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ABSTRACT

We investigate Cartan subalgebras in nontracial amalgamated free product von
Neumann algebras MixgMs over an amenable von Neumann subalgebra B. First,
we settle the problem of the absence of Cartan subalgebra in arbitrary free product
von Neumann algebras. Namely, we show that any nonamenable free product von
Neumann algebra (M, 1) * (Ma, p2) with respect to faithful normal states has no
Cartan subalgebra. This generalizes the tracial case that was established by A. Ioana
[Cartan subalgebras of amalgamated free product 11y factors, arXiv:1207.0054]. Next,
we prove that any countable nonsingular ergodic equivalence relation R defined on a
standard measure space and which splits as the free product R =R * Ro of recurrent
subequivalence relations gives rise to a nonamenable factor L(R) with a unique Cartan
subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for
a class of group measure space factors L>°(X) x I arising from nonsingular free ergodic
actions I' ~ (X, p) on standard measure spaces of amalgamated groups I' = '1xxI's
over a finite subgroup X.
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1. Introduction and main results

A Cartan subalgebra A in a von Neumann algebra M is a unital maximal abelian *-subalgebra
A C M such that there exists a faithful normal conditional expectation F 4 : M — A and such that
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the group of normalizing unitaries of A inside M defined by Ny (A) ={ueU(M) : uAu* = A}
generates M.

By a classical result of Feldman and Moore [FM77], any Cartan subalgebra A in a von
Neumann algebra M with separable predual arises from a countable nonsingular equivalence
relation R on a standard measure space (X, u) and a 2-cocycle v € H?(R, T). Namely, we have
the following isomorphism of inclusions:

(Ac M)=(L®(X) C L(R,v)).

In particular, for any nonsingular free action I' ~ (X, u) of a countable discrete group I' on a
standard measure space (X, 1), L°°(X) is a Cartan subalgebra in the group measure space von
Neumann algebra L (X) x T'.

The presence of a Cartan subalgebra A in a von Neumann algebra M with separable predual
is therefore an important feature which allows us to divide the classification problem for M up
to x-isomorphism into two different questions: uniqueness of the Cartan subalgebra A inside M
up to conjugacy and classification of the underlying countable nonsingular equivalence relation
R up to orbit equivalence.

In [CFW81], Connes et al. showed that any amenable countable nonsingular ergodic
equivalence relation is hyperfinite and thus implemented by an ergodic Z-action. This implies,
together with [Kri76], that any two Cartan subalgebras inside an amenable factor are always
conjugate by an automorphism.

The uniqueness of Cartan subalgebras up to conjugacy is no longer true in general for
nonamenable factors. In [CJ82], Connes and Jones discovered the first examples of II; factors with
at least two Cartan subalgebras which are not conjugate by an automorphism. More concrete
examples were later found by Ozawa and Popa in [OP10b]. We also refer to the recent work of
Speelman and Vaes [SV12] on II; factors with uncountably many non (stably) conjugate Cartan
subalgebras.

In the past decade, Popa’s deformation/rigidity theory [Pop06a, Pop06b] has led to a lot of
progress in the classification of II; factors arising from probability measure preserving (pmp)
actions of countable discrete groups on standard probability spaces and from countable pmp
equivalence relations. We refer to the recent surveys [Io12b, Pop07, Vael0] for an overview of
this topic.

We highlight below three breakthrough results regarding uniqueness of Cartan subalgebras in
nonamenable II; factors. In his pioneering article [Pop0O6a], Popa showed that any rigid Cartan
subalgebra inside group measure space II; factors L*(X) x F,, arising from rigid pmp free
ergodic actions F,, ~ (X, ) of the free group F,, (n>2) is necessarily unitarily conjugate
to L*°(X). In [OP10a], Ozawa and Popa proved that any compact pmp free ergodic action
of the free group F, (n>2) gives rise to a II; factor L*°(X) x F,, with unique Cartan
decomposition, up to unitary conjugacy. This was the first result in the literature proving the
uniqueness of Cartan subalgebras in nonamenable II; factors. Recently, Popa and Vaes [PV11]
proved that any pmp free ergodic action of the free group F,, (n>2) gives rise to a II;
factor L>°(X) x F,, with unique Cartan decomposition, up to unitary conjugacy. We refer
to [CS13, CSU13, Houl0, HV13, Io12a, OP10b, PV12] for further results in this direction.

Very recently, using [PV11], Ioana [lol2a] obtained new results regarding the Cartan
decomposition of tracial amalgamated free product von Neumann algebras Mj xg Ms. Let us
highlight below two of Ioana’s results [Iol12a]: any nonamenable tracial free product M; % Mj
has no Cartan subalgebra and any pmp free ergodic action I' ~ (X, u) of a free product
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group I'=T"1 % T's with |T';| > 2 and |I'z] >3 gives rise to a II; factor with unique Cartan
decomposition, up to unitary conjugacy.

In the present paper, we use Popa’s deformation/rigidity theory to investigate Cartan
subalgebras in nontracial amalgamated free product (AFP) von Neumann algebras M *p
Ms over an amenable von Neumann subalgebra B. We generalize some of loana’s recent
results [lo12a] to this setting. The methods of the proofs rely on a combination of results and
techniques from [HV13, Io12a, PV11].

Statement of the main results
Using his free probability theory, Voiculescu [Voi96] proved that the free group factors L(F,,)
(n >2) have no Cartan subalgebra. This exhibited the first examples of II; factors with no
Cartan decomposition. This result was generalized later in [Jun07] to free product II; factors
My x Mo of diffuse subalgebras which are embeddable into R“. Finally, the general case of
arbitrary tracial free product von Neumann algebras was recently obtained in [lol12a] using
Popa’s deformation/rigidity theory.

The first examples of type III factors with no Cartan subalgebra were obtained in [Sh100] as
a consequence of [Voi96]. Namely, it was shown that the unique free Araki-Woods factor of type
III, (0 <A< 1) has no Cartan subalgebra. This result was vastly generalized later in [HR11],
where it was proven that in fact any free Araki-Woods factor has no Cartan subalgebra.

Our first result settles the question of the absence of Cartan subalgebra in arbitrary free
product von Neumann algebras.

THEOREM A. Let (M, p1) and (Ms, ¢2) be any von Neumann algebras with separable predual
endowed with faithful normal states such that dim My > 2 and dim M, > 3. Then, the free
product von Neumann algebra (M, ¢) = (M, 1) * (Ma, ¢2) has no Cartan subalgebra.

Observe that when dim M; = dim My = 2, the free product M = M; x M> is hyperfinite by
[Dyk93, Theorem 1.1] and so has a Cartan subalgebra. Note that the questions of factoriality,
type classification, and fullness for arbitrary free product von Neumann algebras were recently
settled in [Ued11]. These results are used in the proof of Theorem A.

We next investigate more generally Cartan subalgebras in nontracial AFP von Neumann
algebras M = My xg My over an amenable von Neumann subalgebra B. Even though we do
not get a complete solution in that setting, our second result shows that, under fairly general
assumptions, any Cartan subalgebra A C M can be embedded into B inside M, in the sense
of Popa’s intertwining techniques. We refer to §2 for more information on these intertwining
techniques and the notation A < B. Recall from [HV13, Definition 5.1| that an inclusion of
von Neumann algebras P C M has no trivial corner if for all nonzero projections p € P’ N M, we
have Pp # pMp.

THEOREM B. For i€ {1,2}, let BC M; be any inclusion of von Neumann algebras with
separable predual and with faithful normal conditional expectation E;: M; — B. Let (M, E) =
(My, Eq) *p (Ma, E2) be the corresponding amalgamated free product von Neumann algebra.
Assume that B is a finite amenable von Neumann algebra.

Assume moreover that:

e cither both M, and Ms have no amenable direct summand,;

e or B is of finite type I, M1 has no amenable direct summand, and the inclusion B C My

has no trivial corner.

If AC M is a Cartan subalgebra, then A <j; B.
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A similar result was obtained for tracial AFP von Neumann algebras in [Io12a, Theorem 1.3].

The first examples of type III factors with unique Cartan decomposition were recently
obtained in [HV13]. Namely, it was shown that any nonamenable nonsingular free ergodic action
'~ (X, p) of a Gromov hyperbolic group on a standard measure space gives rise to a factor
L>(X) x T' with unique Cartan decomposition, up to unitary conjugacy. This generalized the
probability measure preserving case that was established in [PV12].

In order to state our next results, we need to introduce some terminology. Let R be a countable
nonsingular equivalence relation on a standard measure space (X, p) and denote by L(R) the von
Neumann algebra of the equivalence relation R [FM77]. Following [Ada94, Definition 2.1], we
say that R is recurrent if for all measurable subsets U C X such that u(U) > 0, the set [x]r NU
is infinite for almost every x € Y. This is equivalent to saying that L(R) has no type I direct
summand. We then say that a nonsingular action I' ~ (X, pt) of a countable discrete group on
a standard measure space is recurrent if the corresponding orbit equivalence relation R(I" ~ X))
is recurrent.

Our next result provides a new class of type I1I factors with unique Cartan decomposition, up
to unitary conjugacy. These factors arise from countable nonsingular ergodic equivalence relations
R which split as a free product R =R * Ro of arbitrary recurrent subequivalence relations.
We refer to [Gab00, Definition IV.6] for the notion of free product of countable nonsingular
equivalence relations.

THEOREM C. Let R be any countable nonsingular ergodic equivalence relation on a standard
measure space (X, u) which splits as a free product R = Ry * Ro such that the subequivalence
relation R; is recurrent for all i € {1, 2}.

Then the nonamenable factor L(R) has L°°(X) as its unique Cartan subalgebra, up to
unitary conjugacy. In particular, for any nonsingular ergodic equivalence relation S on a standard
measure space (Y, n) such that L(R) = L(S), we have R = S.

Observe that Theorem C generalizes [Io12a, Corollary 1.4] where the same result was obtained
for countable pmp equivalence relations under additional assumptions. Note that in the case
when Ry is nowhere amenable, that is, L(R1) has no amenable direct summand and R is
recurrent, Theorem C is a consequence of Theorem B and [HV13, Theorem 2.5]. However,
Theorem B does not cover the case when both R; and R are amenable. So, in the setting
of von Neumann algebras arising from countable nonsingular equivalence relations, Theorem C
is a generalization of Theorem B in the sense that we are able to remove the nonamenability
assumption on M; = L(R;).

Finally, when dealing with certain nonsingular free ergodic actions T'~ (X, u) of
amalgamated groups I'; *x I'e, we obtain new examples of group measure space type III factors
with unique Cartan decomposition, up to unitary conjugacy.

THEOREM D. Let I' =11 *x I's be any amalgamated free product of countable discrete groups
such that ¥ is finite and T'; is infinite for all i € {1, 2}. Let I' ~ (X, ) be any nonsingular free
ergodic action on a standard measure space such that for all i € {1,2}, the restricted action
'y ~ (X, p) is recurrent.

Then the group measure space factor L (X) x I" has L>°(X) as its unique Cartan subalgebra,
up to unitary conjugacy.

Observe that Theorem D generalizes the probability measure preserving case that was
established in [Io12a, Theorem 1.1].
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In the spirit of [HV13, Corollary B], we obtain the following interesting consequence. Let
I'=T4 %'y be an arbitrary free product group such that I'; is amenable and infinite and
T3] > 2. Then we get group measure space factors of the form L°°(X) x I" with unique Cartan
decomposition, having any possible type and with any possible flow of weights in the type Il
case.

We finally mention that, unlike the probability measure preserving case [lo12a, Theorem 1.1],
the assumption of recurrence of the action I'; ~ (X, p) for all 7 € {1,2} is necessary. Indeed,
using [SV12], we exhibit in §8 a class of nonamenable infinite measure preserving free ergodic
actions I' ~ (X, u) of free product groups I' = I’y * ' such that the corresponding type I, group
measure space factor L>(X) x I has uncountably many nonconjugate Cartan subalgebras.

Comments on the proofs

As we have already mentioned above, the proofs of our main results rely heavily on results and
techniques from [HV13, To12a, PV11]. Let us describe below the main three ingredients which
are needed. We will mainly focus on the proof of Theorem A.

Denote by (M, ¢) = (M1, p1) * (Ms, ¢2) an arbitrary free product of von Neumann algebras
as in Theorem A. For simplicity, we may assume that M is a factor. In the case when both M; and
M, are amenable, M is already known to have no Cartan subalgebra by [HR11, Theorem 5.5].
So we may assume that M; is not amenable. Using [Dyk93, Ued11], we may further assume that
M7 has no amenable direct summand and My # C. By contradiction, assume that A C M is a
Cartan subalgebra.

We first use Connes and Takesaki’s noncommutative flow of weights [Con73, CT77, Tak03] in
order to work inside the semifinite von Neumann algebra ¢(M) which is the continuous core of M.
We obtain a canonical decomposition of ¢(M) as the semifinite amalgamated free product von
Neumann algebra c(M) = ¢(My) *,r) ¢(Mz). Moreover, c(A) C c(M) is a Cartan subalgebra.

Next, we use Popa’s intertwining techniques in the setting of nontracial von Neumann algebras
that were developed in [HV13, §2]. Since A is diffuse, we show that necessarily ¢(A) Acar) L(R)
(see Proposition 2.10).

Finally, we extend loana’s techniques from [lo12a, §§3, 4] to semifinite AFP von Neumann
algebras (see Theorems 3.4 and 4.1). The major difference, though, between our approach and
Ioana’s approach is that we cannot use the spectral gap techniques from [lo12a, §5]. The main
reason why Ioana’s approach cannot work here is that ¢(M) is not full in general, even though
M is a full factor. Instead, we strengthen [lo12a, Theorem 4.1] in the following way. We show
that the presence of the Cartan subalgebra ¢(A) C c(M) which satisfies ¢(A) Z.(ary L(R) forces
both c¢(My) and c¢(Ms) to have an amenable direct summand. Therefore, both M; and My have
an amenable direct summand as well. Since we have assumed that M; has no amenable direct
summand, this is a contradiction.

2. Preliminaries

Since we want the paper to be as self-contained as possible, we recall in this section all the
necessary background that will be needed for the proofs of the main results.

2.1 Intertwining techniques

All the von Neumann algebras that we consider in this paper are always assumed to be o-
finite. Let M be a von Neumann algebra. We say that a von Neumann subalgebra P C 1pM1p
is with expectation if there exists a faithful normal conditional expectation Ep:1pM1lp — P.
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Whenever V C M is a linear subspace, we denote by Ball(V) the unit ball of V with respect to
the uniform norm || - ||oc. We will sometimes say that a von Neumann algebra (M, 7) is tracial
if M is endowed with a faithful normal tracial state 7.

In [PopO6a, Pop06b], Popa discovered the following powerful method to unitarily conjugate
subalgebras of a finite von Neumann algebra. Let M be a finite von Neumann algebra
and AC14M1,4, BC1pM1lp von Neumann subalgebras. By [Pop06b, Corollary 2.3] and
[Pop06a, Theorem A.1], the following statements are equivalent:

e there exist projections p € A and ¢ € B, a nonzero partial isometry v € pMgq, and a unital
normal *-homomorphism ¢ : pAp — ¢Bq such that av =vp(a) for all a € A;

e there exist n > 1, a possibly nonunital normal s-homomorphism 7: A — M, (B), and a
nonzero partial isometry v € My ,(14M1p) such that av =vn(a) for all a € A4;

e there is no net of unitaries (wy) in U(A) such that Ep(z*wgy) — 0 *-strongly for all
T,y €1 aM1p.
If one of the previous equivalent conditions is satisfied, we say that A embeds into B inside M
and write A <)s B.
We will need the following generalization of Popa’s Intertwining Theorem, which was
proven in [HV13, Theorems 2.3, 2.5]. A further generalization can also be found in [Ued13,
Proposition 3.1].

THEOREM 2.1. Let M be any von Neumann algebra. Let AC1,M14 and BC 1gM1lp be
von Neumann subalgebras such that B is finite and with expectation Ep:1pM1p — B. The
following are equivalent:

(1) there exist n > 1, a possibly nonunital normal *-homomorphism 7: A — M, (B) and a
nonzero partial isometry v € My ,(14M1p) such that av =vn(a) for all a € A;

(2) there is no net of unitaries (wy) in U(A) such that Ep(z*wgy) — 0 *-strongly for all
T,y €14 M1p.

Moreover, when M is a factor and A, B C M are both Cartan subalgebras, the previous

conditions are equivalent to the following:

(3) there exists a unitary u € U(A) such that uAu* = B.

DEFINITION 2.2. Let M be any von Neumann algebra. Let A C14M14 and B C 1gM1p be
von Neumann subalgebras such that B is finite and with expectation. We say that A embeds
into B inside M and denote A <j; B if one of the equivalent conditions of Theorem 2.1 is
satisfied.

Observe that when 14 and 1p are finite projections in M, then 14 V 1p is finite, and A <;; B
in the sense of Definition 2.2 if and only if A X(;,v1,)m(1,v1,) B holds in the usual sense for
finite von Neumann algebras.

In case of semifinite von Neumann algebras, we recall the following useful intertwining result
(see [HR11, Lemma 2.2]). When (B, Tr) is a semifinite von Neumann algebra endowed with a
semifinite faithful normal trace, we will denote by Proj¢(5) the set of all nonzero finite trace
projections of B. We will denote by || - |21 the L?-norm associated with the trace Tr.

LEMMA 2.3. Let (M, Tr) be a semifinite von Neumann algebra endowed with a
semifinite faithful normal trace. Let B C M be a von Neumann subalgebra such that Tr|B
is semifinite. Denote by Ep: M — B the unique trace-preserving faithful normal conditional
expectation.
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Let p € Projg(M) and A C pMp be any von Neumann subalgebra. The following conditions
are equivalent:

(1) for every q € Proje(B), we have A £ ¢By;

(2) there exists an increasing sequence of projections ¢, € Projs(B3) such that g, — 1 strongly
and A A gnBgy for all n € N;

(3) there exists a net of unitaries wy, € U(A) such that limg|| Eg(x*wiy)|l2, =0 for all x,y €
pM.

Proof. (1) = (2) is obvious.
(2) = (3) Let F C Ball(pM) be a finite subset and € > 0. We need to show that there exists
w € U(A) such that ||Eg(z*wy)|l2m <€ for all z, y € F. Since the projection p has finite trace,
there exists n € N large enough such that
%, Vr,y e F.
Put g = gy, Since A £ ¢Bg, there exists a net wy, € U(A) such that limy || Eygg(a*wib)||2m =0
for all a, b € pMgq. Applying this to a = pxq and b = pyq, if we take w = wy, for k large enough,
we get | Eg(qz*p w pyq)|l2m = | EqBq(qz*p w pyq)|l2 1 < €/2. Therefore, || Eg(z*wy)||2m < €.
(3)= (1) Let ¢ € Projy(B) and put e=pVq. Let A=Tr(e) < oo and denote by || - |2 the
L2-norm with respect to the normalized trace on eMe. For all z, y € pMgq, we have

lgnz™p — 2 pll21x + IPYGH — PYll21r <

liml| Bqsq (2" wiy) 2 = A2 lim|| Eqiq(2"wiy) 2, = 0.

This means exactly that A Acae ¢Bg in the usual sense for tracial von Neumann algebras and

so A A gBg. O

Let I be any countable discrete group and S any nonempty collection of subgroups of I'.
Following [BO08, Definition 15.1.1], we say that a subset F C I' is small relative to S if there
exist n>1, ¥q,...,%, €S, and g1, b1, . .., gn, by €T such that F C |, g:Zih;.

We will need the following generalization of [Vael3, Proposition 2.6] and [HV13, Lemma 2.7].

PROPOSITION 2.4. Let (B, Tr) be a semifinite von Neumann algebra endowed with a semifinite
faithful normal trace. Let I' ~ (B, Tr) be a trace-preserving action of a countable discrete
group I" on (B, Tr) and denote by M =B x T" the corresponding semifinite crossed product von
Neumann algebra. Let p € Projg(M) and A C pMp be any von Neumann subalgebra. Denote
P =Npmp(A)”.

For every subset F C I' which is small relative to S, denote by Pr the orthogonal projection
from L%(M, Tr) onto the closed linear span of {ru, : x € BNL*(B, Tr), g € F}.

(1) The set J={ec A NpMp: Ae A q(B x X)q,VE € S, Vq € Proji(B)} is directed and
attains its maximum in a projection z which belongs to Z(P).

(2) There exists a net (wy) in U(Az) such that lim|| Pr(wyg)||2c = 0 for every subset F C T’
which is small relative to S.

(3) For every € >0, there exists a subset F CI' which is small relative to S such that
la — Pr(a)|l2m <€ for all a € A(p — 2).

Proof. (1) In order to show that the set [J is directed and attains its maximum, it suffices to
prove that whenever (e;);cr is a family of projections in A'NpMp and e=\/, e, if e ¢ T,
then there exists i € I such that e; ¢ J. If e¢ J, there exist ¥ €S and ¢ € Proj(B) such
that Ae <y ¢(B x X)q. Let n > 1, a nonzero partial isometry v € M ,,(C) ® eMgq and a normal
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s-homomorphism ¢ : . Ae — M, (¢(B x ¥)q) such that av =vp(a) for all a € Ae. By definition,
we have ev =v. Choose i € I such that e;v # 0 and denote by w € M; ,(C) ® e;Mgq the polar
part of e;v. Since aw = wy(a) for all a € Ae, it follows that Ae; <aq g(B x X)q. Hence, e; ¢ J.

Denote by z the maximum of the set [J. It is easy to see that uzu* € J whenever u €
Nomp(A); hence uzu* = z. Therefore, z € Z(P).

(2) We have that Az Arq g(B x X)q for all ¥ € S and all ¢ € Proji(B). Let ¢ >0 and F CT
be a subset which is small relative to S. We show that we can find w € U(Az) such that
1P ()1 < =

Let F C Ui, ¢:¥ih; with 3q,...,3, € S and g1, h1, . . ., gn, hn € . Consider the semifinite
von Neumann algebra M,, (M) together with the diagonal subalgebra Q = @;" ; B x X;. Observe
that the canonical trace on M, (M) is still semifinite on Q. Moreover, consider the trace-
preserving x-embedding p: M — M, (M) :z—xd - - D z.

Since Az Ay (B x Eg)qforalli € {1,...,n}and all g € Projg(B), we get that p(Az) Zm, ()
p(q)Qp(q) for all ¢ € Proj(B) by the first criterion in Lemma 2.3. Then, by the second criterion
in Lemma 2.3, there exists a net wy € U(Az) such that

11]£D||EB>421($wky)”2,Tr =0, Vu, ye M, Vi e {1’ s ’n}‘

Recall that Pysp(z) = ugEpus(uyruy)uy, for all € M N L2(M, Tr). Applying what we have
just proved to r =wuy and y =wuj , we get that limg|| Py, p, (wi)|l2,r =0 for all i € {1,...,n}.
Therefore, limg|| Pr(wg)|2, 1 = 0.

(3) By construction, for any projection e < p — z, there exist ¥ € S and ¢ € Proj;(B) such
that Ae <a q(B x X)q. Let € > 0. Choose £ > 1 and e, ..., e, € A N pMp pairwise orthogonal
projections such that:

o foreveryiec{l,..., 0}, e;<p—zand e=e; +---+ e satisfies ||(p — 2) — ello,r < €/3;

o for every i€ {l,...,¢}, there exist n; >1, ¥; €S, a projection ¢; € Projy(B), a
nonzero partial isometry v; € My ,,,(C) ® ¢;,Mg;, and a normal *-homomorphism ¢; : A —
M,,, (¢;(B x ¥;)q;) such that v;v] = e; and av; = vip;(a) for all a € A.

Put n=ni+---+ny, qg= \/f:1 ¢; and define ¢: A — @le qi(B x X;)q; € M,,(¢gMgq) by
putting together the ¢; diagonally. Similarly, define the partial isometry v € My ,(C) ® eMg
such that vv* = e and av = vy(a) for all a € A.

Using the Kaplansky density theorem, choose vg € My ,,(C) ® ¢(B X1 I')g such that [Jvg||e <
1 and ||v — vo|l2,1r < €/3. Define G C T as the finite subset such that vy belongs to the linear span
of {e1; ®exugq:x€B,g€G,1<i<l}. Put F= Ule Ug,heg g3ih L.

Let a € Ball(A(p — z)) and write a =a(p — 2z — e) + ae. Observe that |a(p — 2z — €)[2,+ <
llalloo|lp — 2 — €ll2,1x < &/3. Since ae =vp(a)v*, it follows that ae lies at a distance less than
2e/3 from vop(a)vi. Observe that by construction Pr(vop(a)vy) = vop(a)vy. Therefore, a lies at
a distance less than ¢ from the range of Pr. O

2.2 Amalgamated free product von Neumann algebras

Fori € {1, 2}, let B C M; be an inclusion of von Neumann algebras with expectation E; : M; — B.
Recall that the amalgamated free product (M, E)= (M, E1) xp (M2, E9) is the von Neumann
algebra M generated by M7 and Ms where the faithful normal conditional expectation £ : M —
B satisfies the freeness condition:

E(xy---2,)=0 whenever z; € M;, © B and ij # i;41.
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Here and in what follows, we denote by M; © B the kernel of the conditional expectation
E;: M; — B. We refer to [Ued99, VDN92, Voi85] for more details on the construction of
amalgamated free products in the framework of von Neumann algebras.

Assume that Tr is a semifinite faithful normal trace on B such that for all i € {1, 2}, the
weight Tr oF; is a trace on M;. Then the weight Tr oF is a trace on M by [Ued99, Theorem 2.6].
In that case, we will say that the amalgamated free product (M, E) = (M, Ey) g (M2, E3) is
semifinite. Whenever we consider a semifinite faithful normal trace on a semifinite amalgamated
free product (M, E) = (M, E1) g (M2, Ez), we will always assume that Tr oE = Tr and Tr |B
is semifinite.

The following proposition is a semifinite analogue of [IPP08, Theorem 1.1]. The proof of
Theorem 2.5 is essentially contained in [CH10, Theorem 2.4].

THEOREM 2.5. Let (M, E) = (My, E1) *5 (Ma, E3) be a semifinite amalgamated free product
von Neumann algebra with semifinite faithful normal trace Tr. Let p € Projs(M;) and Q C pMip
be any von Neumann subalgebra. Assume that there exists a net of unitaries wy, € U(Q) such
that limy || Eg(z*wiy) |2 = 0 for all z,y € pM;.

Then any Q-pM;p-subbimodule H of L?(pMp) which has finite dimension as a right pMp-
bimodule must be contained in L?(pMip). In particular, Nppr,(Q)” C pMip.

Proof. Using [Tak02, Proposition V.2.36], we denote by FEaq, : M — M; the unique trace-
preserving faithful normal conditional expectation which satisfies
Epm, (21 22my1) =0

whenever m > 1, z1, Topm41 € M1, 225 E M2 © B and w9541 € M1 OB for all 1<j<m—1.
Moreover, observe that we have TroEx, =Tr. We denote by M & M; the kernel of the
conditional expectation Eaq, : M — M;.

CramM. We have that limg|| Ea, (% wiy) |2 = 0 for all z,y € p(M © M,).

Proof of the Claim. Observe that using the Kaplansky density theorem, it suffices to prove
the Claim for x = pxy - - - Tomy1 and y = py1 - - - Yan+1 With m,n > 1, z1, Tom11, Y1, Yon+1 € My,
Topi1, Yorr+1 € M1 & Band zop, yopr € Mg © Bforall1</<m —1andall 1 <¢ <n—1. Then,
we have

Enm, (7" wry) = Epm, (25,41 - - 75 Ep(@1wiy1) Y2 - - - Yont1)-
Hence, limg|| Ea, (2 wry)]2, 1 = 0. O

In particular, we get limy || Eppq, p(2*wiy)|l2, e = 0 for all ,y € pMp & pMip. Finally, applying
[Vae07, Lemma D.3|, we are done. O

Moreover, we will need the following technical results.

PROPOSITION 2.6. Let (M, E)= (M, Ey) x5 (Ma, E2) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Assume the following:
e for all i € {1,2} and all nonzero projections z € Z(B), Bz # zM;z;
e for all p € Projg(M) and all q € Projy(BB), we have pMp £ rm qBq.
Then, for all i € {1, 2}, all e € Proji(M), and all f € Proj;(M;), we have eMe A fM;f.
Proof. By contradiction, assume that there exist i € {1, 2}, e € Projy(M), and f € Projs(M;),

a nonzero partial isometry v € eM f, and a unital normal *-homomorphism ¢ :eMe — fM;f
such that zv =vp(z) for all z € eMe. We may assume without loss of generality that i = 1.
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Moreover, as in [Vae08, Remark 3.8], we may assume that the support projection of Eay, (v*v)
in M equals f.

Let g € Proj¢(B) be arbitrary. By assumption, we have eMe A ¢Bg. Next, we claim that
p(eMe) f M, qBq. Indeed, otherwise there would exist n > 1, a nonzero partial isometry w €
M, ,(C) ® fMiq and a normal *-homomorphism 1 : p(eMe) — M, (¢Bgq) such that p(z)w =
wip(p(z)) for all z € eMe. Hence, we get xvw =vw(yop)(x) for all x € eMe. We have
By, () (W v ow) = w* B, (v*v)w # 0, since the support projection of Eag, (v'v) is f and
fw = w. By taking the polar part of vw, this would imply that eMe < gBq, a contradiction.

By Lemma 2.3 and Theorem 2.5, we get p(eMe)' N fMf C fMif; hence v*v € fM; f. Thus,
we may assume that v*v = f. We get fMf=v"Mv C fMif C fMf, so fMyif=fMf. The
proof of [HV13, Theorem 5.7] shows that there exists a nonzero projection z € Z(B) such that
z2Moz = Bz, contradicting the assumptions. a

PROPOSITION 2.7. Let (M, E)= (M, Ey)*p (Ma, E2) be a semifinite amalgamated free
product von Neumann algebra with semifinite faithful normal trace Tr. Let p € Proj;(M) and
A C pMp be any von Neumann subalgebra. Assume that there exist i € {1, 2} and p; € Projs(M;)
such that A < piM;p;.

Then either there exists q € Proj¢(B) such that A < ¢Bq or Nypp(A)" < pm piMipi.

Proof. We assume that for all g € Proji(B), we have A £ ¢Bg and show that necessarily
Npamp(A)" 2 piMip;.

Since A < aq piM;p;, there exist n > 1, a nonzero partial isometry v € My ,,(C) ® pMp;, and
a possibly nonunital normal *-homomorphism ¢ : A — M, (p;M;p;) such that av = vp(a) for all
a € A. Since we also have A A gBq for all ¢ € Projy(B), a reasoning entirely analogous to the
one of the proof of Proposition 2.6 allows us to further assume that ©(A) Zm, (m,) Mn(¢Bgq) for
all g € Proj(B).

Let u € Nppap(A). Then, for all a € A, we have

v*uve(a) = vuav = v* (uau* )uv = p(uau™)v* uv.

By Theorem 2.5 and Lemma 2.3, we get v*uv € M, (piM;p;) for all u € Npap(A); hence
V*Npap(A)v C piMip;. Therefore, we have Ny, (A)” < piMip;. O

2.3 Hilbert bimodules

Let M and N be any von Neumann algebras. Recall that an M-N-bimodule H is a Hilbert space
endowed with two commuting normal x-representations 7 : M — B(H) and p: N°P — B(H). We
then define 7y : M ®a13 NP — B(H) by my(x @ y°P) = w(x)p(y°P) for all x € M and all y € N.
We will simply write 2y = my(z ® y°P)¢ for all x € M, all y € N and all £ € H.

Let H and K be M-N-bimodules. Following [Con94, Appendix V.B], we say that K is
weakly contained in ‘H and write K Cyeak H if [|7xc(T)||oo < [|71(T')||oo for all T € M ®q1g NP.
We simply denote by (N,L%(N), J,*B) the standard form of N (see e.g. [Tak03, ch. IX.1]).
Then the N-N-bimodule L?(N) with left and right action given by xfy = xJy*J¢ is the trivial
N-N-bimodule, while the N-N-bimodule L?(N) ® L?(N) with left and right action given by
z(§ ®@n)y =z ® Jy*Jn is the coarse N-N-bimodule.

Recall that a von Neumann algebra N is amenable if as N-N-bimodules, we have L? (N) Cyeak
L?(N) ® L?(N). Equivalently, there exists a norm one projection ® : B(L?(N)) — N.

For any von Neumann algebras B, M, N, any M-B-bimodule H, and any B-N-bimodule
IC, there is a well-defined M-N-bimodule H ®p K called the Connes’s fusion tensor product
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of H and K over B. For more details regarding this construction, we refer to [Con94,
Appendix V.B] and [Ana95, §1].

We will be using the following well-known fact (see [Ana95, Lemma 1.7]). For any von
Neumann algebras B, M, N such that B is amenable, any M-B-bimodule H, and any B-N-
bimodule I, we have, as M-N-bimodules,

HRBK Cyeak H® K.

2.4 Relative amenability

Let M be any von Neumann algebra. Denote by (M, L*(M), J, B) the standard form of M. Let
P C1pMl1p (respectively, Q@ C M) be a von Neumann subalgebra with expectation Ep :
1pM1p — P (respectively, Eqg: M — Q). The basic construction (M, Q) is the von Neumann
algebra (JQJ) N B(H). Following [OP10a, §2.1], we say that P is amenable relative to Q inside
M if there exists a norm one projection ® : 1p(M, Q)1p — P such that ®|1pM1p = Ep.

In the case when (M, 7) is a tracial von Neumann algebra and the conditional expectation
Ep: M — P (respectively, Eg : M — @) is T-preserving, the basic construction that we denote by
(M, eq) coincides with the von Neumann algebra generated by M and the orthogonal projection
eq:L*(M, 1) — L*(Q, 7|Q). Observe that (M, eq) comes with a semifinite faithful normal trace
given by Tr(zeqy) = 7(xy) for all ,y € M. Then [OP10a, Theorem 2.1] shows that P is amenable
relative to @ inside M if and only if there exists a net of vectors &, € L2((M, eq), Tr) such that
limy, (x&,, &)1 = 7(x) for all x € 1pM1p and lim, ||y&, — &yll2m =0 for all y € P.

2.5 Noncommutative flow of weights
Let (M, ) be a von Neumann algebra together with a faithful normal state. Denote by M¥ the

centralizer of ¢ and by M x, R the continuous core of M; that is, the crossed product of M

with the modular automorphism group (o7 )ier associated with the faithful normal state . We

have a canonical *-embedding 7, : M — M x, R and a canonical group of unitaries (A,(s))ser
in M %, R such that

To(0f(2)) = Ap(8) mp(x) Ap(s)*  for all z € M, s € R.

The unitaries (A, (s))ser generate a copy of L(R) inside M x, R.
We denote by ¢ the dual weight on M x, R (see [Tak03, Definition X.1.16]), which is a

semifinite faithful normal weight on M X, R the modular automorphism group (af )ter of which
satisfies

of (rp(z)) =7, (0f(z)) forallze M and of (Ay(s)) = Au(s) for all s € R.
We denote by (0f)ier the dual action on M x, R, given by
07 (mp(x)) =my(x) forallze M and 67 (\,(s)) =exp(its)\,(s) for all s € R.

Denote by h,, the unique nonsingular positive selfadjoint operator affiliated with L(R) C M x, R
such that hfj = Ay (s) for all s € R. Then Tr, = p(hy, L) is a semifinite faithful normal trace on
M x4, R and the dual action 0¥ scales the trace Try:

Tr, 0 07 = exp(t) Tr,, VteR.

Note that Tr, is semifinite on L(R)C M x,R. Moreover, the canonical faithful
normal conditional expectation Eyg): M x, R — L(R) defined by Eygr)(zA,(5)) = p(2)Ap(s)
preserves the trace Tr,; that is,

Trtp o EL(R) = TrSO‘
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Because of Connes’s Radon-Nikodym cocycle theorem (see [Tak03, Theorem VIII.3.3]), the
semifinite von Neumann algebra M x, R, together with its trace Tr, and trace-scaling action
0%, ‘does not depend’ on the choice of ¢ in the following precise sense. If ¢ is another faithful
normal state on M, there is a canonical surjective *-isomorphism Ily ,: M x, R — M xy R
such that 11, , o T, = my, Try o Iy, , = Try, and Iy, , 0 0¥ = 0% o I1, .. Note, however, that Il
does not map the subalgebra L(R) C M x, R onto the subalgebra L(R) C M x, R.

Altogether, we can abstractly consider the continuous core (c(M), 0, Tr), where c(M) is a
von Neumann algebra with a faithful normal semifinite trace Tr, 8 is a trace-scaling action of R
on (c(M), Tr) and c(M) contains a copy of M. Whenever ¢ is a faithful normal state on M, we
get a canonical surjective x-isomorphism I, : M x, R — ¢(M) such that

Hy00?=00ll,, Tr,=Troll,, I,(my,(xz))=2 Vzel.

A more functorial construction of the continuous core, known as the noncommutative flow of
weights, can be given (see [Con73, CT77, FT01)).

By Takesaki’s duality theorem [Tak03, Theorem X.2.3], we have that ¢(M) xy R=M ®
B(L?(R)). In particular, by [Ana95, Proposition 3.4], M is amenable if and only if c(M) is
amenable.

If PC1pMl1p is a von Neumann subalgebra with expectation, we have a canonical trace-
preserving inclusion ¢(P) C 1pc(M)1p.

We will also frequently use the following well-known fact: if A C M is a Cartan subalgebra,
then c(A) C ¢(M) is still a Cartan subalgebra. For a proof of this fact, see for example [HR11,
Proposition 2.6].

PropPOSITION 2.8. Let M be any von Neumann algebra with no amenable direct summand.
Then the continuous core ¢(M) has no amenable direct summand either.

Proof. Assume that c¢(M) has an amenable direct summand. Let z € Z(c¢(M)) be a nonzero
projection such that c¢(M)z is amenable. Denote by 6 : R ~ ¢(M) the dual action which scales
the trace Tr. Put e =\/,cg 0:(2). Observe that e € Z(c(M)) and 6;(e) =e for all t € R. By
[Tak03, Theorem XII.6.10], we have e € M N Z(c(M)); hence e € Z(M). We canonically have
c(M)e=c(Me).

Since amenability is stable under direct limits, we have that c(M)e is amenable; hence
c(Me) is amenable. Applying [Tak03, Theorem XII.6.10] again, we have c¢(Me) xp R = (Me) ®
B(L%(R)). We get that ¢(Me) xg R is amenable and so is Me. Therefore, M has an amenable
direct summand. O

We will frequently use the following.

Notation 2.9. Let A C M (respectively, B C M) be a von Neumann subalgebra with expectation
E4: M — A (respectively, Ep: M — B) of a given von Neumann algebra M. Moreover, assume
that A and B are both tracial. Let 74 be a faithful normal trace on A (respectively, 7 on B)
and write o4 =74 0 E4 (respectively, op =75 0 Ep). Write m,, : M — M x,, R (respectively,
Top : M — M %, R) for the canonical *-representation of M into its continuous core associated
with ¢4 (respectively, pp).

By Connes’s Radon—Nikodym cocycle theorem, there is a surjective x-isomorphism

II M x,, R—Mx,, R

$B,PA
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which intertwines the dual actions: 6¥7 oIl,, ,, =1l,, ,, 0 094, and preserves the faithful
normal semifinite traces, that is, Tr,, o Il,, ,, = Tr,,. In particular, we have Il ., (7, , (z)) =
Ty () for all z € M.

Put ¢(M)=M x,, R, ¢(B)=B x,, R, and c(A) =1l,, ., (A x,, R). We simply denote
by Tr =Tr,, the canonical semifinite faithful normal trace on c(A/). Observe that Tr is still
semifinite on Z(c(A)) and Z(c(B)).

PROPOSITION 2.10. Assume that we are in the setup of Notation 2.9. If A £y B, then for all
p € Proji(Z(c(A))) and all g € Proji(Z(c(B))), we have c(A)p Aoy ¢(B)g.

Proof. Let v, € U(A) be a net such that Ep(z*viy) — 0 *-strongly for all x, y € M. Recall that
c(M)=M x,, R, c(B)=B x,, R, and ¢(A) =1I,, ,, (A x,, R). Let p € Proj;(Z(c(A4))) and
q € Proj¢(Z(c(B))). Observe that since p commutes with every element in ¢(A), p commutes with
every element in Iy, o, (74, (A)) =7y, (A) Cc(A). Then wy =11y, o, (Te, (Vk))p = Ty, (Vk)p is
a net of unitaries in U(c(A)p).

Write ¢(M)ag =M ><1$,1,§ R for the algebraic crossed product; that is, the linear span of
{Top(@)Ap, (t) :x € M, t € R}. Observe that c¢(M)ag is a dense unital *-subalgebra of c(M).
We have E(p) (7", (vk)y) — 0 *-strongly for all z,y € ¢(M )ay,. Since g € Proj(c(B)), we have

| Ee(B)q(q " Top (0k)y O)ll2,1r = [|[4Ee(B) (2" o, (vi)Y)gll2, e — 0, YV, y € (M )alg-

Now fix z,y € Ball(c(M)). By the Kaplansky density theorem, choose a net (x;)icr
(respectively, (y;)jes) in Ball(c(M)ay) such that x; — px (respectively, y; — py) *-strongly. Let
e > 0. Since q € Proj(c(B)), we can choose (i, j) € I x J such that

1(py — yj)allzm + llg(z™p — zj) |2 <e.
Therefore, by the triangle inequality, we obtain

limksup ”EC(B)q(q z* PTpp (Uk)p Yy q) H2,Tr < limkSUP HEC(B)q(q 'CUITQ.DB (’Uk)yj Q)HQ,Tr +exse.

Since € >0 is arbitrary, we get limg||E.p)q(qz*p wi pyq)|l2w =0. This finally proves that

¢(A)p Ze(ary c(B)g. 0
Ezample 2.11. We emphasize two well-known examples that will be used extensively in this
paper.

(1) Let ' ~ (X, u) be any nonsingular action on a standard measure space. Define the
Maharam extension (see [Mah64]) T' ~ (X x R, m) by

(.00 = (gm. 1+ 10g( T2 ) ),

where dm = dp x exp(t) dt. It is easy to see that the action I' ~ X x R preserves the infinite
measure m and, moreover, we have that

(LX) xT)=L*X xR) xT.

(2) Let (M, E)= (M, Ey) g (Ms, E2) be any amalgamated free product von Neumann
algebra. Fix a faithful normal state ¢ on B. We still denote by ¢ the faithful normal state ¢ o E on
M . We realize the continuous core of M as c¢(M) = M x, R. Likewise, if we denote by ¢; = ¢ o E;
the corresponding state on M;, we realize the continuous core of M; as c¢(M;) = M; x,, R. We
denote by ¢(F) : ¢(M) — c(B) (respectively, ¢(E;) : ¢(M;) — c¢(B)) the canonical trace-preserving
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faithful normal conditional expectation. Recall from [Ued99, § 2| that o (M;) = M; for all t € R
and all 7 € {1, 2}; hence

(c(M), ¢(E)) = (c(My), c(E1)) *c(p) (c(Mz), ¢(E)).

Moreover, ¢(M) is a semifinite amalgamated free product von Neumann algebra.

3. Intertwining subalgebras inside semifinite AFP von Neumann algebras

3.1 Malleable deformation on semifinite AFP von Neumann algebras
First, we recall the construction of the malleable deformation on amalgamated free product von
Neumann algebras discovered in [IPP08, §2].

Let (M, E)= (M, E1) x5 (Ma, E2) be any semifinite amalgamated free product von
Neumann algebra with semifinite faithfl}\l/ normal trace Tr. We will simply write M =/ M1 xg Mo
when no confusion is possible. Put M = M xp3 (B® L(F3)) and observe that M is still a
semifinite amalgamated free product von Neumann algebra. We still denote by Tr the semifinite
faithful normal trace on M. Let uj, ug € U(L(F32)) be the canonical Haar unitaries generating
L(F3). Observe that we can decompose M= Ml *3 Mvg with /K/lvl =M, xg (BRL(Z)).

Consider the unique Borel function f : T — (—m, 7] such that f(exp(it)) =t for all t € (—m, 7].
Define the selfadjoint operators h; = f(u1) and hy = f(usz) so that exp(iu;) = h; and exp(iug) =
hs. For every t € R, put u} = exp(ith1) and ub = exp(iths). We have

_ sin(rt)

r(u}) =7(ub) = 0 vt € R.

Define the one-parameter group of trace-preserving k-automorphisms a; € Aut(Mv) by
ap = Ad(ul) x5 Ad(ub), VteR.
Moreover, define the trace-preserving x-automorphism (G € Aut(ﬂ/lv) by
B =idrm *5 (idg ® Bo),

with fo(u1) = uj and Fy(uz) = ui. We have a5 = fa—_; for all t € R. Thus, (a4, ) is a malleable
deformation in the sense of Popa [Pop07].
We will be using the following notation throughout this section.

Notation 3.1. Put Ho=1L23B,Tr) and Ko=L?(BR®L(Fs), Tr). For n>1, define S, =
{(i1,...,in) 91 # -+ - F#in} to be the set of the two alternating sequences of length n made
of I’'s and 2’s. For Z = (i1, . .., in) € Sp:

e denote by Hz the closed linear span in L?(M, Tr) of elements z - - - z,,, with rj EM;, ©B
such that Tr(:v;"x]) < oo forall je{l,...,n}; and
e denote by K7 the closed linear span in L2(Mv, Tr) of elements wup,xy---up, Tpup,,,,
with h; € Fy for all j€{1,...,n+1} and z; € M;; © B such that Tr(z}z;) <oo for all
je{l,...,n}.
We denote by E g : M — M the unique trace-preserving faithful normal conditional expectation

as well as the orthogonal projection L?(M, Tr) — L2 (M, Tr). We still denote by a:R —
U(L?*(M, Tr)) the Koopman representation associated with the trace-preserving action a : R —

Aut(M).
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LEMMA 3.2. Let myn>1, Z=(i1,...,4m) € Spm, and J = (j1,...,Jn) € Sp. Let x1 € M;, ©
B,...,e;meM;, ©B, and y1 e M; ©B,...,yp e M;, ©B with Tr(a*a) <oo for a=
Tly ooy Ty Yy« - Yn- L€t g1, .oy Gm1, P1, -« -, hngy1 € Fo. Then

(Ug, 1+ - Ug,, Tmlg, s U, Y1~ Un, YnWh, 1 )y 277 1)

)@y Yy ifm=n, T=7 and gr = hy, Ve € {1,...,m+1};
0 otherwise.

Proof. The proof is the same as the proof of [Io12a, Lemma 3.1]. We leave it to the reader. O

Lemma 3.2 allows us, in particular, to put H, = @ s, Hz and K, = D1 s, Kz since the
K1’s are pairwise orthogonal. We then have

L2(M, Tr) = @ H, and L*(M, Tr) = @ K.
neN neN

For all £ € L*(M, Tr), write £ =Y, . &n with &, € H,, for all n € N. A simple calculation
shows that for all £ € R,

Tr(0n(€)6") = Tr(Ep(on(€)€) = T (Si“(”)) el

mt
neN
Observe that ¢ — Tr(ay(€)E*) is decreasing on [0, 1] for all £ € L%(M, Tr).

3.2 A semifinite analogue of the Ioana—Peterson—Popa intertwining theorem [IPP08]
The first result of this section is an analogue of the main technical result of [IPPO0§] (see [IPP08,
Theorem 4.3]) for semifinite amalgamated free product von Neumann algebras. A similar result
also appeared in [CH10, Theorem 4.2]. For the sake of completeness, we will give the proof.

THEOREM 3.3. Let M = My %3 My be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p € Proj(M) and A C pMp be any von
Neumann subalgebra. Assume that there exist ¢ > 0 and t € (0, 1) such that Tr(a(w)w*) > ¢ for
all weU(A).

Then there exists q € Proj¢(B) such that A =<aqqBq or there exists i € {1,2} and ¢; €

Proj;(M;) such that Npypp(A)” S ¢iMigi.
Proof. By assumption, there exist ¢ > 0 and ¢ € (0, 1) such that Tr(ax(w)w*) > cfor allw € U(A).
Choose 7 € N large enough such that 27" < ¢. Then Tr(as--(w)w*) > ¢ for all weU(A). So,
we may assume that ¢=27". A standard functional analysis trick yields a nonzero partial
isometry v € ay(p)Mp such that vx = au(x)v for all x € A. Observe that v*v € A'NpMp and
v0* € oy (A N pMp).

We prove the result by contradiction. Using Proposition 2.7 and as in the proof of
Proposition 2.4, we may choose a net of unitaries wy, € U(A) such that limy || Eaq, (2 wiy) |2, =0
for all i € {1,2} and all =,y € pM. In particular, we get limy||Eg(z*wiy)||2,mmw =0 for all z,y €
pM. Regarding M= M xp (B® L(F2)), we get v*v € AN pMp by Theorem 2.5. We use now
Popa’s malleability trick [Pop06b] and put w = a;(v3(v*)) € agt (p)ﬂp. Since ww* = oy (vv™*) # 0,
we get w # 0 and wz = ag(x)w for all x € A. Iterating this construction, we find a nonzero partial
isometry v € al(p)ﬂp such that

v =ai(x)v, Vre A (1)
Moreover, using Proposition 2.5 again, we get v*v € A’ N pMp and vv* € ay (A’ N pMbp).
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Next, exactly as in the proof of [CH10, Claim 4.3], we obtain the following.
Cramm. We have lim|| Eq, () (2 wiy)||2 e = 0 for all v,y € M.

Proof of the Claim. Consider M= M xp (B ® L(F2)). By the Kaplansky density theorem, it
suffices to prove the Claim for = pa and y = pb with a,b in B or reduced words in M with
letters alternating from M & B and B® L(F3) © B® C1. Write a = ca’ withc=aifa e B;c=1
if a begins with a letter from B® L(F2) © B® C1; ¢ equals the first letter of a otherwise.
Likewise, write b= db’. Then we have z*wy = a*wib = a’* c*wid b’ and note that c*wpd € M.
Observe that o’ (respectively, b') equals 1 or is a reduced word beginning with a letter from
B&® L(F2) © B® ClL.

Denote by P the orthogonal projection from L?(M, Tr) onto Hg @ Hi. Observe that since
c*wpd € M NLA(M, Tr), we have

P(c*wid) = Epm, (CFwpd) + Ea, (cFfwid) — Eg(cfwid).
Hence, limg|| P(c*wid)||2, 1+ = 0. Moreover, a simple calculation shows that
Eo, (M) (@ wiy) = B, (pm)(a” P(cTwgd)Y).

Therefore, limg[| Ey, () (2" wgy)|[2, 1 = 0. This finishes the proof of the Claim. O

Finally, combining Equation (1) together with the Claim, we get

|lvv*

2,1r = [l (wi)vo*|l2 1 = | Ea, () (@1 (wr)vo") (|21 = || Ea,y (m) (Vwrv™) [|2,1e — 0.

This contradicts the fact that v # 0 and finishes the proof of Theorem 3.3. ad

3.3 A semifinite analogue of Ioana’s intertwining theorem [lo12a]
Let M= M;j+*g Mz be a semifinite amalgamated free product von Neumann algebra
with semifinite faithful normal trace Tr. Put M =M x5 (B ® L(F2)) and observe that M is
still a semifinite amalgamated free product von Neumann algebra. We still denote by Tr the
semifinite faithful normal trace on M. Let A = V{ugMuj : g € Fo} C M. Observe that A can
be identified with an infinite amalgamated free product von Neumann algebra, that Tr|N is
semifinite, and that, under this identification, the action Fy ~ N is given by the free Bernoulli
shift which preserves the canonical trace Tr. Moreover, we have M =N x Fa.

We will denote by Ear: M — N the unique trace-preserving faithful normal conditional
expectation as well as the orthogonal projection Exs : LQ(M, Tr) — LZ(N, Tr).

Next, we prove the analogue of [To12a, Theorem 3.2] for semifinite amalgamated free product
von Neumann algebras.

THEOREM 3.4. Let M = M %3 My be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Let p € Proj¢(B), A C pMp be any von Neumann
subalgebra and t € (0, 1). Assume that there is no net of unitaries wy, € U(A) such that

lim| Ex(z"ar(wi)y) 21 =0, Va,y € pM.

Then there exists q € Projy(B) such that A=< qBq or there exists i € {1,2} and ¢; €
Proji(M;) such that Npap(A)" S ¢iMigi.

The main technical lemma that will be used to prove Theorem 3.4 is a straightforward
generalization of [[o12a, Lemma 3.4]. We include a proof for the sake of completeness.
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LEMMA 3.5. Let t € (0,1) and g, h € Fa. For all n > 0, define

Cn = sup | En(ugo(z)un)

z€H,, Hx||2,Tr<1

Then lim,, ¢, = 0.
Proof. First, observe that for all g1 ..., gn+1 € F2 and all zy, ..., x, € M, we have

Ug,T1 -+~ Ug, Tplg,,, g1 gny1=1;

0 otherwise.

EN(uglxl T ugnxnugnJrl) = { (2)
Thus for all Z € S,,, we have Ex(Kz) C Kz and since ay(Hz) C Kz, we get that Enr(ugoy(x)up) €
Kz for all z € Hz. So defining

cr = sup | En(uga (z)up)|l2m,
z€Hz, ||z|2, 1 <1

we see that ¢, = maxzeg, cz, since the subspaces Kz are pairwise orthogonal.

Let us fix Z = (i1, . .., i) € S, and calculate c¢z. Denote by a and b the canonical generators
of Fg so that u; = ug, ug = up and put G; = (a) and Gy = (b). For g1, h1 € G;,, ..., gn, hn € G,
define a map

Vi bt resgusin (T1* * - Tp) = Ug, T1UL, - - - Ug, T,
for all x; € M;; © B such that Tr(zjx;) <oo for all j € {1,...,n}. By Lemma 3.2, these maps
Vi he,oongnh €Xtend to isometries Vg, 5, . g, n. : Hz — Kz with pairwise orthogonal ranges when
(91, P1y- -+, Gn, hn) are pairwise distinct. Indeed, we have Vgl,hu g (HT) LV e g e (H1)
unless g1 =g}, hy g2 =R g, .o hotygn =k gl hiyt = RIL. Since, moreover, Gy n G2 =
{e}, this further implies that g; = g; and h; = h’ for all j €{1,...,n}.

Denote the Fourier coefficients of u! and u} by, respectlvely, 51 () = T(ulu ) for g1 € Gy
and (2(g2) = 7(ubul,) for go € Go. We have an explicit formula for these coefﬁments, given by
sin(7(t — n))

w(t—mn)

It follows, in particular, that (3;(g;) € R for all i € {1,2} and all g; € G;. Since v} and ul are

unitaries, we have, moreover,
Y Bug)’ =D Balg2)’ =1
91€G1 92€G2

Biu?) = ;™) = (") =

If v =21 -z, with z; € M;, © B satisfying Tr(x;ij) < 00, we have

Ugau (T)up, = ug uf Tult Ul Tault
= > Bir(91)Bi (h1) « - - Bi, (9n) Bi, (hn) ug ug, z1up,, - - Ug, Touy, U,
91,7 €Gi 4, gn hn €GL,,
= > Bir(91)Bi, (k1) - - - Bi, (9n) Bi,, (hn) gV, hs,... g (T)Un,
gl,hleGil,...,gn,hnGGin
where the sum converges in || - |2 rv. Thus, for all x € Hz, we get
ugov (x)up = > Bir(91)Bir (h1) - - - Bi, (9n) Bi, (Bn) gV, ... g o () U

gl7h1€Gi1 7--'7gnvhneG'

in
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Now, using the calculation (2), and the fact that the isometries Vi, p,, . g,.n, have mutually
orthogonal ranges, we get that for all z € Hr,

I En (ugae(x)un) |13 my = [|2]13 1y > B, (91)*Bi, (h)? - - - Bi, (gn)*Bi, (hn).
91,h1€Gi .o sgn,hn €G
ggihi tgnh Th=1

Thus we get an explicit formula for ¢z given by
cr = > B (91)%Bix (h ) -+ B3, (90)? 81 (h ). (3)

gl7h1 EGil 7"'7g7l7hneGin
ggihi--gnhnh=1

For i€ {1,2}, define u; € Prob(F2) by wi(g) = Bi(g)? if g€ G; and p;(g) =0 otherwise.
Likewise, define ji; € Prob(F3) by ji;(g) = u;(g~t) for all g € Fo. Put v; = p; * j1;. Then we have
cr= (v, %% V(g th™Y).

So if we put u = 11 * 15, we have that
cr € {H*[n/Q] (g_lh_l), M*[n/2} % l/l(g_lh_l), Uy % Iu*[n/2] (g—lh—l)7 Vo * M*[(n—l)/Q] " I/l(g_lh_l)}.
Then [lo12a, Lemma 2.13] implies that limy, p**(s) = 0 for all s € Fy and so lim,, ¢,, = 0. O

Proof of Theorem 3.4. Assume by contradiction that the conclusion of the theorem does not
hold. Then Theorem 3.3 implies that for ¢ € (0, 1), there exists a net wy € U(.A) such that

lilgn Tr (o (wg)wy,) = 0.

We will show that for all z, y € pM, we have limy, | Ex(x*ae(wi)y) |2, = 0, which will contradict
the assumption of Theorem 3.4. By a linearity /density argument, it is sufficient to show that for
all g, h € Fo,

Liml| En(ugeve (wr)un) |2, = 0. (4)

For all k, we have wy, € A C L2(M, Tr) = @,.en Hn, so that we can write wy, =), N Wk n,
with wy, , € Hy. Recall that Tr(a;(wy)wy) = ZneN(Sin(mﬁ)/wt)Q"Hwka%Tr.

Thus the fact that limy, Tr(o;(wy)w;) = 0 implies that, for all n > 0, limy ||wg |2, = 0.

Fix g, h € Fy and € > 0. Note that for n > 1, Enx(ugoy(wg ,)un) € Ky, so that all these terms

are pairwise orthogonal. They are also all orthogonal to Enr(uga(wy o)up), which belongs to Ko.
Thus

1B (ugers(wi)un) 13me = D 1EA (gt (win)un) |13 1
n>=0

< Z C?LHwka%,Tra
n>0

where ¢, is defined in Lemma 3.5. Observe that ¢, <1 for all n € N.

Lemma 3.5 implies that there exists ng > 0 such that for all n > ng, ¢2 < /2. Then we can
find ko such that for all k > ko, and all n < ny, Hwk’nH;Tr <e/2(np+1). So we get that for
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all k > ko,

o Mo
9 9
1 Enr(ugas (wr)un) 3 < D lwnnll3m + 2 D lwkaldn < lwknll3m + Sllwells e <e.

n=0 n>=ng n=0

This shows (4) and finishes the proof of Theorem 3.4. O

4. Relative amenability inside semifinite AFP von Neumann algebras

Let M =Mj xg Mz be a semifinite amalgamated free product von Neumann algebra with
semifinite faithful normal trace Tr. Recall that M = M x5 (B® L(F2)), N =\ {ugMuj : g ¢

Fo} C M and observe that M =N xFy. We denote by «:R — Aut(M) the malleable
deformation from §3.1.

The main result of this section is the following strengthening of Ioana’s result [lol2a,
Theorem 4.1] in the framework of semifinite amalgamated free product von Neumann algebras
over an amenable subalgebra.

THEOREM 4.1. Let M = M %3 My be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr . Assume that B is amenable. Let q € Projs(B)
such that gM1q # qBBq # qgMaq and t € (0, 1) such that a;(gMgq) is amenable relative to gN'q
inside g Mg.

Then, for all i € {1,2}, there exists a nonzero projection z; € Z(M;) such that M;z; is
amenable.

Let Trg; be the semifinite faithful normal trace on M= M sz (B® L(F2)). Consider the
basic construction (gMg, eqrrq) associated with the inclusion of tracial von Neumann algebras
gNq C gMgq. N

We denote by 7= (1/Tr7(¢)) Tr;(q - q) the faithful normal tracial state on ¢Mgq and by

|- ll2 the L%norm on qﬂq associated with 7. We then simply denote by Tr the canonical
semifinite faithful normal trace on (gMg, eqng) given by Tr(aegngb) = 7(ab) for all a, b € gMq.
Observe that gMq = gN¢q x Fa. Following [lo12a, § 4], we define the ¢Mjg-¢M;g-bimodule

Hi= @ L?(gM1q) Ugeqnqlly C L2({qMa, €qNq))-
geF,

Denote by H = L2((gMg, eqNq), Ir) © H;.
LEMMA 4.2. As gM1q-gM1q-bimodules, we have that H Cyear L2(qgM1q) ® L2(gM1q).

Proof. The proof goes along the same lines as [lo12a, Lemma 4.2]. First observe that since
gMq = gNgq x Fa, we have

L2((gMq, eqng)) = @D L2 (aNq) ugeqnqun.
g,heF,

So it suffices to prove that for all g, h € Fy such that h# ¢g~!, as gM1¢g-¢M1g-bimodules, we
have

(L*(qNq) © L*(gM1q) )ugeqnqti Cweak L (gM1q) ® L*(qMiq),
L?(gNq) ugeqngtin Creak L (gM1q) @ L2 (gMq).
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Denote by L?(gN¢q)? the gM1q-gMig-bimodule L?(qgN¢) with left and right action given
by z-§-y=xfugyuy for all z,y € gMyq and all £ € L2(¢Nq). Likewise, define the Mi-M;-
bimodule L2(N)9. As ¢M1q-gM1g-bimodules, we have

[e.9]

P (L2 (aNg) © L?(gMg))ugeqnquy = @I (gNq) © L (gMiq)),

@ L2(gNq) ugeonqun = @ @ L2(gNq)’.

9,h€F2,h#g 1 =1 geFs\{e}
Put P = (Uper,\ e} unMuj, U M2)" and Py = (Uper,\ fe,q unMuj, U Mz U ugMoug)” for all
g € Fa. Then we have
N = My #p P = My s ugMyuy x5 Py, Vg € Fa\{e}.
Using [Ued99, §2], there are B-B-bimodules £ and L, for g € Fo\{e}, such that as M;-M;-
bimodules, we have
L*(NV) © L(M;) 2 L* (M) ®5 L @ L*(My),
L2(N)9 = L2 (M) ®p L, @p L*(My).
Since B is amenable, we have that L2(B) Cyeax L?(B) @ L?(B) as B-B-bimodules. Using
[Ana95, Lemma 1.7], we obtain that, as ¢M;q¢-gMig-bimodules,
L2 (gNq) © L (gMig) = ¢(L*(Mi) @5 L ©5L*(Mi))g
Cweak q(LQ(Ml) LR LQ(M1)>q
Cweak Q(Lz(Ml) ® LQ(Ml))q'

Since ¢(L?(M1) ® L?(M))q is isomorphic to a gM1g-gMg-subbimodule of D, L2(gM1q) ®
L2(gM1q), we infer that, as ¢gM;g-gM;g-bimodules,

L*(gNq) © L*(gM1q) Cyeak L*(gM19) ® L*(gMq).
Similarly, for all g € Fo\{e} we get that, as ¢ Mjg-gMg-bimodules,
L?(gN'q)? Cyeak L*(gM1q) ® L (gM ).

Proof of Theorem 4.1. Since at(¢Mgq) is amenable relative to ¢\ ¢ inside quq, we find a net of
vectors &, € L2({(qgMgq, eqny), Tr) for n € I, such that:

o (28, | &) — 7(x) for all z € qﬂq; and
o ||z&, — &uzlla e — 0 for all x € oy (¢ Mq).

Observe that using the proof of [OP10a, Theorem 2.1], we may assume that &, >0 so that
(2&n | &n)me = Tr(2€2) = (€pz | &)1y for all x € gMq and all n € I. Since [|&,]l2 e — 1, we may
further assume that ||&,[|2, v =1 for all n € I.

By contradiction, assume that for some i € {1, 2}, ¢M;q has no amenable direct summand.
Without loss of generality, we may assume that i = 1. Denote by Py, : L*((¢Mgq, eqnq)) — Ha
the orthogonal projection. Observe that P, is the orthogonal projection corresponding to the
unique trace-preserving faithful normal conditional expectation Eg : quq — Q onto the von
Neumann subalgebra Q = \/{gM1q, ugeqnquy : g € Fo} C quq. We claim that lim,, ||u{*&,ul —
Py, (uf&pul)||ome = 0. If this is not the case, let ¢, = (1 — Py, ) (uf*¢,ul) € H and observe that
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lim sup,, ||¢n /2, 7+ > 0. Arguing as in the proof of [Io12a, Lemma 2.3], we may further assume that
lim inf,, ||Cy /2, > 0.
Then ¢, € H is a net of vectors which satisfies the following conditions:

e liminf, ||(y|l2,m > 0;
o limsup,, [|[2¢nll2,m < [|2]|2 for all € gMag;

o limy, [|y¢n — Cnyll2 e =0 for all y € gMig.
Since as ¢M1¢-gMg-bimodules, we have that H Cyeax L2(gM1q) ® L?(¢M1q) by Lemma 4.2, it
follows that ¢Mq has an amenable direct summand by Connes’s result [Con76]. This contradicts
our assumption and we have shown that lim,, ||&, — uf Py, (uf*&uul)ul*||om = limy, [[uf*&nul —
P, (uf* &) 2 = 0.

Put £1 = u!{Hyul* and denote by Py, : L2((q Mg, eqNq)) — L1 the orthogonal projection. Put
nn = Pr, (&) and observe that 7, € £1 and n,, > 0. Moreover, we have lim,, ||, — 7n|/2,7c = 0. So
Nn € L1 is a net of vectors which satisfy:

(%) (200 | D)1 = (M [ Mn)1e — 7(2) for all z € q/ﬁq; and
(%) |20 — Muello e — 0 for all z € ay(¢Maq).
We have n,, = den uﬁxmgugeq/\fqu;uﬁ* with x,, , € L?(¢Miq). Since 1, =7}, for all n € I,
we may assume that x, g =7, ; for all n € I and all g € Fy. Next, we claim that we may further
assume that x4 € gMiq with x, g =27  for all n € I and all g € Fs.

To do so, define the set J of triples j = (X, Y, ¢), where X C Ball(q/ﬁq) Y C Ball(at(¢Mq))
are finite subsets and ¢ >0. We make J a directed set by putting (X,Y,e) < (X', Y, &)
if and only if X C X', YCVY’ and ¢ <e. Let j=(X,Y,e) € J. There exists n € such
that [(zny | ) — 7(2)| <e/2 and |yn, — <e/2 for all z€ X and all yeVY. Let
v € (?(F3) 4 such that |[v]|er,) =1. For each g € Fy, choose y]g € g¢Mq such that y]g —y;:g
and [|2n,g — yjgll2 < v(g) €/4. Put n); = deF2 U Yj gUgeanquyui” € L1 and observe that 7, = 7’*
and |17, — mjlleme < /4. We get [(zn; | n))me — 7(2)| <e + 52/16 and |lyn; — njyllzm < € for all
z € X and all y € Y. Then the net (7});e s clearly satisfies Conditions () and () above. This
finishes the proof of the Claim.

Fix any y € ¢Maq © qBq satistying ||y||2 = 1. Then we have

(e (y)mn | neu (y))me — 1.

Expanding ay(y) and 7n,, we obtain

(e(y)nn | mmow(y))m = Z (uyus’ uﬁ:pnygugeq/\/q%uﬁ* | Ul puneanquh Ut whyus )T
g,heF,

o * ok tx t tx_t x, tx T tx t
= E (Uhﬂﬁn,hul UsY Uy UT T, gl €qNq | €qNq URUT UpYUS UT Ug)Tr

g,heF,

_ * bk * ok tx, t tx T

= E (Equ(u Ul u2y Ug Uluh) Eq/\/Q(uhxn,hul UsYuy Ug T, glg))-
g7heF2

Recall from § 3.1 the definition of the Hilbert spaces K, for k& € N and denote by by, g = EyB¢(2n.g)-
Since we have

Equ(u*uﬁ*qu*ug*uluh) €Ky,
Eqng(up(xnn — bn,g)*uﬁ*u2yu2 ulbn glg) and Eq/\/q(uhb ul ubyub ul(a:ng bn,g)ug) € Ko,

Eong(up(Tn,n — bn,g)*uﬁ*uzyué*uﬁ (Tn,g — bng)ug) € Ks,
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we get
(o ()M | Mo (y)) e = Z T(Eqnq(ujuf uby ub vl up) Egnrg(uhbsy nui uyus ulby gug))
n | M0t Y))Tr aNq 1 Ul Uz UyUp) EqNq\UpOp U1 Ul Uz UiOn gl
g,heFy
= > T(Bang(uguiuby b uiun) Eong(uhul b (), hybn.g)ub uiug)).
g,heF,

As in the proof of Theorem 3.4, for i € {1, 2}, put G1 = (a) and G2 = (b) so that u; = u, and
uy = up. Denote by (8i(g))geq,; the Fourier coefficients of uf. For g, h € Fa, define the isometry
Wy : L2(Mz) © L3(B) — L2(M) by Wy n(z) = ugzu; for € Mg © B such that Tr(z*x) < oo.
Thanks to Lemma 3.2, the isometries Wy have pairwise orthogonal ranges when (g, h) are
pairwise distinct. For all z € ¢Maq © ¢Bq and all g, h € Fy, using calculation (2), we obtain

Eq/\/q(“hui ugzug*u'iug) = Z B1(r)B2(8)B2(8") Br(r") Eqnig(Wh-1r-15,g-17-15:(2))
rr'€Gy,s,8'€Go

= Z /Bl(r)ﬁ2(3)52<3/)ﬁl(r,) thlrfls,gflr’*ls/(z)-
rr'€G,s,8'€Ga
h=tr=lss'~lr'g=1

Using the facts that G1 N G2 = {e} and that the isometries W, 5, have pairwise orthogonal ranges
when (¢’, h') are pairwise distinct, we get

T(Eqnyg (u*uﬁ*UQy*ug*utl up,) Eq/\fq(uhui*ug (bz,hybn g)ué*uﬁug))

= Y B )2Ba(9)2Bals 2B (5B pybig)-

rr'€G,s,s'€Ga
rss’'r’=hg~!

For i€ {1,2}, define u; € Prob(Fs) by wi(g) = Bi(g)? if g€ G; and p;(g) =0 otherwise.
Likewise, define ji; € Prob(Fs) by j1;(g) = ui(g~1) for all g € Fo. Put = fjiq * g * fig * p1q. Since
y € gMaq © ¢Bq and z, 4 € ¢M1q, we obtain that

(Eq/\/q(“ Ul u2y*u§*uluh) Equ(uzutl*UE(bn nYon, ,g)u2 ulug)) p(hg™ ) (y*b;,hybn,g)
= u(hg™ ") T(y ) p Y g)-
Summing over all g, h € Fy and using the Cauchy—Schwarz inequality, we get

> ulhg Ty T YT )

g,heF,

> )Ty yyTng-n)

g,heF,

> w@llznpyllz [yn,g-nll2

g,heF,

> @) Gn I X (G2

g€F,

() | nnae(y)) 1| =

N

N

where (=3 cp, |Znnyll2 0n and ¢, =3, cp, [[y2Znnll2 0n. Since we moreover have uf*n,uf =

*
D geF, UgCqNgliy Tn.g, We get

[k 77n“11/”2Tr— Z Hugeq/\/qu xn,gy‘b Tr = Z Hxn,ng%: ch”?2(F2)'
geF, geF>

Likewise, we have HQ’«LHﬁ(Fg) =

164

https://doi.org/10.1112/50010437X13007537 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007537

AMALGAMATED FREE PRODUCTS WITH AT MOST ONE CARTAN SUBALGEBRA

Denote by T : 2(Fy) — (?(F3) the Markov operator defined by T' = > geF, M(g)Ag. Since the
support of ;1 generates Fy and p(e) > 0 (see the proof of [Iol2a, Lemma 3.4, Claim]), Kesten’s
criterion for amenability [Kes59] yields ||T||oc < 1. This gives

[ () | s (¥)1e| < (Ga | TG e2(v)
ST Nloo 1CnllezE) 16 1oz Es)
= Tl [lu5* nnuiyllo e lyut nuus 2o
= Tlloo Immuiyllam lyuf m 2w

Since n, =n;,, we obtain

I yll2,me lyut 2o — lluiyllz lyuillz = [yll3 = 1;

hence lim sup,, |{a¢(y)nn | Mot (y))1e| < ||T||oo < 1. This, however, contradicts the fact that

(e () [ e (y)) 1| — 1

and hence our assumption that ¢ M;q had no amenable direct summand. Thus, for all i € {1, 2},
qM;q has an amenable direct summand and so does M;. This finishes the proof of Theorem 4.1. O

A combination of the proof of the above Theorem 4.1 and the one of [lo12a, Theorem 4.1]
shows that ‘or’ can be replaced with ‘and’ in Ioana’s result [Io12a, Theorem 4.1].

THEOREM 4.3. Let M = My xg My be a tragival amalgamated free product von Neumann
algebra. Assume that M; # B# Ms. Put M =M xg (B®L(F2)) =N xFy, where N =
V{ugMuy : g € L(F2)}. Let t € (0,1) such that a;(M) is amenable relative to N.

Then, for all i € {1,2}, there exists a nonzero projection z; € Z(M;) such that M,z; is
amenable relative to B inside M.

5. Proofs of Theorems A and B

5.1 A general intermediate result
Theorems A and B will be derived from the following very general result regarding Cartan
subalgebras inside semifinite amalgamated free product von Neumann algebras.

THEOREM 5.1. Let M = My %3 My be a semifinite amalgamated free product von Neumann
algebra with semifinite faithful normal trace Tr. Assume that B is amenable, M has no amenable
direct summand, and that for all nonzero projections e € B, we have eBBe # e Mse.

Let p € Proj¢(B) and A C pMp be any regular amenable von Neumann subalgebra. Then
there exists q € Proj¢(B) such that A < qBq.

Proof. Put M= M x B (B ® L(F2)) and regard p//\/lvp as the tracial crossed product von Neumann
algebra pMp =pNp x Fy with N =\/{ugMu,:g € Fy}. We denote by (o) the malleable
deformation from §3.1. Applying the Popa—Vaes dichotomy result [PV11, Theorem 1.6] to the

inclusion a;(A) C pMp for t € (0, 1), we get that at least one of the following holds true:
(1) either a;(A) = 7 PNp;
(2) or ay(pMp) is amenable relative to pA'p inside p.//\/lvp.

Since M has no amenable direct summand, case (2) cannot hold by Theorem 4.1. It remains
to show that case (1) leads to the conclusion of the theorem.
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In case (1), using Lemma 2.3 and Theorem 3.4, we get that either there exists ¢ € Proj¢(B)
such that A < gBq or there exist ¢ € {1,2} and ¢; € Proj(M;) such that pMp < ¢iM;q;.
Since the latter case is impossible by Proposition 2.6, we get .4 < ¢Bq for some ¢ € Proj¢(B). O

5.2 Proof of Theorem A
We first need to prove the following well-known result.

LEMMA 5.2. Let M be any von Neumann algebra such that M # C and ¢ is any faithful normal

state on M. Realize the continuous core c¢(M)= M x, R. Then for every nonzero projection
p € L(R), we have L(R)p # pc(M)p.

Proof. There are two cases to consider.

Case (1): assume that M¥ # C. Choose r € M¥ a projection such that r # 0, 1. Observe that
r=p(l—7)r—p(r) (1 —r) € M? is invertible and ¢(x) = 0. Then for every nonzero projection
p € L(R), we have zp # 0 and Ey,R),(7p) = p(z)p = 0. This proves that L(R)p # pMp.

Case (2): assume that M¥ = C. Since Z(M) C Z(M?), it follows that M is a factor. If M
is of type III, it follows from Connes’s classification of type III factors [ConT73] that M is
necessarily of type III;. In that case, c(M) is a type Il factor and thus L(R)p # pc(M)p for
every nonzero projection p € L(R). If M is a semifinite factor with semifinite faithful normal trace
Tr, there exists b€ L'(M, Tr) such that ¢ =Tr(b-) and ||b||; 1y = 1. Let ¢ € M be a nonzero
spectral projection of b. Since

o(qx) = Tr(bgz) = Tr(gbx) = Tr(bxq) = p(zq)

for all z € M, we get ¢ € M¥ and so ¢ = 1. This shows that b=1 and Tr = ¢ is a finite trace on
M. Hence M = M¥ = C, which is a contradiction. O

Proof of Theorem A. By [Uedll, Theorem 4.1], we know that there exists a nonzero projection
z € Z(M) such that Mz is a full factor and M (1 — 2) is a purely atomic von Neumann algebra.
In particular, M is not amenable.

In the case when both M; and M are amenable, [HR11, Theorem 5.5] implies that M has
no Cartan subalgebra. It remains to consider the case when M; or Ms is not amenable. Without
loss of generality, we may assume that M; is not amenable.

By contradiction, assume that M has a Cartan subalgebra. Hence, Mz also has a Cartan
subalgebra. Let p € Z(M;) be the largest nonzero projection such that M;p has no amenable
direct summand. Since M (1 — z) is purely atomic, we necessarily have p < z.

By [Uedl1, Lemma 2.2], we have

<pMp, g)(lp)w(p -p)> = <M1p, (pll(p)w('p)> * (pr, (p(lp)sﬁ(p -p)>,

with N = (Cp @& M1(1 — p)) V Ms. Observe that pNp # Cp. Indeed, let ¢ € My be a projection
such that g # 0, 1. Then pgp = v2(q)p + p(q¢ — v2(q))p € pPNp\Cp. Since Mz is a factor and p < z,
it follows that pMp has a Cartan subalgebra by [Pop06b, Lemma 3.5].

From the previous discussion, it follows that we may assume that M; has no amenable
direct summand, Ms # C, and M has a Cartan subalgebra A C M. Using Notation 2.9, denote
by ¢(A) Cc(M) the Cartan subalgebra in the continuous core c¢(M) = c(M) *1,r) ¢(M2). Let
q € Proj¢(L(R)). Since c(A4) Cc¢(M) is maximal abelian and Tr|c(A) is semifinite, [HV13,
Lemma 2.1] shows that there exists a nonzero finite trace projection p € ¢(A) and a partial
isometry v € ¢(M) such that p=v*v and ¢ =wvv*. Observe that vc(A)v* C gc(M)q is still a
Cartan subalgebra by [Pop06b, Lemma 3.5].
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By Lemma 2.3, Proposition 2.8, Theorem 5.1, and Lemma 5.2, there exists ¢’ € Proji(L(R))
such that ve(A)v* < (ar) L(R)q". Then Proposition 2.10 implies that A <3; C. This contradicts
the fact that A is diffuse and finishes the proof of Theorem A. O

5.3 Proof of Theorem B
Proof of Theorem B. Let A C M be a Cartan subalgebra. Since A, B C M are both tracial von
Neumann subalgebras of M with expectation, we use Notation 2.9. Let ¢ € Proji(Z(c(B))).
By [HV13, Lemma 2.1], there exists p € Projs(c(A)) and a partial isometry v € c¢(M) such that
p=v*v and ¢ =vv*. Observe that vc(A)v* C qc(M)q is still a Cartan subalgebra by [Pop06b,
Lemma 3.5].

Using the assumptions, by Lemma 2.3, Proposition 2.8, [HV13, Proposition 5.5],
and Theorem 5.1, there exists ¢’ € Projg(Z(c(B))) such that wvc(A)v* Zcap c(B)q. Then
Proposition 2.10 implies that A <;; B. O

6. Proof of Theorem C

Let R be any countable nonsingular equivalence relation on a standard measure space (X, p).
Following [FM77], denote by m the measure on R given by

m(W)z/X|{yeX:<x,y>ewwdu<x>

for all measurable subsets YW C R. We denote by [R] the full group of R, M =L(R) the von
Neumann algebra of R, and identify L?(M) = L?(R, m). For all ¥ € [R], define u(y)) € U(M) the
action of which on L?(R, m) is given by

o =1 1/2
W) = (@) w0

We view L>°(R) as acting on L?(R, m) by multiplication operators. Note that the unitaries
u(yp) € U(M) for ¢ € [R] normalize L°°(R) and that L°°(X) C L°°(R), by identifying a function
F € L™ (X), with the function on R given by (x,y) — F(z).

Recall from [CFW81, Definition 5] that R is amenable if there exists a norm one projection
¢ : L°(R) — L*>°(X) satistying

O(u(¥)Fu(y)) = u()(F)u(y)”, Vi €[R].

By [CFW81, Theorem 10|, a countable nonsingular equivalence relation R is amenable if and only
if it is hyperfinite. We will say that a countable nonsingular equivalence relation R is nowhere
amenable if for every measurable subset & C X such that p(U) > 0, the equivalence relation
R|U =R N (U x U) is nonamenable.

Recall the following definition due to Gaboriau [Gab00, Definition IV.6].

DEFINITION 6.1. Let R be a countable nonsingular equivalence relation on a standard measure
space (X, p) and R1, Ro C R subequivalence relations. We say that R splits as the free product
R = Rl * RQ if:

e R is generated by R and Ra;

e for every p € N5 and almost every 2p-tuple (7;);cz/opz in X such that (w2;—1, z2;) € Ry
and (224, T2i41) € Ro for all i € Z/pZ, there exists j € Z/2pZ such that x; =x;41.

We have the following well-known fact.
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PROPOSITION 6.2. Let R be a countable nonsingular equivalence relation on a standard measure
space (X, u) and Ri, Ra C R subequivalence relations. Let B =L>(X), My =L(Ry), Ma=
L(R2), M =L(R), and denote by Ey: My — B, Ey: My — B, E: M — B the canonical faithful
normal conditional expectations. The following conditions are equivalent:

(1) R splits as the free product R = R1 * Ra;
(2) (M, E)= (M, E1) *p (M3, E»).

We start by proving the following intermediate result in the framework of type II; equivalence
relations.

THEOREM 6.3. Let R be a countable (not necessarily ergodic) probability measure preserving
equivalence relation on a standard probability space (X, pu) which splits as a free product
R =R1 * Ra, where R; is a countable type 11} subequivalence relation for all i € {1, 2}.

Let A C L(R) be a Cartan subalgebra. Then A =) L>(X).

Proof. Let B=1L(X), M; =L(R1), Ma =L(R2), and M =L(R), so that M = M; xp M,. Let
A C M be a Cartan subalgebra.

First, assume that both Ry and Ry are amenable and thus hyperfinite by [CFW81]. Since
both Ry and Rs are, moreover, of type 11y, they are necessarily generated by a free pmp action
of Z. Hence R =R xRy is generated by a free pmp action of Fo and so M = B x Fy. Then
[PV11, Theorem 1.6] shows that A <s B.

Next, assume that R; or Ry is nonamenable. Without loss of generality, we may assume
that R; is nonamenable. Choose a measurable subset & C X such that p(U) >0 and Rq|U
is nowhere amenable. Denote by V C X the R-saturated measurable subset of ¢/ in X. Since
RV = (R1]V) % (R2|V), we may assume that u(V) = 1.

Since U is a complete section for R, it follows from [Alv10, Théoreme 44] that we can
write R|U = 51 * So where S = R1|U and Sy is a type II; subequivalence relation of R|U which
contains Ra|U.

Write ¢ = 1;4 € B. By [BOO08, Corollary F.8], choose a projection p € A and a partial isometry
v € M such that v*v =p and vv* =¢q. Then vAv* C gMq is a Cartan subalgebra by [PopO6b,
Lemma 3.5]. We can thus apply Theorem 5.1 to M = L(S1) =) L(S2), A =vAv* and p = 1.
Then we obtain that vAv* <,y Bg; hence A <j B. O

Proof of Theorem C. Write B =L>(X), M; =L(R1), M2=L(R2), and M =L(R), so that
M = M; *p M>. Define on the standard infinite measure space (X x R, m) the countable infinite
measure preserving equivalence relations c(Ri), ¢(Rz2) and c¢(R), which are the Maharam
extensions [Mah64] of the countable nonsingular equivalence relations R1, Ro and R, respectively.
Observe that both ¢(R1) and ¢(R2) are of type IT and ¢(R) = ¢(R1) * ¢(R2).

Moreover, if we write ¢(B) = L (X x R), we canonically have

c(Mi1) =L(c(R1)), c¢(Ms2)=L(c(R2)), c(M)=L(c(R)) and c(M)=c(M) *o(B) c(Mo).

Let A C M be a Cartan subalgebra. Using Notation 2.9, we obtain that c(A) C c(M) is a
Cartan subalgebra. Let g € Proj¢(c(B)) such that Tr(¢) = 1. Up to cutting down by the central
support of ¢ in ¢(M), we may assume that ¢ has central support equal to 1 in ¢(M). By
[HV13, Lemma 2.1], there exists p € Proje(c(A)) and a partial isometry v € ¢(M) such that
p=v*v and ¢ =wvv*. Observe that vc(A)v* C qc(M)q is still a Cartan subalgebra by [Pop06b,
Lemma 3.5]. In order to show that A and B are unitarily conjugate inside M, using Theorem 2.1
and Proposition 2.10, it suffices to show that vc(A)v* =) ¢(B)g.
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Let U C X x R be a measurable subset such that 1;; =¢. Since 1;; has central support
equal to 1 in ¢(M), U is a complete section for c(R). By [Alv10, Théoreme 44], we can
write ¢(R)|U = S1 * S where S; = ¢(R1)|U and Ss is a subequivalence relation of ¢(R)|U which
contains ¢(R2)|U. In particular, both S; and Ss are type II; equivalence relations on the standard
probability space (U, m|U).

Let A=wvc(A)v* and B=L>*(U). Observe that gc(M)g=L(c(R)[U) =L(S; *S2) and A is
a Cartan subalgebra in L(S; * S2). Then Theorem 6.3 implies that A =1,s,.s,) L (U); that is,
ve(A)v* Zc(ar) ¢(B)g. This finishes the proof of Theorem C. O

7. Proof of Theorem D

We start by proving Theorem D in the infinite measure preserving case. More precisely, we deduce
the following result from its finite measure preserving counterpart proven in [Io12a, Theorem 1.1].

THEOREM 7.1. Let I' =11 *x 'y be an amalgamated product group such that ¥ is finite and
for all i € {1,2}, I'; is infinite. Let (B, Tr) be a type I von Neumann algebra endowed with a
semifinite faithful normal trace. Let I' ~ (B, Tr) be a trace-preserving action such that for all
i € {1, 2}, the crossed product von Neumann algebra B x I'; is of type II. Put M =B x I'. Let
p € Proj¢(B) and A C pMp be any regular amenable von Neumann subalgebra.

Then for every nonzero projection e € A’ N pMp, we have Ae <y, pBp.

Proof. For every subset F C T, denote by P the orthogonal projection from L?(M, Tr) onto the
closed linear span of {zu, : x € BNL?(B, Tr), g € F}. Since Npup(A)” = pMp, Proposition 2.4
(see also [HV13, Lemma 2.7]) provides a central projection z € Z(pMp) and a net of unitaries
wg, € U(Az) such that:

o limy || Pr(wg)||2, v = 0 for all finite subset F C T

e For every € > 0, there exists a finite subset F CI' such that ||a — Pr(a)l/2m < ¢ for all
a € Ball(A(p — 2)).

We prove by contradiction that z = 0. So, assume that z # 0. Recall that I' =T'; xx I's. Hence
the subgroup X =) ger g¥g~ ! < ¥ is finite and normal in T'. Define the quotient homomorphism
p:T' =T/ and put A=T/%g, A; =T,;/% for i € {1,2}, T =%/3) so that A = Ay xy As. We
get that (N, sTs™! = {e}; hence L(A) is a II; factor which does not have property Gamma by
[Io12a, Corollary 6.2].

Define the unitary W € U(L?(B, Tr) ® £2(I") @ £2(A)) by

W(E®6,®05) =€ @8y @ 0pg-1)s,  VEEL*(B,Tr), Vg €T, Vs € A.

Next, define the dual coaction A,: M — M@ L(A) by Ay(z)=W*"(x®1)W for all x € M.
Observe that A, is a trace-preserving x-embedding which satisfies A, (buy) = buy ® v,4) for all
beBand all geT.

For every subset F CT', denote by Q) the orthogonal projection from L?(L(A)) onto
the closed linear span of {v,:g € F}. Observe that (1® Q,r))(Ap(z)) = A,(Ps,7(z)) for
all € M. Since A, is || - ||2,7v-preserving and since ¥ is finite, for any finite subset F C I', we
have

9)

liml|(1 ® Qp(r)) (Ap(wr))ll2 = liml| Ay (Psr (wi)) |2 = 0.

Since T < A is a finite subgroup, this implies that A,(Az) ﬁM@L(A) gMqgRL(T) for all ¢ €
PI'Ojf(B).
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Put A=A kv (T x Fo) = A1 %y Ag xy (T x Fg) and consider the malleable deformation (cv)
on L(A) from §3.1. Define N < A as the normal subgroup generated by {tAt~!:¢ € Fa} so that
L(A) = N x Fy with A' = L(N). Applying the Popa—Vaes dichotomy result [PV11, Theorem 1.6]
to each of the inclusions

(id ® ar)(Ap(Az)) CpMp @ L(A) = (pMpRN) x Fo  with t € (0, 1),

we obtain that at least one of the following holds true:

(1) either there exists ¢ € (0, 1) such that (id ® a)(Ay(A2)) =, \zr i) PMP BN
(2) or for all t € (0,1), (id ® ay)(A,(pMp)) is amenable relative to pMp @ N inside pMp @
L(A).

We will prove below that each case leads to a contradiction.

In case (1), by [lol2a, Theorem 3.2] and since A,(Az) Zprpen) PMp @ L(T) and
Npmpz(Az)" = pMpz, there exists i € {1, 2} such that A,(pMpz) =<, vpzrn) PMp @ L(A;). In
order to get a contradiction, we will need the following.

CrAam. Let e € Projy (M), Q C eMe be any von Neumann subalgebra and S any nonempty
collection of subgroups of I'. If QA q(Bx H)q for all He S and all q € Projy(B), then
Ap(Q) Aumarin) IMa @ L(p(H)) for all H € S and all q € Projy(B).

Proof of the Claim. Since Q@ Aa q(B x H)q for all H € S and all ¢ € Projy(B), Proposition 2.4
implies that there exists a net vy € U(Q) such that limg || Pr(vg)||2 =0 for all subsets F C T
which are small relative to S. Observe that since X is finite, XgF is small relative to S for all
subsets F C I' which are small relative to S. Moreover, (1 ® Q,x))(A,(7)) = Ap(Ps,7(z)) for

all x € Q and all subsets F C I' which are small relative to S. Since A, is || - ||2, 7r-preserving,
for all subsets F C I' which are small relative to S, we have
1| (1© Q) (2 (06)) 10 = i A (P, (1)) a3 = 0. (5)

Denote by p(S) the nonempty collection of subgroups p(H) C A with He€ S. Let GCA
be any subset which is small relative to p(S). Then there exist n>1, Hy,..., H, €S and
$1,t1, ..., Sn, tn € A such that G C |J!" sip(H;)t;. Choose g;, h; €T’ such that p(g;) =s; and
p(h;) =t; and denote F =J;"_; giH;h;. Then G C p(F). Therefore, (5) implies that lim||(1®
Qg)(Ap(vk))|2,1r = 0 for all subsets G C A which are small relative to p(S). Thus, Proposition 2.4
implies that A,(Q) fM@L(A) gMq® L(p(H)) for all H € S and all ¢ € Proj(B). O

We apply the Claim to @ = pMpz and S = {I';, '2}. In order to do that, we need to check
that pMpz Zgmq q(B x T;)g for all i € {1,2} and all g € Proj(B8). Since B x ¥ is a type I von
Neumann algebra and B x I'; is a type II von Neumann algebra, Proposition 2.6 yields the result.
Therefore, by the Claim, we get that A,(pMpz) A spzna) PMp ® L(A;) for all i € {1, 2}. This
is a contradiction.

In case (2), since L(A) does not have property Gamma, [Io12a, Theorem 5.2] shows that
either there exists i € {1, 2} such that L(A) =4y L(A;) or L(A) is amenable. Both of these cases
are easily seen to lead to a contradiction. This finishes the proof of Theorem 7.1. O

Proof of Theorem D. Now let I' ~ (X, 1) be any nonsingular free ergodic action on a standard
measure space such that for all i € {1, 2}, the restricted action I'; ~ (X, ) is recurrent. Let
B =L%*(X) and put M = B x I'. Assume that A C M is another Cartan subalgebra.
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Since A, BC M are both tracial von Neumann subalgebras of M with expectation, we
use Notation 2.9. Define ¢(B) =L (X x R) and consider the Maharam extension I' ~ ¢(B) of
the action I' ~ B so that we canonically have ¢(M) = ¢(B) x I'. Observe that for all i € {1, 2}, the
action I'; ~ ¢(B) is still recurrent, so that ¢(B) x I'; is a type II von Neumann algebra.

Let p € Proj¢(c(A)). By [HV13, Lemma 2.1], there exist ¢ € Proj¢(c(B)) and a partial isometry
veEc(M) such that p=v*v and ¢=wvv*. Observe that vc(A)v* C gc(M)q is still a Cartan
subalgebra by [Pop06b, Lemma 3.5].

By Theorem 7.1, we get vc(A)v* Zye(ar)q ¢(B)g. By Proposition 2.10, this implies that
A <pr B. Since M is a factor, by [HV13, Theorem 2.5], we get that there exists a unitary
u € U(M) such that uAu* = B. This finishes the proof of Theorem D. O

8. AFP von Neumann algebras with many nonconjugate Cartan subalgebras

Connes and Jones exhibited in [CJ82] the first examples of II; factors M with at least two Cartan
subalgebras which are not conjugate by an automorphism of M. More concrete examples were
found by Ozawa and Popa in [OP10b].

Recently, Speelman and Vaes exhibited in [SV12] the first examples of group measure space
IT; factors M =L*>*(Y) x A with uncountably many nonstably conjugate Cartan subalgebras.
Recall from [SV12] that two Cartan subalgebras A and B of a II; factor N are stably conjugate if
there exist nonzero projections p € A and ¢ € B and a surjective *-isomorphism « : pNp — qNgq
such that a(Ap) = Bq. Put N = N @ B({?), A= A® (* and B= B ® (. Observe that A and
B are Cartan subalgebras in the type Il factor N'. Moreover, we have that A and B are stably
conjugate in NN if and only if A and B are conjugate in N.

Let A~ (Y, v) be a probability measure preserving free ergodic action as in the statement
of [SV12, Theorem 2] so that the corresponding group measure space II; factor N =L*(Y) x A
has uncountably many nonstably conjugate Cartan subalgebras.

Put I' = A * Z and consider the induced action T' ~ (X, p) with X =Ind} Y. Observe that
'~ (X, ) is an infinite measure preserving free ergodic action. Write M =L>(X) xT" for
the corresponding group measure space type Il factor. Since I' = A % Z, we canonically have
M =M g Mg with B=L>*(X), M; =B x A and My =8B x Z. On the other hand, we also
have

M= (L®Y)xA)@B{*T/A) =N&B(T/N)).
Therefore, we obtain the following result.

THEOREM 8.1. The amalgamated free product type Il factor M = My *g My has
uncountably many nonconjugate Cartan subalgebras.

This result shows that the condition in Theorem D imposing recurrence of the action
i ~ (X, p) for all ¢ € {1, 2}, is indeed necessary.
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