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far into their properties. The Littlewood-Richardson coefficients have a beautiful positive combinatorial
interpretation, and their positivity is “easy” to decide, formally, it is in P. However, positive combinatorial
formulas for the Kronecker coefficients have eluded us so far, see Section 1.2, and their positivity is hard
to decide. The reduced Kronecker coefficients k(𝛼, 𝛽, 𝛾) are defined as the stable limit of the ordinary
Kronecker coefficients

k(𝛼, 𝛽, 𝛾) := lim
𝑛→∞
k( (𝑛 − |𝛼 |, 𝛼), (𝑛 − |𝛽 |, 𝛽), (𝑛 − |𝛾 |, 𝛾) ). (1.1)

These coefficients are called extended Littlewood-Richardson numbers in [Kir04], since in the special
case when |𝛼 | = |𝛽 | + |𝛾 |, we have

k(𝛼, 𝛽, 𝛾) = 𝑐𝛼
𝛽,𝛾 , (1.2)

the Littlewood-Richardson coefficient. As such, they have been considered as an intermediate, an
interpolation, between the Littlewood-Richardson and Kronecker coefficients. Problem 2.32 in [Kir04]
asks for a combinatorial interpretation of k(𝛼, 𝛽, 𝛾). They have been an object of independent interest,
see [Mur38, Mur56, Bri93, Val99, Kir04, BOR11, BDVO15, CR15, Man15, SS16, IP17, PP20b, OZ19,
OZ21], and considered better behaved than the ordinary Kronecker coefficients.

This is, however, not the case. As we show, every Kronecker coefficient is equal to an explicit reduced
Kronecker coefficient of not much larger partitions, in particular:

Theorem 1. For all partitions 𝜆, 𝜇, 𝜈 of equal sizes, we have

k(𝜆, 𝜇, 𝜈) = k
(
𝜈ℓ (𝜆)

1 + 𝜆, 𝜈
ℓ (𝜇)
1 + 𝜇, (𝜈

ℓ (𝜆)+ℓ (𝜇)
1 , 𝜈)

)
.

Here, 𝑎𝑏 := (𝑎, . . . , 𝑎︸���︷︷���︸
𝑏 many

) and (𝜈𝑏
1 , 𝜈) := (𝜈1, . . . , 𝜈1︸������︷︷������︸

𝑏 many

, 𝜈1, 𝜈2, 𝜈3, . . .).

Theorem 1 implies that in a very strong sense, on the spectrum between Littlewood-Richardson
and Kronecker coefficients, the reduced Kronecker coefficients are at the same point as the ordinary
Kronecker coefficients. In particular, Theorem 1 implies that Problem 2.32 in [Kir04] is equivalent to
Problem 10 in [Sta00]: Finding a combinatorial interpretation for the Kronecker coefficient or for the
reduced Kronecker coefficient are the same problem. Formally, Conjectures 9.1 and 9.4 in [Pak22] are
the same. Our result can be interpreted in a positive or in a negative way. On the one hand, the reduced
Kronecker coefficients cannot be easier to understand than the ordinary Kronecker coefficients. On the
other hand, understanding the reduced Kronecker coefficients is sufficient to understand all ordinary
Kronecker coefficients. As a corollary, we settle the conjecture from [PP20b, Section 4.4] on the hardness
of deciding the positivity of k(𝛼, 𝛽, 𝛾).

Corollary 1 (settles conjecture in [PP20b, Section 4.4]). Given 𝛼, 𝛽, 𝛾 in unary, deciding if
k(𝛼, 𝛽, 𝛾) > 0 is NP-hard.

Proof. This follows directly from Theorem 1 and the fact that deciding k(𝜆, 𝜇, 𝜈) > 0 is NP-hard
[IMW17]. �

Moreover, by the same immediate argument, it is now clear that computing the reduced Kronecker
coefficient is strongly #P-hard under parsimonious many-one reductions (the argument in [PP20b] gives
only the #P-hardness under Turing reductions).

We discovered the partition triple construction in Theorem 1 by analyzing the natural interpretation
of k(𝜆, 𝜇, 𝜈) via the general linear group, see Section 3, and the relationship with 3-dimensional binary
contingency arrays. Once the precise statement of Theorem 1 is found, one can give short and self-
contained proofs (see Section 2). In particular, in Section 3, we prove Theorem 1 by giving an explicit
isomorphism between the corresponding highest weight vector spaces. In Section 4, we give elemen-
tary purely combinatorial proofs via symmetric functions, which also bridge the two methodologies.
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Theorem 1 (but not the explicit isomorphism) can also be deduced from a formula from 2011 by
E. Briand, R. Orellana and M. Rosas, [BOR11] (see the discussion at the end of Section 4.2).

1.1. Background and definitions

We refer to [JK84, Sta99, Sag13] for basic definitions and properties from algebraic combinatorics and
representation theory, and employ the following notation. We write [𝑎, 𝑏] := {𝑎, 𝑎 + 1, . . . , 𝑏}, and
[𝑛] := [1, 𝑛]. A composition of n is a sequence of nonnegative integers that sum up to n. A partition
𝜆 = (𝜆1, 𝜆2, . . .) of n, denoted 𝜆 � 𝑛, is a weakly decreasing composition. Its size is |𝜆 | :=

∑
𝑖 𝜆𝑖 . Denote

by ℓ(𝜆) = max{𝑖 | 𝜆𝑖 > 0} the length of 𝜆. We interpret 𝜆 as a vector of arbitrary length ≥ ℓ(𝜆) by
appending zeros. We denote by (𝑛) the partition of n of length 1. To every partition, we associate its
Young diagram, which is a list of left-justified rows of boxes, 𝜆𝑖 many boxes in row i. We write 𝜆′ do
denote the transpose partition, that is, the partition that arises from reflecting the Young diagram at the
main diagonal. Formally, 𝜆′𝑗 := max{𝑖 | 𝜆𝑖 ≥ 𝑗}. We add partitions row-wise: (𝜆 + 𝜇)𝑖 = 𝜆𝑖 + 𝜇𝑖 . We
define 𝜆�𝜇 := (𝜆′ + 𝜇′)′, adding partitions column-wise as Young diagrams. Note that � is commutative
and associative, and that if 𝜆ℓ (𝜆) ≥ 𝜇1, then 𝜆 � 𝜇 = (𝜆1, . . . , 𝜇1, . . .) is just the concatenation of rows.
The Specht modules S𝜆 for 𝜆 � 𝑛 are the irreducible representation of the symmetric group 𝑆𝑛 (see
[JK84, Sta99, Sag13]).

The Kronecker coefficient k(𝜆, 𝜇, 𝜈) is the structure constant1 defined via

𝜒𝜇 · 𝜒𝜈 =
∑
𝜆

k(𝜆, 𝜇, 𝜈)𝜒𝜆,

or, equivalently, via Specht modules as

S𝜈 ⊗ S𝜇 =
∑
𝜆

S
⊕k(𝜆,𝜇,𝜈)
𝜆 .

From this description, it is immediately clear that k(𝜆, 𝜇, 𝜈) is a nonnegative integer. Yet, the problem
of finding a combinatorial interpretation of k(𝜆, 𝜇, 𝜈) is wide open [Sta00, IP22, Pan23].

The Kronecker coefficients were defined by Murnaghan [Mur38] in 1938 as the analogues of the
Littlewood-Richardson coefficients 𝑐𝜆𝜇𝜈 , which are the structure constants in the ring of irreducible

𝐺𝐿𝑁 representations, the Weyl modules 𝑉𝜆, given as 𝑉𝜇 ⊗ 𝑉𝜈 =
⊕

𝜆𝑉
⊕𝑐𝜆

𝜇𝜈

𝜆 . Some simple properties,
see [JK84, Sag13], include the transposition invariance k(𝜆, 𝜇, 𝜈) = k(𝜆′, 𝜇′, 𝜈), since S1𝑛 ⊗ S𝜆 = S𝜆′

[JK84]. From their definition, and the fact that 𝜒𝜆 (𝜋) ∈ Z, see [JK84, Sag13], we have

k(𝜆, 𝜇, 𝜈) = 1
𝑛!

∑
𝜋∈𝑆𝑛

𝜒𝜆(𝜋)𝜒𝜇 (𝜋)𝜒𝜈 (𝜋),

and thus we have the 𝑆3 invariance k(𝜆, 𝜇, 𝜈) = k(𝜆, 𝜈, 𝜇) = k(𝜇, 𝜈, 𝜆) = · · · . Note that the Kronecker
coefficient is not invariant under transposing an odd number of partitions, and we define

k′(𝜆, 𝜇, 𝜈) := k(𝜆′, 𝜇′, 𝜈′) = k(𝜆′, 𝜇, 𝜈) = k(𝜆, 𝜇′, 𝜈) = k(𝜆, 𝜇, 𝜈′).

It is known that k(𝜆, 𝜇, 𝜈) = 0 if ℓ(𝜆) > ℓ(𝜇) · ℓ(𝜈) [Dvi93], which also follows by combining
k(𝜆, 𝜇, 𝜈) = k(𝜆, 𝜇′, 𝜈′) with Lemma 3. We define the stable range as the set of triples (𝜆, 𝜇, 𝜈) that
satisfy

∀𝑖 ≥ 0 : k(𝜆, 𝜇, 𝜈) = k
(
𝜆 + (𝑖), 𝜇 + (𝑖), 𝜈 + (𝑖)

)
.

1We remark that in the combinatorics literature, these coefficients have usually been denoted by g, for example, 𝑔 (𝜆, 𝜇, 𝜈) ,
but here, we use k to avoid overlap with the notation used for the representation theory of 𝐺𝐿𝑁 .
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There are several proofs for the fact that for arbitrary (𝛼, 𝛽, 𝛾) with |𝛼 | = |𝛽 | = |𝛾 |, the triple
(𝛼 + (𝑖), 𝛽 + (𝑖), 𝛾 + (𝑖)) is in the stable range for i large enough (and hence for all i from then
on), and upper bounds on the necessary i are known (see, e.g. [Bri93], [Dvi93], [Val99], [BOR11],
[Ike12, Section 7.4], [PP14]). The reduced Kronecker coefficient is defined as the limit value in (1.1),
namely, k(𝛼, 𝛽, 𝛾) := lim𝑛→∞ k( (𝑛 − |𝛼 |, 𝛼), (𝑛 − |𝛽 |, 𝛽), (𝑛 − |𝛾 |, 𝛾) ) for arbitrary partitions 𝛼, 𝛽,
𝛾 (in particular, we do not require |𝛼 | = |𝛽 | = |𝛾 |). When |𝛼 | = |𝛽 | + |𝛾 |, then it coincides with
the Littlewood-Richardson coefficient 𝑐𝛼

𝛽𝛾 from (1.2) (see, e.g. [Mur56, Lit58, Dvi93], and [CŞW18,
Section 6]).

1.2. Related work

The Littlewood-Richardson (LR) coefficients can be computed by the Littlewood-Richardson rule, stated
in 1934 and proven formally about 40 years later. It says that 𝑐𝜆𝜇𝜈 is equal to the number of LR tableaux
of shape 𝜆/𝜇 and content 𝜈 (see Section 4.1 and [Sta99, Sag13]). The apparent analogy in definitions
motivates the community to search for such interpretations for the Kronecker coefficients. Interest in
efficient ways to compute k(𝜆, 𝜇, 𝜈) and k(𝛼, 𝛽𝛾) dates back at least to Murnaghan [Mur38]. Specific
interest in nonnegative combinatorial interpretations of k(𝜆, 𝜇, 𝜈) can be found in [Las79, GR85],
and was formulated clearly again by Stanley as Problem 10 in his list “Open Problems in Algebraic
Combinatorics” [Sta00]: “Find a combinatorial interpretation of the Kronecker product coefficients
k(𝜆, 𝜇, 𝜈), thereby combinatorially reproving that they are nonnegative” (see also [Pan23] for a detailed
discussion on this topic). Despite its natural and fundamental nature and the variety of efforts, this
question has seen relatively little progress. In 1989, Remmel found a combinatorial rule for k(𝜆, 𝜇, 𝜈)
when two of the partitions are hooks [Rem89]. In 1994, Remmel and Whitehead [RW94] found k(𝜆, 𝜇, 𝜈)
for ℓ(𝜆), ℓ(𝜇) ≤ 2, which was subsequently studied also in [BMS15]. In 2006, Ballantine and Orellana
[BO06] established a rule for k(𝜆, 𝜇, 𝜈) when 𝜇 = (𝑛 − 𝑘, 𝑘) and 𝜆1 ≥ 2𝑘 − 1. In general, when
the number of rows is fixed, k(𝜆, 𝜇, 𝜈) can be computed in polynomial time [CDW12] (see also
[PP17b] for a different approach and related results). The most general rule for 𝜈 = (𝑛 − 𝑘, 1𝑘 ), a
hook, and any other two partitions, was established by Blasiak in 2012 [Bla17], and later simplified
in [Liu17, BL18]. Other special cases include multiplicity-free Kronecker products by Bessenrodt-
Bowman [BB17], triples of partitions which are marginals of pyramids by Ikenmeyer-Mulmuley-Walter
[IMW17], k(𝑚𝑘 , 𝑚𝑘 , (𝑚𝑘 − 𝑛, 𝑛)) as counting labeled trees by Pak-Panova [Pan15, slide 9], near-
rectangular partitions by Tewari in [Tew15], etc. As shown in [IMW17], computing the Kronecker
coefficients is #P-hard, and deciding positivity is NP-hard, while in [BCG+23] it is shown that deciding
positivity is in QMA.

It was shown by Murnaghan [Mur56] that the reduced Kronecker coefficients generalize the
Littlewood-Richardson coefficients (see equation (1.2)). This motivated Kirillov to name k as “extended
Littlewood-Richardson numbers”. This relationship and other properties have motivated an independent
interest in the reduced Kronecker coefficients as intermediates between Littlewood-Richardson and or-
dinary Kronecker coefficients. Some special cases of combinatorial interpretations can be derived from
the existing ones for the ordinary Kronecker coefficients. A combinatorial interpretation of k(𝛼, 𝛽, 𝛾)
in the subcase where ℓ(𝛼) = 1 was obtained in [BO05, BO06] (see also [CR15]). Methods to com-
pute them have been discussed in [Mur38, Mur56] and have been developed in a series of papers (see
[BOR11, BDVO15, OZ19, OZ21]). As observed in [BDVO15], the reduced Kronecker coefficients are
also the structure constants for the ring of so-called character polynomials [Mac98]. The reduced Kro-
necker coefficients are a special case of a more general stability phenomenon that, if k(𝑖𝛼, 𝑖𝛽, 𝑖𝛾) = 1
for all i, then k(𝜆 + 𝑁𝛼, 𝜇 + 𝑁𝛽, 𝜈 + 𝑁𝛾) stabilizes as 𝑁 → ∞ (see [Ste, SS16, Val20]).

The Kronecker coefficients can be expressed as a small alternating sum of reduced Kronecker
coefficients, and reduced Kronecker coefficients are certain sums of ordinary Kronecker coefficients for
smaller partitions (see [BOR11]). These relationships showed that reduced Kronecker coefficients are
also #P-hard to compute (see [PP20b]). However, these relations did not imply that deciding positivity
of reduced Kronecker coefficients is NP-hard.
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Figure 1. An example of the situation in Lemma 1 with 𝜆 = (4, 2, 1), 𝜇 = (3, 2, 1, 1), 𝜈 = (3, 3, 1), 𝑙 = 3
and 𝑚 = 4.

It is important to note that deciding if 𝑐𝜆𝜇𝜈 > 0 is in P, since they count integer points in a polytope
that has an integral vertex whenever it is nonempty. This was shown in [MNS12, DLM06] and follows
from Knutson-Tao’s proof of the saturation theorem for Littlewood-Richardson coefficients [KT99],
namely, that 𝑐𝑁𝜆

𝑁 𝜇,𝑁 𝜈 > 0 ⇐⇒ 𝑐𝜆𝜇𝜈 > 0. The Kronecker coefficients do not satisfy the saturation
property, because k(22, 22, 22) = 1, but k(12, 12, 12) = 0. Until recently, it was believed that the
reduced Kronecker coefficients have the saturation property: It was conjectured in [Kir04, Kly04] that
if k(𝑁𝛼, 𝑁𝛽, 𝑁𝛾) > 0 for some 𝑁 > 0, then k(𝛼, 𝛽, 𝛾) > 0. This was disproved in [PP20b] in 2020 and
moved the reduced Kroneckers away from the Littlewood-Richardson coefficients on that spectrum.

It is known that the Kronecker coefficients (and hence also the reduced Kronecker coefficients)
satisfy the so-called semigroup property [Chr06, Theorem 2.7], which implies that if k(𝜆, 𝜇, 𝜈) > 0,
then ∀𝑁 > 0 : k(𝑁𝜆, 𝑁𝜇, 𝑁𝜈) > 0, and if k(𝛼, 𝛽, 𝛾) > 0, then ∀𝑁 > 0 : k(𝑁𝛼, 𝑁𝛽, 𝑁𝛾) > 0. Deciding
whether or not ∃𝑁 : k(𝑁𝜆, 𝑁𝜇, 𝑁𝜈) > 0 is in NP ∩ coNP, and analogously for k(𝑁𝛼, 𝑁𝛽, 𝑁𝛾)
[BCMW17].

2. Setting up the proof of Theorem 1

We set up the proof in this section, reducing to a more general Theorem 2, which has a short proof
via 𝐺𝐿𝑁 in Section 3. We also give two short, self-contained proofs using basic symmetric function
techniques in Section 4.

We prove a slightly stronger statement than Theorem 1: For 𝑙 ≥ ℓ(𝜆), 𝑚 ≥ ℓ(𝜇), 𝑐 ≥ 𝜈1, we have

k(𝜆, 𝜇, 𝜈) = k
(
𝑐𝑙 + 𝜆, 𝑐𝑚 + 𝜇, 𝑐𝑙+𝑚 � 𝜈

)
. (2.1)

We start with Lemma 1, a classical identity that can be proved in several ways (see, e.g. [Dvi93, Theorem
2.4’], [BOR09, Proof of Lemma 2.1], [Val09, Theorem 3.1], [Ike12, Corollary 4.4.14]).

Lemma 1. Let 𝜆, 𝜇, 𝜈 be partitions with ℓ(𝜆) ≤ 𝑙, ℓ(𝜇) ≤ 𝑚. Then

k(𝜆, 𝜇, 𝜈) = k(𝑚𝑙 + 𝜆, 𝑙𝑚 + 𝜇, 1𝑙𝑚 + 𝜈 ).

The situation is depicted in Figure 1.
In terms of k′, instead of k, we can alternatively phrase Lemma 1 as

k′(𝜆, 𝜇, 𝜈′) = k′(𝑚𝑙 + 𝜆, 𝑙𝑚 + 𝜇, (𝑙𝑚) � 𝜈′ ), (2.2)

which has a direct proof via an isomorphism of highest weight vector spaces (see (3.3)).
Note that if ℓ(𝜈) > 𝑙𝑚, then ℓ(𝜈) > 𝑙𝑚 ≥ ℓ(𝜆) · ℓ(𝜇), and hence k(𝜆, 𝜇, 𝜈) = 0. Moreover,

ℓ(1𝑙𝑚 + 𝜈) = ℓ(𝜈) > 𝑙𝑚 ≥ ℓ(𝜆) · ℓ(𝜇) = ℓ(𝑚𝑙 +𝜆) · ℓ(𝑙𝑚 + 𝜇), and hence k(𝑚𝑙 +𝜆, 𝑙𝑚 + 𝜇, 1𝑙𝑚 + 𝜈 ) = 0.
So we can assume that ℓ(𝜈) ≤ 𝑙𝑚. We give two proofs in this case, one in Section 3 and one in Section 4.

The following Lemma 2 is proved by applying Lemma 1 twice, in different directions. An illustration
of the situation is given in Figure 2.
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Figure 2. An example of the proof of Lemma 2 with 𝜆 = (5, 2), 𝜇 = (3, 3, 1) and 𝜈 = (4, 3), with 𝑙 = 2,
𝑚 = 3 and 𝑐 = 4. The red boxes are the addition from the first application of Lemma 1, and the blue
boxes are the second application.

Lemma 2. Let 𝜆, 𝜇, 𝜈 be partitions of the same size, and let 𝑙 ≥ ℓ(𝜆), 𝑚 ≥ ℓ(𝜇) and 𝑐 ≥ 𝜈1. Let
𝑑 = (𝑚 + 1)𝑐, 𝑒 = (𝑙 + 1)𝑐. Then

k(𝜆, 𝜇, 𝜈) = k
(
(𝑑) � (𝑐𝑙 + 𝜆), (𝑒) � (𝑐𝑚 + 𝜇), 𝑐𝑙+𝑚+1 � 𝜈

)
.

Proof. We apply Lemma 1 twice as follows.

k′(𝜆, 𝜇, 𝜈′)
(2.2)
= k′( (𝑚𝑐) � 𝜆, 𝑐𝑚 + 𝜇, 𝑚𝑐 + 𝜈′ )

(2.2)
= k′( 𝑐𝑙+1 + ((𝑚𝑐) � 𝜆), (𝑒) � (𝑚𝑐 + 𝜇), (𝑙 + 𝑚 + 1)𝑐 + 𝜈′ ). �

Theorem 2. Let 𝜆, 𝜇, 𝜈 be partitions of the same size, such that 𝜆1 ≥ ℓ(𝜇) · 𝜈1 and 𝜇1 ≥ ℓ(𝜆) · 𝜈1. Then,
for every ℎ ≥ 0, we have

k(𝜆, 𝜇, 𝜈) = k( 𝜆 + ℎ, 𝜇 + ℎ, 𝜈 + ℎ ).

We provide three proofs of this fact, one in Section 3, and two in Section 4. Those sections can be
read independently of each other. The proofs make use of an observation on 3-dimensional contingency
arrays with zeros and ones as entries (Lemma 4), but they use it in different ways.

We identify subsets 𝑄 ⊆ N3 with their characteristic functions 𝑄 : N3 → {0, 1}, and we call Q a
binary or {0, 1}-contingency array. This means, we interpret Q as a function to {0, 1}, and as the point
set of its support. The interpretation will always be clear from the context. The 2-dimensional marginals
of Q are defined as𝑄𝑖∗∗ :=

∑
𝑗 ,𝑘 𝑄𝑖, 𝑗 ,𝑘 = |𝑄∩ ({𝑖}×N×N) |,𝑄∗𝑖∗ :=

∑
𝑗 ,𝑘 𝑄 𝑗 ,𝑖,𝑘 = |𝑄∩ (N×{𝑖}×N) |,

𝑄∗∗𝑖 :=
∑

𝑗 ,𝑘 𝑄 𝑗 ,𝑘,𝑖 = |𝑄 ∩ (N × N × {𝑖}) |. For 𝛼 ∈ NN, 𝛽 ∈ NN, 𝛾 ∈ NN, |𝛼 | = |𝛽 | = |𝛾 | < ∞, we
denote by

C (𝛼, 𝛽, 𝛾) := {𝑄 ⊆ N3 | 𝑄𝑖∗∗ = 𝛼𝑖 , 𝑄∗𝑖∗ = 𝛽𝑖 , 𝑄∗∗𝑖 = 𝛾𝑖 for every 𝑖}.

There is a close connection to the Kronecker coefficients via the following lemma.

Lemma 3. For partitions 𝛼, 𝛽, 𝛾 of equal size, we have k′(𝛼, 𝛽, 𝛾) ≤ |C (𝛼, 𝛽, 𝛾) |.

Proof. There are different proofs of this fact, for example [IMW17, Lemma 2.6] and [PP20a, Theorem
5.3] (see also Sections 3.1 and 4.1). �

The following lemma shows how restrictions on the marginals can result in strong restrictions on the
sets Q, a technique that was also applied in [IMW17].

Lemma 4. Let 𝛼, 𝛽, 𝛾 be compositions with |𝛼 | = |𝛽 | = |𝛾 |. Let 𝑎 ≥ ℓ(𝛼), 𝑏 ≥ ℓ(𝛽), and let the integers
𝑐, ℎ be such that 𝑐 + ℎ ≥ ℓ(𝛾) and

∑
𝑖>𝑐 𝛾𝑖 ≤ ℎ. Furthermore, let 𝛼1 ≥ 𝑏𝑐 + ℎ, 𝛽1 ≥ 𝑎𝑐 + ℎ.

Then, for every 𝑄 ∈ C (𝛼, 𝛽, 𝛾), we have

{1} × [𝑏] × [𝑐] ⊆ 𝑄, [𝑎] × {1} × [𝑐] ⊆ 𝑄, {1} × {1} × [𝑐 + ℎ] ⊆ 𝑄, and
𝑄 ∩ (N × N × [𝑐 + 1, 𝑐 + ℎ]) = {1} × {1} × [𝑐 + 1, 𝑐 + ℎ] .
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Figure 3. Lemma 4 for 𝑎 = 5, 𝑏 = 4, 𝑐 = 2, ℎ = 4. A gray cube represents a forced 1 in the contingency
array. Absence of color represents a forced 0 in the contingency array. The blue box shows the area
where both zeros and ones are possible.

In particular, if C (𝛼, 𝛽, 𝛾) is nonempty, then 𝑎 = ℓ(𝛼), 𝑏 = ℓ(𝛽), 𝛾𝑖 = 1 for all 𝑐 + 1 ≤ 𝑖 ≤ 𝑐 + ℎ, and
𝛼1 = 𝑏𝑐 + ℎ, 𝛽1 = 𝑎𝑐 + ℎ, 𝛼2 ≤ 𝑏𝑐 and 𝛽2 ≤ 𝑎𝑐.

In other words, if we have 3-dimensional point configurations with such marginals, then the walls
consist of two rectangles and a long column as depicted in Figure 3.

Proof. Assume that there exists a binary contingency array 𝑄 ∈ C (𝛼, 𝛽, 𝛾). Let 𝐵∪ := {1} × [𝑏] × [𝑐 +
ℎ] ∪ [𝑎]×{1}× [𝑐+ℎ] be the set of points in the planes 𝑥 = 1 and 𝑦 = 1, and let 𝐵∩ := {1}×{1}× [𝑐+ℎ]
be the set of points on the line 𝑥 = 𝑦 = 1. Let 𝐻𝑖 := 𝑄 ∩ (N×N× {𝑖}) ∩ 𝐵∪ be the entries of Q in 𝐵∪ at
the section with the plane 𝑧 = 𝑖. In particular,

𝑐+ℎ∑
𝑖=1

|𝐻𝑖 | = |𝑄 ∩ 𝐵∪|.

We have
∑𝑐+ℎ

𝑖=𝑐+1 |𝐻𝑖 | ≤
∑𝑐+ℎ

𝑖=𝑐+1 𝛾𝑖 ≤ ℎ, |𝐻𝑖 | ≤ 𝑎 + 𝑏 − 1 for all 0 < 𝑖 ≤ 𝑐 and |𝑄 ∩ 𝐵∩| ≤ 𝑐 + ℎ. All these
inequalities must be met with equality, because

𝛼1 + 𝛽1 = |𝑄 ∩ 𝐵∩| + |𝑄 ∩ 𝐵∪|

= |𝑄 ∩ 𝐵∩| +
∑𝑐+ℎ

𝑖=1 |𝐻𝑖 |

= |𝑄 ∩ 𝐵∩| +
∑𝑐

𝑖=1 |𝐻𝑖 | +
∑𝑐+ℎ

𝑖=𝑐+1 |𝐻𝑖 |

≤ (𝑐 + ℎ) + (𝑎 + 𝑏 − 1)𝑐 + ℎ
= (𝑎 + 𝑏)𝑐 + 2ℎ
≤ 𝛼1 + 𝛽1.

We thus have the following equalities: |𝑄 ∩ 𝐵∩| = 𝑐 + ℎ = |𝐵∩| and ∀𝑖 ∈ [𝑐], we have |𝐻𝑖 | = 𝑎 + 𝑏 − 1 =
| (N × N × {𝑖}) ∩ 𝐵∪|. Thus, we have 𝐵∩ ⊆ 𝑄 and {1} × [𝑏] × [𝑐] ⊆ 𝑄 and [𝑎] × {1} × [𝑐] ⊆ 𝑄 and
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𝑄 ∩ (N×N× [𝑐 + 1, 𝑐 + ℎ]) = {1} × {1} × [𝑐 + 1, 𝑐 + ℎ]. This gives the desired marginals, and the claim
follows. �

We now prove (2.1), which implies Theorem 1.

Proof of (2.1). Let 𝑑 = 𝑚𝑐 + 𝑐 and 𝑒 = 𝑙𝑐 + 𝑐. Suppose first that 𝜆1 ≤ 𝑚𝑐 and 𝜇1 ≤ 𝑙𝑐. We apply
Lemma 2, and obtain

k(𝜆, 𝜇, 𝜈) = k
(
(𝑑) � (𝑐𝑙 + 𝜆)︸����������︷︷����������︸

=: �̂�

, (𝑒) � (𝑐𝑚 + 𝜇)︸������������︷︷������������︸
=: �̂�

, 𝑐𝑙+𝑚+1 � 𝜈︸������︷︷������︸
=: �̂�

)
.

The top rows of �̂�, �̂�, �̂� are 𝑑, 𝑒, 𝑐, respectively, and thus Theorem 2 gives that for all ℎ ∈ N we have

k(�̂�, �̂�, �̂�) = k(�̂� + ℎ, �̂� + ℎ, �̂� + ℎ)

= k( (𝑑 + ℎ) � (𝑐𝑙 + 𝜆), (𝑒 + ℎ) � (𝑐𝑚 + 𝜇), (𝑐 + ℎ) � 𝑐𝑙+𝑚 � 𝜈 )

= k(𝑐𝑙 + 𝜆, 𝑐𝑚 + 𝜇, 𝑐𝑙+𝑚 � 𝜈),

where the last identity follows by letting ℎ→ ∞. This proves (2.1) in the first case.
Suppose now that 𝜆1 > 𝑚𝑐, the case 𝜇1 > 𝑙𝑐 is completely analogous. Set 𝑏 := 𝑚 + 1. Then we

have k(𝜆, 𝜇, 𝜈) = k(𝜆′, 𝜇, 𝜈′) = 0 since ℓ(𝜆′) = 𝜆1 > 𝑚𝑐 ≥ ℓ(𝜇)ℓ(𝜈′). On the other hand, the reduced
Kronecker coefficient is obtained by adding long first rows, 𝑐𝑚 + 𝑐 + ℎ, 𝑐𝑙 + 𝑐 + ℎ, 𝑐 + ℎ, respectively, so

k(𝑐𝑙 + 𝜆, 𝑐𝑚 + 𝜇, 𝑐𝑙+𝑚 � 𝜈)

= k
(
(𝑐𝑚 + 𝑐 + ℎ) � (𝑐𝑙 + 𝜆), (𝑙𝑐 + 𝑐 + ℎ) � (𝑐𝑚 + 𝜇), (𝑐 + ℎ) � 𝑐𝑙+𝑚 � 𝜈)

)
= k′

(
(𝑐𝑚 + 𝑐 + ℎ) � (𝑐𝑙 + 𝜆)︸�����������������������︷︷�����������������������︸

=: 𝛼

, (𝑙𝑐 + 𝑐 + ℎ) � (𝑐𝑚 + 𝜇)︸�����������������������︷︷�����������������������︸
=: 𝛽

, ((𝑙 + 𝑏)𝑐 + 𝜈′) � (1ℎ)︸���������������������︷︷���������������������︸
=: 𝛾

)

for sufficiently large h. Let �̂� = (𝑙 + 𝑏)𝑐 + 𝜈′ be 𝛾 without the h many trailing 1s. We observe that
𝛼2 = 𝜆1 + 𝑐, ℓ(𝛽) = 𝑏 and ℓ(�̂�) = 𝑐. From 𝜆1 > 𝑚𝑐, we conclude 𝛼2 > 𝑏𝑐. Lemma 4 shows that
C (𝛼, 𝛽, 𝛾) = ∅. Hence, k′(𝛼, 𝛽, 𝛾) = 0 by Lemma 3. �

3. Proofs via the general linear group

3.1. Tools from the general linear group viewpoint

We refer to [Ful97, Section 8] for the basic properties of the irreducible representations of the general
linear group. The irreducible representations𝑉𝑎𝑏 (C𝑏) of the general linear group GL𝑏 are 1-dimensional:
For 𝑔 ∈ GL𝑏 , 𝑣 ∈ 𝑉𝑎𝑏 (C𝑏), we have 𝑔𝑣 := det(𝑔)𝑎𝑣. Hence, if we decompose 𝑉1𝑎𝑏 (C

𝑎𝑏) as a
GL𝑎 × GL𝑏 representation via the group homomorphism GL𝑎 × GL𝑏 → GL𝑎𝑏 , (𝑔1, 𝑔2) ↦→ 𝑔1 ⊗ 𝑔2,
then we obtain 𝑉1𝑎𝑏 (C

𝑎𝑏) � 𝑉𝑏𝑎 (C𝑎) ⊗ 𝑉𝑎𝑏 (C𝑏). Tensoring with such a 1-dimensional representation
preserves irreducibility: 𝑉𝜆 (C

𝑎) ⊗ 𝑉𝑏𝑎 (C𝑎) � 𝑉𝑏𝑎+𝜆 (C
𝑎).

The Kronecker coefficients have an interpretation as the structure coefficients arising when decom-
posing irreducible GL𝑎𝑏 representations as GL𝑎 × GL𝑏 representations:

𝑉𝜈 (C
𝑎𝑏) �

⊕
𝜆�𝑎 |𝜈 |
𝜇�𝑏 |𝜈 |

(
𝑉𝜆(C

𝑎) ⊗ 𝑉𝜇 (C
𝑏)
) ⊕k(𝜆,𝜇,𝜈)

.

This can be seen directly from Schur-Weyl duality (see, e.g. [Chr06, (2.2)] or [Ike12, Proposition 4.4.11]).
Another formulation is via the multiplicity of the irreducible 𝐺 := GL𝑎 × GL𝑏 × GL𝑐 representation
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𝑉𝛼 (C
𝑎) ⊗ 𝑉𝛽 (C

𝑏) ⊗ 𝑉𝛾 (C
𝑐) in the D-th wedge power of C𝑎 ⊗ C𝑏 ⊗ C𝑐 (see [IMW17]). Formally for

partitions 𝛼, 𝛽, 𝛾 � 𝐷, we have

k′(𝛼, 𝛽, 𝛾) = mult𝛼,𝛽,𝛾

(∧𝐷
(C𝑎 ⊗ C𝑏 ⊗ C𝑐)

)
.

A vector v for which
(
diag(𝑟1, . . . , 𝑟𝑎), diag(𝑠1, . . . , 𝑠𝑏), diag(𝑡1, . . . , 𝑡𝑐)

)
𝑣 = 𝑟𝜆1

1 · · · 𝑟𝜆𝑎
𝑎 · 𝑠

𝜇1
1 · · · 𝑠

𝜇𝑏

𝑏 ·

𝑡𝜈1
1 · · · 𝑡𝜈𝑐𝑐 𝑣is called a weight vector of weight (𝜆, 𝜇, 𝜈).

For (𝐴, 𝐵, 𝐶) ∈ C𝑎×𝑎 × C𝑏×𝑏 × C𝑐×𝑐 , the Lie algebra action on
∧𝐷 (C𝑎 ⊗ C𝑏 ⊗ C𝑐) is defined as

(𝐴, 𝐵, 𝐶).𝑣 := lim𝜀→0 𝜀
−1 ((𝜀(𝐴, 𝐵, 𝐶) + (id𝑎, id𝑏 , id𝑐))𝑣 − 𝑣). A raising operator is the Lie algebra

action of (𝐸𝑖−1,𝑖 , 0, 0), where 𝐸𝑖, 𝑗 is the matrix with a 1 at position (𝑖, 𝑗) and zeros everywhere else.
The other raising operators are (0, 𝐸𝑖−1,𝑖 , 0) and (0, 0, 𝐸𝑖−1,𝑖). Let 𝑒𝑖 := (0, . . . , 0, 1, 0, . . . , 0)𝑇 , and let
𝑒𝑖, 𝑗 ,𝑘 := 𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ 𝑒𝑘 . Then, for example, (𝐸𝑖, 𝑗 , 0, 0)𝑒𝑟 ,1,1 = 𝑒𝑖,1,1 iff 𝑟 = 𝑗 and 0 otherwise. A highest
weight vector (HWV) of weight (𝛼, 𝛽, 𝛾) is a nonzero weight vector of weight (𝛼, 𝛽, 𝛾) that is mapped
to zero by all raising operators. The irreducible GL𝑎 ×GL𝑏 ×GL𝑐 representation𝑉𝛼 ⊗𝑉𝛽 ⊗𝑉𝛾 contains
exactly one HWV (up to scale), and that is of weight (𝛼, 𝛽, 𝛾). Hence, ([IMW17, Lemma 2.1]),

k′(𝛼, 𝛽, 𝛾) = dim
(
HWV𝛼,𝛽,𝛾

∧𝐷
(C𝑎 ⊗ C𝑏 ⊗ C𝑐)

)
, (3.1)

where HWV𝛼,𝛽,𝛾 denotes the space of HWVs of weight (𝛼, 𝛽, 𝛾). Note that each standard basis vector
in

∧𝐷 (C𝑎 ⊗ C𝑏 ⊗ C𝑐) is a weight vector, and hence for each weight vector space of weight w, we have
a basis given by the set of standard basis vectors of weight w. Let 𝑒𝑖, 𝑗 ,𝑘 := 𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ 𝑒𝑘 , and for a list of
points 𝑄 ∈ (N3)𝐷 , we define 𝜓𝑄 := 𝑒𝑄1 ∧ 𝑒𝑄2 ∧ · · · ∧ 𝑒𝑄𝐷 . If Q has marginals (𝛼, 𝛽, 𝛾), then 𝜓𝑄 has
weight (𝛼, 𝛽, 𝛾). This immediately implies the result of Lemma 3.

We illustrate the concept with some examples. The HWVs in
∧2 (C2 ⊗ C2 ⊗ C1) are 𝑒1,1,1 ∧ 𝑒2,1,1

and 𝑒1,1,1 ∧ 𝑒1,2,1. A nontrivial example is the HWV

𝑡 := 𝑒1,1,1 ∧ 𝑒2,1,1 ∧ 𝑒1,2,2 + 𝑒1,1,1 ∧ 𝑒1,2,1 ∧ 𝑒2,1,2 + 𝑒1,1,1 ∧ 𝑒1,1,2 ∧ 𝑒2,2,1

of weight ((2, 1), (2, 1), (2, 1)) in
∧3(C2 ⊗ C2 ⊗ C2), which can be seen as follows:

(𝐸1,2, 0, 0)𝑡 = 𝑒1,1,1 ∧ 𝑒1,2,1 ∧ 𝑒1,1,2 + 𝑒1,1,1 ∧ 𝑒1,1,2 ∧ 𝑒1,2,1 = 0,
(0, 𝐸1,2, 0)𝑡 = 𝑒1,1,1 ∧ 𝑒2,1,1 ∧ 𝑒1,1,2 + 𝑒1,1,1 ∧ 𝑒1,1,2 ∧ 𝑒2,1,1 = 0,
(0, 0, 𝐸1,2)𝑡 = 𝑒1,1,1 ∧ 𝑒2,1,1 ∧ 𝑒1,2,1 + 𝑒1,1,1 ∧ 𝑒1,2,1 ∧ 𝑒2,1,1 = 0.

3.2. Proofs from the general linear group viewpoint

For the sake of completeness, we present the short proof of Lemma 1 from [BOR09, Proof of Lemma
2.1] and [Ike12, Corollary 4.4.14].

Proof of Lemma 1 via the general linear group. We have that 𝑉𝑚𝑙+𝜆(C
𝑙) ⊗ 𝑉𝑙𝑚+𝜇 (C

𝑚) occurs in
𝑉1𝑙𝑚+𝜈 (C

𝑙𝑚) with multiplicity k(𝑚𝑙 + 𝜆, 𝑙𝑚 + 𝜇, 1𝑙𝑚 + 𝜈). But we also have

𝑉1𝑙𝑚+𝜈 (C
𝑙𝑚)�𝑉1𝑙𝑚 (C

𝑙𝑚) ⊗ 𝑉𝜈 (C
𝑙𝑚)

�(𝑉𝑚𝑙 (C𝑙) ⊗ 𝑉𝑙𝑚 (C
𝑚)) ⊗

⊕
𝜆�𝑙 |𝜈 |
𝜇�𝑚 |𝜈 |

(
𝑉𝜆(C

𝑙) ⊗ 𝑉𝜇 (C
𝑚)

) ⊕k(𝜆,𝜇,𝜈)

�
⊕
𝜆�𝑎 |𝜈 |
𝜇�𝑏 |𝜈 |

(
𝑉𝑚𝑙+𝜆 (C

𝑙) ⊗ 𝑉𝑙𝑚+𝜇 (C
𝑚)

) ⊕k(𝜆,𝜇,𝜈)
. �
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Proof of Theorem 2 via contingency arrays and highest weight vectors. Let 𝑎 := ℓ(𝜆), 𝑏 := ℓ(𝜇), 𝑐 :=
𝜈1. Let 𝛾 := 𝜈′, so ℓ(𝛾) = 𝑐. We have 𝜆1 ≥ 𝑏𝑐 and 𝜇1 ≥ 𝑎𝑐. Observe that k(𝜆, 𝜇, 𝜈) = k′(𝜆, 𝜇, 𝛾). Let
𝜆 = 𝜆 + (ℎ), 𝜇 = 𝜇 + (ℎ), �̃� = 𝛾 � (1ℎ). We define an injective linear map 𝜑 as follows

𝜑 :
∧𝐷

(C𝑎 ⊗ C𝑏 ⊗ C𝑐) →
∧𝐷+ℎ

(C𝑎 ⊗ C𝑏 ⊗ C𝑐+ℎ)

𝑣 ↦→ 𝑣 ∧ 𝑒1,1,𝑐+1 ∧ 𝑒1,1,𝑐+2 ∧ · · · ∧ 𝑒1,1,𝑐+ℎ . (3.2)

Note that 𝜑 maps vectors of weight (𝜆, 𝜇, 𝛾) to vectors of weight (𝜆, 𝜇, �̃�). It remains to show that 𝜑
maps HWVs to HWVs, and that every HWV of weight (𝜆, 𝜇, �̃�) has a preimage under 𝜑.

We first prove that 𝜑 sends HWVs to HWVs. By construction of 𝜑, we observe that for 1 ≤ 𝑖 < 𝑖′ ≤ 𝑎,
we have

(𝐸𝑖,𝑖′ , 0, 0)𝜑(𝑢) = 𝜑((𝐸𝑖,𝑖′ , 0, 0)𝑢) = 𝜑(0) = 0.

Analogously, (0, 𝐸 𝑗 , 𝑗′ , 0)𝜑(𝑢) = 0 for 1 ≤ 𝑗 < 𝑗 ′ ≤ 𝑏, and (0, 0, 𝐸𝑘,𝑘′ )𝜑(𝑢) = 0 for 1 ≤ 𝑘 < 𝑘 ′ ≤ 𝑐.
The remaining raising operators also vanish by construction of 𝜑, because

(0, 0, 𝐸𝑐+𝑘,𝑐+𝑘′ ) (𝑣 ∧ 𝑒1,1,𝑐+1 ∧ · · · ∧ 𝑒1,1,𝑐+ℎ)

= 𝑣 ∧ 𝑒1,1,𝑐+1 ∧ · · · ∧ 𝑒1,1,𝑐+𝑘 ∧ 𝑒1,1,𝑐+𝑘 ∧ �𝑒1,1,𝑐+𝑘′ ∧ · · · ∧ 𝑒1,1,𝑐+ℎ

= 0,

because of the repeated factor 𝑒1,1,𝑐+𝑘 . Here, the �𝑒1,1,𝑐+𝑘′ means omission of that factor. For every basis
vector𝜓𝑄 of weight (𝜆, 𝜇, �̃�), by Lemma 4, we have (1, 1, 𝑐) ∈ 𝑄 and𝑄∩(N×N×{𝑐+1}) = {(1, 1, 𝑐+1)},
hence, (0, 0, 𝐸𝑐,𝑐+1)𝜓𝑄 = 0 as well.

We now show that every weight vector of weight (𝜆, 𝜇, �̃�) has a preimage under 𝜑, which finishes the
proof. It is sufficient to show this for basis vectors. Let 𝜓𝑄 be a basis weight vector of weight (𝜆, 𝜇, �̃�),
that is, 𝑄 ⊆ N3 with marginals (𝜆, 𝜇, �̃�). We apply Lemma 4 to see that {1} × {1} × [𝑐 + 1, 𝑐 + ℎ] ⊂ 𝑄
and 𝑄 ∩ (N × N × {𝑖}) = {(1, 1, 𝑖)} for all 𝑐 + 1 ≤ 𝑖 ≤ 𝑐 + ℎ. Therefore, 𝜓𝑄 has a preimage under 𝜑,
namely, 𝜓𝑃 , where P arises from Q by deleting all points with 3rd coordinate > 𝑐. �

Note that (2.2) (and hence also Lemma 2) can alternatively be proved by a simple explicit linear map
between highest weight vector spaces

HWV𝜆,𝜇,𝜈𝑡

(∧𝐷
(C𝑙 ⊗ C𝑚 ⊗ C𝑐)

)
→ HWV𝑚𝑙+𝜆, 𝑙𝑚+𝜇, (𝑙𝑚)�𝜈𝑡

(∧𝐷+𝑙𝑚
(C𝑙 ⊗ C𝑚 ⊗ C𝑐+1)

)
𝑒𝑖1 , 𝑗1 ,𝑘1 ∧ · · · ∧ 𝑒𝑖𝐷 , 𝑗𝐷 ,𝑘𝐷 ↦→ 𝑒𝑖1 , 𝑗1 ,𝑘1+1 ∧ · · · ∧ 𝑒𝑖𝐷 , 𝑗𝐷 ,𝑘𝐷+1 ∧ 𝑒1,1,1 ∧ · · · ∧ 𝑒𝑙,𝑚,1 (3.3)

for 𝐷 = |𝜆 |. Combining this with the construction in Theorem 2, Theorem 1 is now fully proved by an
explicit isomorphism of highest weight vector spaces.

4. Proofs via symmetric functions

4.1. Tools from symmetric functions

Here, we recall basic definitions and facts from symmetric function theory (see [Sta99, Sag13, Mac98]).
The standard Young tableaux (SYT) of shape 𝜆 � 𝑛 are assignments of 1, 2, . . . , 𝑛 to the Young

diagram of 𝜆, so that the numbers are decreasing along rows and down columns, and each number
appears exactly once. A semi-standard Young tableaux (SSYT) of skew shape 𝜆/𝜇 is an assignment of
integers 1, 2, . . . , 𝑁 to the boxes of the skew Young diagram 𝜆/𝜇, such that the values weakly increase
along rows and strictly down columns. We say that an SSYT T has type (weight) 𝑡𝑦𝑝𝑒(𝑇) = 𝛼 if there
are 𝛼𝑖 entries equal to i for each i.
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As an example, 1 1 3
2 3 3

1 3 4 4

is an SSYT of shape (5, 4, 4)/(2, 1) and type (3, 1, 4, 2).

The ring of symmetric functions Λ has several fundamental bases. Here, we will use the monomial
basis {𝑚𝜆} given by 𝑚𝜆 = 𝑥𝜆1

1 𝑥
𝜆2
2 . . . + · · · , summing over all distinct monomials with exponents

𝜆1, 𝜆2, . . .. We will also use the homogeneous symmetric functions {ℎ𝜆} given by

ℎ𝑚 :=
∑

𝑖1≤𝑖2≤···≤𝑖𝑚

𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑚 for 𝑚 > 0;

ℎ0 = 1; ℎ𝑚 = 0 for 𝑚 < 0 and ℎ𝜆 := ℎ𝜆1ℎ𝜆2 · · · . The Schur functions 𝑠𝜆 are one of the fundamental
bases of the ring Λ of symmetric functions. Moreover, 𝑠𝜆(𝑥1, . . . , 𝑥𝑁 ) is the value of the character of
𝑉𝜆 at a matrix with eigenvalues 𝑥1, . . . , 𝑥𝑁 . We have the following formulas for them, where ℓ = ℓ(𝜆),

Jacobi-Trudi identity: 𝑠𝜆 = det[ℎ𝜆𝑖−𝑖+ 𝑗 ]
ℓ
𝑖, 𝑗=1 (4.1)

Weyl determinantal formula: 𝑠𝜆(𝑥1, . . . , 𝑥𝑁 ) =
det[𝑥𝜆 𝑗+𝑁− 𝑗

𝑖 ]𝑁
𝑖, 𝑗=1

det[𝑥𝑁− 𝑗
𝑖 ]

(4.2)

via SSYTs: 𝑠𝜆 =
∑

𝑇 ∈𝑆𝑆𝑌𝑇 (𝜆)

𝑥𝑡 𝑦 𝑝𝑒 (𝑇 ) . (4.3)

The Littlewood-Richardson coefficients are the structure constants in the ring of symmetric func-
tions as

𝑠𝜇 (𝑥)𝑠𝜈 (𝑥) =
∑
𝜆

𝑐𝜆𝜇,𝜈𝑠𝜆 (𝑥).

They can be computed combinatorially via the Littlewood-Richardson rule: 𝑐𝜆𝜇𝜈 is equal to the number
of SSYTs T of shape 𝜆/𝜇, type 𝜈 and whose reading words are a ballot sequence. The reading word is
obtained by reading the tableaux right to left along rows, top to bottom, and a word is a ballot sequence
if, in every prefix, the number of i’s is not less than the number of 𝑖 + 1’s for every i. The multi-LR
coefficients 𝑐𝜆

𝛼1 · · ·𝛼𝑘 are defined as

𝑐𝜆
𝛼1 · · ·𝛼𝑘 := 〈𝑠𝜆, 𝑠𝛼1 𝑠𝛼2 · · · 𝑠𝛼𝑘 〉 =

∑
𝛽1 ,𝛽2 ,...

𝑐𝜆
𝛼1𝛽1𝑐

𝛽1

𝛼2𝛽2 · · · 𝑐
𝛽𝑘−1

𝛼𝑘−1 𝛼𝑘 , (4.4)

where the sum is over partitions 𝛽𝑖 � |𝛽𝑖−1 | − |𝛼𝑖 | with 𝛽0 := 𝜆. It is then easy to see that they count
SSYTs T of shape 𝜆 and type (𝛼1 � 𝛼2 � · · · ), such that the reading word of each skew subtableau
corresponding to the entries with values between 1 +

∑𝑟
𝑖=1 ℓ(𝛼

𝑖) and
∑𝑟+1

𝑖=1 ℓ(𝛼
𝑖) is a lattice permutation

for every 𝑟 = 1, . . . , 𝑘 − 1. For example,

are two multi-LR tableaux of shape 𝜆 = (7, 6, 5) and types 𝛼1 = (4, 3, 1), 𝛼2 = (3, 3), 𝛼3 = (3, 1).
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The Kronecker coefficient can be studied via the following expansions

𝑠𝜆 [𝑥 · 𝑦] =
∑
𝜇,𝜈

k(𝜆, 𝜇, 𝜈)𝑠𝜇 (𝑥)𝑠𝜈 (𝑦), (4.5)

where 𝑥 · 𝑦 = (𝑥1𝑦1, 𝑥1𝑦2, . . . , 𝑥2𝑦1, . . .) consists of the pairwise products of the two sets of variables.
In particular, this gives that

ℎ𝑚 [𝑥 · 𝑦] =
∑
𝜆

𝑠𝜆(𝑥)𝑠𝜆 (𝑦).

From the Jacobi-Trudy identity, we thus obtain

𝑠𝜆 [𝑥 · 𝑦] = det[ℎ𝜆𝑖−𝑖+ 𝑗 [𝑥 · 𝑦]]

=
∑
𝜎∈𝑆ℓ

sgn(𝜎)
∑

𝛼𝑖�𝜆𝑖−𝑖+𝜎𝑖

𝑠𝛼1 (𝑥) · · · 𝑠𝛼ℓ (𝑥)𝑠𝛼1 (𝑦) · · · 𝑠𝛼ℓ (𝑦),

so

k(𝜆, 𝜇, 𝜈) =
∑
𝜎∈𝑆ℓ

sgn(𝜎)
∑

𝛼𝑖�𝜆𝑖−𝑖+𝜎𝑖

𝑐
𝜇

𝛼1 · · ·𝛼𝑘 𝑐
𝜈
𝛼1 · · ·𝛼𝑘 . (4.6)

Note that this identity appears many times in the literature, including [Val09, PP17b, PP17a].
The following are referred to as the “triple Cauchy identities” (see, e.g. [Sta99, Exercise 7.78]):

∑
𝜆,𝜇,𝜈

k(𝜆, 𝜇, 𝜈)𝑠𝜆(𝑥)𝑠𝜇 (𝑦)𝑠𝜈 (𝑧) =
∏
𝑖, 𝑗 ,𝑘

1
1 − 𝑥𝑖𝑦 𝑗 𝑧𝑘

,

∑
𝜆,𝜇,𝜈

k(𝜆, 𝜇, 𝜈)𝑠𝜆(𝑥)𝑠𝜇 (𝑦)𝑠𝜈′ (𝑧) =
∏
𝑖, 𝑗 ,𝑘

(1 + 𝑥𝑖𝑦 𝑗 𝑧𝑘 ),

where the second identity follows from the first via the involution 𝜔 on the symmetric functions in the
variables z. Denote by 𝐶 (𝛼, 𝛽, 𝛾) := |C (𝛼, 𝛽, 𝛾) |. Then the second identity becomes

∑
𝜆,𝜇,𝜈

k(𝜆, 𝜇, 𝜈)𝑠𝜆(𝑥)𝑠𝜇 (𝑦)𝑠𝜈′ (𝑧) =
∑

𝛼,𝛽,𝛾

𝐶 (𝛼, 𝛽, 𝛾)𝑥𝛼𝑦𝛽𝑧𝛾 . (4.7)

Note that this identity immediately gives the upper bound in Lemma 3 by comparing coefficients at
𝑥𝜆𝑦𝜇𝑧𝜈

′ on both sides.
We now express k(𝜆, 𝜇, 𝜈) as an alternating sum over contingency arrays. Denote by

Δ (𝑥) = det[𝑥𝑎− 𝑗
𝑖 ] =

∏
𝑖< 𝑗

(𝑥𝑖 − 𝑥 𝑗 ) =
∑

𝜎∈𝑆𝑎

sgn(𝜎)𝑥𝑎−𝜎1
1 · · · 𝑥𝑎−𝜎𝑎

𝑎 ,

and multiply by Δ (𝑥)Δ (𝑦)Δ (𝑧) both sides of equation (4.7). Expressing the Schur functions via the
ratio of determinants in 4.2, we obtain

∑
𝜆,𝜇,𝜈

k(𝜆, 𝜇, 𝜈) det[𝑥𝜆 𝑗+𝑎− 𝑗
𝑖 ] det[𝑦𝜇 𝑗+𝑏− 𝑗

𝑖 ] det[𝑧
𝜈′
𝑗+𝑐− 𝑗

𝑖 ]

= Δ (𝑥)Δ (𝑦)Δ (𝑧)
∑

𝛼,𝛽,𝛾

𝐶 (𝛼, 𝛽, 𝛾)𝑥𝛼𝑦𝛽𝑧𝛾 .
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Comparing coefficients at 𝑥𝜆1+𝑎−1
1 . . . 𝑦

𝜇1+𝑏−1
1 . . . 𝑧

𝜈′
1+𝑐−1

1 . . . on both sides, we obtain k(𝜆, 𝜇, 𝜈) =

[𝑥𝜆1+𝑎−1
1 . . . 𝑦

𝜇1+𝑏−1
1 . . . 𝑧

𝜈′
1+𝑐−1

1 . . .]Δ (𝑥)Δ (𝑦)Δ (𝑧)
∑

𝛼,𝛽,𝛾

𝐶 (𝛼, 𝛽, 𝛾)𝑥𝛼𝑦𝛽𝑧𝛾 ,

where the [· · · ] denotes the coefficient extraction. Expanding the Δs into monomials, whose marginals
we incorporate, we get that we must have 𝜆𝑖 + 𝑎 − 𝑖 = 𝛼𝑖 + 𝑎 −𝜎𝑖 etc., so 𝛼𝑖 = 𝜆𝑖 +𝜎𝑖 − 𝑖, and we obtain,
see also [PP20a], k(𝜆, 𝜇, 𝜈) =

∑
𝜎∈𝑆𝑎 , 𝜋∈𝑆𝑏 , 𝜌∈𝑆𝑐

sgn(𝜎)sgn(𝜋)sgn(𝜌)𝐶 (𝜆 + 𝜎 − id, 𝜇 + 𝜋 − id, 𝜈′ + 𝜌 − id), (4.8)

where a permutation 𝜎 is interpreted as the vector (𝜎(1), . . . , 𝜎(𝑎)) and id = (1, 2, . . .) is the identity
permutation of the corresponding size.

4.2. Proofs via symmetric functions

Proof of Lemma 1 via symmetric functions. Let �̂� = 1𝑙𝑚 + 𝜈. We use Schur functions as follows. We
apply equation (4.5) with variables 𝑥1, . . . , 𝑥ℓ and 𝑦1, . . . , 𝑦𝑚, so 𝑥𝑖 = 0 for 𝑖 > 𝑙 and 𝑦 𝑗 = 0 for 𝑗 > 𝑚,
and we obtain

𝑠�̂� [𝑥 · 𝑦] =
∑
𝜃,𝜏

k(�̂�, 𝜃, 𝜏)𝑠𝜃 (𝑥)𝑠𝜏 (𝑦). (4.9)

If k(�̂�, 𝜃, 𝜏) > 0, we must have ℓ(𝜃)ℓ(𝜏) ≥ ℓ(�̂�) = 𝑙𝑚. Since 𝑠𝜃 (𝑥1, . . . , 𝑥𝑙) = 0 if ℓ(𝜃) > 𝑙 and
𝑠𝜏 (𝑦1, . . . , 𝑦𝑚) = 0 if ℓ(𝜏) > 𝑚, we then must have only the partitions with ℓ(𝜃) = 𝑙, ℓ(𝜏) = 𝑚
appearing.

Since 𝑠�̂� is the generating function over SSYTs with entries 𝑥1𝑦1, . . . , 𝑥𝑙𝑦𝑚, and its first column has
length exactly 𝑙𝑐, we must have all the entries 𝑥𝑖𝑦 𝑗 appearing exactly once in that column. As this is the
minimal possible column, the rest of the SSYT can be any of the SSYTs of the remaining shape and
entries 𝑥1𝑦1, . . . , 𝑥𝑙𝑦𝑚. Thus

𝑠�̂� [𝑥 · 𝑦] = 𝑠𝜈 [𝑥 · 𝑦]
∏
𝑖, 𝑗

𝑥𝑖𝑦 𝑗 = (𝑥1 . . . 𝑥𝑙)
𝑚(𝑦1, . . . , 𝑦𝑚)

𝑙
∑
𝜌,𝜂

k(𝜈, 𝜌, 𝜂)𝑠𝜌 (𝑥)𝑠𝜂 (𝑦). (4.10)

We also note that 𝑠𝑙𝑚+𝜇 (𝑦1, . . . , 𝑦𝑚) = (𝑦1 . . . 𝑦𝑚)
𝑙𝑠𝜇 (𝑦), since the first l columns of length m are

forced to be filled with 1, . . . , 𝑚, and for the remaining tableaux, there are no restrictions other than
being an SSYT. Similarly, 𝑠𝑚𝑙+𝜆 (𝑥1, . . . , 𝑥𝑙) = (𝑥1 . . . 𝑥𝑙)

𝑚𝑠𝜆 (𝑥). Comparing coefficients of 𝑠𝜆 (𝑥)𝑠𝜇 (𝑦)
at equations (4.9) and (4.10), we thus see that

k(�̂�, 𝑙𝑚 + 𝜇, 𝑚𝑙 + 𝜆) = k(𝜈, 𝜆, 𝜇). �

Proof of Theorem 2 via contingency arrays and symmetric functions. From now on, we will use for-
mula (4.8) and Lemma 4 to show that the only possible contingency arrays are the ones in Figure 2.

Consider now k(𝜆+ℎ, 𝜇+ℎ, 𝜈+ℎ) as in the problem, and let𝛼 = (𝜆+ℎ), 𝛽 = (𝜇+ℎ), 𝛾 = (𝜈+ℎ)′, so that
k(𝛼, 𝛽, 𝛾′) = k(𝜆+ℎ, 𝜇+ℎ, 𝜈+ℎ). Let 𝜈1 = 𝑐, ℓ(𝜆) = 𝑎 and ℓ(𝜇) = 𝑏, so we have𝛼1 ≥ 𝑏𝑐+ℎ, 𝛽1 ≥ 𝑎𝑐+ℎ,
𝛾𝑖 = 1 for 𝑖 = 𝑐 + 1, . . . , 𝑐 + ℎ and k(𝛼, 𝛽, 𝛾′) =

∑
𝜎∈𝑆𝑎 , 𝜋∈𝑆𝑏 , 𝜌∈𝑆𝑐+ℎ

sgn(𝜎)sgn(𝜋)sgn(𝜌)𝐶 (𝛼 + 𝜎 − id, 𝛽 + 𝜋 − id, 𝛾 + 𝜌 − id). (4.11)
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In formula (4.11), we then consider {0, 1}-contingency arrays Q with marginals

𝑄1∗∗ :=
∑
𝑗 ,𝑘

𝑄1, 𝑗 ,𝑘 = 𝜆1 + 𝜎1 − 1 ≥ 𝑏𝑐 + ℎ,

𝑄∗1∗ :=
∑
𝑖,𝑘

𝑄𝑖,1,𝑘 = 𝜇1 + 𝜋1 − 1 ≥ 𝑎𝑐 + ℎ,

𝑄∗∗𝑘 :=
∑
𝑖, 𝑗

𝑄𝑖, 𝑗 ,𝑘 = 1 + 𝜌𝑘 − 𝑘, for 𝑘 = 𝑐 + 1, . . . , 𝑐 + ℎ.

Note that then we have

∑
𝑘>𝑐

𝑄∗∗𝑘 = ℎ +
𝑐+ℎ∑

𝑘=𝑐+1
𝜌𝑘 −

𝑐+ℎ∑
𝑘=𝑐+1

𝑘 ≤ ℎ, (4.12)

and the support of the array is in [1, 𝑎] × [1, 𝑏] × [1, 𝑐 + ℎ], so we can apply Lemma 4 and conclude
that 𝑄1, 𝑗 ,𝑘 = 0 iff ( 𝑗 , 𝑘) ∈ [2, 𝑏] × [𝑐 + 1, 𝑐 + ℎ] and 𝑄𝑖,1,𝑘 = 0 iff (𝑖, 𝑘) ∈ [2, 𝑎] × [𝑐 + 1, 𝑐 + ℎ] .

Thus, we must have 𝑄1∗∗ = 𝑏𝑐 + ℎ, 𝑄∗1∗ = 𝑎𝑐 + ℎ, and so 𝜎1 = 𝜋1 = 1, {𝜌𝑐+1, . . . , 𝜌𝑐+ℎ} =
{𝑐 + 1, . . . , 𝑐 + ℎ}, and for 𝑘 ∈ [𝑐 + 1, 𝑐 + ℎ], we must have 𝑄𝑖, 𝑗 ,𝑘 = 0 unless 𝑖 = 𝑗 = 1. This also forces
us to have 𝑄1,1,𝑘 = 1 for all these k, and so 𝜌𝑘 = 𝑘 for 𝑘 = 𝑐 + 1, . . . , 𝑐 + ℎ.

This completely determines 𝑄𝑖, 𝑗 ,𝑘 for 𝑘 > 𝑐, as well as 𝜌𝑘 for 𝑘 > 𝑐, and 𝜌 = �̄�, (𝑐 + 1), . . . , (𝑐 + ℎ)
for �̄� ∈ 𝑆𝑐 . We can thus write formula (4.11) as

k(𝜆 + ℎ, 𝜇 + ℎ, 𝜈 + ℎ)

=
∑

𝜎∈𝑆𝑎 , 𝜋∈𝑆𝑏 , 𝜌∈𝑆𝑐+ℎ

sgn(𝜎)sgn(𝜋)sgn(𝜌)𝐶 (𝛼 + 𝜎 − 𝑖𝑑, 𝛽 + 𝜋 − 𝑖𝑑, 𝛾 + 𝜌 − 𝑖𝑑)

=
∑

𝜎∈𝑆𝑎 , 𝜋∈𝑆𝑏 , 𝜂∈𝑆𝑐

sgn(𝜎)sgn(𝜋)sgn(𝜂)𝐶 (�̄� + 𝜎 − 𝑖𝑑, 𝛽 + 𝜋 − 𝑖𝑑, �̄� + 𝜂 − 𝑖𝑑),

where �̄� = 𝛼 − (ℎ) = 𝜆, 𝛽 = 𝛽 − (ℎ) = 𝜇 and �̄� = (𝛾1 . . . , 𝛾𝑐) = 𝜈′. As the last part coincides with the
expression for k(𝜆, 𝜇, 𝜈) in (4.8), we get the desired identity. �

Proof of Theorem 2 via Littlewood-Richardson coefficients. Let again ℓ(𝜆) = 𝑎, ℓ(𝜇) = 𝑏 and 𝜈1 = 𝑐.
We have that k(𝜆 + ℎ, 𝜇 + ℎ, 𝜈 + ℎ) = k(𝜈′ � (1ℎ), 𝜆′ � (1ℎ), 𝜇 + ℎ), and we are going to apply formula

(4.6) with that triple of partitions. Set �̂� = 𝜇 + ℎ, �̂� = 𝜆′ � (1ℎ) = (𝜆 + ℎ)′ and �̂� = 𝜈′ � (1ℎ) (𝜈 + ℎ)′.
Here, ℓ(𝜈′ � (1ℎ)) = 𝑐 + ℎ, so

k(𝜆 + ℎ, 𝜇 + ℎ, 𝜈 + ℎ) =
∑

𝜎∈𝑆𝑐+ℎ

sgn(𝜎)
∑

𝛼𝑖��̂�𝑖−𝑖+𝜎𝑖

𝑐�̂�
𝛼1 𝛼2 · · ·

𝑐
�̂�

𝛼1 𝛼2 · · ·
.

We will now characterize the possible partitions 𝛼𝑖 involved in this sum. From the iterated definition
of the multi-LR coefficients (4.4), we see that in order for the coefficients to be nonzero, we must
have 𝛼𝑖 ⊂ �̂� and 𝛼𝑖 ⊂ �̂�. In particular, then ℓ(𝛼𝑖) ≤ ℓ(𝜇) = 𝑏 and 𝛼𝑖

1 ≤ �̂�1 = 𝑎. Note that multi-LR
coefficients count certain SSYTs of type (𝛼1�𝛼2� . . .�𝛼𝑐 � . . .), and thus in the shape �̂�, the first column
will have at most ℓ(𝛼1) + · · · + ℓ(𝛼𝑐) ≤ 𝑏𝑐 many entries from the first c partitions. So there are at least
h boxes in the first column which need to be covered by the partitions 𝛼𝑐+1, . . . , 𝛼𝑐+ℎ . We then have

ℎ ≤ ℓ(𝛼𝑐+1) + · · · + ℓ(𝛼𝑐+ℎ) ≤ |𝛼𝑐+1 | + · · · + |𝛼𝑐+ℎ | =
𝑐+ℎ∑

𝑖=𝑐+1
1 − 𝑖 + 𝜎𝑖 ≤ ℎ,
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as 𝜎𝑐+1 + · · · + 𝜎𝑐+ℎ ≤ 𝑐 + 1 + · · · 𝑐 + ℎ. Thus, we need to have equalities, and so

|𝛼𝑐+1 | + · · · + |𝛼𝑐+ℎ | = ℎ, ℓ(𝛼𝑖) = |𝛼𝑖 |,

so 𝛼𝑖 are single column partitions, possibly empty.
Further, we have 𝛼𝑖 ≤ 𝑎, 𝛼𝑖 ⊂ �̂�. As there is a multi-LR of type (𝛼1 � 𝛼2 · · · ), the first row of that

tableaux can only be occupied by the smallest entries of each type. So we must have

𝑎𝑐 + ℎ = �̂�1 ≤
∑

𝑖

𝛼𝑖
1 ≤

𝑐∑
𝑖=1
𝑎 +

𝑐+ℎ∑
𝑖=𝑐+1

𝛼𝑖
1.

Thus, 𝛼𝑐+1
1 + · · · + 𝛼𝑐+ℎ

1 ≥ ℎ. Since 𝛼𝑖
1 ≤ 1 by the above consideration, we must have 𝛼𝑖 = (1) for all

𝑖 > 𝑐. So 𝜎𝑖 = 𝑖 for 𝑖 = 𝑐 + 1, . . . , 𝑐 + ℎ.
Then

𝑐�̂�
𝛼1 𝛼2 · · ·𝛼𝑐+ℎ = 𝑐𝜆

′

𝛼1 · · ·𝛼𝑐 and 𝑐
�̂�

𝛼1 𝛼2 · · ·𝛼𝑐+ℎ = 𝑐𝜇

𝛼1 · · ·𝛼𝑐 .

We thus get that

k(𝜆 + ℎ, 𝜇 + ℎ, 𝜈 + ℎ) =
∑

𝜎∈𝑆𝑐+ℎ

sgn(𝜎)
∑

𝛼𝑖��̂�𝑖−𝑖+𝜎𝑖

𝑐�̂�
𝛼1 𝛼2 · · ·

𝑐
�̂�

𝛼1 𝛼2 · · ·

=
∑

𝜎∈𝑆𝑐

sgn(𝜎)
∑

𝛼𝑖�𝜈′
𝑖−𝑖+𝜎𝑖

𝑐𝜆
′

𝛼1 𝛼2 · · ·
𝑐

𝜇

𝛼1 𝛼2 · · ·
= k(𝜈′, 𝜆′, 𝜇) = k(𝜆, 𝜇, 𝜈),

which completes the proof. �

We now discuss how Theorem 1 can be seen from the following identity, which first appeared
in [BOR11], where it was proven using symmetric function operators. It was then reformulated in
[BDVO15, Theorem 4.3], which studies the partition algebra, as follows.

Set 𝑚 = 𝑟 + 𝑠, and let 𝜈 � 𝑚 − 𝑙, 𝜆 � 𝑟 , 𝜇 � 𝑠 for some nonnegative integer l. Then

k(𝜆, 𝜇, 𝜈) =
∑
𝑙1 ,𝑙2

𝑙=𝑙1+2𝑙2

∑
𝛼�𝑟−𝑙1−𝑙2
𝛽�𝑠−𝑙1−𝑙2

∑
𝜋,𝜌,𝜎�𝑙1

𝛾�𝑙2

𝑐𝜈
𝛼,𝛽, 𝜋𝑐

𝜆
𝛼,𝜌,𝛾𝑐

𝜇
𝛾,𝜎,𝛽k(𝜋, 𝜌, 𝜎).

We now apply it to compute the reduced Kronecker coefficient in Theorem 1. Let �̂� = 𝜈ℓ (𝜆)
1 + 𝜆,

�̂� = 𝜈ℓ (𝜇)
1 + 𝜇 and �̂� = (𝜈

ℓ (𝜆)+ℓ (𝜇)
1 , 𝜈). Then 𝑚 − 𝑙 = (ℓ(𝜆) + ℓ(𝜇))𝜈1 + 𝑛, 𝑟 = ℓ(𝜆)𝜈1 + 𝑛, 𝑠 = ℓ(𝜇)𝜈1 + 𝑛,

so 𝑙 = 𝑛 and the above identity translates to

k(�̂�, �̂�, �̂�) =
∑
𝑙1 ,𝑙2

𝑛=𝑙1+2𝑙2

∑
𝛼�𝑟−𝑙1−𝑙2
𝛽�𝑠−𝑙1−𝑙2

∑
𝜋,𝜌,𝜎�𝑙1

𝛾�𝑙2

𝑐�̂�
𝛼,𝛽, 𝜋𝑐

�̂�
𝛼,𝜌,𝛾𝑐

�̂�
𝛾,𝜎,𝛽k(𝜋, 𝜌, 𝜎).

We now observe that |𝛼 | ≥ ℓ(𝜆)𝜈1, and if 𝑐�̂�𝛼,𝜌,𝛾 > 0, 𝑐�̂�
𝛼,𝛽, 𝜋 > 0, then 𝛼 ⊂ �̂� ∩ �̂� = (𝜈ℓ (𝜆)

1 ). Then
we must have 𝛼 = 𝜈ℓ (𝜆)

1 , and so 𝑙1 + 𝑙2 = 𝑛. Since 𝑙1 + 2𝑙2 = 𝑛, we must have 𝑙2 = 0 and 𝑙1 = 𝑛, so 𝛾 = ∅.
Similarly, we obtain 𝛽 = (𝜈

ℓ (𝜇)
1 ), leaving us with

k(�̂�, �̂�, �̂�) =
∑

𝜋,𝜌,𝜎�𝑛

𝑐�̂�
𝛼,𝛽, 𝜋𝑐

�̂�
𝛼,𝜌𝑐

�̂�
𝜎,𝛽k(𝜋, 𝜌, 𝜎).

Observe that the Littlewood-Richardson rule gives, since 𝛼 is the rectangle in the beginning of �̂�, that
𝑐�̂�𝛼,𝜌 = 0 if 𝜌 ≠ �̂�/𝛼 = 𝜆, and is 1 otherwise. Similarly, the other Littlewood-Richardson coefficients
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are zero unless 𝜎 = 𝜇 and 𝜋 = 𝜈, we are left with only one partition triple (𝜋, 𝜌, 𝜎) = (𝜈, 𝜆, 𝜇), whose
coefficient is 1 and the identity in Theorem 1 follows.
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