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Abstract
A set S of permutations is forcing if for any sequence {�i}i∈N of permutations where the density d(π ,�i)
converges to 1

|π |! for every permutation π ∈ S, it holds that {�i}i∈N is quasirandom. Graham asked whether
there exists an integer k such that the set of all permutations of order k is forcing; this has been shown
to be true for any k≥ 4. In particular, the set of all 24 permutations of order 4 is forcing. We provide the
first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations
(with arbitrary orders) contains at least four permutations.
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1. Introduction
Random combinatorial structures play an important role in combinatorics and various computer
science applications. If a large combinatorial structure shares key properties with a truly random
structure, then it is said to be quasirandom. The most studied theory of quasirandomness is that of
graphs which originated in the seminal works of Rödl [24], Thomason [25], and Chung, Graham
and Wilson [8] in the 1980s. Graph quasirandomness is captured by several seemingly different
but in fact equivalent conditions: the density of all subgraphs is close to their expected density in
a random graph, all but the largest eigenvalue of the adjacency matrix are small, the density of a
graph is uniformly distributed amongst its (linear size) subsets of vertices, all cuts between linear
size subsets of vertices have the same density, etc. Besides graphs, there are results on quasiran-
domness of many different types of combinatorial structures, in particular, tournaments [2, 6, 13,
18], hypergraphs [4, 15, 16, 19, 22], set systems [5], groups [17], subsets of integers [7], and Latin
squares [10]. In this paper, we are concerned with quasirandomness of permutations as studied in
[3, 11, 23].

One of the equivalent conditions mentioned above says that a large graph is quasirandom if
and only if its edge density is 1/2+ o(1) and the density of cycles of length four is 1/16+ o(1).
Hence, graph quasirandomness is captured by the density of two specific subgraphs: K2 and C4.
More generally, the Forcing Conjecture posed by Conlon, Fox and Sudakov [9] asserts that C4
can be replaced by any bipartite graph with at least one cycle. Graham (see [11, page 141]) asked
whether an analogous result is true for permutations: Does there exists an integer k such that a
(large) permutation is quasirandom if and only if the densities of all k-permutation are the same?
This question was answered affirmatively by Král’ and Pikhurko [23] by establishing that any k≥ 4
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has this property; we remark that the answer is negative for k ∈ {1, 2, 3} [12]. Equivalent results
were established in statistics in relation to non-parametric independence tests by Yanagimoto [26],
building on an older work by Hoeffding [20]. In this context, we refer the reader to the work
by Even-Zohar and Leng [14] on nearly linear time algorithm for counting small permutation
occurrences, which can be used for fast implementation of these tests.

We are interested in determining the minimum size of a set of permutations that captures per-
mutation quasirandomness. To state our results precisely, we need to introduce some definitions.
A permutation of order n, or briefly an n-permutation, is a bijection from {1, . . . , n} to {1, . . . , n};
the order of a permutation � is denoted by |�|. If A= {a1, . . . , ak} ⊆ {1, . . . , n}, a1 < · · · < ak,
then the subpermutation of � induced by A is the unique permutation π of order |A| = k such
that π(i)< π(j) if and only if �(ai)< �(aj). Subpermutations are often referred to as patterns.
The (pattern) density of a k-permutation π in an n-permutation � is the probability d(π ,�)
that a randomly chosen k-element subset of {1, . . . , n} induces a subpermutation equal to π ; if
k> n, we set d(π ,�)= 0. We say that a sequence {�i}i∈N of permutations satisfying |�i| → ∞
is quasirandom if for every permutation π the limit of its densities in the sequence {�i}i∈N
satisfies

lim
i→∞ d(π ,�i)= 1

|π |! . (1)

Finally, we say that a set S of permutations is forcing if any sequence {�i}i∈N with |�i| → ∞
satisfying equality (1) for all π ∈ S is quasirandom. In particular, the results of [23, 26] imply that
the set of all 4-permutations is forcing.

A natural question is to determine the minimum size of a forcing set of permutations.
Inspecting the proof given in [23], Zhang [27] observed that there exists a 16-element forcing set
of 4-permutations. Bergsma and Dassios [1] identified an 8-element forcing set of 4-permutations
and Chan [3] found three additional 8-element forcing sets of 4-permutations. In fact, these
four 8-element forcing sets S of 4-permutations satisfy an even stronger property, which is called
�-forcing, i.e., a sequence of permutations is quasirandom if and only if the limit of the sum of
the pattern densities of permutations in S converges to |S|/24. Our main result asserts that there
is no forcing set containing less than four permutations.

Theorem 1. Every forcing set of permutations (of arbitrary, possibly different, orders) has at least
four elements.

The proof of Theorem 1 is based on analysing perturbations of a truly random large permu-
tation. We present our argument using the language of the theory of combinatorial limits, which
we briefly introduce in Section 2. In Section 3, we establish that the change of the density of a
pattern after small perturbations can be described by a certain polynomial for each pattern (the
values of the polynomial determine the gradient of the density depending on the location of the
perturbation) and state a sufficient condition for being non-forcing in terms of these polynomials.
In Section 4, we show that every set with fewer than four permutations satisfies this condition
with the exception of a few cases. We then analyse these cases separately to conclude the proof of
Theorem 1.

2. Preliminaries
In this section, we define notation used in the rest of the paper and present some basic results
on permutation limits. The set of all positive integers is denoted by N, the set of all non-negative
integers by N0, and for any n ∈N the set {1, . . . , n} is denoted by [n]. We write f : [k]↗ [n] to
mean that f is a non-decreasing function from [k] to [n].

The set of all real matrices of order n×m is denoted by Rn×m. The ith row of a matrix M is
denoted byMi, and its entry in the ith row and jth column is denoted byMi,j. A stochasticmatrix
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is a non-negative square matrix M such that each of its columns sums to one. If the same also
holds for all its rows, we say that M is doubly stochastic. We use J to denote the constant doubly
stochastic matrix. The order of J is always clear from context. For a k-permutation π , we define
its permutation matrix Aπ ∈Rk×k by setting

(Aπ )i,j =
{
1 if π(i)= j and

0 otherwise.

Note that any permutation matrix is doubly stochastic. By a formal linear combination of permu-
tations, we mean a formal linear combination over real numbers. For a formal linear combination
t1π1 + . . . + tnπn of permutations of equal orders, we define its cover matrix as

Cvr(t1π1 + . . . + tnπn)=
∑
i∈[n]

tiAπi .

A permuton is a limit object describing convergent sequences of permutations. Formally,
a permuton μ is a Borel probability measure on [0, 1]2 that has uniform marginals, i.e., the
measure of sets [0, a]× [0, 1] and [0, 1]× [0, a] equals to a for any a ∈ [0, 1]. The notion of
induced subpermutations introduced in Section 1 can be generalized to any set of points
P = {(x1, y1), . . . , (xk, yk)} such that x1 < . . . < xk and all the y-coordinates are pairwise distinct:
for such a set P the unique permutation π satisfying

π(i)< π(j)⇔ yi < yj,

is called the permutation induced by P. Whenever k points are sampled from μ, they have dis-
tinct x and y-coordinates with probability one (sinceμ has uniformmarginals) and therefore they
induce a k-permutation almost surely. Such permutations are referred to as μ-random permuta-
tions. For any k-permutation π , the probability that a μ-random k-permutation is equal to π is
called the density of π in μ and denoted by d(π ,μ). For example, the uniform Borel measure λ

on [0, 1]2 is a permuton and it holds d(π , λ)= 1
k! for all k-permutations π ; in fact, λ is the only

permuton with this property.
We say that a sequence of permutations {�i}i∈N with |�i| → ∞ is convergent if the sequence

{d(π ,�i)}i∈N converges for any permutation π . Additionally, we say it converges to a permuton μ

if the equality

lim
i→∞ d(π ,�i)= d(π ,μ).

holds for all permutations π . The following lemma asserts that permutons may serve as limits of
convergent permutation sequences.

Lemma 2. Given a convergent permutation sequence {�i}i∈N, there exists a unique permuton
μ such that {�i}i∈N converges to μ. Conversely, every permuton μ is a limit of a convergent
permutation sequence, i.e., there is a sequence {�i}i∈N converging to μ.

The lemma was first stated as the main result in [21], using a slightly different definition of
limit objects; however, both definitions are equivalent. The uniqueness of the limit permuton is
then a direct corollary of Theorem 1.7. in [21] (see the discussion after the definition of limit
permutations and after Theorem 1.7.). More details can also be found in Section 2 of [23]. Lemma
2 allows us to cast the proof of Theorem 1 in the language of permutons, which we formalize in
the following direct corollary of Lemma 2.

Lemma 3. A non-empty finite set of permutations S is forcing if and only if the uniform permuton
is the only permuton μ satisfying d(π ,μ)= 1

|π |! for any π ∈ S.
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We associate a doubly stochastic square matrix M of order n with a step permuton μ[M] as
follows: for a Borel set X, the measure of X is

μ[M](X)=
∑
i,j∈[n]

nMi,j · λ
(
X ∩

[
i− 1
n

,
i
n

]
×

[
j− 1
n

,
j
n

])
,

where λ is the uniform measure. A straightforward computation leads to an explicit formula for
the density of a k-permutation π in the step permuton μ[M].

d(π ,μ[M])= k!
nk

∑
f ,g : [k]↗[n]

1∏
i∈[n] |f−1(i)|!|g−1(i)|! ×

∏
m∈[k]

Mf (m),g(π(m)), (2)

Let us provide a brief explanation of (2). Any set of points {(x1, y1), . . . , (xk, yk)} ⊆ [0, 1]2 can be
uniquely identified with a pair f , g : [k]↗ [n] by setting f (m)= �xim · n� and g(m)= �yjm · n� for
any m ∈ [k], where xi1 ≤ . . . ≤ xik and yj1 ≤ . . . ≤ yjk . If we select k random points according to
μ[M], the probability that they correspond to the same function f is k!

nk · ∏i∈[n] 1
|f−1(i)|! . Subject to

this, the conditional probability that these points also correspond to the function g and form the
pattern π is

∏
i∈[n] 1

|g−1(i)|!
∏

m∈[k] Mf (m),g(π(m)). Summing over all pairs f ,g we obtain formula (2).

3. Perturbing the uniform permuton
In this section, we develop tools for analysing small perturbations of the uniform permuton. First,
we describe a method for perturbing a step permuton and formulate a sufficient condition for a set
of permutations to be non-forcing. Then, we introduce a so-called gradient polynomial which cap-
tures the behaviour of perturbations of step permutons as the order of underlying matrices tends
to infinity, and reformulate our sufficient condition in terms of gradient polynomials. Finally,
two different presentations of gradient polynomials are given as they are both needed in specific
lemmas.

Fix an integer n> 1 and let k, l ∈ [n− 1]. We define a matrix Bk,l ∈Rn×n by setting

Bk,li,j =

⎧⎪⎪⎨
⎪⎪⎩
1 if either i= k and j= l, or i= k+ 1 and j= l+ 1,

−1 if either i= k+ 1 and j= l, or i= k and j= l+ 1, and

0 otherwise.

See Figure 1(a) for an example. Further, for a matrix x ∈R(n−1)×(n−1), we define

J
x = J+

∑
1≤i,j<n

xi,jBi,j.

To simplify the notation, we freely interchange matrices of order (n− 1)× (n− 1) with vectors
of length (n− 1)2 obtained by concatenating rows of the matrix. Note that the matrix Bk,l is non-
zero only on a 2× 2 submatrix, and the sum of all its rows and columns is zero. Thus, for any
x ∈ [− 1

4n ,
1
4n ]

(n−1)×(n−1), the matrix Jx is doubly stochastic, and therefore it gives rise to a step
permuton; see Figure 1(b) for an example. In particular, if x is the zero vector, the permutonμ[Jx]
is the uniform permuton.

For a permutation π we define the density function hπ ,n :R(n−1)×(n−1) →R where hπ ,n(x)=
d (π ,μ [Jx]). We wish to analyse permutons μ[Jx] for x close to the zero vector. In particular, our
goal is to find a non-zero x such that the densities of permutations from S in μ[Jx] are the same
as in μ[J], i.e., in the uniform permuton. In the next lemma, we show that if the gradients of the
density functions of the permutations in S satisfy certain conditions, then we are able to find such
x using the Implicit Function Theorem.We attach the used version of the theorem for the reader’s
convenience.
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(a) (b)

Figure 1. Perturbation of a 3× 3 step permuton.

Theorem 4. (the Implicit Function Theorem) Let h :Rm+n →Rn be a differentiable function,
x0 ∈Rm, y0 ∈Rn any points, and ∇h(x0, y0) the Jacobian matrix of h. Let G denote the square
matrix consisting of last n columns of ∇h(x0, y0). If G is regular, then there exists ε > 0 and a con-
tinuous function g :Rm →Rm+n such that g(x0)= (x0, y0) and h(g(x0 + �x))= h(x0, y0) for any
�x ∈ (− ε, ε)m.

Lemma 5. Let S be a non-empty finite set of permutations. If there exists n ∈N such that
(n− 1)2 > |S| and the gradients ∇hπ ,n(0, . . . , 0), π ∈ S, are linearly independent, then S is not
forcing.

Proof. Note that by the assumption of the lemma, the inequality (n− 1)2 > |S| holds, and so the
gradient vectors have at least |S| + 1 coordinates. Choose indices i2, . . . , i|S|+1 such that the gra-
dient vectors ∇hπ ,n(0, . . . , 0), π ∈ S, restricted to these indices are linearly independent. Let i1 be
any index different from i2, . . . , i|S|+1. Define an embedding function e :R|S|+1 →R(n−1)2 such
that e(x)ik = xk for k ∈ [|S| + 1] and e(x)i = 0 otherwise.

The gradients ∇(hπ ,n ◦ e)(0, . . . , 0) are linearly independent as well; hence we can apply
the Implicit Function Theorem for hπ ,n ◦ e at the point (0, . . . , 0). The theorem yields a con-
tinuous function g :R→R|S|+1 defined on (− ε, ε) for some ε > 0, such that hπ ,n(e(g(t)))=
hπ ,n(0, . . . , 0)= 1

|π |! for all π ∈ S and t ∈ (− ε, ε). Moreover, by choosing a small enough ε, we
can assume Im(g)⊆ [− 1

4n ,
1
4n ]

|S|+1. Thus, given t ∈ (− ε, ε), we obtain a permuton μ
[
Je(g(t))

]
which satisfies d(π ,μ

[
Je(g(t))

]
)= hπ ,n(e(g(t)))= 1

|π |! for all π ∈ S. In particular, μ
[
Je(g(ε/2))

]
is a

non-uniform permuton that witnesses that S is not forcing.

As the number of parts of a step permuton increases, the probability that two randomly chosen
points share the same part tends to zero. This simplifies the analysis of gradients significantly and
leads us to defining the gradient polynomial of a permutation π—a limit object which captures
the behaviour of the gradients ∇hπ ,n as n tends to infinity. First note that the gradient vector
∇hπ ,n(0, . . . , 0) of any permutation π can be calculated by a straightforward differentiation of
(2). In particular the following holds for any positive integer n> 1 and i, j ∈ [n]:

∂

∂xi,j
hπ ,n(0, . . . , 0)= k!

n2k−1

∑
f ,g : [k]↗[n]

1∏
m∈[n] |f−1(m)|!|g−1(m)|! ×

∑
m∈[k]

Bi,jf (m),g(π(m)). (3)

The gradient polynomial Pπ (α, β) is defined as the unique polynomial in two variables which
satisfies the equality

Pπ (α, β)= lim
n→∞ n3

∂

∂x�αn�,�βn�
hπ ,n(0, . . . , 0),
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for any α, β ∈ (0, 1). In the following lemmas we show that the limit always exists, indeed yields a
polynomial and we provide an explicit formula for its coefficients.

We first show that it is possible to restrict the sum (3) to injective functions when considering
the limit.

Lemma 6. For any k-permutation π and α, β ∈ (0, 1), the following equality holds if any of the two
limits exists:

lim
n→∞ n3

∂

∂x�αn�,�βn�
hπ ,n(0, . . . , 0)= lim

n→∞
k!

n2k−4

∑
f ,g : [k]↗[n]
f ,g injective

∑
m∈[k]

B�αn�,�βn�
f (m),g(π(m)).

Proof. Let in = �αn�, jn = �βn�. Given f , g : [k]↗ [n], let Sn( f , g) denote the summand

1∏
m∈[n] |f−1(m)|!|g−1(m)|! ×

∑
m∈[k]

Bin,jnf (m),g(π(m)),

from (3). Note that whenever f and g are injective function, Sn( f , g) becomes just∑
m∈[k] B

in,jn
f (m),g(π(m)). By (3), it holds

∣∣∣∣∣∣∣∣∣
n3

∂

∂xin,jn
hπ ,n(0, . . . , 0)− k!

n2k−4

∑
f ,g : [k]↗[n]
f ,g injective

Sn( f , g)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
k!

n2k−4

∑
f ,g : [k]↗[n]

f or g non-injective

Sn( f , g)

∣∣∣∣∣∣∣∣∣
.

Hence, it is enough to show that the right-hand side converges to zero as n tends to infinity. We
denote the right-hand side by Dn.

Whenever f is such that neither in nor in + 1 belongs to Im( f ), then Bin,jnf (m),g(π(m)) is simply zero
regardless of m or g; hence Sn( f , g) is zero as well. In case Im( f ) contains exactly one of in or
in + 1, let us define a function f̃ form ∈ [n] as

f̃ (m)=

⎧⎪⎪⎨
⎪⎪⎩
in ifm ∈ f−1(in + 1)
in + 1 ifm ∈ f−1(in)
f (m) otherwise.

Note that the function f̃ is increasing. By definition, it holds that Bin,jnin,� = −Bin,jnin+1,� for any
� ∈ [n]; therefore, S( f , g)+ S(f̃ , g)= 0 regardless of g. Altogether, all the factors Sn( f , g) such that
{i, i+ 1} �⊆ Im( f ) cancel out from the sum inD. Similarly, all the factors corresponding to g where
{j, j+ 1} �⊆ Im(g) cancel out.

Note that
∣∣Sn( f , g)∣∣ is at most k for any f and g. Hence, Dn can be bounded by the product of

k·k!
n2k−4 and the number of pairs of functions f , g : [k]↗ [n] satisfying {i, i+ 1} ⊆ Im( f ), {j, j+ 1} ⊆
Im(g) and f or g is non-injective. Fixing two elements a, a+ 1 ∈ [n], there are at most O(nk−2)
non-decreasing functions [k]→ [n] containing both a and a+ 1 in their image. Only O(nk−3)
of them are in addition non-injective. Therefore, there are O(n2k−5)= 2O(n2k−5)+O(n2k−6) of
such pairs (f , g). It follows thatDn =O( 1n ), in particularDn tends to zero as n goes to infinity.
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Using Lemma 6, we find an explicit formula for gradient polynomials. Note that the formula
indeed defines a polynomial.

Lemma 7. For any k-permutation π , the gradient polynomial is well-defined and is equal to the
following formula:

Pπ (α, β)= k!
∑
m∈[k]

(
k−m
1− α

− m− 1
α

) (
k− π(m)
1− β

− π(m)− 1
β

)

αm−1(1− α)k−mβπ(m)−1(1− β)k−π(m)

(m− 1)!(k−m)!(π(m)− 1)!(k− π(m))! . (4)

Proof. Fix α, β ∈ (0, 1). We introduce in = �αn� and jn = �βn�. We omit the subscript whenever
the index is clear from context. By Lemma 6, the following equality holds whenever the right-hand
side exists

Pπ (α, β)= lim
n→∞

k!
n2k−4

∑
f ,g : [k]↗[n]
f ,g injective

∑
m∈[k]

Bi,jf (m),g(π(m)).

Let Fn[m �→ i] denote the number of strictly increasing functions f : [k]↗ [n] satisfying f (m)= i.
We can group the summands bym to obtain

k!
n2k−4

∑
m∈[k]

∑
f ,g : [k]↗[n]
f ,g injective

Bi,jf (m),g(π(m))

= k!
n2k−4

∑
m∈[k]

F[m �→ i]F[π(m) �→ j]+ F[m �→ i+ 1]F[π(m) �→ j+ 1]

− F[m �→ i+ 1]F[π(m) �→ j]− F[m �→ i]F[π(m) �→ j+ 1]

= k!
n2k−4

∑
m∈[k]

(F[m �→ i]− F[m �→ i+ 1])
(
F[π(m) �→ j]− F[π(m) �→ j+ 1]

)
.

Note that for k≤ i≤ n− k the equality F[m �→ i]=
(

i− 1
m− 1

)(
n− i
k−m

)
holds. Then we can

further simplify the sum using the following:

F[m �→ i]− F[m �→ i+ 1]=
(

i− 1
m− 1

)(
n− i
k−m

)
−

(
i

m− 1

)(
n− i− 1
k−m

)

=
(
i−m+ 1

i
− n− i− k+m

n− i

) (
i

m− 1

)(
n− i
k−m

)

=
(
k−m
n− i

− m− 1
i

) (
i

m− 1

)(
n− i
k−m

)
. (5)

Note that for any α ∈ (0, 1) there existN such that for any n≥N it holds k≤ �αn� ≤ n− k and
thus we can always use (5) in the following limit:
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lim
n→∞

1
nk−2 (F[m �→ �αn�]− F[m �→ �αn� + 1])

= lim
n→∞

1
nk−2

(
k−m

n− �αn� − m− 1
�αn�

) ( �αn�
m− 1

)(
n− �αn�
k−m

)

=
(
k−m
1− α

− m− 1
α

)
αm−1(1− α)k−m

(m− 1)!(k−m)! .

Similarly we compute

lim
n→∞

1
nk−2 (F[π(m) �→ �βn�]− F[π(m) �→ �βn� + 1])

=
(
k− π(m)
1− β

− π(m)− 1
β

)
βπ(m)−1(1− β)k−π(m)

(π(m)− 1)!(k− π(m))! .

By multiplying these two limits, we obtain the equality from the statement of the lemma.

We next provide an analog of Lemma 5 for gradient polynomials.

Lemma 8. Let S be a non-empty finite set of permutations. If the gradient polynomials Pπ , π ∈ S,
are linearly independent, then S is not forcing.

Proof. We prove the contrapositive, hence suppose that S is forcing. Denote the elements of S
by π1, . . . , πm, and for any n> 1 define gni = ∇hπi,n(0, . . . , 0). Lemma 5 yields that the gradi-
ents gni , i ∈ [m], are linearly dependent for any n>m+ 1. Therefore, for any such n, there exists
a non-zero tuple of reals tn = (tn1 , . . . , tnm) such that

∑
i∈[m] tni g

n
i = (0, . . . , 0). Moreover, without

loss of generality, we can assume ‖tn‖∞ = 1. Since [− 1, 1]m is a compact set, there exists a con-
vergent subsequence {(tnj1 , . . . , t

nj
m)}j∈N converging to a non-zero tuple (t1, . . . , tm). Hence for any

α, β ∈ (0, 1), it holds that∑
i∈[m]

tiPπi(α, β)=
∑
i∈[m]

lim
j→∞ tnji lim

j→∞ n3j (g
nj
i )�αnj�,�βnj� = lim

j→∞
∑
i∈[m]

tnji n
3
j (g

nj
i )�αnj�,�βnj� = 0.

Therefore the gradient polynomials are linearly dependent since
∑

i∈[m] tiPπi = 0.

For the analysis of gradient polynomials, we use the following kind of vectors. For an integer
i ∈ [k] we define a vector bki ∈Rk as follows:

(
bki

)
�
=

⎧⎨
⎩(− 1)�−1

(
i− 1
� − 1

)
for 1≤ � ≤ i

0 otherwise.

For example,

b55 = (1,−4, 6,−4, 1)T and b54 = (1,−3, 3,−1, 0)T .

We sometimes omit the upper index and write just bi when the dimension is clear from the
context.

Let us denote the linear span of vectors bk2, . . . , b
k
k by B and let j= (1, . . . , 1)T ∈Rk. Observe

that B is the orthogonal complement of the vector j. Indeed, by the Binomial Theorem,

〈j, bi〉 =
i∑

�=1
(− 1)�−1

(
i− 1
� − 1

)
= 0.
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Also observe that for any i ∈ [k− 1], the vectors bk2, . . . , b
k
i+1 span an i-dimensional space. In

particular, the vectors j, bk2, . . . , b
k
k form a basis of Rk.

The next lemma provides an explicit formula for the coefficients of the gradient polynomials.
Let P(α, β) be a polynomial in α, β . For any i, j ∈N0, we use ci,j(P) to denote the coefficient of the
monomial αiβ j in P, i.e., it holds that

P =
∑
i,j∈N0

ci,j(P)αiβ j.

Lemma 9. Let π be a k-permutation and i, j ∈N0. Then

ci,j(Pπ )= k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)!
(
bTi+2 Aπ bj+2

)
,

if both i and j are at most k− 2, and ci,j(Pπ )= 0 otherwise.

Proof. For this proof, we set 1/a! = 0 whenever a< 0, and
(
a
b

)
= 0 whenever a< b. In order to

determine the coefficient of αiβ j in Pπ , we need to compute the coefficient of each summand from
(4) and sum them up. For anym ∈ [k], the coefficient of αiβ j is the product of the coefficient of αi

in
(
k−m
1−α

− m−1
α

)
αm−1(1−α)k−m

(m−1)!(k−m)! and the coefficient of β j in
(
k−π(m)
1−β

− π(m)−1
β

)
βπ(m)−1(1−β)k−π(m)

(π(m)−1)!(k−π(m))! .
We first compute the coefficient of αi:

(
k−m
1− α

− m− 1
α

)
αm−1(1− α)k−m

(m− 1)!(k−m)!
= αm−1(1− α)k−m−1

(m− 1)!(k−m− 1)! − αm−2(1− α)k−m

(m− 2)!(k−m)!

=
k−m−1∑

�=0

(
k−m− 1

�

)
αm−1+�(− 1)�

(m− 1)!(k−m− 1)! −
k−m∑
�
′=0

(
k−m

�′
)

αm−2+�
′
(− 1)�

′

(m− 2)!(k−m)! .

The last equality is just an expansion of (1− α)k−m−1 and (1− α)k−m. The ith power of α appears
for l= i+ 1−m and l′ = i+ 2−m. This yields that the coefficient of αi is

(
k−m− 1
i+ 1−m

)
(− 1)i+1−m

(m− 1)!(k−m− 1)! −
(

k−m
i+ 2−m

)
(− 1)i−m

(m− 2)!(k−m)!

=
(

i
m− 1

)
1

(k− i− 2)!i! (− 1)i+1−m +
(

i
m− 2

)
1

(k− i− 2)!i! (− 1)i+1−m

=
(

i+ 1
m− 1

)
1

(k− i− 2)!i! (− 1)i+1−m.

Note that if m> i+ 2, the formula is equal to zero. Similarly, the coefficient of β j in(
k−π(m)
1−β

− π(m)−1
β

)
βπ(m)−1(1−β)k−π(m)

(π(m)−1)!(k−π(m))! is equal to

(
j+ 1

π(m)− 1

)
1

(k− j− 2)!j! (− 1)j+1−π(m).
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Hence, the coefficient of αiβ j is the following:

ci,j(Pπ ) = k!
∑
m∈[k]

(
i+ 1
m− 1

)
(− 1)i+1−m

(k− i− 2)!i!
(

j+ 1
π(m)− 1

)
(− 1)j+1−π(m)

(k− j− 2)!j!

= k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)!
∑
m∈[k]

(− 1)m−1
(

i+ 1
m− 1

)
(− 1)π(m)−1

(
j+ 1

π(m)− 1

)

= k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)!
(
bTi+2 Aπ bj+2

)
.

In the following we use

Kk
i,j =

k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)! ,

and we omit the upper index when it is clear from the context. Thus, it holds that
ci,j(Pπ )=Ki,j

(
bTi+2 Aπ bj+2

)
.

Finally we define themirror gradient polynomial P�
π (α, β) by setting

P�
π (α, β)= Pπ (1− α, β).

As shown above, the coefficient ci,j(Pπ ) depends on the ‘top’ rows of the matrix Aπ , i.e., the first
i+ 2 rows. For any matrix M ∈Rn×m we define its row mirror image M� where M�

i,j =Mn−i+1,j.
In the next lemma, we prove that P�

π behaves in a similar way as Pπ but its coefficients depend on
the ‘top’ i+ 2 rows of the matrix Aπ

� instead.

Lemma 10. Let π be a k-permutation and i, j ∈N0. Then

ci,j(P�
π )=

k!(− 1)i+j+1

i!j!(k− i− 2)!(k− j− 2)!
(
bTi+2 A

�
π bj+2

)
= −Ki,j

(
bTi+2 A

�
π bj+2

)
,

if both i and j are at most k− 2, and ci,j(P�
π )= 0 otherwise.

Proof. We perform similar steps as in the previous proof. By the definition of the mirror
polynomial, we can substitute 1− α into (4) to obtain

P�
π (α, β) = k!

∑
m∈[k]

(
k−m

α
− m− 1

1− α

) (
k− π(m)
1− β

− π(m)− 1
β

)

(1− α)m−1αk−mβπ(m)−1(1− β)k−π(m)

(m− 1)!(k−m)!(π(m)− 1)!(k− π(m))! .

Again, we split each summand into a product of two parts, one depending only on α and the
other on β . The part involving β is the same as in the previous proof. A straightforward compu-
tation analogous to the one in the proof of the previous lemma yields that the coefficient of αi in(
k−m

α
− m−1

1−α

)
(1−α)m−1αk−m

(m−1)!(k−m)! is

(
m− 1

i+m− k+ 1

)
(− 1)i+m−k+1

(m− 1)!(k−m− 1)! −
(

m− 2
i+m− k

)
(− 1)i+m−k

(m− 2)!(k−m)! .
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This can be further simplified to(
i+ 1
k−m

)
1

(k− i− 2)!i! (− 1)i−k+m+1.

Hence, the coefficient ci,j(P�
π ) is equal to

k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)!
∑
m∈[k]

(− 1)m−k+1
(

i+ 1
k−m

)
(− 1)π(m)+1

(
j+ 1

π(m)− 1

)
,

where we can substitute � = k−m+ 1 and reverse the order of the summation to obtain

k!(− 1)i+j

i!j!(k− i− 2)!(k− j− 2)!
∑
�∈[k]

(− 1)−�

(
i+ 1

k− (k− � + 1)

)
(− 1)π(k−�+1)+1

(
j+ 1

π(k− � + 1)− 1

)

= k!(− 1)i+j+1

i!j!(k− i− 2)!(k− j− 2)!
∑
�∈[k]

(− 1)�−1
(
i+ 1
� − 1

)
(− 1)π(k−�+1)−1

(
j+ 1

π(k− � + 1)− 1

)

= k!(− 1)i+j+1

i!j!(k− i− 2)!(k− j− 2)!
(
bki+2

T A�
π bkj+2

)
.

4. Sets of linearly dependent polynomials
In this section, we prove ourmain result.We call the set S of permutations linearly dependent if the
gradient polynomials of the permutations in the set S are linearly dependent. In the previous sec-
tion, we have shown that any forcing set of permutations is linearly dependent. We next establish
three lemmas that describe general properties of cover matrices of dependent sets of permuta-
tions with respect to orders of their permutations. This renders many triples of permutations to
be non-forcing. We then identify all linearly dependent sets of size three and prove none of them
is forcing.

Recall that the cover matrix of a formal linear combination of k-permutations ω = ∑
i∈[m] tiπi

is the matrix Cvr(ω)= ∑
i∈[m] tiAπi . For a dependent set of permutations S, the next lemma states

a property of the cover matrix of the permutations with the largest order in S.

Lemma 11. Let π1, . . . , πm be permutations and t1, . . . , tm be reals such that
∑

i∈[m] tiPπi = 0
and set k=max{|π1|, . . . , |πm|}. Suppose that π1, . . . , πn are all the permutations from S with
order k. Further, let 2≤ h≤ k be any integer such that the order of all the remaining permutations
πn+1, . . . , πm is at most h− 1. Let ω = t1π1 + . . . + tnπn. Then the following holds:

Cvr(ω) bh = (0, . . . , 0)T and bTh Cvr(ω)= (0, . . . , 0).

Proof. By Lemma 9, the coefficient ci,j(Pπ�
) is equal to zero for any � > n whenever i or j is at least

h− 2. Therefore, for any 0≤ i≤ k− 2, we have

0=
∑

�∈[m]
t�ci,h−2(Pπ�

)=
∑
�∈[n]

t�Ki,h−2

(
bTi+2 Aπ�

bh
)

=Ki,h−2

(
bTi+2 Cvr(ω) bh

)
.

Since Ki,h−2 is non-zero, it also holds that

0= bTi+2 Cvr(ω) bh, (6)
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implying

vT Cvr(ω) bh = 0. (7)

for any v ∈ B. Recall that B is the orthogonal complement of j. Since any vector u that has
one entry −1, one entry +1, and all the other entries equal to zero belongs to B, it holds
uCvr(ω) bh = 0, i.e., Cvr(ω)p bh −Cvr(ω)q bh = 0 for any two rows Cvr(ω)p and Cvr(ω)q of
matrix Cvr(ω). This implies Cvr(ω)p bh =Cvr(ω)q bh for any p, q ∈ [k].

Therefore, for any p ∈ [k] the equality Cvr(ω)p bh = 0 holds since

kCvr(ω)p bh =
∑
�∈[k]

Cvr(ω)p bh =
∑
�∈[k]

Cvr(ω)� bh = (a, . . . , a) bh = 0,

where a= ∑
�∈[n] t� is the common sum of all the columns. The first equality of the lemma

follows. The other can be proven by a symmetric argument.

If all the permutations in a dependent set have the same order, we can prove the following.

Lemma 12. Let ω = t1π1 + . . . + tmπm be a formal linear combination of k-permutations. If∑
i∈[m] tiPπi = 0, then the cover matrix Cvr(ω) is constant.

Proof.We first bound the rank of Cvr(ω). Recall that the vectors bk2, . . . , b
k
k, and j form a basis of

Rk. Call that basis B. The matrix Cvr(ω) is a matrix of a bilinear functional φ :Rk ×Rk →R in the
canonical basis. Let us express thematrix of the functional φ in the basis B by computing the values
of φ on the pairs of basis vectors. By Lemma 11, for 2≤ i, j≤ k, it holds bTi Cvr(ω) bj = 0 implying
φ(bi, bj)= 0. By the definition of a cover matrix, the sum of any column or row of Cvr(ω) is equal
to a constant a= ∑

�∈[m] t�. Hence, it holds jCvr(ω) bj = (a, . . . , a) bj = 0 for any 2≤ j≤ k and
thus φ(j, bj)= 0. Similarly, it also holds φ(bi, j)= 0 for any 2≤ i≤ k.

The rank of the matrix of φ in the basis B is at most one since the only non-zero entry it could
have is the one corresponding to the value φ(j, j). The change of the basis does not change the rank
of the matrix of a functional; therefore, the rank of Cvr(ω) depends only on the value of φ(j, j). In
particular, it is either zero or one. If it is zero, then the matrix Cvr(ω) is the constant zero matrix.
In the latter case, the columns of Cvr(ω) are multiple of each other, and since they have constant
non-zero sum, they are all equal. Similarly, all the rows of Cvr(ω) are equal. The fact that Cvr(ω)
is constant follows.

In the next lemma, we prove that if there exists a formal linear combination of gradient polyno-
mials equal to zero but having all coefficients non-zero, then it contains at least two permutations
with the maximum order.

Lemma 13. Let π1, . . . , πm be permutations of order at least two and suppose |π1| ≥ . . . ≥ |πm|. If
there exist non-zero reals t1, . . . , tm satisfying

∑
i∈[m] tiPπi = 0, then m≥ 2 and |π1| = |π2|.

Proof. Suppose for a contradiction that π1 is the unique permutation amongst π1, . . . , πm with
the largest order (in particular this holds if m= 1). Then, the cover matrix Cvr(t1π1)= t1Aπ1
contains exactly one non-zero element in each row, and therefore the product of any row with the
vector bk is non-zero. This contradicts Lemma 11. Hence, there is at least one permutation with
order |π1| other than π1. In particularm≥ 2.

The next lemma combines Lemma 12 and Lemma 13 to exclude most of the sets of two or three
permutations of equal orders from being linearly dependent.

Lemma 14. Let S be a linearly dependent set of permutations whose orders are larger than one.
Then:
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(a) S is not a singleton.
(b) If |S| = 2, then both permutations in S have order two.
(c) If |S| = 3 and all permutations in S have the same order, then their common order is three.

Proof. Let π1, . . . , πm, 1≤m≤ 3, be permutations in S. By Lemma 13, it holds that m= |S| ≥ 2.
Since S is linearly dependent, there exists a non-zero tuple of reals (t1, . . . , tm) such that∑

i∈[m] tiPπi = 0. Let ω denote the formal linear combination
∑

i∈[m] tiπi. We first show that
regardless whetherm= 2 orm= 3, we may assume that all permutation in S have the same order
and all the coefficients ti, i ∈ [m], are non-zero. Indeed for m= 2, both statements follows as a
consequence of Lemma 13. For m= 3, the equality of orders follows by the assumption of the
lemma. Furthermore, observe that if any of the coefficients ti was equal to zero, we would proceed
as in the part (b) and show that two of the permutations in S have order two. By the assump-
tion, the third should have the same order which is impossible since there are only two distinct
permutations of order two.

If the order of permutations in S is larger than m, then there exists a zero entry in the matrix
Cvr(ω). Sincem is at most three, there exists i ∈ [m] and πj ∈ S such that πj(i) differs from all the
other permutations from S evaluated at i, i.e., πj(i) �= πj′(i) for j

′ �= j. Otherwise, all permutations
would be identical. Hence, the matrix Cvr(ω) has a non-zero entry, specifically Cvr(ω)i,πj(i) = tj.
In particular, the matrix Cvr(ω) is not constant, which contradicts Lemma 12. Therefore, all the
permutations in the set S have orderm regardless of whetherm= 2 orm= 3.

In the next lemma, we exclude all the sets of three permutations containing two ‘large’ permu-
tations from being linearly dependent. More precisely, we show that if a linearly dependent set of
three permutations contains a permutation of order greater than three, then it contains a linearly
dependent proper subset. By Lemma 14, this subset consist of 2-point permutations 12 and 21.

Lemma 15. There are no three permutations π1, π2, π3 and non-zero real coefficients t1, t2, t3 such
thatmaxi∈[m]{|πi|} > 3 and

∑
i∈[3] tiPπi = 0.

Proof. For the contradiction suppose there exist such π1, π2, and π3, and constants t1, t2, and t3.
By Lemma 13, at least two of the permutations have the maximum order. At the same time, by
Lemma 14, the order of the third permutation is distinct since the order of the largest permutation
is greater than three. Hence without loss of generality, we can assume |π1| = |π2| > |π3| and |t1| ≤
|t2|.

Let k denote the order of the permutations π1 and π2, and let ω denote the formal linear com-
bination t1π1 + t2π2. We first show that the absolute values of the coefficients t1 and t2 are, in
fact, equal. Lemma 11 asserts that Cvr(ω) bk = (0, . . . , 0)T . In particular, the following holds for
any i ∈ [k]:

0=Cvr(ω)i bk = t1
(

k− 1
π1(i)− 1

)
(− 1)π1(i)−1 + t2

(
k− 1

π2(i)− 1

)
(− 1)π2(i)−1,

Choosing i such that π1(i)= 1 yields

0= t1
(
k− 1
0

)
+ t2

(
k− 1

π2(i)− 1

)
(− 1)π2(i)−1,

which is possible only if π2(i) ∈ {1, k} and |t1| = |t2| since we assumed |t2| to be at least as large as
|t1|.

We next show that |π3| = k− 1. Suppose that this is not the case, i.e., |π3| < k− 1. Let i be such
that π1(i) �= π2(i), i.e., the row Cvr(ω)i contains exactly two non-zero entries. By Lemma 11, the
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following equalities hold:

Cvr(ω)i bk = 0,
Cvr(ω)i bk−1 = 0.

The first equality implies that π1(i)= k+ 1− π2(i) since |t1| = |t2|, while the second implies that
π1(i)= k− π2(i) which is impossible.

We next assume that the order of π3 is k− 1 and find a contradiction. Recall the definition of
mirror gradient polynomials P�

π (α, β)= Pπ (1− α, β). Note that whenever the equality∑
i∈[3]

tiPπi = 0, (8)

holds, it also holds that ∑
i∈[3]

tiP�
πi = 0. (9)

Moreover, Lemma 11 yields that the cover matrix Cvr(ω) is symmetric up to the sign, i.e.,

Cvr(ω)= (− 1)kCvr(ω)�, (10)

since Cvr(ω) has at most two non-zero entries in each column and |t1| = |t2|. Altogether, given i,j
such that 0≤ i, j≤ k− 3, we obtain∣∣∣t3ci,j(P�

π3 )
∣∣∣

=
∣∣∣t2ci,j(P�

π2 )+ t1ci,j(P�
π1 )

∣∣∣ (by equality (9))

=
∣∣∣Ki,j

(
bTi+2 Cvr(ω)

� bj+2
)∣∣∣ (by Lemma 10)

=
∣∣∣Ki,j

(
bTi+2 Cvr(ω) bj+2

)∣∣∣ (by equality (10))

= ∣∣t2ci,j(Pπ2 )+ t1ci,j(Pπ1 )
∣∣ (by Lemma 9)

= ∣∣t3ci,j(Pπ3 )
∣∣ . (by equality (8))

Since t3 is non-zero, it holds that
∣∣∣ci,j(P�

π3 )
∣∣∣ =

∣∣∣ci,j(Pπ3 )
∣∣∣, which, together with the fact that |π3| ≥ 3,

implies ∣∣∣∣(b|π3|
i+2

)T
A�

π3 b
|π3|
j+2

∣∣∣∣ =
∣∣∣∣(b|π3|

i+2

)T
Aπ3 b

|π3|
j+2

∣∣∣∣ ,
for any 0≤ i, j≤ k− 3. We conclude that the equality

∣∣∣uT A�
π3 v

∣∣∣ = ∣∣uT Aπ3 v
∣∣ holds for any vec-

tors u, v ∈ B. Let u= (1,−1, 0, . . . ) ∈ B be a vector having two non-zero entries, and let v ∈ B be
such a vector that vπ3(1) = 1, vπ3(2) = −1 and v� = 0 otherwise. The product uT Aπ3 v is equal to
two but the absolute value of the product uT A�

π3 v is at most one since |π3| = k− 1> 2; which is
a contradiction.

The next lemma provides the last ingredient to prove Theorem 1. The lemma can be found, for
instance, in [23] but we include a sketch of the proof for completeness.

Lemma 16. There exists a non-uniform permuton μ such that for any k-permutation π with k< 4
it holds that d(π ,μ)= 1

|π |! .

For any α ∈ [0, 1] define Mα to be the set of all the points (x, y) ∈ [0, 1]2 such that x+ y ∈
{1− α

2 , 1+ α
2 ,

α
2 , 2− α

2 } or y− x ∈ {−α
2 ,

α
2 , 1− α

2 ,
α
2 − 1}. See the illustration in Figure 2. Let

https://doi.org/10.1017/S0963548321000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000298


318 M. Kurečka

Figure 2. The setsM0,M0.5, andM1.

μα be a permuton that is obtained by uniformly distributing the mass along Mα . Note that
μα is invariant under horizontal and vertical reflection, and, therefore, the density of both 12
and 21 in μα is equal to 1/2 for any α. A simple calculation yields that d(123,μ0)= 1/4 and
d(123,μ1)= 1/8. Since d(123,μα) is a continuous function there exists α0 ∈ (0, 1) such that
d(123,μα0 )= 1/6. The symmetries of the permuton imply that d(123,μα0 )= d(321,μα0 ) and
d(132,μα0 )= d(312,μα0 )= d(213,μα0 )= d(231,μα0 ). In addition, the sum of these six densities
is one, hence all six densities are equal to 1/6.

We are finally ready to prove Theorem 1:

Proof of Theorem 1. Lemmas 14 and 16 yield that there is no forcing set of size one or two. For the
contradiction, let S= {π1, π2, π3} be a forcing set consisting of three permutations and suppose
|π1| ≥ |π2| ≥ |π3|. Note that we can, without loss of generality, assume that all the permutations
have order at least two. Moreover, by Lemma 16, the order of π1 is at least four. Further, set S
is linearly dependent by Lemma 8; hence there exist reals t1, t2, and t3 such that

∑
i∈[3] tiPπi = 0.

Lemma 15 together with Lemma 13 then implies that precisely two of the coefficients are non-zero
and their corresponding permutations have order two.

It follows that set S contains permutation π1 together with permutations 12 and 21. Note that
the density of 12 in a permuton is equal to 1

2 if and only if the density of 21 is since the sum
of these two densities is one. Therefore, if the set {π1, 12, 21} were forcing, then {π1, 12} would
also be forcing. However, such a set can not be forcing since we have proven that the size of any
forcing set is at least three. We conclude that there does not exist any forcing set consisting of
three permutations.
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