
J. Fluid Mech. (2024), vol. 1000, A37, doi:10.1017/jfm.2024.858

Preserving large-scale features in simulations of
elastic turbulence

Sumithra R. Yerasi1, Jason R. Picardo2,†, Anupam Gupta3 and
Dario Vincenzi1

1Université Côte d’Azur, CNRS, LJAD, 06100 Nice, France
2Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
3Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502284, India

(Received 15 December 2023; revised 23 August 2024; accepted 29 August 2024)

Simulations of elastic turbulence, the chaotic flow of highly elastic and inertialess
polymer solutions, are plagued by numerical difficulties: the chaotically advected
polymer conformation tensor develops extremely large gradients and can lose its
positive-definiteness, which triggers numerical instabilities. While efforts to tackle these
issues have produced a plethora of specialized techniques – tensor decompositions,
artificial diffusion, and shock-capturing advection schemes – we still lack an unambiguous
route to accurate and efficient simulations. In this work, we show that even when a
simulation is numerically stable, maintaining positive-definiteness and displaying the
expected chaotic fluctuations, it can still suffer from errors significant enough to distort the
large-scale dynamics and flow structures. We focus on two-dimensional simulations of the
Oldroyd-B and FENE-P equations, driven by a large-scale cellular body forcing. We first
compare two positivity-preserving decompositions of the conformation tensor: symmetric
square root (SSR) and Cholesky with a logarithmic transformation (Cholesky-log). While
both simulations yield chaotic flows, only the latter preserves the pattern of the forcing,
i.e. its fluctuating vortical cells remain ordered in a lattice. In contrast, the SSR simulation
exhibits distorted vortical cells that shrink, expand and reorient constantly. To identify
the accurate simulation, we appeal to a hitherto overlooked mathematical bound on the
determinant of the conformation tensor, which unequivocally rejects the SSR simulation.
Importantly, the accuracy of the Cholesky-log simulation is shown to arise from the
logarithmic transformation. We also consider local artificial diffusion, a potential low-cost
alternative to high-order advection schemes. Unfortunately, the artificially enhanced
diffusive smearing of polymer stress in regions of intense stretching substantially modifies
the global dynamics. We then show how the spurious large-scale motions, identified
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here, contaminate predictions of scalar mixing. Finally, we discuss the effects of spatial
resolution, which controls the steepness of gradients in a non-diffusive simulation.

Key words: viscoelasticity, computational methods, turbulence simulation

1. Introduction

At low inertia but high elasticity, polymer solutions develop a chaotic regime called elastic
turbulence (Groisman & Steinberg 2000). As the name suggests, in this regime the velocity
field is chaotic and fluctuates in space and time with power-law spectra. Unlike Newtonian
turbulence, though, the instabilities that trigger the chaotic motions and the mechanisms
that sustain them are solely elastic, and fluid inertia plays no role. Consequently, elastic
turbulence offers an effective means of enhancing mixing under circumstances of weak or
vanishing inertia, such as in micro-fluidics (Groisman & Steinberg 2001). The discovery of
this phenomenon raised new questions, most of which remain unanswered, including the
role of flow geometry and perturbations in triggering and sustaining turbulence, and the
significance of wave-like fluctuations in the spatio-temporal dynamics (Datta et al. 2022).
Therefore, over the past two decades, elastic turbulence has been the subject of extensive
experimental investigation (Steinberg 2021, 2022). Numerical simulations, however, have
lagged behind, and to date only a few studies have considered realistic three-dimensional
flows (Liu & Khomami 2013; van Buel & Stark 2022; Song et al. 2022, 2023; Lellep,
Linkmann & Morozov 2024). Indeed, simulating elastic turbulence presents a distinct
set of difficulties and in some ways is more challenging than simulating its Newtonian
counterpart (Alves, Oliveira & Pinho 2021).

The common approach to the simulation of viscoelastic flows couples the Navier–Stokes
equations (or, in the limit of vanishing inertia, the Stokes equations) with a constitutive
equation governing the evolution of the polymeric stress. The best known models of
viscoelastic flows are the Oldroyd-B model and the FENE-P model, where the acronym
stands for ‘finitely extensible nonlinear elastic with the Peterlin approximation’. Both
models express the polymeric stress in terms of the conformation tensor C(x, t), defined as
the tensor product of the polymer’s end-to-end separation vector R by itself, averaged over
all polymers contained in a volume element located at position x at time t, i.e. Cij ≡ 〈RiRj〉.
Clearly, the conformation tensor is defined to be positive-definite. In principle, the
evolution equations preserve this property, though in practice, numerical errors can lead
to its loss, which in turn produces unphysical stresses and numerical instabilities.

Simulations of elastic turbulence are particularly susceptible to numerical instabilities
because the tensor field of C develops very large gradients as the polymers are stretched
out by the chaotic flow (the trace tr C is the squared extension of polymers). A range of
special numerical schemes has been developed, therefore, to resolve these steep variations
of C and to guarantee its positive-definiteness (Alves et al. 2021). As discussed below,
these methods involve a combination of non-trivial transformations or decompositions of
C, advanced advection schemes, and artificial diffusion. We thus have a variety of distinct
methods that are capable of keeping C positive-definite and producing stable numerical
solutions. But do they capture the underlying physics? One would hope, given sufficient
numerical resolution and converged results, to find agreement among these methods on
key dynamical features of the flow. This is not the case. Rather, we show in this work
that different methods yield predictions with qualitative differences in the large-scale
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dynamics, sufficiently significant not only to appear in averaged statistics (e.g. kinetic
energy fluctuations) but also to change the rate of scalar mixing.

The distortion of large-scale flow structures by numerical errors is disquieting,
especially in the context of elastic turbulence, whose chaotic dynamics is governed by
coherent structures and their interactions. For example, in channel flow, it has been shown
that an elastic centre-mode instability (Khalid, Shankar & Subramanian 2021; Kerswell
& Page 2024) can undergo a subcritical bifurcation (Buza et al. 2022; Morozov 2022)
and give rise to a state of elastic turbulence that is dominated by coherent ‘arrowhead’
or ‘narwhal’ flow structures (Lellep et al. 2024), which merge and split as they propagate
along the channel. Faithful simulations of elastic turbulence, therefore, demand that the
dynamics of large-scale flow structures be captured accurately.

But when different numerical methods predict qualitatively distinct large-scale
dynamics, how is the correct one to be identified? This question is particularly difficult
to answer in the context of elastic turbulence because it does not enjoy the same degree
of universality as Newtonian turbulence – its statistical properties vary with the polymer
concentration, the forcing, and the boundary conditions. In the absence of universal laws,
any numerical solution that fluctuates chaotically without diverging appears plausible.
Here, we settle this question using a mathematical result for the Oldroyd-B model which
states that the determinant of the polymer conformation tensor must stay greater than unity
(Hu & Lelièvre 2007). This lower bound, which has not received due attention in the
literature, allows us to identify erroneous solutions decisively by monitoring the minimum
value of the determinant of C.

Before focusing on specific numerical procedures, it is helpful to survey the three classes
of approaches that have been developed to stabilize simulations of the Oldroyd-B and
FENE-P models.

The first approach involves artificial diffusion. The true centre-of-mass diffusion of
polymers is very weak, and the corresponding diffusive length and time scales are orders
of magnitude smaller than the large scales of the flow. Ideally, simulations should include
and resolve this diffusion, because it is consistent with polymer physics and results in a
parabolic equation for C, which in turn allows for the use of standard numerical methods.
In elastic turbulence, where the large scales of the flow are relatively small (as compared to
elasto-inertial or inertia-dominated turbulence), it has recently become possible to follow
this approach (Morozov 2022; Lellep et al. 2024). However, even within the regime of
elastic turbulence, the possible range of scales can vary by orders of magnitude, so for
many experimental scenarios the cost of resolving polymer diffusion is prohibitive. Thus
the diffusive term is typically omitted from the evolution equation for C, rendering it
hyperbolic. When elasticity is dominant (measured by large values of the non-dimensional
Weissenberg number Wi), the lack of a diffusive dissipation mechanism results in the
formation of extremely sharp gradients in the field of C, which if not treated carefully
can cause a loss of positive-definiteness and numerical instability (e.g. Vaithianathan
& Collins 2003; Dubief et al. 2005; Fattal & Kupferman 2005). A plausible remedy to
this high-Wi number problem (Alves et al. 2021) is to reintroduce diffusion but with an
artificial enhancement.

Sureshkumar & Beris (1995) added a Laplacian term κ �C with a constant diffusivity
κ that was artificially increased by several orders of magnitude (whence the name ‘global
artificial diffusivity’) to stabilize viscoelastic simulations at high Reynolds numbers. The
early simulations of elastic turbulence did the same (e.g. Berti et al. 2008; Thomases
& Shelley 2009; Liu & Khomami 2013). Unfortunately, this enhanced diffusion was
found to impact the large-scale structures and dynamics of the flow, by smearing out
the conformation tensor in the regions of high stretching (Min, Yoo & Choi 2001;
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Yu & Kawaguchi 2004; Dubief et al. 2005; Vaithianathan et al. 2006; Sid, Terrapon &
Dubief 2018). These artefacts are particularly prominent in elastic turbulence wherein
velocity fluctuations are entirely dictated by elastic forces: excessive diffusion causes
polymer stress to leak into and destabilize regions of low straining that otherwise would
have remained unaffected by polymer feedback (Gupta & Vincenzi 2019). To attenuate
these spurious effects of enhanced diffusion, one may attempt to confine its action to
regions of the flow where large polymer stretching and associated numerical errors are
expected. This can be achieved by switching on diffusion only at those locations where C
loses positive-definiteness (Min et al. 2001), or by making κ a function of either the local
strain rate (Gillissen 2019) or the gradients of C (Dzanic, From & Sauret 2022b). Another
alternative is to use ‘hyperdiffusivity’, i.e. a higher power of the Laplacian of C, possibly
in combination with a space–time-dependent hyperdiffusivity coefficient (Gillissen 2019).
In spectral space, the action of localized diffusion is to selectively damp the energy of
high-wavenumber modes. In fact, pseudo-spectral simulations have used spectral filters to
directly suppress high-wavenumber modes and thereby curb the growth of steep gradients
(Hou & Li 2007; Balci et al. 2011).

The second set of strategies preserves the positive-definiteness of C by simulating
suitable reformulations of the constitutive equations. Vaithianathan & Collins (2003)
applied the Cholesky decomposition to C and evolved its Cholesky factor. Furthermore, in
order to ensure the positiveness of the diagonal elements of the Cholesky factor (necessary
for the uniqueness of the decomposition), they evolved equations for the logarithm of
these elements. This two-step reformulation, which will henceforth be referred to as the
Cholesky-log decomposition, has been used in several recent simulations (e.g. Gupta &
Pandit 2017; Plan et al. 2017; Garg et al. 2018; Gupta & Vincenzi 2019; Garg, Calzavarini
& Berti 2021; Dzanic et al. 2022b; Song et al. 2022, 2023).

A logarithmic transformation, by itself, is also the basis of the log-conformation
representation of Fattal & Kupferman (2004, 2005), which evolves the matrix logarithm of
the conformation tensor. The polymer stress can grow exponentially as one nears zones of
high strain rate, such as stagnation points. In such situations, polynomial approximations
to C fail, but the matrix logarithm of C, whose profile is simply linear, is easily resolved.
Moreover, the positive-definiteness of C – calculated by an exponentiation – is guaranteed.
The log-conformation representation has been used in simulations of elastic turbulence
(Singh et al. 2024) and has been implemented in the rheoTool solver of the open-source
program OpenFOAM® (Pimenta & Alves 2017); the latter has facilitated the simulation of
elastic turbulence in wall-bounded flows, such as the cross-slot flow (Canossi, Mompean
& Berti 2020), the Taylor–Couette flow (van Buel, Schaaf & Stark 2018; van Buel & Stark
2020), and the swirling von Kármán flow (van Buel & Stark 2022).

Yet another reformulation strategy is based on the symmetric square root decomposition
(SSR) of C (Balci et al. 2011; see also Gutierrez-Castillo, Kagel & Thomases 2020).
This decomposition ensures positive-definiteness just like the Cholesky decomposition,
but has the advantage of simpler evolution equations (even when compared to the
log-transformation method) which makes it easier to code. A further benefit, particularly
for mathematical analysis, is that unlike C, the symmetric square root of C is an element
of a vector space.

The third set of approaches focuses on the numerical methods used for spatial
discretization of the evolution equations, and as such, complements the first two strategies.
If artificial diffusion or spectral filtering is used to maintain a smooth field of C, then
pseudo-spectral methods are an ideal choice, especially for simple domains (Berti et al.
2008; Thomases & Shelley 2009; Balci et al. 2011; Liu & Khomami 2013; Garg et al.
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2018, 2021; Gutierrez-Castillo et al. 2020). If artificial diffusion is avoided, then one must
use numerical techniques developed for hyperbolic equations. Typically, finite-difference-
or finite-volume-based spatial discretizations are used (Vaithianathan et al. 2006; Gupta &
Pandit 2017; Plan et al. 2017; Gupta & Vincenzi 2019; Alves et al. 2021; Lin et al. 2022),
along with shock-capturing advection schemes designed to resolve the steep gradients of C
(e.g. the advection scheme of Kurganov & Tadmor (2000), which was adapted for polymer
solutions by Vaithianathan et al. 2006). Since viscosity keeps the velocity field smooth,
some studies adopt a hybrid approach, in which a finite-difference-based shock-capturing
scheme is used for evolving C in combination with a lattice Boltzmann method (Dzanic
et al. 2022b, 2023; Dzanic, From & Sauret 2022c) or a pseudo-spectral method (Zhu & Xi
2020; Lin et al. 2022; Song et al. 2022, 2023) for the flow.

In this work, we compare three different reformulations of the conformation tensor, and
also investigate the effect of including local polymer-stress diffusion. Calculations without
artificial diffusion are facilitated by the use of the Kurganov–Tadmor advection scheme.
Such a scheme resolves sharp gradients up to the grid scale, so the fine structures of the
solution depend on spatial resolution; this dependence is also examined. Comparisons of
different reformulations have been performed previously, for laminar flows, by Afonso,
Pinho & Alves (2012), Chen et al. (2013), Palhares et al. (2016) and Hulsen, Spanjaards
& Anderson (2021). The current study addresses this issue in the context of elastic
turbulence.

We begin, in § 2, by presenting the Oldroyd-B and FENE-P models along with their
main properties. In particular, we recall a mathematical result for the Oldroyd-B model that
establishes a lower bound on the determinant of the polymer conformation tensor. While
most studies in the past have focused on ensuring that the determinant of C stays greater
than or equal to zero (to preserve positive-definiteness), the determinant must in fact obey
a more stringent bound, for the Oldroyd-B model, and remain greater than unity (Hu &
Lelièvre 2007). This additional constraint will be invaluable for assessing the accuracy of
our numerical simulations.

Our study is carried out in the simplified setting of a two-dimensional periodic square
with cellular forcing, a configuration that develops elastic turbulence for sufficiently high
elasticity (Gupta & Pandit 2017; Plan et al. 2017). Cellular forcing is particularly useful for
testing and comparing simulation methods because it generates highly localized straining
regions, and hence sharp gradients in the polymer extension, which can be the source of
numerical inaccuracies. Another forcing that has similar features and which has also been
used in simulations of elastic turbulence is the four-roll mill forcing (Thomases & Shelley
2009). Further details of our simulations are provided in § 2.

In § 3, we compare different reformulations of the conformation tensor, in particular
the Cholesky-log and SSR decompositions. The latter is the simplest reformulation,
and thus the easiest to implement in code, while the former has been widely used in
recent simulations of elastic turbulence. Moreover, for the purposes of our analysis, the
Cholesky-log decomposition has an advantage over the log-conformation reformulation.
While the two approaches share a logarithmic transformation, it is not essential in the
case of the Cholesky-log decomposition – the positive-definiteness of C is guaranteed
by the Cholesky decomposition itself. So by comparing results with and without the log
transformation, we will be able to determine its influence on the accuracy of predictions.
As we will see, the conclusions of our study are sufficiently general so as to hold for the
log-conformation representation as well.

Section 4 investigates the effect of adding local polymer-stress diffusion to the
constitutive equation. While it is now clear that global artificial diffusion has a strong
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impact on the numerical solution and can cause spurious large-scale dynamics, the effect
of localized diffusion is not yet entirely understood. On the one hand, the intervention
of local diffusion is confined to a small region of the flow. On the other hand, by acting
where polymer stretching is most intense, the diffusive spreading selectively modifies the
transport of the largest polymeric stresses, which exert the strongest feedback on the flow.
Here, we consider a form of local diffusion that has been applied recently to simulations
of elastic turbulence (Dzanic et al. 2022b).

The principal applications of elastic turbulence arise from its ability to generate chaotic
mixing at low Reynolds numbers. From this perspective, it is important that numerical
simulations accurately predict the mixing of a scalar. Although solving the scalar transport
equation is straightforward, errors in computing the flow, especially its large-scale
structures, will contaminate the predictions of mixing properties. We demonstrate this in
§ 5, by studying the dispersal of a scalar blob, and show that different numerical treatments
of the constitutive equation produce markedly different mixing behaviours.

In the absence of diffusion, the smallest length scale over which the conformation tensor
may vary is determined by the spatial resolution. So do the large-scale dynamics converge
even as the gradients of C get ever sharper with increasing resolution? We address this
question in § 6, by examining the effects of a decreasing grid size on the flow structures
and the energy spectrum.

Finally, in § 7, we summarize the findings of our study and discuss their implications for
simulations of elastic turbulence.

2. Evolution equations and numerical simulations

Consider the flow of a dilute polymer solution whose kinematic viscosity has contributions
of ν from the solvent and νp from the polymer. The latter is proportional to the
concentration of the polymer, which is characterized by its relaxation time to equilibrium,
τp, and the squared ratio of its contour length to the equilibrium length, i.e. the extensibility
parameter b. The dynamics of the solution is then described in terms of the velocity field
u(x, t) and the polymer conformation tensor C(x, t), here scaled by the mean squared
extension at equilibrium. Adopting either the Oldroyd-B or the FENE-P model, and
considering the limit of negligible fluid inertia, we obtain the following coupled equations
for C(x, t) and u(x, t):

∂tC + u · ∇C = C · ∇u + (∇u)T · C − T p, (2.1a)

∇p = ν �u + νp ∇ · T p + F , (2.1b)

∇ · u = 0, (2.1c)

where p is the ratio of pressure to the constant density of the solution, (∇u)ij = ∂iuj, and
F is a body forcing. The polymer contribution to the stress tensor, T p, takes the form

T p = 1
τp

[ f (r)C − I], (2.2)

where f (r) = 1 for the Oldroyd-B model, and f (r) = (b − d)/(b − r2) for the FENE-P
model. Here, d is the space dimension, r = √

tr C, and I is the identity matrix.
We have considered the Stokes limit for ease of computation, since we are interested

in flows at low Reynolds number (Re) for which the chaotic dynamics is driven solely
by elastic instabilities. The same approach was taken, for instance, in Thomases &
Shelley (2009), Balci et al. (2011) and Gutierrez-Castillo et al. (2020). In any case, the
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difficulties encountered in numerical simulations arise from the advection of the polymer
conformation tensor and would be the same if the Navier–Stokes equations (with Re � 1)
were used to evolve the flow. In fact, we have repeated some of our key calculations with
the Navier–Stokes equations and found that our conclusions remain unchanged (see the
supplementary material available at https://doi.org/10.1017/jfm.2024.858).

2.1. Lower bound on the determinant of C

The polymer conformation tensor is positive-definite by construction, hence its
determinant must be positive. This property is preserved by (2.1) (Constantin & Kliegl
2012). However, for the Oldroyd-B model, (2.1a) and (2.1c) have stronger implications on
the determinant of C: Hu & Lelièvre (2007) proved that at long times, the determinant of
C must satisfy the bound

det C ≥ 1 (2.3)

everywhere in the domain. More precisely, let us denote the value of the conformation
tensor along a given Lagrangian trajectory xp(t) as C(t) = C(xp(t), t). If there exists a
time t� such that det C(t�) ≥ 1, then det C(t) ≥ 1 for all t > t�. If in contrast det C(t�) < 1,
then det C(t) keeps growing as long as det C(t) < 1. When applied to all trajectories, this
result implies that, asymptotically in time, (2.3) must hold everywhere in space. Obviously,
if at time t = 0 the determinant of C is greater than or equal to unity, as is the case in most
simulations and certainly in all those presented here, then it must remain so throughout
the subsequent evolution.

It is important to note that (2.3) has been proved only for the Oldroyd-B model (Hu &
Lelièvre 2007), and a similar result that is local in space and time and uniform in ∇u is
not available, to our knowledge, for the FENE-P model. A bound analogous to (2.3) has
been derived, though, for the Giesekus model (Masmoudi 2011).

When (2.3) is combined with the inequality tr C ≥ d(det C)1/d, which holds for any
symmetric positive-definite d × d matrix, we obtain

tr C ≥ d. (2.4)

This bound on the trace of C, which was also derived by Musacchio (2002) using
dynamical systems theory, has a natural physical interpretation. Recall that tr C is the
squared extension of the polymer, ensemble-averaged over thermal noise, and that tr C = d
when the polymer solution is at equilibrium (for which C = I since C has been scaled
by the mean square polymer extension at equilibrium). Hence (2.4) implies that an
incompressible flow cannot squeeze a polymer below its mean equilibrium extension.

We will show below that (2.3) is a useful criterion for testing the accuracy of numerical
simulations.

2.2. Matrix decompositions
In the following sections, we will use two decompositions of the polymer conformation
tensor, both of which preserve positive-definiteness.

Vaithianathan & Collins (2003) considered the tensor J = f (r)C and its Cholesky
decomposition J = LLT, where L is a lower triangular matrix with positive diagonal
entries. The evolution equations for L in two dimensions are given in Appendix A. To
preserve the uniqueness of the decomposition, the diagonal elements of L must remain
positive during the time evolution. This is achieved by evolving L̃ii = ln Lii (i = 1, . . . , d)
and then exponentiating it at every time step to obtain Lii. The off-diagonal elements are
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evolved directly. This decomposition method is termed the Cholesky-log decomposition.
For reasons that will become clear later (in § 3), we also consider just the Cholesky
decomposition without the logarithmic transformation.

The formulation proposed by Balci et al. (2011) considers the SSR decomposition
C = BBT = B2, where B = BT is symmetric. The evolution equations for B are
formulated so as to preserve its symmetry and hence the uniqueness of the decomposition
(see Appendix A for the two-dimensional equations).

2.3. Numerical simulations
We perform simulations in a two-dimensional (d = 2) periodic square V = [0, 2π]2 and
use a cellular forcing F (x, y) = f0(− sin Ky, sin Kx) to drive the flow. The wavenumber K
and magnitude f0 of the forcing set the large length and velocity scales of the flow, � =
1/K and U = f0/νK2, which in turn yield a large turnover time scale T = �/U = νK/f0.
For a Newtonian fluid (νp = 0), the velocity field u = −F/νK2 is a solution of (2.1b).
If polymers are added to the flow (νp /= 0) and the Weissenberg number Wi = τp/T is
sufficiently large, then the flow becomes chaotic and exhibits elastic turbulence (Gupta
& Pandit 2017; Plan et al. 2017). In our simulations, we take ν = 0.05, f0 = 0.02, K = 2
and τp = 50, which yield Wi = 10. In addition, νp = 10−2 and b = 104 (this value of b
has been used previously in simulations of elastic turbulence, see e.g. Song et al. 2023).
The initial condition for the polymer conformation tensor is C = I . While we illustrate the
results for this set of parameters, simulations for other parameter values – different polymer
contour lengths (Yerasi 2023) and forcing length scales (see the supplementary material)
– show that our conclusions remain unaltered.

To integrate the flow equation, we use the vorticity–velocity formulation, i.e. we
evolve the vorticity ω = (∇ × u) · ẑ and calculate the velocity from the stream function
ψ = Δ−1ω as u = (−∂yψ, ∂xψ). Regarding the polymeric component, we solve either
the equations for the symmetric square root B or those for the Cholesky factor L (see
Appendix A). Fourth-order central differences are used to discretize the equations for
the flow and the polymer, except for the advection of the latter. For the inversion of the
Laplacian operator, required to calculate ψ from ω, we take advantage of the periodic
boundary conditions and use the Fourier pseudo-spectral method. The velocity field is then
obtained from ψ via finite differences. The spatial resolution is 2562 in all simulations,
except in § 6, where it is increased to 5122, 10242 and 20482. The time integration uses a
second-order Runge–Kutta scheme with a time step δt = 2 × 10−3 for the lowest spatial
resolution, and δt = 1 × 10−3 for the higher resolutions.

The advection term in the equations for B or L is treated according to the scheme
of Kurganov & Tadmor (2000). This scheme requires the calculation of the velocities
at the faces of grid cells, i.e. midway between points on a uniform grid. To preserve
incompressibility, we first obtain the stream function at the faces, via linear interpolation
from the grid points, and then use finite differences to calculate the face velocities.
Following Perlekar, Mitra & Pandit (2006) and Gupta, Perlekar & Pandit (2015), we
apply the Kurganov–Tadmor scheme to the advection of the factor matrix B or L.
Hence the slope-limiting procedure that was used by Vaithianathan et al. (2006) to
ensure positive-definiteness is not required, and its omission yields two important
benefits. First, the simulation time is significantly reduced because the eigenvalues of
C need not be calculated. Second, the advection scheme remains second-order accurate
throughout the computation, unlike the scheme with the slope limiter which, to maintain
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positive-definiteness, may locally reduce the accuracy to first-order at a significant fraction
of the grid points (Vaithianathan et al. 2006; Lin et al. 2022).

In §§ 4 and 5, we also present simulations where we implement the local polymer-stress
diffusion proposed by Dzanic et al. (2022b). We therefore add to (2.1a) a diffusion term
of the form κ(∇C)�C, where the variable diffusivity is κ(∇C) = κ̄ Q(x, t)/Qmax(t) with
Q(x, t) = ∑2

i,j=1{
∑2

q=1[∇qCij(x, t)]2}1/2 and Qmax = maxx∈V Q(x, t). Thus the artificial
diffusivity varies locally between zero and κ̄ according to the magnitude of the derivatives
of the conformation tensor. As motivated in Dzanic et al. (2022b), this local artificial
diffusion will act in regions where the gradients of the conformation tensor are strong and
limit their growth, thereby stabilizing the simulation; at the same time, it was envisioned
that the reduction of the diffusivity away from such regions would limit the spurious effects
of artificial diffusion. Following Dzanic et al. (2022b), we take κ̄ = 5 × 10−5, which
yields a Péclet number Pe = U�/κ̄ = 103. (As discussed further in § 4, this value of Pe,
which is the ratio of convective to diffusive transport, is two to seven orders of magnitude
smaller than that encountered in experiments of elastic turbulence.) In these simulations,
we use the Cholesky-log reformulation of the constitutive equation; the evolution equation
for the Cholesky factor L in the presence of stress diffusion can be found in Dzanic et al.
(2022c).

3. Matrix decompositions and erroneous large-scale dynamics

We begin by comparing the results obtained using different decompositions of C. The
simulations in this section are devoid of polymer-stress diffusion, i.e. Pe = ∞, and use the
Oldroyd-B model, which makes the bound (2.3) available for testing the accuracy of the
results.

Figures 1(a) and 1(b) compare two representative snapshots of tr C (the squared
extension of the polymer) for the Cholesky-log and the SSR decompositions
(corresponding animations are available in supplementary movie 1). The cellular forcing
produces several large vortical cells, wherein the polymer is coiled and tr C is small,
separated by straining zones that give rise to thin filamentary regions, wherein the polymer
is strongly stretched and tr C is large. While the vortical cells are perturbed by the chaotic
flow, in both simulations, it is clear that the symmetry of the forcing structure is much
more closely preserved in the case of the Cholesky-log simulation, as compared to the
SSR simulation. The former exhibits a well-ordered lattice of vortical cells, all of which
maintain nearly the same orientation and shape throughout the simulation (figure 1a). In
contrast, the vortical cells of the SSR simulation constantly change their orientation, shape
and size, as from time to time some cells expand while others shrink (figure 1b).

These differences in the large-scale structures of the field of tr C are not merely
momentary but persist over time, as evidenced by the time-averaged fields presented in
figure 2. The plots for the two decompositions are strikingly dissimilar. The time-averaged
field for the Cholesky-log simulation closely resembles the corresponding instantaneous
field (compare figures 2(a) and 1(a)). The straining zones experience small chaotic
oscillations and so are slightly smeared out in the time-averaged plot. In the SSR
simulation, the time-averaged field looks very different from its instantaneous snapshot
(figures 2(b) and 1(b)); the jostling of the vortical cells produces a time-averaged picture
of smeared cells with a high degree of symmetry unseen at any instant of time. Note that
this contrast between the large scales of the two simulations also appears in their vorticity
fields (as illustrated in the supplementary material), since the variations of vorticity are
well correlated with those of tr C.
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Figure 1. Representative snapshots (instantaneous) of the logarithm of tr C for (a) the Cholesky-log
decomposition and (b) the SSR decomposition. For the corresponding animations, see supplementary movie 1.
Both simulations use the Oldroyd-B model.
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Figure 2. Time-averaged fields of the logarithm of tr C for (a) the Cholesky-log decomposition and (b) the
SSR decomposition. Both simulations use the Oldroyd-B model.

As a simple measure of the extent to which the cellular structure is perturbed during the
evolution, we introduce the diagnostic

Δ(t) =
∣∣∣∣ ln[tr C((0, 0), t)] − ln[tr C((π, 0), t)]
ln[tr C((0, 0), t)] + ln[tr C((π, 0), t)]

∣∣∣∣ . (3.1)

This quantity will be zero if the tr C field perfectly preserves the cellular structure of the
periodic forcing, which has wavenumber K = 2. Therefore, Δ is indicative of the extent
of distortion of the cellular structure, albeit at a single point. The time series of Δ(t) is
plotted in figure 3(a). Clearly, the fluctuations of Δ(t) are significantly stronger for the
SSR decomposition than for the Cholesky-log decomposition.

The space-averaged statistics of the two simulations are presented in figure 3(b). The
main graph compares the mean polymer stretching, given by the spatial average of the
trace of the conformation tensor 〈tr C〉V = (2π)−2 ∫

V tr C dx, and shows that it is higher
for the SSR simulation. This is consistent with the the SSR simulation having a lower
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Figure 3. (a) Time series of Δ (defined in (3.1)). (b) Time series of the space averages of tr C (main graph)
and the kinetic energy e(t) scaled by its Newtonian value e0 = 1

2 U2 (inset). All plots refer to simulations of the
Oldroyd-B model.

mean kinetic energy e(t) = 1
2 〈u · u〉V , as shown in the inset, because higher stretching in

the straining zones endows the solution with a higher extensional viscosity (Larson 1999).
The differences in these mean statistics are rather small in comparison with the differences
in the structure and dynamics of the vortical cells, evident from the full fields (figures 1
and 2).

It is important to note that the differences in the predictions of the two decompositions
are independent of resolution. We have found that increasing the resolution from 2562 to
10242 produces sharper stretching zones in both simulations but no qualitative change in
the large-scale dynamics; all the differences discussed above persist.

So which of the two simulations is correct? This question is difficult to address in the
present context because, as discussed in the Introduction, elastic turbulence depends on
the specific setting and hence lacks universal laws against which numerical predictions
may be tested. In the case of the Oldroyd-B model, though, the lower bound det C ≥ 1
presented in § 2.1 comes to our aid. The time series of the minimum of det C over the
domain is presented in figure 4. We see that the lower bound is respected throughout
the Cholesky-log simulation (figure 4a), whereas it is frequently violated in the SSR
simulation (figure 4b). While such violations are found to occur over a small fraction
of the domain (approximately 0.1 %), they are very frequent in time and very strong –
we see many instances where det C approaches zero. This leads us to conclude that the
SSR simulation is erroneous, and its distinguishing features, including the distortion of
the cellular structure, are a consequence of inaccuracies in evolving the polymer stresses.

In § 2.1, we recalled that the lower bound on det C implies a lower bound on the squared
extension, tr C ≥ 2. Thus a simulation that respects the bound on det C must necessarily
respect the bound on tr C as well. This is seen in the inset of figure 4(a), which presents
the time series of the minimum of tr C for the Cholesky-log simulation. In contrast, the
SSR simulation violates both bounds (figure 4b), though the instances of tr C falling below
2 are much fewer than those of det C falling below 1. So while tr C has a simple physical
interpretation and is easier to compute than det C, we must verify the bound on the latter
when ascertaining the accuracy of a simulation.
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Figure 4. Time series of the minimum of det C over the domain for (a) the Cholesky-log decomposition,
and (b) the SSR decomposition. The bound det C ≥ 1 (see (2.3)) is satisfied by the former simulation but is
repeatedly and strongly violated by the latter. The insets show the corresponding time series of tr C, which as a
consequence of (2.3) must remain greater than 2. All plots refer to simulations of the Oldroyd-B model.

The next question is: Why does the SSR simulation suffer from inaccuracies and
produce predictions that are different from the accurate Cholesky-log simulation? While
the two matrix decompositions are similar in spirit, they do differ on one important point
– the use of a logarithmic transformation. Recall that evolving ln Lii and recovering Lii
through exponentiation is a strategy to enforce the positivity of the diagonal elements of
L, in order to ensure the uniqueness of the Cholesky decomposition. From a mathematical
point of view, however, this step is not needed if the diagonal elements stay positive
under direct evolution. To assess the role of the logarithmic transformation, we have
thus performed simulations of the Cholesky decomposition without the logarithmic
transformation, i.e. we have evolved (A1) directly. Figure 5(a) shows that the diagonal
elements of L stay positive, nevertheless, hence the decomposition remains unique
throughout the simulation. So we can now compare the results of the Cholesky
decomposition with and without the logarithmic transformation.

Remarkably, we find that when the logarithmic transformation is not used, the results
of the Cholesky simulation are analogous to those obtained with the SSR decomposition.
This is apparent for all the observables that we have examined in this section, i.e. the
instantaneous and time-averaged snapshots of the logarithm of tr C (figures 5(b) and 5(c),
respectively) as well as the time series of Δ, tr C and the kinetic energy (figures 5d,e).
Moreover, if the logarithmic transformation is removed, then det C frequently drops well
below unity in the Cholesky simulations as well (figure 5f ). Clearly, the higher accuracy
of the Cholesky-log decomposition compared to the SSR decomposition is due to the
fact that the former evolves the logarithm of the diagonal elements of the Cholesky
factor. This analysis therefore supports the use of a logarithmic transformation of the
polymer conformation tensor for high-Wi simulations of elastic turbulence, which are
characterized by large polymer-stress gradients. This conclusion is consistent with a
previous comparative study on laminar flows, by Afonso et al. (2012), which found that
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Figure 5. Results for the Cholesky decomposition without the logarithmic transformation. (a) Time series of
the minima of L11 and L22 (inset) over the domain. (b) Representative snapshot (instantaneous) of the logarithm
of tr C (the corresponding animation is in supplementary movie 2). (c) Time-averaged field of the logarithm of
tr C. (d) Time series of Δ. (e) Time series of the space averages of tr C (main graph) and the kinetic energy
scaled by its Newtonian value e(t)/e0 (inset). ( f ) Time series of the minimum of det C over the domain, with
the corresponding time series of tr C in the inset. In (d,e), data for the Cholesky-log and SSR decompositions
are reproduced from figure 3 for ease of comparison. All plots refer to simulations of the Oldroyd-B model.

simulations using the log-conformation approach remained stable up to higher values of
Wi compared to the SSR decomposition.

Strictly speaking, the diagnosis carried out in this section applies only to the Oldroyd-B
model, because it is based on the bound (2.3). Nonetheless, the reason for the greater
accuracy of the Cholesky-log decomposition, namely its superior ability to resolve large
gradients in the fields of polymer extension and stress, is sufficiently general to expect our
conclusions to hold for other models, including FENE-P. Indeed, numerical simulations
of the FENE-P model with the SSR and Cholesky-log decompositions exhibit the same
differences as the simulations of the Oldroyd-B model (see Appendix B).

4. Artefacts of local diffusion of polymer stress

The centres of mass of dissolved polymers undergo Brownian motion, which produces a
diffusion of polymeric stress (El-Kareh & Leal 1989). However, this diffusion is much
weaker than advection and hence becomes significant only at extremely small scales –
often well below the resolution of practical simulations. For a flow characterized by a
large-scale velocity U and length �, the computational grid size δx must be small enough
for diffusion to balance advection at the grid scale: κ/δ2

x ∼ U/δx. Thus the number of grid
points along any dimension, required to accurately resolve true polymer diffusion, scales
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Reference U (m s−1) Re Sc Pe

Varshney & Steinberg (2019) 10−5 10−4 109 105

Jha & Steinberg (2021) 10−3 10−2 109 107

Groisman & Steinberg (2004) 10−2 1 1010 1010

Table 1. Order of magnitude of the Péclet number and other key parameters in some experiments of elastic
turbulence. These experiments share a geometric length scale � ∼ 10−3 m, and use a similar water–sucrose
solvent with density ρ ∼ 103 kg m−3 and dynamic viscosity μ ∼ 10−1 Pa s (a hundred times more viscous
than water). The third row refers to the rotating plate geometry in Groisman & Steinberg (2004).

with the Péclet number, i.e. �/δx ∼ U�/κ = Pe. Note that the Péclet number is the product
of the Reynolds number (Re = U�/ν) and Schmidt number (Sc = ν/κ): Pe = Re Sc.

Using order of magnitude estimates for a high Reynolds number flow (Re ∼ 103) of
a dilute aqueous polymer solution (dynamic viscosity μ ∼ 10−3, density ρ ∼ 103, and
diffusivity κ ∼ 10−12, all in SI units), one obtains Sc ∼ 106 and hence Pe ∼ 109 (El-Kareh
& Leal 1989). This is much too large for a realistic simulation; indeed, numerical studies
of high-Re viscoelastic turbulence that have included diffusion typically take Sc ∼ 1 and
thus Pe ∼ 103 (Sureshkumar & Beris 1995; Sureshkumar, Beris & Handler 1997; Dubief
et al. 2005), or at most Sc ∼ 102 (Sid et al. 2018).

Now consider elastic turbulence, which has been observed experimentally in small
channels and with high-viscosity solvents. While these conditions suppress inertia, as
intended, and yield small values of the Reynolds number, 10−4 � Re � 1, they also
produce very large values of the Schmidt number, 109 � Sc � 1010 (recall that the
diffusivity varies inversely with the solvent viscosity). Thus, once again, we obtain very
large values of the Péclet number, 105 � Pe � 1010. Three representative examples, from
the extensive experiments of Steinberg and coworkers, are given in table 1. The upper
range of these Pe values is too large for simulations, though the lowest value, Pe = 105,
has recently been attained (Morozov 2022; Lellep et al. 2024). Most simulations of elastic
turbulence that include polymer stress diffusion have, however, been limited to Pe not
exceeding 103, thereby artificially enhancing diffusion by several orders of magnitude
(Thomases & Shelley 2009; Liu & Khomami 2013). Recently, a linear stability analysis
by Beneitez, Page & Kerswell (2023) has considered Pe as large as 106 and shown that
polymer-stress diffusion induces a novel instability, which appears to persist in the limit
Pe → ∞. Their nonlinear simulations, which show the transition to elastic turbulence,
were limited to Pe = 103.

Artificially enhancing polymer diffusivity, as a means of numerical stabilization, is now
well known to produce excessive smearing of the polymeric stress (Sid et al. 2018) and
to qualitatively modify the large-scale dynamics in elastic turbulence (Gupta & Vincenzi
2019). We now examine whether these artefacts are ameliorated by localizing diffusion to
regions where the gradients of C are large. The motivation for trying to retain some form
of diffusion is that one can then potentially avoid complex advection schemes, and instead
use pseudo-spectral methods that are the workhorse of Newtonian turbulence simulations.
Moreover, diffusion also aids in keeping C positive-definite (Vaithianathan et al. 2006),
possibly allowing higher values of Wi to be attained with moderate spatial resolution.
However, these potential benefits are immaterial if localized diffusion ends up modifying
the dynamics of elastic turbulence.
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Figure 6. Representative snapshots of the logarithm of tr C for the Cholesky-log reformulation of the
FENE-P model with (a) Pe = ∞ and (b) Pe = 103. For the corresponding animations, see supplementary
movie 3.

We test the effects of local polymer-stress diffusion using the variable diffusivity
proposed by Dzanic et al. (2022b) (see § 2.3), which smooths the C field only at locations
where its derivatives are large. In particular, we examine whether local diffusion modifies
the large-scale structure of the polymer conformation field, by comparing simulations of
the Cholesky-log decomposition with and without local polymer-stress diffusion. We have
ensured that the only difference between the two simulations is the addition of a local
diffusion term to (2.1a), so that any discrepancy in the dynamics must be due to local
diffusion. To facilitate a comparison with the results of Dzanic et al. (2022b), we use the
same viscoelastic model (FENE-P) and the same peak diffusivity, which corresponds to
Pe = 103.

Figure 6 compares snapshots of tr C that, along with the associated animations in
supplementary movie 3, show that local diffusion produces misshapen vortical cells and a
strong deviation from the forcing pattern. This observation is corroborated by the temporal
evolution of Δ(t) (see (3.1)) in the stationary state, depicted by figure 7(a); we see
significantly larger fluctuations for Pe = 103 than for Pe = ∞. This spurious behaviour
of the vortical cells in the presence of local stress diffusion is similar to that found by
Dzanic et al. (2022b).

Noticeable differences are also found in the space-averaged dynamics of polymer
stretching, presented in figure 7(b). For Pe = ∞, the chaotic regime begins soon after the
polymers are stretched out. In contrast, for Pe = 103, the average extension of polymers is
higher, and chaotic fluctuations develop only after a long interval of time during which
the solution is in a quiescent state. Moreover, once the stationary state is eventually
attained, the fluctuations are larger and slower for Pe = 103. These differences are naturally
reflected in the dynamics of the flow (inset of figure 7b), which for Pe = 103 has a lower
average kinetic energy (due to stronger polymer stretching and feedback) that fluctuates
with larger and slower oscillations. This contrast in temporal fluctuations is evidenced by
the power spectra of the space-averaged kinetic energy, presented in figure 7(c). Local
diffusion causes the temporal dynamics to be dominated by a few low-frequency modes,
while a much wider set of modes is active in the absence of diffusion (compare the
normalized spectra in the inset of figure 7c).
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Figure 7. (a) Time series of Δ(t). (b) Time series of the space averages of tr C (main graph) and kinetic
energy scaled by its Newtonian value e(t)/e0 (inset). (c) Power spectra of the kinetic energy fluctuations (the
inset shows a semi-log plot of the normalized spectra). Each plot compares the results for the Cholesky-log
reformulation of the FENE-P model with Pe = ∞ and Pe = 103.

We note that the spurious initial transient seen in figure 7(b) for Pe = 103 is not the
same as the transient observed in the simulations of Dzanic et al. (2022b) (also with
Pe = 103). Rather, their supplemental movie, for the case of cellular forcing, shows that
the stationary chaotic regime is preceded by an initial period of about 250T , during
which the cellular structure ‘shakes’ without significant distortion. These differences in
initial transients are not unexpected given that some parameter values in our simulations
differ from those in Dzanic et al. (2022b). The relevant observation is that local diffusion
introduces a prolonged spurious transient in addition to producing significant differences
in the stationary dynamics.

In the supplementary material, we show that these artefacts of local diffusion persist
even when the size of the periodic computational domain is increased, relative to the
large scales of the flow. In the context of global artificial diffusion and a four-roll
mill flow, Dzanic, From & Sauret (2022a) showed that the associated artefacts can be
reduced by increasing the size of the periodic domain (which is equivalent to increasing
the wavenumber of the forcing while keeping the domain size fixed, as is done in
our supplementary material). In their study, the most egregious spurious feature – the
dominance of the flow by a single vortex – was eliminated by increasing the domain size.
Such an ameliorating influence is not obtained in the case of local artificial diffusion,
as demonstrated in the supplementary material. This is reasonable since the effects of
localized artificial diffusion cannot extend across the large scales of the flow (thereby
introducing a spurious coupling between vortices via the periodic boundary conditions) in
the way the effects of global artificial diffusion can.

Thanks to this localization, the spurious effects of local artificial diffusion were found
to be relatively mild compared with global diffusion (Dzanic et al. 2022b). However,
the above comparison with a non-diffusive simulation shows that local diffusion still
distorts the dynamics significantly. Indeed, the differences between Pe = ∞ and Pe = 103,
described above, parallel those that have been observed for global diffusion (Gupta &
Vincenzi 2019). This qualitative similarity may be understood by recognizing that the two
forms of diffusion – local and global – act similarly in regions of the flow where the
polymer stress is large and localized, regions that in fact are subject to strong polymer
feedback and therefore drive elastic instabilities and dominate the chaotic dynamics.
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Preserving large-scale features in elastic turbulence

In conclusion, artificially enhanced polymer-stress diffusion introduces spurious effects
in the large-scale dynamics of elastic turbulence, even when the diffusion is local.
Of course, the extent of spurious effects could be reduced, presumably, by decreasing
the value of the diffusion coefficient (increasing Pe). However, this would demand an
increase in the spatial resolution, which defeats the purpose of using local artificial stress
diffusion as a means of stabilizing moderate-resolution simulations of the hyperbolic
constitutive equations. Hence we have restricted our study to Pe = 103, which is the
value used by Dzanic et al. (2022b) to obtain numerically stable simulations of elastic
turbulence at a relatively low resolution of 2562. At this same resolution, the non-diffusive
Kurganov–Tadmor-based simulation preserves the large-scale structures and does not
exhibit the qualitative errors and artefacts of the diffusive simulation. If we were to
increase Pe in order to reduce diffusive artefacts, then we would have to use a higher spatial
resolution for the artificial diffusion simulation than that used for the Kurganov–Tadmor
simulation; there would then be no benefit from using local artificial diffusion.

The preceding assessment is, of course, specific to the cellular flow problem under
consideration and to the form of localized diffusion proposed by Dzanic et al. (2022b).
It is possible that a different functional dependence of the localized diffusion coefficient
on the gradients of C could result in smaller artefacts. However, given the non-universal
nature of elastic turbulence, we do not expect the optimal form of diffusion, which has been
tuned to minimize artefacts for a particular flow problem, to extend to other flows. The
same is true of the threshold value of Pe above which artefacts are deemed satisfactorily
small. So each new problem would require a fresh comparison between the local diffusion
simulation and a non-diffusive one. It is therefore preferable, in our opinion, to avoid using
artificial diffusion of any form and instead achieve numerical stability by a specialized and
accurate treatment (such as Kurganov–Tadmor) of the advection term in the hyperbolic
constitutive equation. If, however, one must use artificial diffusion, then it is necessary to
carefully compare with a non-diffusive simulation (of the specific flow of interest) in order
to determine the threshold value of Pe for which spurious artefacts are sufficiently small.

The discussion above assumes that the true physical value of Pe is too large to be
resolved. If, however, the flow of interest (assuming typical polymer properties for which
Sc ∼ 1010) has an extremely small Re, such that the corresponding Pe = Re Sc is small
enough to be resolved, then the best option is to include the true physical (global) diffusion
of the conformation tensor. The first entry in table 1 corresponds to an experiment with
Pe ∼ 105, and a comparable value has been used in the recent spectral simulations of
Morozov (2022) and Lellep et al. (2024), which use global diffusion. As computational
power continues to increase, experimental scenarios with relatively small Pe should be
simulated by including and resolving true physical stress diffusion; such an approach
will be consistent with polymer physics while allowing for the use of standard numerical
methods for parabolic equations. However, other situations with much larger Pe, up to 1010,
are common (for example, entries two and three of table 1); here, when it is not possible
to resolve true diffusion, our results suggest that one should refrain from artificially
enhancing diffusion as a means of stabilizing the simulation or reducing the computational
cost.

5. Implications for predicting mixing

Most applications of elastic turbulence are based on its enhanced mixing. We
now show that this important property is substantially modified by the erroneous
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large-scale dynamics that results from using matrix decompositions without a logarithmic
transformation (§ 3) or as a consequence of local polymer-stress diffusion (§ 4).

Consider the transport of a scalar blob that is passively dispersed by the flow. The scalar
concentration θ(x, t) satisfies the advection–diffusion equation

∂tθ + u · ∇θ = κθ�θ, (5.1)

where the scalar diffusivity κθ = 10−5 is associated with a scalar Péclet number Peθ =
5 × 103. Equation (5.1) is solved using the same finite-difference scheme as that used for
the constitutive equation; thanks to its diffusion, though, no special treatment is needed to
keep θ positive. In what follows, we begin the evolution of the scalar field only after the
flow has attained stationarity.

A distinguishing feature of the accurate large-scale dynamics is that the cellular structure
of the forcing is well preserved, unlike the erroneous simulations that have distorted
vortical cells that constantly change their shape and size (see figure 1). Now, if a scalar
blob is placed within one of the vortical cells, then its dispersion is bound to be impacted
by the robustness of the cellular structure or the lack thereof. We therefore choose an initial
configuration in which the scalar is concentrated over a disc of centre (π,π) and radius
r = 0.4, i.e. a blob is initially placed inside the central vortical cell.

Snapshots of the scalar field, after it has evolved for 100T , are presented in figure 8,
for simulations of the FENE-P model using (a) the Cholesky-log decomposition and
(b) the SSR decomposition, both without stress diffusion (i.e. with Pe = ∞), as well
as (c) the Cholesky-log decomposition with local artificial diffusion (Pe = 103). The
associated animations are available in supplementary movie 4. Clearly, the initially circular
blob of the scalar is dispersed more rapidly in case of the SSR decomposition than
the Cholesky-log decomposition (compare figures 8a,b). The use of local polymer-stress
diffusion (figure 8c) does not produce as big a difference in the scalar dispersion, but
supplementary movie 4 does show that the long-time dispersion of the scalar is faster with
artificial diffusion than without.

To quantify the dispersion of the scalar blob, we consider the quantity β(t) =
〈θ(t)〉D − 〈θ(0)〉V , where 〈 · 〉V = (2π)−2 ∫

V · dx is the average over the entire domain, and
〈 · 〉D = (4πr2)−1 ∫

D · dx is the average over a disc D = {(x, y) ∈ V : (x − π)2 + ( y − π)2

≤ 2r}, which has twice the radius of the initial blob. When the scalar is completely mixed,
the average over the disc D will equal the average over the entire domain, which – being
preserved by (5.1) – will remain at its initial value of 〈θ(0)〉V . Thus β(t) will ultimately
tend to zero as the scalar field becomes uniform at long times. Of course, β(t) need not
decrease monotonically because the scalar can be transported in and out of the disc D.
In fact, we have chosen such a diagnostic in order to reveal differences in the way the
scalar leaks out of the initial blob. We also use a second diagnostic, the variance across
the entire domain σ(t) = 〈(θ − 〈θ〉V)

2〉V , which will decay monotonically as the scalar is
mixed.

Figures 8(d) and 8(e) compare the time traces of β(t) and σ(t), respectively, for the
three simulations, and confirm that the scalar takes the longest time to mix in the case
of the Cholesky-log decomposition without local stress diffusion. The time traces of β
(figure 8d) are characterized by sudden drops, which correspond to instances when a
significant fraction of the scalar leaks out of the central cell. Such instances are few and
far between in the Cholesky-log simulation (Pe = ∞), wherein the cells are just mildly
perturbed, but more frequent in the other two simulations. These differences are due to the
spurious distortion of the vortical cells that arises because of either numerical inaccuracies
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Figure 8. Snapshots of the logarithm of the scalar concentration θ(x, t) at time t = 100T for (a) the
Cholesky-log decomposition with Pe = ∞, (b) the SSR decomposition with Pe = ∞, and (c) the Cholesky-log
decomposition with Pe = 103. For the corresponding animations, see supplementary movie 4. The snapshots
have been zoomed over the region [π/4, 7π/4]2 to emphasize the central cell; the movie shows the entire
domain V . (d) The mixing diagnostic β(t). (e) The variance of the scalar σ(t) for the three simulations. All
simulations are based on the FENE-P model.

in the SSR simulation or artificial spreading of polymeric stress in the presence of local
stress diffusion.

When the scalar leaves the central vortical cell, it is transported along the narrow
straining regions in the form of thin, rapidly diffusing filaments (see supplementary
movie 4). Thus more frequent leakage from the central cell translates to more rapid overall
mixing; this is particularly clear in the case of the SSR simulation, for which a couple of
leakage events at t ≈ 50T and t ≈ 100T (see β(t) for SSR in figure 8d) lead to a dramatic
decrease of the variance during this time interval (figure 8e). The second leakage event, at
t ≈ 100T , is captured by the snapshot in figure 8(b).

These results demonstrate that even though the different solution methods all give rise
to a chaotic flow, the discrepancies in their detailed dynamics, uncovered in this study,
have a significant impact on the mixing properties of the flow.

6. Effect of spatial resolution

We have seen in § 3 that the C field develops extremely large gradients and contains
thin filamentary zones of large polymer stretching (see figure 1a). Under these high-Wi
conditions, shock-capturing advection schemes, such as the Kurganov–Tadmor method
used here, are essential for maintaining numerical stability because they prevent the
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Figure 9. Representative snapshots of the logarithm of tr C for resolutions (a) 5122 and (b) 20482 (the 2562

version is shown in figure 6a). (c) Energy spectra E(K) and the spectra of tr C (inset) for different resolutions
(the solid line depicts a scaling of k−2.6). (d) Time series of the space average of kinetic energy scaled by
its Newtonian value e/e0 (main graph) and tr C (inset) for different resolutions. All simulations have been
performed using the Cholesky-log reformulation of the FENE-P model with Pe = ∞.

gradients from steepening indefinitely. The width of the shock-like large stretching
zones is cut off at the grid scale and not allowed to decrease further. Importantly, the
Kurganov–Tadmor method advects the stretching zones accurately, and unlike artificial
diffusion, limits the large gradients without spreading the polymeric stress.

While the width of the stretching zones will keep decreasing with increasing spatial
resolution, the key dynamical features of the flow should converge. We check if this is true
by comparing Cholesky-log simulations of the FENE-P model at spatial resolutions 2562,
5122, 10242 and 20482. Snapshots of tr C from 5122 and 20482 simulations are presented
in figures 9(a) and 9(b), respectively (the 2562 version is shown in figure 6a). We see that
the large-scale cellular structures are very similar at all resolutions, though the stretching
zones in the 20482 simulation are much thinner and more refined.

The sharpening of stretching zones with increasing resolution is reflected in the spatial
spectrum of tr C (inset of figure 9c), which preserves its form but extends to larger
wavenumbers. The same is true of the kinetic energy spectrum E(k) (main graph of

1000 A37-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

85
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.858


Preserving large-scale features in elastic turbulence

figure 9c), which approximates a power law up to a cutoff wavenumber, beyond which
the spectrum decays rapidly (see Appendix C for a plot of the compensated spectra and
a discussion of the power-law exponent). This cutoff wavenumber scales with the inverse
of the width of the shock-like stretching zones and extends to higher wavenumbers as the
resolution is increased.

If one focuses on a single high wavenumber, then a large difference in the corresponding
energy will be seen; but this does not imply that new small eddies are being generated.
Rather, the flow continues to be dominated by the same large vortical cells, as the
resolution is increased, and only the straining zones in between the vortical cells become
more refined.

The mean polymer stretching (inset of figure 9d) increases when the resolution is first
doubled from 2562 to 5122, but shows no further increase despite a subsequent fourfold
increase in the resolution. The mean kinetic energy (main graph of figure 9d) does not
change appreciably with resolution.

On the whole, the considerable thinning of the stretching zones, accompanying the
increase of the resolution from 2562 to 20482, does not alter the qualitative dynamics
of the flow; certainly, the distortion of the flow structures produced by an absence
of a logarithmic transformation (§ 3), or the presence of artificial diffusion (§ 4), does
not occur on increasing the resolution. There are, however, some subtle differences in
the 20482 simulation: the spectral energy content in the k = 1 mode is higher in both
spectra (figure 9c), and the kinetic energy exhibits slightly larger fluctuations (figure 9d).
A systematic investigation of these variations would require simulations at even higher
resolutions, which are beyond the scope of this work. Nonetheless, it is clear that apart
from minor quantitative changes, the use of the Kurganov–Tadmor scheme along with the
Cholesky-log decomposition enables the key features of the flow to be captured even at a
relatively low resolution.

7. Summary and conclusions

The simulation of elastic turbulence presents difficulties associated with the advection
of the polymer stress. The very small diffusivity of high-molecular-weight polymers, in
tandem with their ability to undergo large extensions, leads to the formation of strong
gradients in the polymer conformation tensor. If these are not resolved and advected
accurately, then the mathematical properties of the conformation tensor may be violated,
and ultimately the entire dynamics of the polymer solution may be misrepresented.

In the literature, a variety of strategies have been proposed to overcome the
aforementioned numerical difficulties. The aim of this study was to identify the
combination of numerical methods that are most suitable for the simulation of elastic
turbulence. Our conclusion is that preference should be given to those methods that
involve a logarithmic reformulation of the constitutive equation. In addition, if the true,
physical stress diffusion, arising from the Brownian diffusion of polymers, is too small
to be resolved, then one should refrain from artificially enhancing diffusion – even a
local enhancement can produce artefacts. Instead, a non-diffusive shock-capturing scheme
should be used for the advection of the conformation tensor. However, if the non-enhanced,
true stress diffusion is large enough to be resolved (which could be the case for flows with
very small Reynolds numbers), then it should be included; the resulting parabolic equation
for the conformation tensor can then be discretized with standard techniques such as the
pseudo-spectral method.

In high-strain regions, the use of a logarithmic reformulation is known to reduce
the numerical errors associated with exponential stretching. We have shown that in
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elastic turbulence simulations, this is important to preserve the properties of the polymer
conformation tensor and reproduce the large-scale dynamics faithfully. Although we have
focused on the Cholesky-log decomposition, we expect similar conclusions to apply to
the log-conformation representation, since the basic principles behind the two approaches
are analogous. A point in favour of using the log-conformation method is that it would
facilitate the calculation of a recently introduced diagnostic, the log Euclidean mean
conformation tensor (Hameduddin & Zaki 2019), that can aid in understanding and
modelling viscoelastic turbulence.

Prior to this work, it was known that applying artificial polymer-stress diffusion locally,
rather than uniformly in space and time, attenuates the artefacts that arise due to excessive
smoothing of the polymer-stress field. It was unclear, however, whether the effects of
localized stress diffusion are truly negligible or can still modify the large-scale dynamics,
and if so, to what extent. We have shown here that since local diffusion intervenes at
locations where the polymer stress is large and localized – i.e. precisely where the polymer
feedback is strong – it ends up having a significant effect on the dynamics of the flow.
Indeed, the redistribution of the largest stresses destabilizes the large flow structures in
a similar way, if not to the same extent, as global artificial diffusion. The use of artificial
polymer-stress diffusion, of any form, in elastic turbulence simulations should therefore be
discouraged. (We have also tried using global and local hyperdiffusion with a fourth-order
Laplacian, only to find once again that the large-scale dynamics changes substantially).
This result leads to a preference for finite-difference methods over pseudo-spectral
methods. Indeed, while the latter generally require some form of small-scale dissipation
for stability, the former can more easily incorporate shock-capturing schemes to resolve
the discontinuities that form in the polymer conformation field.

Our study also explains some observations of Balci et al. (2011), who used the SSR
decomposition to simulate two-dimensional elastic turbulence, driven by a four-roll mill
forcing. Their simulations displayed a strong destabilization of the cellular symmetry
of the forcing – a characteristic artefact of global diffusion (Gupta & Vincenzi 2019;
Dzanic et al. 2022b) – even though they had abstained from adding stress diffusion to
the constitutive equation. This loss of symmetry can now be explained as a consequence
of using the SSR decomposition, which, as we have shown, gives rise to numerical
inaccuracies that modify the large-scale dynamics in a manner similar to global or local
artificial diffusion. Furthermore, Balci et al. (2011) do not use a shock-capturing advection
scheme, but instead use a pseudo-spectral method. And though they implement a smooth
filter to damp high-wavenumber modes (an operation that is similar in spirit to using local
hyperdiffusivity), their simulations suffer from spurious spatial oscillations in the vicinity
of sharp gradients in the conformation tensor.

The recommended combination of a logarithm-based reformulation of the conformation
tensor along with a non-diffusive shock-capturing advection scheme allows us to predict
the large-scale chaotic dynamics of the flow rather inexpensively. Indeed, the results of our
simulations, using the Cholesky-log and Kurganov–Tadmor scheme, remain qualitatively
unchanged with regard to the large scales and their spatial structure from resolution 2562

to 20482, though the quasi-discontinuous stretching zones become ever sharper and more
refined with increasing resolution. At the same time, the erroneous large-scale dynamics,
obtained when using the decomposition without a logarithmic transformation or when
using local artificial diffusion, is not cured by increasing the resolution. Thus a high
resolution, while preferable, is not as important a factor for elastic turbulence simulations
as a log-based reformulation of the conformation tensor, the absence of artificial diffusion,
and an accurate advection scheme.
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Our analysis has also emphasized a mathematical lower bound on the determinant of
the conformation tensor that has apparently been disregarded in numerical simulations of
viscoelastic flows. In the Oldroyd-B model, the determinant of the conformation tensor
must not only be positive, as required by the positive-definite nature of the tensor, but
also remain greater than unity at all times (after an initial transient, in case it starts out
below unity). Thus ensuring positive-definiteness is not sufficient for numerical accuracy.
As we have seen, even when the determinant of the conformation tensor stays positive,
thanks to a suitable matrix decomposition, its value can fall below unity, which in the case
of the Oldroyd-B model signifies numerical errors that are significant enough to modify
the large-scale dynamics of the polymer solution. Since the bound on the determinant of
the conformation tensor applies only to the Oldroyd-B model, we recommend testing new
numerical schemes or simulation codes first with the Oldroyd-B model, to ensure that the
bound is satisfied, before applying them to other viscoelastic models.

While we have focused on elastic turbulence and the corresponding low-Re limit, the
bound on the determinant of the conformation tensor is valid for high-Re flows as well.
Preliminary simulations of high-Re viscoelastic turbulent flows have shown that, just
as for the low-Re limit, simulations using the Cholesky-log decomposition preserve the
bound, whereas those using the SSR decomposition violate it (Yerasi 2023). However, the
impact of the numerical errors on the dynamics of elasto-inertial turbulence at moderate
Re and drag-reduction at high Re remain to be investigated. Nonetheless, it is clear that a
logarithmic reformulation of the conformation tensor remains preferable even when Re is
not small.

Through the study of the dispersion of a scalar blob, we have shown that errors in
computing the large-scale structures of the flow translate into erroneous predictions of
mixing. Therefore, an accurate numerical method that resolves the advection of polymer
stresses is important for studying not only details of the chaotic dynamics but also
applications of elastic turbulence, such as mixing enhancement. A detailed analysis of
mixing in elastic turbulence is an interesting avenue for future work. The smoothness of
the flow field suggests that the mixing will be similar to that in the Batchelor regime, i.e.
in the viscous sub-Kolmogorov scales of inertial turbulence. Techniques that have been
used to study chaotic mixing in time-dependent laminar flows (Wiggins & Ottino 2004;
Aref et al. 2017) may be helpful in understanding the relationship between mixing and the
dynamics of the large-scale coherent flow structures that dominate elastic turbulence.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.858. The
data that support the findings of this study are available from the authors on reasonable request.
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Appendix A. Decompositions of the polymer conformation tensor

A.1. The Cholesky-log decomposition
In three dimensions, the evolution equations for the Cholesky factor J = f (r)C can be
found in Vaithianathan & Collins (2003) (a misprint in the equation for L32 is corrected in
Perlekar et al. 2006). For d = 2, the equations simplify to (see Gupta et al. (2015); note
that a sign error in the equation for L22 is corrected below)

DL11

Dt
= (∂xux)L11 + (∂yux)L21 + 1

2

[
p

L11
+ (q − p)L11

]
, (A1a)

DL21

Dt
= (∂xuy)L11 + (∂yuy)L21 + (∂yux)

L2
22

L11
+ 1

2

[
(q − p)L21 − pL21

L2
11

]
, (A1b)

DL22

Dt
= (∂yuy)L22 − (∂yux)

L21L22

L11
+ 1

2

[
(q − p)L22 + p

L22
+ pL2

21

L2
11L22

]
, (A1c)

where

p = b − 2 + j2

bτp
, q =

[
h

b − 2
− (b − 2 + j2)( j2 − 2)

b(b − 2)τp

]
, (A2a,b)

j2 = tr J, h = tr[J · ∇u + (∇u)T · J]. (A3a,b)

To enforce the positivity of the diagonal elements of L, Vaithianathan & Collins (2003)
evolved L̃ii = ln Lii, and calculated Lii by taking the exponential of L̃ii. The evolution
equations for L̃ii are

DL̃11

Dt
= ∂xux + (∂yux)L21 exp(−L̃11)+ 1

2
[ p exp(−2L̃11)+ q − p], (A4a)

DL̃22

Dt
= ∂yuy − (∂yux)L21 exp(−L̃11) (A4b)

+ 1
2
{ p exp(−2L̃22)+ pL2

21 exp[−2(L̃11 + L̃22)] + q − p}. (A4c)

A.2. The SSR decomposition
The symmetric square root of C satisfies (Balci et al. 2011)

∂tB + u · ∇B = B · ∇u + a · B + 1
2 Wi

[(BT)−1 − f (tr B)B], (A5)
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Figure 10. Representative snapshots (instantaneous) of the logarithm of tr C for (a) the Cholesky-log
decomposition and (b) the SSR decomposition. For the corresponding animations, see supplementary movie 5.
Both simulations use the FENE-P model without artificial diffusion (P = ∞).
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Figure 11. Time series of (a) Δ(t), and the minimum of det C over the domain for (b) the Cholesky-log
decomposition and (c) the SSR decomposition. The insets show the corresponding time series of the minimum
of tr C over the domain. All plots refer to simulations of the FENE-P model.

where a is antisymmetric and, for d = 2, its non-zero elements are

a12 = −a21 = B12 ∂xux − B11 ∂xuy + B22 ∂yux − B12 ∂yuy

B11 + B22
. (A6)

Appendix B. Comparison of matrix decompositions with the FENE-P model

In § 3, we compared the performances of the Cholesky-log decomposition and the SSR
decomposition for the Oldroyd-B model. Here we present an analogous comparison for
the FENE-P model.

The snapshots of tr C in figure 10 and the associated animations in supplementary
movie 5 show that in the Cholesky-log simulation, the vortical cells approximately retain
the lattice structure of the forcing, whereas in the SSR simulation, the vortical cells are
displaced, distorted and subject to constant changes in shape and size. The time series
of Δ(t) for the two decompositions (see (3.1)) confirm a greater distortion of the cellular
structure in the SSR simulations (figure 11a).

1000 A37-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

85
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.858


S.R. Yerasi, J.R. Picardo, A. Gupta and D. Vincenzi

100
10–8

10–6

10–4
k2

.6
 E

(k
)

10–2

10–0

2562 5122 10242 20482

101 102

k
103

Figure 12. Kinetic energy spectra E(k) plotted after compensating for the power-law variation k−2.6. Results
obtained at different spatial resolutions are presented; all simulations use the Cholesky-log reformulation of
the FENE-P model. The corresponding uncompensated spectra are shown in figure 9(c).

These differences parallel those observed in § 3 for the Oldroyd-B model. There, we
could use the bound of Hu & Lelièvre (2007) on det C to determine which of the two
decompositions yielded the correct large-scale dynamics. Since an equivalent bound is not
available for the FENE-P model, we cannot in principle draw any rigorous conclusions
from the analysis of det C in this case. Nevertheless, it is interesting to note that the
behaviour of det C in the FENE-P model is similar to that observed in the Oldroyd-B
model: the minimum of det C over the spatial domain is persistently greater than unity in
the Cholesky-log simulation, while it frequently falls below unity in the SSR simulation
(figures 11b,c).

Appendix C. Power-law behaviour of the energy spectrum

Section 6 examines the effect of increasing spatial resolution on simulations that use
the non-diffusive Kurganov–Tadmor advection scheme, along with the Cholesky-log
decomposition. The kinetic energy spectra obtained at different resolutions (figure 9c) all
have the same form: an approximate power-law behaviour, for intermediate wavenumbers,
followed by a rapid decay of energy as one approaches the grid scale. The cutoff
wavenumber, beyond which the energy decays rapidly, extends to larger values with
increasing resolution; the form of the spectra up to the cutoff, however, seems to follow
a similar power-law-like decay at all resolutions. We examine this apparent power-law
behaviour more carefully by plotting the compensated energy spectra, in figure 12, using
the power-law scaling k−2.6 obtained by fitting the spectrum of the lowest-resolution case
(2562). Though the compensated spectra in figure 12 are not perfectly flat, this plot shows
that the spectra at all resolutions remain close to the same power law, i.e. the approximate
power-law decay does not change with resolution. The extension of the cutoff wavenumber
to higher values, with increasing resolution, is associated with the sharpening of the
shock-like stretching zones. Importantly, this refinement does not alter the qualitative
features of the flow, such as the structure of the vortical cells (illustrated by the snapshots
of tr C in figures 9a,b).
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As noted in the Introduction, the nature of forcing has a strong impact on the properties
of elastic turbulence (unlike inertial turbulence). Thus prior studies of two-dimensional
elastic turbulence have obtained energy spectra with different values for the power-law
exponent, depending on the applied forcing. In addition, the choice of constitutive
model also affects the exponent. Gupta & Vincenzi (2019) use the cellular forcing (with
wavenumber K = 2) and report exponents ≈ − 2.5 for the Oldroyd-B model, and ≈ − 2.3
for the FENE-P model. (Our FENE-P simulations, which yield an exponent ≈ − 2.6, use
the same parameter values as those in Gupta & Vincenzi (2019) except for the maximum
polymer square extension b, which we take to be 10/3 times larger.) Plan et al. (2017),
who use the Oldroyd-B model, obtain a value −3 when using the cellular forcing (with
wavenumber K = 4 or 10, rather than K = 2) and a smaller value ≈ −3.7 when using
the rectilinear Kolmogorov forcing. The Kolmogorov forcing lacks the strong extensional
zones of the cellular forcing, and produces a shear-dominated flow with weaker gradients;
hence the steeper spectra.

The aforementioned results of Gupta & Vincenzi (2019) and Plan et al. (2017) are
based on simulations that use the Cholesky-log reformulation along with the non-diffusive
Kurganov–Tadmor advection scheme. If artificial diffusion is used, then its smoothing
action will reduce the energy of the high wavenumbers. In fact, in the case of cellular
forcing, artificial diffusion dramatically steepens the spectra to the extent that the
power-law behaviour is lost (Gupta & Vincenzi 2019). The case of Kolmogorov forcing,
though, is not as strongly affected: the spectra retain a power-law range even with artificial
diffusion, and an exponent close to −3.7 is obtained (Berti et al. 2008; Garg et al. 2021).

For three-dimensional homogeneous and isotropic flows, the theory of Fouxon &
Lebedev (2003) predicts a power-law steeper than k−3, and recent numerical simulations
(Singh et al. 2024) have obtained an exponent −4 in agreement with the three-dimensional
theory. The shallower decay (∼k−2.6) of the spectrum in our simulations is not disallowed
by the theory of Fouxon & Lebedev (2003) because our two-dimensional simulations
are strongly non-homogeneous and anisotropic (see the time-averaged field of tr C in
figure 2(a), or of vorticity in figure 5(c) of the supplementary material – both averaged
fields exhibit distinct vortical regions separated by anisotropic straining filaments).
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