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Zariski Hyperplane Section Theorem for
Grassmannian Varieties

Ichiro Shimada

Abstract. Let φ : X → M be a morphism from a smooth irreducible complex quasi-projective variety

X to a Grassmannian variety M such that the image is of dimension ≥ 2. Let D be a reduced hyper-

surface in M, and γ a general linear automorphism of M. We show that, under a certain differential-

geometric condition on φ(X) and D, the fundamental group π1

(

(γ ◦ φ)−1(M \D)
)

is isomorphic to

a central extension of π1(M \ D)× π1(X) by the cokernel of π2(φ) : π2(X)→ π2(M).

1 Introduction

Let V be a complex vector space of dimension m, and let

M := Grass(r,V )

be the Grassmannian variety of all r-dimensional linear subspaces of V . Let the group

G := GL(V ) act on M from left in the natural way. Suppose that we are given a
morphism

φ : X → M

from a smooth irreducible quasi-projective variety X. Suppose also that a non-zero

reduced effective divisor D of M is given. For γ ∈ G, let

γφ : X → M

denote the composite of φ with the action γ : M → M of γ on M, and let

γ
Φ : γφ−1(M \ D)→ (M \ D)× X

denote the morphism given by x 7→
(
γφ(x), x

)
. We consider the homomorphism

γ
Φ∗ : π1

(
γφ−1(M \ D)

)
→ π1(M \ D)× π1(X)

induced by γ
Φ.

The main result of this paper states that, if γ ∈ G is general, then, under a cer-
tain differential-geometric condition on φ(X) and D, the homomorphism γ

Φ∗ gives
π1

(
γφ−1(M \ D)

)
a structure of the central extension of π1(M \ D) × π1(X) by the

cokernel of π2(φ) : π2(X) → π2(M). This differential-geometric condition (Con-
dition (DG) in Section 2) is closely related to the problem of characterizing Chow
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158 Ichiro Shimada

forms among hypersurfaces in a Grassmannian variety. (See [4, Chapter 4].) In fact,
if Condition (DG) is not satisfied, then φ(X) and D or Sing D are very special sub-

varieties of M, and the fundamental group π1

(
γφ−1(M \ D)

)
is not necessarily a

central extension of π1(M \ D) × π1(X) by the cokernel of π2(φ). See Section 9 for
examples.

When M is a projective space P
m−1, Condition (DG) is always satisfied. Putting φ

to be a linear embedding of P
2, we obtain the classical Zariski hyperplane section the-

orem [9], the first rigorous proof of which was given by Hamm and Lé [6]. Therefore,
our result is a generalization of Zariski hyperplane section theorem to Grassmannian
varieties.

This paper is organized as follows. In Section 2, we make some definitions, state
the Main Theorem, and give some remarks. In Section 3, we investigate the situation
where Condition (DG) is not satisfied, and describe special features that φ(X) and D

possess in this situation. Sections from Section 4 to Section 8 are devoted to the proof

of Main Theorem. The strategy of the proof is as follows. In Section 4, we extend the
family of γφ−1(M \D) over G to a family over an affine space End(V ), so that we can
use [8, Theorem 1.3]. In Section 5, we prove that the fundamental group of the total
space of the family over End(V ) is a central extension of π1(M \ D) × π1(X) by the

cokernel of π2(φ). By [8, Theorem 1.3], it is therefore enough to show that the local
monodromies on the fundamental groups of fibers of the family can be defined and
are all trivial. In Section 6, we introduce the transversality condition. In Section 7, we
prove that Condition (DG) implies the transversality condition, and in Section 8, we

prove that the transversality condition implies the triviality of local monodromies. In
Section 9, we present examples which show that Condition (DG) is not dispensable
for the statement on the fundamental groups to hold.

Debarre [2] also found a relation between a similar differential-geometric condi-

tion on subvarieties of a Grassmannian variety and a certain connectivity theorem.

2 Statement of Main Theorem

For a point p of M, let L(p) denote the linear subspace of V corresponding to p. Then
we have the canonical isomorphisms

TpM ∼= Hom
(

L(p),V/L(p)
)

and T∗p M ∼= Hom
(

V/L(p), L(p)
)
,(2.1)

where T∗p M is the dual space of the Zariski tangent space TpM to M at p. We define
rank(τ ) for τ ∈ TpM and corank(ω) for ω ∈ T∗p M to be the rank of the correspond-

ing linear homomorphisms L(p) → V/L(p) and V/L(p) → L(p), respectively. For
linear subspaces T of TpM and N∗ of T∗p M, we put

rank(T) := max{rank(τ ) | τ ∈ T}, and

corank(N∗) := max{corank(ω) | ω ∈ N∗}.

Let Y be a reduced irreducible closed subvariety of M. We choose a general point
p ∈ Y , and put

rank Y := rank(TpY ) and corank Y := corank(N∗pY ),

https://doi.org/10.4153/CJM-2003-007-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-007-9


Zariski Hyperplane Section Theorem 159

where N∗pY is the co-normal space (TpM/TpY )∗ ⊂ T∗p M of Y at p. Let us call them
the rank and the corank of Y , respectively.

We also define a notion of type of a subvariety Y of M with rank Y = 1 or
corank Y = 1 as follows.

Let A and B be finite dimensional linear spaces, and T a linear subspace of
Hom(A,B) with dim T ≥ 1. Suppose that the rank of τ : A → B is ≤ 1 for all

τ ∈ T. Then either one of the following occurs:

(I) There is a one-dimensional linear subspace BT of B such that τ (A) ⊆ BT for any
τ ∈ T.

(II) There is a hyperplane AT of A such that AT ⊆ Ker τ for any τ ∈ T.

When dim T = 1, both of (I) and (II) occur, while when dim T ≥ 2, only one of (I)

or (II) occurs.

Suppose that Y is of rank 1 (resp. of corank 1). We say that Y is of type (I) or
(II) according to whether (I) or (II) holds for TpY ⊂ Hom

(
L(p),V/L(p)

)
(resp.

N∗pY ⊂ Hom
(

V/L(p), L(p)
)

), where p is a general point of Y . Remark that, when

Y is of corank 1 and of codimension 1 in M, then Y is both of type (I) and (II).

Let {Di | i ∈ I} be the set of irreducible components of the reduced hypersurface
D of M, and let {(Sing D) j | j ∈ J(2)} be the set of irreducible components with
codimension 2 in M of the singular locus Sing D of D. We consider the following

conditions:

(aI ) The closure φ(X) of φ(X) is of rank 1 with type (I).
(aII ) The closure φ(X) of φ(X) is of rank 1 with type (II).
(b) For at least one i ∈ I, Di is of corank 1.
(cI ) For at least one j ∈ J(2), (Sing D) j is of corank 1 with type (I).

(cII ) For at least one j ∈ J(2), (Sing D) j is of corank 1 with type (II).

Our differential-geometric condition (DG) is the following:

Condition (DG) The Grassmannian variety M is P
m−1, or the condition

( (aI ) and ( (b) or (cI ) ) ) or ( (aII ) and ( (b) or (cII ) ) )

is not satisfied.

For example, if φ(X) is of rank > 1, or if all Di (i ∈ I) and all (Sing D) j ( j ∈ J(2))
are of corank > 1, then Condition (DG) is satisfied. (As will be shown in Section 3,

a subvariety of M with (co)rank 1 is of very special type.)

To describe a central extension of a fundamental group, we use the following
method. Let T be an oriented connected topological manifold, and let α be an el-
ement of H2(T,Z). Then there exists a topological line bundle L → T, unique up

to isomorphisms, such that c1(L) = α. Let L× ⊂ L be the complement to the zero
section of L. We have the homotopy exact sequence

−→ π2(T)
∂L−→ π1(C

×) −→ π1(L×) −→ π1(T) −→ 1
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such that the image of π1(C
×) → π1(L×) is contained in the center. Thus we obtain

a central extension of π1(T) by the cyclic group Coker ∂L, which we call the central

extension associated with α ∈ H2(T,Z).
Let c ∈ H2(M,Z) be the first Chern class of the positive generator of Pic(M). We

define η ∈ H2
(

(M \ D)× X,Z
)

to be the cohomology class

−(ι ◦ pr1)∗c + (φ ◦ pr2)∗c,

where pr1 and pr2 are the projections from (M \D)×X to M \D and X, respectively,
and ι is the inclusion of M \ D into M.

Main Theorem Suppose that dimφ(X) ≥ 2, and that Condition (DG) is satisfied. Let

γ be a general element of the group G. Then the homomorphism

γ
Φ∗ : π1

(
γφ−1(M \ D)

)
→ π1(M \ D)× π1(X)

gives π1

(
γφ−1(M \ D)

)
a structure of the central extension of π1(M \ D) × π1(X) by

the cokernel of π2(φ) : π2(X) → π2(M), and this central extension is associated with

the cohomology class η.

Corollary 2.1 Let φ : X → P
m−1 be a morphism from a smooth irreducible quasi-

projective variety X to P
m−1, and D ⊂ P

m−1 a reduced effective divisor. Sup-

pose that dimφ(X) ≥ 2. If γ is a general linear automorphism of P
m−1, then

π1

(
γφ−1(P

m−1 \D)
)

is isomorphic to a central extension of π1(P
m−1 \D)× π1(X) by

the cokernel of π2(φ), and this central extension is associated with η.

Remark 2.2 We have an isomorphism Grass(r,V ) ∼= Grass(m − r,V ). Hence,
replacing r with m − r if necessary, we can assume that r ≤ m − 2. We will use this
assumption in the proof of Proposition 8.4 in Section 8.

Remark 2.3 Since X is quasi-projective, we can embed X into a projective space

P
N . We cut X by a general linear subspace Λ of P

N with codimension dim X − 2 to
obtain a smooth surface S := X ∩ Λ. Let γφ|S : S → M be the restriction of γφ to
S. Suppose that γ ∈ G is general. By Goresky and MacPherson’s theorem [5, Part II,

1.1, Theorem], both of the inclusions

S ↪→ X and γφ|−1
S (M \ D) ↪→ γφ−1(M \ D)

induce isomorphisms on the fundamental groups, and the inclusion of S into X in-

duces a surjective homomorphism π2(S) � π2(X). In particular, the cokernel of
π2(φ) is isomorphic to the cokernel of π2(φ|S). On the other hand, dimφ(X) ≥ 2
holds if and only if dimφ|S(S) = 2 holds. Moreover the condition (aI ) (resp. (aII )) is
satisfied if and only if (aI ) (resp. (aII )) with φ replaced by φ|S is satisfied. Therefore it

suffices to prove the Main Theorem for φ|S; that is, we can assume that dim X = 2,
and that φ : X → M is a generically finite morphism onto its image. We will use this
assumption in Section 8.
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Remark 2.4 Let L → T and α = c1(L) ∈ H2(T,Z) be as above. We have a homo-
morphism between exact sequences

0 // H2
(
π1(T),Z

)
//

��

H2(T,Z)
π∗

//

��

H2(T̃,Z)

��

0 // H2
(
π1(T),Coker ∂L

)
// H2(T,Coker ∂L)

π∗

// H2(T̃,Coker ∂L),

where π : T̃ → T is the universal covering of T (see [1]). Since

π∗(α) ∈ H2(T̃,Z) ∼= Hom
(
π2(T),Z

)

is the boundary homomorphism∂L : π2(T)→ Z, it becomes zero in H2(T̃,Coker ∂L).
Thus α defines an element of H2

(
π1(T),Coker ∂L

)
. One can easily check that this

element corresponds to the central extension of π1(T) associated with α.

Remark 2.5 In fact, Corollary 2.1 can be easily proved directly as follows. As was

remarked above, we can assume that dim X = 2, and that φ : X → P
m−1 is generically

finite onto its image. Let γ be a general element of G. We define

F : X × (P
m−1 \ D)→ P

m−1 × P
m−1

to be the morphism given by F(x, y) :=
(
γφ(x), y

)
. Let∆ be the diagonal of P

m−1×
P

m−1, and let∆ε be a small tubular neighborhood of∆. Then F−1(∆) is isomorphic

to γφ−1(P
m−1 \ D), and since γ is general, F−1(∆ε) is homotopic to F−1(∆). Then

the result of Corollary 2.1 (except for the description of the central extension) follows
from [3, Theorem 9.2 (b) with Remark 9.3].

3 Subvarieties of a Grassmannian Variety with (Co)Rank 1

In this section, we assume that M is not a projective space P
m−1.

Theorem 3.1 Let Y be a reduced irreducible closed subvariety of M. Suppose that

dimY ≥ 2.

(1) The subvariety Y is of rank 1 with type (I) if and only if there exists a linear subspace

W ⊂ V with dimW = r + 1 such that L(p) ⊂W for all p ∈ Y .

(2) The subvariety Y is of rank 1 with type (II) if and only if there exists a linear sub-

space W ′ ⊂ V with dimW = r − 1 such that W ′ ⊂ L(p) for all p ∈ Y .

Proof The proofs of (1) and (2) are completely parallel. Therefore we will prove
only (1). The ‘if ’ part is obvious. We will prove ‘only if ’ part.

https://doi.org/10.4153/CJM-2003-007-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-007-9


162 Ichiro Shimada

Suppose that Y is of rank 1 with type (I). We choose a general point y0 of Y . There
exists a unique (r +1)-dimensional linear subspace W (y0) containing L(y0) such that

Ty0
Y is contained in the linear subspace

W̃ (y0) :=
{
τ ∈ Hom

(
L(y0),V/L(y0)

) ∣∣ Im τ ⊂W (y0)/L(y0)
}

of Hom
(

L(y0),V/L(y0)
)

under the isomorphisms (2.1). We choose a basis

e1, . . . , er, f1, . . . , fm−r

of V such that L(y0) is spanned by e1, . . . , er, and that W (y0) is spanned by e1, . . . , er,
f1. We define a local coordinate system (xi j )1≤i≤m−r,1≤ j≤r of M in such a way that
the r-dimensional linear subspace L(p) of V corresponding to a point p = (xi j) is
spanned by the vectors

e ′j(p) := e j +

m−r∑

i=1

fixi j ( j = 1, . . . , r).

Let d be the dimension of Y . Since Y is of type (I), we have d ≤ r. Let (z1, . . . , zd) be
a local analytic coordinate system of Y with y0 = (0, . . . , 0) defined in a small open
neighborhood U of y0. We put

gi j(z1, . . . , zd) := xi j |Y , and ∂νgi j :=
∂gi j

∂zν
.

Then the tangent vector (∂/∂zν)y ∈ TyY is given by an (m− r)× r matrix

Fν(y) :=
(
∂νgi j(y)

)

that expresses a linear homomorphism from L(y) to V/L(y) with respect to the basis
e ′1(y), . . . , e ′r (y) of L(y) and the basis

f1 mod L(y), . . . , fm−r mod L(y)

of V/L(y). The condition that Y is of rank 1 with type (I) is equivalent to the condi-
tion that the d · r column vectors of the d matrices F1(y), . . . , Fd(y) are proportional

to each other for any y ∈ U .
Recall that Ty0

Y is contained in W̃ (y0). By choosing a suitable basis of V and
making a linear transformation among z1, . . . , zd, we can assume that

∂νgi j(y0) =

{
1 if i = 1 and j = ν,

0 otherwise
(3.1)

holds for ν = 1, . . . , d. Then, by an analytic transformation of the local coordinates
(z1, . . . , zd), we can put g1ν ≡ zν for ν = 1, . . . , d. In particular, we have

∂νg1ν ≡ 1, and ∂νg1 j ≡ 0 ( j 6= ν).(3.2)
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Since the column vectors of the matrix Fν(y) are proportional to each other for any
y ∈ U , the equality (3.2) implies that the column vectors of Fν(y) are zero except for

the ν-th column. Hence we have ∂νgi j ≡ 0 for j 6= ν; that is, gi j is a function of one
variable z j . On the other hand, the µ-th column vector of Fµ(y) and the ν-th column
vector of Fν(y) are proportional to each other for any y ∈ U . Since the top entry
of these column vectors is 1 by (3.2), we have ∂µgiµ ≡ ∂νgiν for i = 2, . . . ,m − r.

The left hand side depends only on zµ, while the right hand side depends only on zν .
Therefore they are constant. Since they are zero at y0 by (3.1), we have ∂νgiν ≡ 0
for i = 2, . . . ,m − r and ν = 1, . . . , d. Since giν is zero at y0, we have giν ≡ 0 for
i = 2, . . . ,m − r and ν = 1, . . . , d. This implies that Y is contained in the locus

{p ∈ M | L(p) ⊂W (y0)}.

Next we consider the subvariety of M with corank 1. We put

P∗(V ) := Grass(1,V ),

and consider M as the variety of all (r−1)-dimensional projective linear subspaces of

P∗(V ). For a point p ∈ M, let Π(p) ⊂ P∗(V ) denote the projective linear subspace
corresponding to p. Let S be a reduced irreducible closed subvariety of P∗(V ). For a
point x ∈ S, we denote by ETxS ⊂ P∗(V ) the embedded Zariski tangent space to S at
x. We denote by Sns the smooth locus of S, and put

Ck(S) :=
{

p ∈ M
∣∣ dim

(
Π(p) ∩ ETxS

)
= k for some x ∈ Π(p) ∩ Sns

}
,

where the over-line means the Zariski closure. When k = dim S − m + r + 1, the
subvariety Ck(S) of M is the higher associated hypersurface defined in [4, Section 2E,

Chapter 3]. Note that, if Y is a hypersurface of M, then Y is of corank 1 if and only
if Y is coisotopic in the sense of [4, Definition 3.9, Section 3, Chapter 4]. Therefore,
by Theorem 3.14 in [4, Section 3, Chapter 4], we obtain the following theorem. (See
also [2, Proposition 3.3].)

Theorem 3.2 A reduced irreducible hypersurface Y ⊂ M is of corank 1 if and only

if Y is a higher associated hypersurface Ck(S) of a reduced irreducible closed subvariety

S ⊂ P∗(V ) with dim S = m− r − 1 + k.

This theorem can be generalized as follows. Let M∗ be the Grassmannian variety
of all (m− r)-dimensional linear subspaces of V ∗ := Hom(V,C). We have a natural
isomorphism

δ : M∗
∼
−→ M.

For a reduced irreducible closed subvariety S∗ of P
∗(V ) := P∗(V ∗), we define the

subvariety Ck(S∗)∗ of M∗ associated to S∗ in the same way.

Theorem 3.3 Let Y be a reduced irreducible closed subvariety of M with codimension

l ≥ 2.

(1) If Y is of corank 1 with type (I), then there exists a reduced irreducible closed sub-

variety S ⊂ P∗(V ) with dim S = m− r − l such that Y coincides with C0(S).
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(2) If Y is of corank 1 with type (II), then there exists a reduced irreducible closed sub-

variety S∗ ⊂ P
∗(V ) with dim S∗ = r − l such that Y coincides with δ

(
C0(S∗)∗

)
.

Proof The following proof is almost same as the proof of [2, Proposition 3.3]. First
note that, if Y ⊂ M is of corank 1 with type (II), then δ−1(Y ) ⊂ M∗ is of corank 1
with type (I). Therefore it is enough to prove (1).

Let Y ns be a Zariski open dense subset of Y consisting of y ∈ Y at which Y is
smooth. Since corank(N∗y Y ) is a lower semi-continuous function of y ∈ Y ns, we
have corank(N∗y Y ) = 1 for any y ∈ Y ns. Let y be a point of Y ns. There exists a
unique one-dimensional linear subspace B(y) of L(y) and a linear subspace K(y) of

V/L(y) with codimension l such that

TyY =
{
τ ∈ Hom

(
L(y),V/L(y)

) ∣∣ τ
(

B(y)
)
⊂ K(y)

}

under the isomorphisms (2.1). We denote by ρ(y) the point of P∗(V ) correspond-

ing to B(y). Note that ρ(y) ∈ Π(y). Let Σ be the Zariski closure of
{(

y, ρ(y)
)
|

y ∈ Y ns
}

in Y × P∗(V ), and let S be the image of the projection of Σ to P∗(V ). We
put

s := dim S, and k := dim
(

ETρ(y0)S ∩Π(y0)
)
,

where y0 is a general point of Y ns. We then have Y ⊆ Ck(S). Hence we have

dim Y = (m− r)r − l ≤ dimCk(S) ≤ s + k(s− k) + (m− r)(r − k− 1).(3.3)

The fiber of Σ→ S over the general point ρ(y0) of S is contained in

{p ∈ M | L(p) ⊃ B(y0)} ∼= Grass(r − 1,m− 1).

Hence we have

s ≥ dimΣ− (m− r)(r − 1) = m− r − l.(3.4)

Let

(u, v) ∈ Hom
(

L(y0),V/L(y0)
)
×Hom

(
B(y0),V/B(y0)

)

be an element of

T(y0,ρ(y0))Σ ⊂ TyM × Tρ(y0)P∗(V ).

Since B(y) ⊂ L(y) holds for every y ∈ Y ns, we have u|B(y0) = π ◦ v, where π is the

natural projection from V/B(y0) to V/L(y0). Since
(

y0, ρ(y0)
)

is a general point
of Σ, Tρ(y0)S is the image of T(y0,ρ(y0))Σ. Therefore Tρ(y0)S is contained in the linear
subspace

K̃(y0) :=
{

v ∈ Hom
(

B(y0),V/B(y0)
) ∣∣ Im(π ◦ v) ⊂ K(y0)

}

of Tρ(y0)P∗(V ), which is of dimension m− 1− l and contains Tρ(y0)Π(y0). Hence we
have

k ≥ dim Tρ(y0)S + dim Tρ(y0)Π(y0)− dim K̃(y0) = s− (m− r − l).(3.5)

Since l ≥ 2, the pair (s, k) satisfying the inequalities (3.3), (3.4) and (3.5) is only
(m− r − l, 0). Therefore we have Y = C0(S) with dim S = m− r − l.
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4 Construction of a Family of Complements over End(V )

Hironaka’s resolution of singularities gives us a smooth projective completion X of X

and a morphism φ̄ : X → M such that

W := X \ X

is a normal crossing divisor, and that the restriction of φ̄ to X coincides with φ. We
equip W with the reduced structure so that W is a reduced divisor (possibly empty)
of X. For γ ∈ G, let γ φ̄ : X → M denote the composite of φ̄ with the action of γ
on M.

Let A denote the space End(V ), which is an affine space of dimension m2, and
contains G as a Zariski open dense subset. We put

U :=
{

(γ, p) ∈ A×M
∣∣ dim γ

(
L(p)
)
= r
}
.

Then the action G×M → M of G on M extends to the morphism

α : U→ M.

We also put

X :=
{

(γ, x) ∈ A× X
∣∣ (γ, φ̄(x)

)
∈ U
}
,

which is a Zariski open dense subset of A×X containing G×X. When (γ, x) ∈ X, we
write γ φ̄(x) to denote the point α

(
γ, φ̄(x)

)
of M. This notation is compatible with

the previous definition when γ ∈ G. Let

ψ : X→ M

be the morphism given by (γ, x) 7→ γ φ̄(x), and let

Ψ : X→ M × X

be the morphism given by (γ, x) 7→
(
ψ(x), x

)
. It is easy to check that Ψ is a lo-

cally trivial fiber space in the category of complex manifolds and holomorphic maps.

Every fiber ofΨ is isomorphic to

R := GL(r)× A
m(m−r).

In particular,Ψ is smooth. We regard

(D× X) + (M ×W )

as a divisor of M × X, which is reduced because both of D and W are reduced. Since
Ψ is smooth, the pull-back

Z ′ := Ψ−1
(

(D× X) + (M ×W )
)
= ψ−1(D) +

(
(A×W ) ∩ X

)
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is also a reduced divisor of X. Let

Ψ
′ : X \ Z ′ → (M \ D)× X

be the restriction ofΨ. Then we have the following diagram of the fiber product

X \ Z ′

�

�

�

//

Ψ
′

��

X

Ψ

��

(M \ D)× X
�

�

// M × X.

(4.1)

Let Z be the closure of Z ′ in A × X; that is, Z is the unique divisor of A × X whose
support is the closure of Z ′ and whose restriction to X coincides with Z ′. Then Z is

again a reduced divisor. We put

E := (A× X) \ Z,

and let f : E→ A be the projection.

Let∆ ⊂ A denote the irreducible hypersurface A \G. For every point p ∈ M, the
locus of all γ ∈ ∆ such that (γ, p) /∈ U is of codimension≥ 1 in∆. This implies that
(A×M) \U is of codimension≥ 2 in A×M, and (A×X) \X is also of codimension

≥ 2 in A × X. Therefore the inclusion of X \ Z ′ into E = (A × X) \ Z induces an
isomorphism

π1(X \ Z ′)
∼
−→ π1(E).

For γ ∈ A, let Fγ denote the fiber f−1(γ), and let Zγ be the scheme-theoretic inter-
section of Z with {γ} × X. We regard Zγ as a subscheme of X. If γ ∈ G, then we
have

Fγ = X \ Zγ =
γφ−1(M \ D),

and the restriction ofΨ ′ to Fγ =
γφ−1(M \ D) is equal to the morphism γ

Φ.
Now Main Theorem follows from the following two claims.

Claim 4.1 The homomorphism Ψ ′∗ : π1(X \ Z ′) → π1(M \ D) × π1(X) gives
π1(E) ∼= π1(X \ Z ′) a structure of the central extension of π1(M \ D) × π1(X) by

the cokernel of π2(φ) associated with η ∈ H2
(

(M \ D)× X,Z
)

.

Claim 4.2 If the condition (DG) is satisfied, then the inclusion of Fγ ↪→ E induces
an isomorphism on the fundamental groups for a general γ ∈ G.

5 Proof of Claim 4.1

Let L → M be the universal family of r-dimensional subspaces of V . Then we have

c1(det L) = −c, where c ∈ H2(M,Z) is the positive generator. Let

L1 → M × X, and L2 → M × X
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be the pull-backs of L → M by the first projection pr1 : M × X → M, and by the
composite morphism φ̄ ◦ pr2 : M × X → X → M, respectively. Then we have a fiber

bundle
Isom(L2,L1)→ M × X,

whose fiber over (p, x) is Isom
(

L
(
φ̄(x)
)
, L(p)

)
∼= GL(r). The C

×-bundle

det
(

Isom(L2,L1)
)
→ M × X

is the complement to the zero section of the line bundle (det L2)−1 ⊗ det L1, whose
first Chern class is given by

η̄ := − pr∗1 c + (φ̄ ◦ pr2)∗c ∈ H2(M × X,Z).

If (γ, x) ∈ X, then γ : V → V induces an isomorphism from the fiber L
(
φ̄(x)
)

of

L2 over Ψ(γ, x) =
(
γ φ̄(x), x

)
to the fiber L

(
γ φ̄(x)

)
of L1 over Ψ(γ, x). Hence Ψ is

naturally lifted to a morphism

Ψ̃ : X→ det
(

Isom(L2,L1)
)
,

which is a fiber bundle with fibers isomorphic to SL(r) × A
m(m−r). In particular, Ψ̃

induces an isomorphism from π1(X) to π1

(
det
(

Isom(L2,L1)
))

, which is a central

extension of π1(M)× π1(X) associated with η̄.
Recall that the morphism Ψ is locally trivial with fibers isomorphic to R =

GL(r) × A
m(m−r). Therefore we obtain from the diagram (4.1) a homomorphism

between the homotopy exact sequences forΨ andΨ ′:

π2

(
(M \ D)× X

) ∂
//

��

π1(R) // π1(X \ Z ′)
Ψ
′

∗

//

��

π1

(
(M \ D)× X

)

��

π2(M × X) // π1(R) // π1(X) // π1(M × X),

(5.1)

where vertical arrows are induced from the inclusions. Note that the morphism Ψ ′

factors through

Ψ̃
′ := Ψ̃|

X\Z ′ : X \ Z ′ → det
(

Isom(L2,L1)
) ∣∣

(M\D)×X
.

Since every fiber of Ψ̃ ′ is isomorphic to SL(r)× A
m(m−r), this morphism Ψ̃ ′ induces

an isomorphism

π1(X \ Z ′) ∼= π1

(
det
(

Isom(L2,L1)
)
|(M\D)×X

)
,
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so thatΨ ′∗ makes π1(X \Z ′) the central extension of π1(M \D)×π1(X) by the cyclic
group

Coker
(
∂ : π2(M \ D)× π2(X)→ π1(R)

)

associated with the cohomology class η = η̄|(M\D)×X ∈ H2
(

(M \D)×X,Z
)

. Hence
it is now enough to show that the cokernel of ∂ in (5.1) is isomorphic to the cokernel

of π2(φ) : π2(X)→ π2(M).

First we show that ∂ maps the first factor π2(M \ D) to zero. Because H2(M,Z) is
an infinite cyclic group generated by the homology class of a closed algebraic curve
in M, every non-zero element of H2(M,Z) has a non-trivial intersection number

with the homology class of the ample divisor D. Hence any non-zero element of
π2(M) ∼= H2(M,Z) cannot be in the image of π2(M \ D) → π2(M); that is, the
homomorphism π2(M \ D) → π2(M) induced by the inclusion is a zero map. Then
the commutativity of the diagram (5.1) proves the claim ∂

(
π2(M\D)×{0}

)
= 0. To

investigate the image of the second factor π2(X) by ∂, we choose a point p0 ∈ M \ D

and consider the morphism

Ψ
′
0 : {(γ, x) ∈ X \ Z ′ | γ φ̄(x) = p0} → X

given by (γ, x) 7→ x. This morphism is the pull-back ofΨ ′ by the inclusion

X ∼= {p0} × X ↪→ (M \ D)× X.

Hence the boundary homomorphism ∂0 : π2(X)→ π1(R) associated with the locally
trivial fiber space Ψ ′0 coincides with the restriction of ∂ to the second factor. On the
other hand,Ψ ′0 is also obtained as the pull-back of the second projection

α−1(p0) = {(γ, p) ∈ U | γ(p) = p0} → M(5.2)

by φ : X → M. Therefore we have a homomorphism between the homotopy exact
sequences associated withΨ ′0 and (5.2):

// π2(X)
∂0

//

φ∗

��

π1(R) // π1

(
Ψ
′−1

({p0} × X)
)

//

��

// π2(M)
∂M

// π1(R) // π1

(
α−1(p0)

)
// .

(5.3)

Thus all we have to show is that the boundary homomorphism ∂M associated with
(5.2) is an isomorphism. Since both of π2(M) and π1(R) are an infinite cyclic group,

it is enough to show that π1

(
α−1(p0)

)
is trivial. Since (A×M)\U is of codimension

≥ 2 in A ×M, π1(U) is trivial. Because the morphism α : U → M admits a section
p 7→ (idV , p), the homomorphism α∗ : π2(U) → π2(M) is surjective. From the
homotopy exact sequence associated with α, we see that π1

(
α−1(p0)

)
is trivial.
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6 Proof of Claim 4.2

Let {Di | i ∈ I} be the set of irreducible components of the reduced divisor D, and let
{(Sing D) j | j ∈ J} be the set of irreducible components of the singular locus Sing D

of D. We regard each (Sing D) j as a reduced subscheme of M. Let J(2) ⊂ J be the set

of all j ∈ J such that (Sing D) j is of codimension exactly 2 in M. For points p, q ∈ M

and linear subspaces K ⊂ TpM, L ⊂ TqM, we put

G(p, q) := {γ ∈ G | γ(p) = q}, and

G(p, q; K, L) := {γ ∈ G(p, q) | (dγ)p(K) ⊂ L}.

Instead of G(p, p), we write Gp. We consider the following conditions. We equip
φ̄(X) with the reduced structure.

TR 1(i) Let p be a general point of φ̄(X), and let q be a general point of Di . Then
G
(

p, q; Tpφ̄(X),TqDi

)
is of codimension≥ 2 in G(p, q).

TR 2( j) Let p be a general point of φ̄(X), and let q be a general point of (Sing D) j ,
where j ∈ J(2). Then the locus
{
γ ∈ G(p, q)

∣∣ (dγ)p

(
Tpφ̄(X)

)
+ Tq(Sing D) j = TqM

}

is Zariski open dense in G(p, q).

We say that the transversality condition is satisfied if TR 1(i) is satisfied for every

i ∈ I and TR 2( j) is satisfied for every j ∈ J(2).
Now Claim 4.2 follows from the following two sub-claims.

Sub-claim 6.1 Suppose that the condition (DG) is satisfied. Then the transversality
condition is satisfied.

Sub-claim 6.2 If the transversality condition is satisfied, then the inclusion Fγ ↪→ E

induces an isomorphism π1(Fγ) ∼= π1(E) for a general γ ∈ G.

7 Proof of Sub-claim 6.1

Suppose first that r = 1 or r = m−1, i.e., that M is a projective space. For any p ∈ M,
the natural representation Gp → GL(TpM) of Gp on TpM is surjective. Hence the
assumption dim φ̄(X) ≥ 2 implies the transversality condition.

From now on, we assume 2 ≤ r ≤ m − 2. Then Sub-claim 6.1 follows from the

following:

(1) If TR 1(i) is not satisfied, then φ̄(X) is of rank 1 and Di is of corank 1.
(2) If TR 2( j) is not satisfied for j ∈ J(2), then φ̄(X) is of rank 1, (Sing D) j is of

corank 1, and the types of φ̄(X) and (Sing D) j coincide.

Because of the definition of (co)rank, these follow immediately from Proposition 7.1
below. Let p be a point of M, and let F, H and K be linear subspaces of TpM such

that

dim F ≥ 2, dim H = dim TpM − 1, and dim K = dim TpM − 2.

We denote by Gp(F,H) ⊂ Gp the locus of all γ ∈ Gp such that (dγ)p(F) ⊂ H.
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Proposition 7.1

(1) Suppose that Gp(F,H) is of codimension ≤ 1 in Gp. Then we have rank(F) = 1

and corank
(

(TpM/H)∗
)
= 1.

(2) Suppose that K + (dγ)p(F) fails to coincide with the total space TpM for a general

γ ∈ Gp . Then we have rank(F) = 1 and corank
(

(TpM/K)∗
)
= 1. Moreover the

types of F and (TpM/K)∗ coincide.

Proof For simplicity, we put

n := m− r.

We fix bases {e1, . . . , er} of L(p) and { f 1, . . . , f n} of V/L(p). We express, via the
isomorphisms (2.1), elements τ ∈ TpM (resp. ω ∈ T∗p M) by r × n matrices (τi j)

(resp. n× r matrices (ω ji)), where

τ (ei) =

n∑

j=1

τi j f j , and ω( f j) =

r∑

i=1

ω jiei .

The canonical bilinear form ( , ) : T∗p M × TpM → C is then given by

(ω, τ ) =
∑

i, j

ω jiτi j .

We write the natural homomorphism

u : Gp → GL
(

L(p)
)
× GL

(
V/L(p)

)

by u(γ) = (γ−1
1 , γ2), putting the inverse on the first factor. Let us also express el-

ements γ1 of GL
(

L(p)
)

and γ2 of GL
(

V/L(p)
)

by r × r matrices (gk
i ) and n × n

matrices (hl
j), respectively;

γ1(ei) =

r∑

k=1

gk
i ek, γ2( f l) =

n∑

j=1

hl
j f j .

Then the action of γ ∈ Gp on TpM is identified with the multiplication of matrices

(τi j) 7→
(∑

k,l

gk
i τklh

l
j

)
.

Now we start the proof of (1). Let α be a generator of the 1-dimensional linear
subspace (TpM/H)∗ of T∗p M. We have

H = {τ ∈ TpM | (α, τ ) = 0}.
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Suppose that α is represented by an n × r matrix (α ji). When τ ∈ F is given, the
condition on γ ∈ Gp for (dγ)p(τ ) to be contained in the hyperplane H ⊂ TpM is

given by the quadratic equation

∑

i, j,k,l

α jigk
i τklh

l
j = 0,

where u(γ) = (γ−1
1 , γ2) and γ1 = (gk

i ), γ2 = (hl
j). We put

Q(τ ) :=
{(

(gk
i ), (hl

j)
)
∈ End

(
L(p)
)
× End

(
V/L(p)

) ∣∣∣
∑

i, j,k,l

α jigk
i τklh

l
j = 0

}
,

and let Q(τ )0 be the intersection of Q(τ ) with GL
(

L(p)
)
× GL

(
V/L(p)

)
. Then we

have

Gp(F,H) =
⋂

τ∈F

u−1
(

Q(τ )0
)
.

The locus Q(τ ) is a quadratic hypersurface for τ 6= 0. Moreover the closure of

Q(τ )0 in End
(

L(p)
)
× End

(
V/L(p)

)
is equal to Q(τ ), because Q(τ ) cannot pos-

sess an irreducible component in common with the complement in End
(

L(p)
)
×

End
(

V/L(p)
)

to GL
(

L(p)
)
×GL

(
V/L(p)

)
. It is also easy to see that, if two matri-

ces τ1 and τ2 of F are linearly independent, then Q(τ1) does not coincide with Q(τ2).
Therefore the assumption of (1) implies that, for every τ ∈ F \ {0}, Q(τ ) is a union

of two hyperplanes, and all these Q(τ ) contain one fixed hyperplane in common. We
put

ρ := corank
(

(TpM/H)∗
)
.

By choosing the bases {e1, . . . , er} and { f 1, . . . , f n} suitably, we put the matrix (α ji)
into the following form:

α ji
=

{
1 if i = j and 1 ≤ i ≤ ρ,

0 otherwise.

Let η = (ηkl) be a non-zero element of F. The reducibility of Q(η) implies that there

exist λi
k ∈ C and µ

j
l ∈ C such that

ρ∑

i=1

∑

k,l

gk
i ηklh

l
i =

(∑

i,k

λi
kgk

i

)
·
(∑

j,l

µ
j
l hl

j

)
;

that is,

λi
k · µ

j
l =

{
ηkl if i = j and 1 ≤ i ≤ ρ,

0 otherwise.
(7.1)
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There exists at least one (k, l) such that ηkl 6= 0. Hence (7.1) implies that ρ = 1.

Moreover, we have λi
k = 0 for i ≥ 2, µ

j
l = 0 for j ≥ 2, and ηkl = λ1

k · µ
1
l . We have

Q(η) = Λ1 ∪ Λ2, where Λ1 and Λ2 are hyperplanes defined by

Λ1 =

{∑

k

λ1
kgk

1 = 0
}
, Λ2 =

{∑

l

µl
1h1

l = 0
}
.

By the consideration above, either Λ1 ⊂ Q(τ ) for all τ ∈ F or Λ2 ⊂ Q(τ ) for all
τ ∈ F holds. In the former case, for any τ ∈ F, there exist scalars tl (l = 1, . . . , n)

such that λ1
ktl = τkl. This implies that Ker τ ⊂ L(p) contains a fixed hyperplane

{∑

i

xiei

∣∣∣
∑

i

xiλ1
i = 0

}

of L(p). Thus F is of rank 1 with type (II). In the later case, for any τ ∈ F, there exist
scalars sk (k = 1, . . . , r) such that skµ

1
l = τkl. This implies that, for k = 1, . . . , r,

the vector τ (ek) ∈ V/L(p) is proportional to
∑n

l=1 µ
1
l f l. Thus F is of rank 1 with

type (I).
Next we prove (2). We put

µ := min
{

corank(ω)
∣∣ ω ∈ (TpM/K)∗ \ {0}

}
.

Note that µ is not the maximal rank, but the minimal one. Let α ∈ (TpM/K)∗ be
an element such that corank(α) = µ, and let β ∈ (TpM/K)∗ be an element that is
linearly independent with α. Then K is defined in TpM by

K = {τ ∈ TpM | (α, τ ) = (β, τ ) = 0}.

Let η and ζ be linearly independent elements of F. Then the assumption of (2) im-

plies that

det

((
α, (dγ)p(η)

) (
β, (dγ)p(η)

)
(
α, (dγ)p(ζ)

) (
β, (dγ)p(ζ)

)
)
= 0(7.2)

holds for a general γ ∈ Gp , and hence for an arbitrary γ ∈ Gp. We write down this
equation in terms of the components of the matrices α = (α ji), β = (β ji), η = (ηi j ),
ζ = (ζi j) and γ1 = (gk

i ), γ2 = (hl
j), where u(γ) = (γ−1

1 , γ2). We put

[ ji, kl : j ′i ′, k ′l ′] := α jiηklβ
j ′i ′ζk ′l ′ .

Looking at the coefficient of gk
i hl

jg
k ′

i ′ hl ′

j ′ of (7.2), we obtain the following equations:

([ ji, kl : j ′i ′, k ′l ′] + [ j ′i, kl ′ : ji ′, k ′l]

+ [ ji ′, k ′l : j ′i, kl ′] + [ j ′i ′, k ′l ′ : ji, kl])

− ([ j ′i ′, kl : ji, k ′l ′] + [ ji ′, kl ′ : j ′i, k ′l]

+ [ j ′i, k ′l : ji ′, kl ′] + [ ji, k ′l ′ : j ′i ′, kl]) = 0.

(7.3)

https://doi.org/10.4153/CJM-2003-007-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-007-9


Zariski Hyperplane Section Theorem 173

By re-choosing the bases {e1, . . . , er} and { f 1, . . . , f n} appropriately, we get

α ji
=

{
1 if j = i and 1 ≤ i ≤ µ,

0 otherwise.
(7.4)

Because corank(α) = µ is minimal andα and β are linearly independent, there exists
(i ′, j ′) such that

(i ′ > µ or j ′ > µ) and β j ′i ′ 6= 0.(7.5)

Suppose that there existed i1 and (i2, j2) such that

α j2i1 = αi1i2 = α j2i2 = 0, αi1i1 6= 0 and β j2i2 6= 0.

Applying (7.3) to ( j, i, j ′, i ′) = (i1, i1, j2, i2), we would obtain ηklζk ′l ′ − ηk ′ l ′ζkl = 0

for arbitrary (k, l, k ′, l ′). This contradicts the linear independence of η and ζ . There-
fore there are no such i1 and (i2, j2). This means, by (7.4) and (7.5), that

µ = 1 and (β ji 6= 0 =⇒ ( j ≤ µ or i ≤ µ)).

Now by changing {e1, . . . , er} and { f 1, . . . , f n} again, we get

α ji
= 0 unless ( j, i) = (1, 1), while α11

= 1, and(7.6)

β ji
= 0 unless (i, j) = (1, 1) or (2, 1) or (1, 2).(7.7)

Applying (7.3) to ( j, i, j ′, i ′) = (1, 1, 1, 2), we obtain

β12
(

(ηklζk ′l ′ − ηk ′ l ′ζkl) + (ηkl ′ζk ′l − ηk ′ lζkl ′)
)
= 0

for arbitrary (k, l, k ′, l ′). Putting l = l ′, we get

β12(ηklζk ′l − ηk ′ lζkl) = 0(7.8)

for arbitrary k, k ′ and l. Applying (7.3) to ( j, i, j ′, i ′) = (1, 1, 2, 1) and putting
k = k ′, we also obtain

β21(ηklζkl ′ − ηkl ′ζkl) = 0(7.9)

for arbitrary k and l, l ′. Suppose that both of β12 and β21 were non-zero. Then (7.8)
and (7.9) would imply that η and ζ should be linearly dependent, which contradicts
the assumption. Hence either (β12 6= 0, β21

= 0) or (β12
= 0, β21 6= 0) holds.

Combining this with (7.6), we see that corank(ω) ≤ 1 for every linear combination

ω of α and β; that is, we have corank(K) = 1.
Suppose that β12 6= 0 and β21

= 0. Then Ker ω ⊂ V/L(p) contains the hyper-
plane spanned by f 2, . . . , f n for any ω ∈ K. Thus K is of type (II). Moreover the
fact that (7.8) holds for arbitrary elements η and ζ of F implies that there exist fixed
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scalars u1, . . . , ur such that, for any τ ∈ F, we have t1, . . . , tn ∈ C satisfying τkl = uktl.
This implies that Ker τ ⊂ L(p) contains a fixed hyperplane

{∑

i

xiei

∣∣∣
∑

i

uix
i
= 0
}

for any τ ∈ F. Thus F is of rank 1 with type (II). Suppose that β21 6= 0 and β12
= 0.

Then Im ω ⊂ L(p) is proportional to e1 for any ω ∈ K. Thus K is of type (I). More-
over, by (7.9), there exist fixed scalars v1, . . . , vn such that, for any τ ∈ F, we have
s1, . . . , sr ∈ C satisfying τkl = skvl. This implies that Im τ ⊂ V/L(p) is generated by

a fixed vector
∑n

j=1 v j f j for any τ ∈ F. Thus F is of rank 1 with type (I).

8 Proof of Sub-claim 6.2

In order to prove Sub-claim 6.2, it is enough to show that f : E → A satisfies the

conditions (T1)–(T4) in [8, Theorem 1.3].

The condition (T1) is obviously satisfied. Since f is smooth, the condition (T2) is
also satisfied. For the condition (T3), it is enough to show that the locus

Ξ∅ := {γ ∈ A | Fγ = ∅}

is contained in a Zariski closed subset of codimension≥ 2 in A. The following lemma
is easy:

Lemma 8.1 Let S be an irreducible hypersurface of M, and let p, q be two distinct

points of M. Then the Zariski closed subset {γ ∈ G | γ(p) ∈ S, γ(q) ∈ S} of G is of

codimension≥ 2.

Corollary 8.2 If C is an irreducible Zariski closed subset of M with dimC ≥ 1, then

the Zariski closed subset {γ ∈ G | γ(C) ⊂ D} of G is of codimension≥ 2.

If γ ∈ G ∩ Ξ∅, then γ
(
φ̄(X)

)
is contained in D. By Corollary 8.2, the assump-

tion dim φ̄(X) ≥ 2 implies that G ∩ Ξ∅ is contained in a Zariski closed subset of
codimension≥ 2 in G.

Recall that ∆ is the irreducible hypersurface A \ G of A. Let ∆◦ ⊂ ∆ be the

Zariski open dense subset consisting of all γ ∈ ∆ such that the linear homomor-
phism γ : V → V is of rank m−1. It is well-known that∆◦ coincides with∆\Sing∆
([7, Example 14.16]). For a point p ∈ M, we put

∆
◦(p) := {γ ∈ ∆◦ | Ker γ 6⊂ L(p)} = {γ ∈ ∆◦ | (γ, p) ∈ U},

which is a Zariski open dense subset of∆◦. The following lemma is obvious:

Lemma 8.3 The morphism∆◦(p)→ M given by γ 7→ γ(p) is surjective.
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Let x be any point of X. By Lemma 8.3, if γ ∈ ∆◦
(
φ̄(x)
)

is general, then

γ
(
φ̄(x)
)
/∈ D. In particular, we have x ∈ X \ Zγ . Hence ∆ ∩ Ξ∅ is contained

in a proper Zariski closed subset of∆. Therefore Ξ∅ is contained in a Zariski closed
subset of A with codimension≥ 2. Thus the condition (T3) is satisfied.

Now we check the condition (T4). Let Σ f ⊂ A be the topological discriminant

locus (see [8, Definition 1.2]) of f : E → A, and let Σ(1)
f , . . . ,Σ

(k)
f be the irreducible

components of Σ f with codimension 1 in A. If∆ ⊂ Σ f , then one of Σ(i)
f is∆.

First let us consider the local monodromy around∆.

Proposition 8.4 If γ is a general point of∆, then Zγ is a reduced divisor of X.

Proof For γ ∈ ∆, we put

Kγ := {p ∈ M | Ker γ ⊂ L(p)}.

If γ ∈ ∆◦, then Kγ is isomorphic to Grass(r − 1,m − 1). For γ ∈ ∆, let X
′
γ denote

the fiber of the projection X→ A over γ. Then we have

X
′
γ = X \ φ̄−1(Kγ).

First we prove that, if γ ∈ ∆ is general, then φ̄−1(Kγ) is of codimension≥ 2 in X.
We put

K := {(γ, p) ∈ ∆◦ ×M | p ∈ Kγ}.

Since the projection K→ ∆◦ is smooth with fibers isomorphic to Grass(r−1,m−1),
K is smooth and of dimension

dim K = dim∆◦ + (m− r)(r − 1).

The group G acts on K from left by

(γ, p) 7→
(
γ ◦ g−1, g(p)

)
(g ∈ G).

The projection K → M is obviously equivariant under this action. Since G acts
transitively on M, the projection K → M is smooth. Consider the fiber product
K×M X of the projection K→ M and φ̄ : X → M:

K×M X

�

//

��

K //

��

∆
◦

X
φ̄

// M.

The projection K×M X → X is smooth and of relative dimension equal to dim K−
dim M. Hence we have

dim(K×M X) = dim X + dim K− dim M = dim X + dim∆◦ − (m− r).
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Let q : K ×M X → ∆
◦ be the composite of the projections K ×M X → K and

K → ∆◦. By construction, φ̄−1(Kγ) is isomorphic to q−1(γ). Therefore, if γ ∈ ∆◦

is general, we have

dim φ̄−1(Kγ) ≤ dim(K×M X)− dim∆◦ = dim X − (m− r).

Since we have assumed r ≤ m − 2 (see Remark 2.2), the codimension of φ̄−1(Kγ) in
X is at least 2 for a general γ ∈ ∆.

Let Z ′γ denote the scheme-theoretic intersection of X
′
γ and the divisor Z ′ of X. If

γ ∈ ∆ is general, then X \ X
′
γ is of codimension ≥ 2 in X, and hence Zγ coincides

with the closure of Z ′γ in X. Therefore it is enough to show that Z ′γ is a reduced divisor

of X
′
γ for a general γ ∈ ∆. We put

X∆◦ := (∆◦ × X) ∩ X,

and let Z ′
∆◦

be the scheme-theoretic intersection of Z ′ and X∆◦ . For γ ∈ ∆◦, we
denote by

ψ ′∆◦ : X∆◦ → M and ψ ′γ : X
′
γ → M

the restrictions of ψ : X→ M to X∆◦ and to X
′
γ , respectively. Then we have

Z ′∆◦ = ψ
′−1
∆◦

(D) + (∆◦ ×W ) ∩ X∆◦ ,

and, for γ ∈ ∆◦, the divisor

Z ′γ = ψ
′−1
γ (D) + W ∩ X

′
γ

of X
′
γ is the scheme-theoretic intersection of Z ′

∆◦
and X

′
γ in X∆◦ . Note that G acts on

X∆◦ by

(γ, x) 7→ (g ◦ γ, x) (g ∈ G),

and that ψ ′
∆◦

is equivariant under the action of G. Since G acts on M transitively,
ψ ′
∆◦

is smooth. Therefore ψ ′−1
∆◦

(D) is a reduced divisor of X∆◦ . Hence, if γ ∈ ∆◦ is

general, then ψ ′−1
γ (D) is a reduced divisor of X

′
γ .

Let W1, . . . ,Wm be the irreducible components of W . We choose a general point
wi of Wi for each i. If γ ∈ ∆◦ is general, then wi /∈ φ̄

−1(Kγ) and γ
(
φ̄(wi)

)
/∈ D by

Lemma 8.3. Hence W ∩ X
′
γ and ψ ′−1

γ (D) have no common irreducible components.

Thus Z ′γ is a reduced divisor of X
′
γ for a general γ ∈ ∆◦.

Let B∆ be a Zariski open dense subset of A containing the generic point of∆ such
that B∆ ∩ Σ f ⊂ ∆. Let f∆ : E∆ → B∆ be the restriction of f to E∆ := f−1(B∆). By
Proposition 8.4, we see that the conditions (B1) and (B2) of [8, Proposition 4.3] are
satisfied by f∆. Hence the local monodromy around∆ is trivial.
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Next we consider the local monodromy µi around Σ(i)
f that is not ∆. From now

on, we will assume that dim X = 2, and that φ̄ is generically finite onto its image (see
Remark 2.3). We put

EG := f−1(G),

and let fG : EG → G be the restriction of f to EG. Then we are exactly in the situation
of [8, Section 5]. Indeed, the restriction of the morphismψ : X→ M to EG coincides
with

ḡ : G× X → M

in [8, Section 5]. (Note that we put B := G in [8, Section 5].) Recalling the definition
of the divisor Z of A× X, we see that EG is the complement in G× X to

ZG := (G×W ) + ḡ−1(D).

Therefore we can prove the triviality of the local monodromyµi aroundΣ(i)
f by show-

ing that the conditions (G1)–(G3) of [8, Proposition 5.1] are satisfied.

Recall, from [8, Section 5], that Y = φ̄(X). The condition (G1) is satisfied be-
cause of our assumption. The condition (G2) follows from Corollary 8.2. The condi-
tion (G3) follows from the following proposition, in which we use the assumption in
Sub-claim 6.2 that the transversality condition is satisfied. Recall, from [8, Section 5],

that Sing
(
γ(Y )∩D

)
is the locus consisting of all points y ∈ γ(Y )∩D such that either

γ(Y ) is singular at y, or D is singular at y, or Tyγ(Y ) + TyD 6= TyM.

Proposition 8.5 Suppose that the transversality condition is satisfied. Then the locus{
γ ∈ G | dim Sing

(
γ(Y ) ∩ D

)
> 0
}

is contained in a Zariski closed subset of

codimension≥ 2 in G.

Proof We assume that there exists an irreducible hypersurface Ξ of G such that
dim Sing

(
ξ(Y ) ∩ D

)
> 0 for a general point ξ ∈ Ξ, and derive a contradiction.

Let Q ⊂ Y be the minimal Zariski closed subset such that the generically finite
morphism φ̄ : X → Y is étale over Y \ Q. We put

X0 := X \ φ̄−1(Q).

By Corollary 8.2, the locus
{
γ ∈ G | dim

(
γ(Q)∩D

)
= 1
}

is of codimension≥ 2 in

G. Because ξ is a general point of the hypersurface Ξ, we have dim
(
ξ(Q) ∩ D

)
= 0

or ξ(Q) ∩ D = ∅. Therefore the assumption dim Sing
(
ξ(Y ) ∩ D

)
≥ 1 would imply

that the locus

{x ∈ X0 | p := ξφ̄(x) ∈ D and (dξφ̄)x(TxX) ⊂ TpD}

should contain a curve. We consider the incident variety

Ω := {(γ, x, p) ∈ G× X0 × D | γ φ̄(x) = p and (dγ φ̄)x(TxX) ⊂ TpD}.
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Then the dimension of the fiber of the projection prG : Ω→ G over the general point
ξ of Ξ should be ≥ 1. Thus pr−1

G (Ξ) would contain an irreducible component with

dimension≥ dim G.
For i ∈ I, we put

Dns
i := Di \ (Di ∩ Sing D).

Let prD : Ω→ D be the projection. Then we have

Ω =

∐

i∈I

Ω
ns
i

∐⋃
j∈ J Ω

sing
j ,

where
Ω

ns
i := pr−1

D (Dns
i ) and Ω

sing
j := pr−1

D

(
(Sing D) j

)
.

First we show that

dimΩns
i ≤ dim G− 1 for all i ∈ I.(8.1)

The fiber of the projection

Ω
ns
i → X0 × Dns

i

over (x, p) ∈ X0 × Dns
i is the subvariety

G
(
φ̄(x), p; (dφ̄)x(TxX),TpDns

i

)
(8.2)

of G. This fiber is of codimension ≥ 1 in G
(
φ̄(x), p

)
for every (x, p) ∈ X0 × Dns

i ,
because the action of the stabilizer subgroup Gp on TpM is an irreducible represen-
tation. On the other hand, the condition TR 1(i) implies that the fiber (8.2) is of
codimension ≥ 2 in G

(
φ̄(x), p

)
for a general point (x, p) of X0 × Dns

i . Thus we

obtain (8.1) by easy dimension counts. Next we show that

dim
(

pr−1
G (Ξ) ∩ Ω

sing
j

)
≤ dim G− 1(8.3)

for all j ∈ J. If p ∈ Sing D, then TpD = TpM. Therefore the fiber of the projection

Ω
sing
j → X0 × (Sing D) j

over (x, p) ∈ X0 × (Sing D) j is G
(
φ̄(x), p

)
. Since G

(
φ̄(x), p

)
∼= Gp is irreducible,

Ω
sing
j is also irreducible, and

dimΩ
sing
j = dim(Sing D) j + dim Gp + dim X ≤ dim G,

where the equality holds if and only if dim(Sing D) j = dim M − 2; that is, j ∈ J(2).

Therefore (8.3) holds for any j ∈ J \ J(2). Suppose that j ∈ J(2). The condition
TR 2( j) implies that there exist an element γ0 ∈ G and a point p ∈ γ0 φ̄(X0) ∩
(Sing D) j such that γ0 φ̄(X0) and (Sing D) j are smooth at p and intersect transversely
at p. Then the locus of all γ ∈ G such that γ φ̄(X0) ∩ (Sing D) j 6= ∅ is a Zariski

open subset of G containing γ0. This implies that the projection Ω
sing
j → G is domi-

nant. Hence pr−1
G (Ξ) ∩ Ω

sing
j must be of codimension ≥ 1 in the irreducible variety

Ω
sing
j . Thus (8.3) is proved for all j ∈ J. Combining (8.1) and (8.3), we see that

dim pr−1
G (Ξ) ≤ dim G− 1, which yields a contradiction.
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9 Examples

We consider the case when m = 4 and r = 2; that is, M = Grass(P
1,P

3). For a point
Q ∈ P

3 and a plane H ⊂ P
3, we put

XQ := {p ∈ M | Q ∈ Π(p)} and YH := {p ∈ M | Π(p) ⊂ H}.

Let fQ : XQ ↪→ M and gH : YH ↪→ M be the inclusions, both of which induce iso-
morphisms on the second homotopy groups. Let C ⊂ P

3 be a closed curve. We
put

DC := {p ∈ M | C ∩Π(p) 6= ∅},

which is a hypersurface of M. We choose Q ∈ P
3 and H ⊂ P

3 in general positions
with respect to C , and consider the three fundamental groups

π1(M \ DC ), π1

(
f−1
Q (M \ DC )

)
, and π1

(
g−1

H (M \ DC )
)
.

Note that f−1
Q (M \ DC ) is isomorphic to P

2 \ pQ(C), where pQ : C → P
2 is the

projection with the center Q. Note also that g−1
H (M \ DC ) is isomorphic to

H∨
∖ ⋃

x∈H∩C

lx,

where H∨ is the dual projective plane of H and lx ⊂ H∨ is the line corresponding to
a point x ∈ H.

• Suppose that C consists of d lines passing through a point of P
3 such that no three

of them are on a plane. Then we have

π1

(
f−1
Q (M \ DC )

)
∼= Fd−1 and π1

(
g−1

H (M \ DC )
)
∼= Z

⊕(d−1),

where Fd−1 is the free group of rank d − 1. In this case, we can easily prove that
π1(M \ DC ) is isomorphic to Z

⊕(d−1).
• Suppose that C is a smooth curve of degree d on a plane in P

3. Then we have

π1

(
f−1
Q (M \ DC )

)
∼= Z/dZ and π1

(
g−1

H (M \ DC )
)
∼= Fd−1.

In this case, we can show that π1(M \ DC ) ∼= Z/dZ.
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