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Abstract
Letk > Obeaninteger, T = (T (¢)),cr a Co-group of bounded operators and A the infinitesimal generator
of T. We prove that if,
ITON=0¢*") and  log" IT(-D)ll =0t @ > 400),

and if the spectrum of A is equal to {A}, then A is bounded and (A — A)**! = 0. Examples are given to
show that these conditions are, essentially, the best possible.

1991 Mathematics subject classification (Amer. Math. Soc.): 47D03.

1. Introduction

Let X be a Banach space andlet T : R — L(X) be a Cy-group, that is, T satisfies the
following conditions:
(i) T(0) = I, where [ is the identity operator;
() T¢+s)=THT(s) (,5s €R);
(iii) For each x € R, the map r — T'(¢)x is norm-continuous from R into X.
Let 2 be the set of all x € X such that the limit

T(t)x —
Ax = hmﬂ_—)—c
t—0 t

exists. Then 2 is a linear space dense in X and A is a closed linear operator with
domain 2 [11, p. 51; A is called the infinitesimal generator of T.

In this paper we consider the following problem: Under what conditions on T do
we have (A — A)f*! = 0, when the spectrum of A, o(A), is equal to {A} and where
k > Ois a given integer?
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We prove that if T satisfies the conditions

@ ITOIl=o00"*) (- +0),
(b) log"|IT(-Dll =0(¢"» (¢ — +o0),
and if 6 (A) = {1}, then A is bounded and (A4 — A)**! = 0.

We obtain this result by using spectral sythesis arguments in weighted algebras.
For k = 0 we give the equivalence between the above result and the spectral synthesis
property for points. We prove that if @ is a weight on R then points satisfy the
w-spectral synthesis if and only if for all Cy-groups T dominated by w such that
o0(A) = {A},wehave A = AI.

For the analogous problem in the discrete case, some results are known. Let R
be a bounded and invertible operator on a Banach space with spectrum equal to {)}.
Gelfand proved that if the sequence (R"),cz is bounded then R = Al (see [1, 12]).
This result is extended in {2] and [14] to contractions R such that

®) log" R =0(?)  (n—> +00).
More generally, it is proved in [2] that if (b)) and
© IR =0 (n = +00)
hold, then (R —1)**! = 0. We improve this result by replacing (c) by the condition
@) R l=o(®"*")  (n— +o0).

Finally, we construct examples to show that (a), (b) and (a’), (b) are, essentially,
the best growth conditions for the two results.

2. Entire functions of exponential type zero

Let f be an entire function. Then f is said to be of exponential type if there exists
a constant ¢ > O such that | f(z)| = O0(e") (z € ©).

The infimum 7 of all constants ¢ for which the above inequality holds is called the
exponential type of f. It is easy to see that

1
7 = lim sup M.
lotoo  |Z]

THEOREM 2.1. Let f be an entire function of exponential type zero. If f is bounded
on [0, +00) and satisfies log” | f (—t)| = o(t'/?) (t — +00), then f is constant.

PROOE. Set, for z € C\ (—00,0], logz = log|z| + i Arg(z), where Arg(z) is
the determination of the argument of z which belongs to (—m, +m}. The function
z — zY/2 = ¢1°89/2 jg analytic on C \ (—o0, 0] and continuous on C \ (—o0, 0).
Denote by C, the right-hand half plane {z € C : Rez > 0}. Let € > 0 and set

g(@)=e"fliz) (zeC,).
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Then g, is analytic on C, and continuous on C,. We have

1/2

|8e(2)] = &R fiz)| = e~ 53 A £ (7)),

For z € C,, cos(j Argz) > 0 and so |g.(z)| < |f(iz)|. Since f is of exponential
type zero, we have for an arbitrary a > 0,

1ge(2)| = O (™) (lz] > 400, Rez > 0).

Moreover, we obtain for ¢t € R, |g.(it)| = e~<("/2"*| f(—r)|. The hypothesis on
f implies that there exists a constant m. > 0 such that | f (?)| < m.e<"/?"” (t € R).
Thus g, is bounded by m. on the imaginary axis. It follows from [4, Theorem 1.4.3]
that g, is bounded by m, on C,.. We have

12 172

(@) = Je"ge(@)] = e =G A%|g (2)] < m e

So

log|fGiz)| _

lim sup =0.

|z}]=>+400, Rez>0 |iZ|1/2
Applying the same method to the function f(—z), we obtain

log | £(iz)| _

lim sup =0.

)z|—+o00, Rez<0 'izll/z

Finally, the function f is of growth (1/2,0) in the sense of [4, Chapter 2] and
bounded on [0, +00). Hence f is constant by [4, Theorem 3.1.5].

COROLLARY 2.2. Let k = 0 be an integer and let f be an entire function of
exponential type zero. If f satisfies the two following conditions,

@ f@ =o@*y (¢t > +00),
(i) log® |f(®)| = o(t?) (t — +00),

then f is a polynomial of degree < k.

PRrROOF. Consider the function

1 £ F90)
g(z)=F(f(z)_;T‘Z)

It is easily verified that g satisfies the hypothesis of Theorem 1.1 and thus g is
constant. It follows from the definition of g that f is a polynomial of degree < k + 1,
and from condition (i) that f is polynomial of degree < k.
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3. Spectral synthesis in weighted algebras

Let w be a continuous function on R such that w(¢#) > 1 and w(t + 5) <
w()w(s) (t,s € R). The function w is called a weight.
Denote by M,,(R) the space of all complex-valued measures 1 on R such that

+00

o= [ 0@ diuio) <+oo,
—00

where |u] is the total variation of w. Let u, v € M,(R). By the Riesz representation

theorem there exists a unique measure, denoted u = v and called the convolution

product of p and v, such that

+00

+o0 +oo
/ / fG+0duls)dv(t) = F(s)d(p*v)(s)

for all continuous functions f on R which vanish at infinity. We have u+v € M,(R)
and [ * v, < tllolvie.

The space M,(R) with convolution product and norm ||.||,, is a unital Banach
algebra (see [9, Sec. 4.16]). If we denote by §, the Dirac measure concentrated at {¢},
then & is the unit of M_,(R) and ||§,l|, = w(¢) (¢t € R).

Set L,,(R) to be the space of all measurable functions f such that

+00
N fllw =f |f (D] (r)dt < +oo.
The space L, (R) is naturally identifiable with a closed ideal of M, (R). The convo-
lution product of f, g € L,(R) is defined almost everywhere in the formula

+00

(f % 8)(s) = / F)g(s — 1 dr.

—00

The dual of L,(R), denoted by L (R), is the set of all measurable functions
g such that esssup, g |g(t)|/w(—t) < +o00, and the duality is implemented by the
formula

+00
(i) = / FOg(=Ddt  (f € Lo(R), g € L\ (R)).

We say the weight w is regular if

f+°° log w ()

Py dt < +o0.

o 1
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It is well-known that the algebra L, (R) is regular in the sense of [10, pp. 221, 226] if
and only if the weight w is regular [10, p. 118].
For i1 € M, (R) we denote by fi the Fourier transformation of p, so that

+o0
aor= [ i xem.
If 7 is a closed ideal of L, (R), the Aull of  isthe set h(I) = {x e R : f(x) =0(fe€
D}.

Let E be a closed subset of R. We set I(E) = {f € L,(R) : f,E = 0}, and we
denote by J,,(E) the closure, with respect to the norm |||, of the set {f € L,(R) :
f = 0 on some neighbourhood of E}. It is easily seen that /,(E) and J,(E) are
closed ideals of L,(R). If the weight w is regular then A(I,(E)) = h(J,(E)) = E
and J,(E) € I € I,(FE) for all closed ideals I of L,(R) such that (I) = E [10, p.
224].

DEFINITION 3.1. Let @ be a regular weight and let £ be a closed subset of R.
Then

(i) E satisfies w-synthesis if J,(E) = 1,(E);

(ii) f satisfies w-synthesis for E if f € J,(E).

Thus E satisfies the w-synthesis when there exists exactly one closed ideal in L, (R)
with hull E.

In [13] it is proved that closed countable subsets of R satisfy the w-synthesis for
all weights w such that

W {wa)=1 > 0),

logw(~1) = o(t?) (t — +00).

THEOREM 3.2. Let x € R, let k > 0 be an integer and let w be a weight such
that:
(i) w() =o(*) t - +00);
(i) logw(—t) =o(tz)  (t > +00);
(i) liminf,, (0 @()/(1 + [t[¥) > 0.
Then a function f € L, (R) satisfies w-synthesis for {x} if and only if ¥ (x) = 0 for
i=0,1,...,k

PROOF. By using the transformation f(t) — &' f(¢) we can suppose that x = 0.
Assume that f satisfies the w-synthesis for {0}. Let (f,).»0 be a sequence in L, (R)
such that for each integer n, ﬁ. vanishes on a neighborhood of {0} and || f, — f|l. — 0
as n — +o00. Condition (iii) ensures the existence of the first & derivatives for all
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Fourier transforms of elements of L,(R), and we have fori =0, ...,k f;"')(O) =0
f0©) - f©(0) asn — 400, and so f@(0) = 0.

Conversely, let = be the canonical surjection from L,(R) onto L,(R)/J,({0}).
There exists p € L,,(R) such that i (p) is the unit of the quotient algebra L,,(R) / J,{(0)}
(see {13, Proposition 1.2]).

Forallt € Rset m(8,) = m(p *4,); (m(8:)):er is @ norm-continuous Cy-group,
and so there exists u = lim,_, ;o (71(8,) — 7 (8))/¢ such that w(§,) = e™ (t € R) [9,
Theorem 9.4.2].

The weight w is regular and so h(J,({0})) = {0}. Thus the set of characters of
the algebra L, (R)/J,({0}) is equal to {xo}, where xo(rr(f)) = f(O), (f € L,(R)).
Hence the spectrum of u equals {xo(x)} = {0} and so lim,_, ,, [|«"]|"/* = 0. Hence,
for each € > 0, there exists a constant m, > 0 such that ||u"|| < m.€" (n > 0).

Set ¢(z) = ¢ (z € ). Then,

+00 +00 _nt,n
flu"ll|z]" €|z
o) < E — <m E = me"!,
n! n!

n=0 ‘ n=0

and so ¢(z) is a vector-valued entire function of exponential type zero. Moreover

o) =n(8,) (t € R), and so
le@ I = @Il = I (p * 81l < IPllw(@).

It follows from the Hahn-Banach theorem and from Corollary 2.2 that ¢(z) is a
polynomial of degree < k. Letay, ..., a; € L,(R)/J,({0}) be such that

e(@)=ay+az+--- +a k.

Recall that the dual of L, (R)/J,,({0}) can be identified with J,,({0})* by using the
isomorphism

0 : J,(10D* — (L.(R)/J,({OD))*

defined by 6(g) = g where g = gom (g € J,({O)D*). We obtain, for g €
J.({OD*, t e R,

(p*8,8) = (M), &) _Z<a,,

Let f € L,(R) be such that f,f")(O) =0fori =0,...,kandletg € J,({OH*. We
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have

(f’g) = (f*ng)
+00 +00
= f f(s)p(t — s)g(—t)dtds

(oo} —0o0

+00 +o00
= f(S)f pt — 5)g(—t)drds

+oo +o0 k
=/ f)p s, g)ds =f f@s) (Z(a,,g)sf) ds
oo oo —

k

k +o0
=Yl@.d [ £ ds =3 @ - FO0 =0
=0 -0

j=0

So f € J,({0}).

REMARK. For £ = 0, Theorem 3.2 shows that points satisfy w-synthesis for all
weights o such that

2

w(t) = o(r) (t = +00),
logw(—t) = 0(t?) (1 — +00),

and this improves [8, Theorem 8.1].

Suppose that w satisfies liminf},, .o w () /{t] > 0. Set I = {f € L,(R) : f(O) =
f '(0) = 0}; I is aclosed ideal of L,(R) different from I,,({0}) and with 2(I) = {0}.
So {0} does not satisfy the w-synthesis.

It follows from this observation that (2) gives, essentially, the best growth conditions
on o for which points satisfy w-synthesis.

4. C,-groups satisfying some growth conditions

Let T be a Cy-group with a generator A and let w be a regular weight such
that |T(¢)|| = O(w(t)) (|t] = 400). For example, w can be the weight w; =

T @)rer-
For u € M,(R), we define

+00
w(T) = / T(t)dp ().

o0
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(Here the integral is the Bochner integral with respect to the strong operator topology
[9, Theorem 3.8.2].) The map ¢ : M, ,(R) - Z(X), u — u(T) is a continuous
algebra homomorphism satisfying

1T
w(t)

Denote by o (A) the spectrum of A [9, Definition 2.16.1]. Let Z(A) = (A — A)™!
be the resolvent of A, so that & is defined and analytic on C \ o (A).

Since w is a weight, the limits lim,_, .., logw(?)/¢ exist; and since w is regular,
lim -, 400 logw(2)/]t} = 0. In particular, || T(n){|/" — 1 as |n|] - +o00, and so
o(T(1)) C T, where I denotes the unit circle. By [9, p. 457] we have e°® C
o(T(1)). Hence Re A = O for all A € o(A), and we have [9, p. 344]

2 | ST TOe dt ®ez>0),
—f° T@e™dt (Rez<0).

lu(Dl < Sup il

te

LEMMA 4.1. Let i € M, (R). Then
+00
w(T)x = lirg:_/ a@t) [#(e —it)x — B(—e — it)x] dt,
€—> —o0

for all x in the domain of A*.

PROOF. Let x € X. Fore > Oand ¢ € R, we set S.(t) = e <¥IT(—¢) and

+00
gu(t) = / S, — s)x du(s),

o0

so that g, : R — X is continuous. Since ||T(#)]| = O(w(®)) (|t| — +00), we have
[ IS ()]l dt < +00. Hence by Fubini’s theorem

+o0 +oo  p+00
/ lge(®l dt §/ / Sz — x| dlpel(s)dr

o o]

“+00
< Ixlligel f 1S.()ll dt < +o0.

o0

The Fourier transform of g, is given by the formula

+oo
ge(u) = / e Mg (t)dr

oo

+o0 ) +o0
= / e ' [] S.(t —s)x dp,(s)] dt
_j-ooo +o0 —of
= / [[ e e M IT (s — 1)x dt] du(s).
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We have

+00 . too
/ e—lule—els—tlT(s —Dxdt = / em(v—s)e—sleT(v)x dv

o0 —0o0

0 Foo
= e [/ T (v)x dv+/ "N T (v)x dv]
- 0

00

=e " [H(e —iu)x — H(—€ —iu)x].
So
8(u) = ji(u) (#(e — iu)x — H(—€ — iu)x)
= —2ei(u)#(€ — i) % (—e —iu)x.

Suppose that x is in the domain of A. We have forallA € o (A), Z(\)(A—A)x = x.
SoZ(A)x = (x+Z£(1)Ax)/A. Itfollows from the fact that limy,_, .o log w(2)/|t] =0
and [11, Remark 5.4], that there exists a constant M such that |Z(1}] < M for all
A, |ReA| > €. Then we obtain

IZM)x|l < (x| + M[[Ax]))/IAl, |IReA| > €.

Suppose now that x is in the domain of A%. We deduce from the above inequality
that

1
| % (€ — iu)Z(—€ — iu)x|| Sm (12(—€ — iuw)x||+ M| % (—€ — iu)Ax|))

1 2)( A2
Sm (Ilxlh + 2M || Ax|| + M?|| A%x]]) .

This estimate and the fact that /i is a bounded function show that g, is integrable.
Since g, is continuous, we obtain by the inverse Fourier transform, for all ¢ € R,

1 +00 )
ge(t) = _/ e”ugs(u) du

27 J_oo
1 +oo )
= E/ n(s)e’ (#(e —is)x — H(—e — is)x) ds.

We have o
g.(0) = / e FIT(s)x du(s),

e}

which implies that £ (T)x = lim,_,¢ g.(0), and this proves the lemma.

The following result is certainly known but we have not been able to find a precise
reference.
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THEOREM 4.2. Let T be a Cy-group with a generator A and let @ be a regular
weight such that ||T (¢)|| = O(w(t)) (Jt] &> +oc). Let

+o0

¢ 1 Ly(R) — L(X), f—> M= F@OT()dr.

Then ker ¢ is a closed ideal of L,(R) and h(ker ¢) = io (A).

PROOF. Note that g is the restriction of ¥ to L,(R) and so ¢ is a continuous algebra
homomorphism. So ker ¢ is a closed ideal of L, (R).

Set & = L,(R) + Cdy; kerg is also a closed ideal of &/. The set of characters
of & can be identified with the set {x, : x € R} U {x} where x,() = fi(x) and
Xoo(p) = limy oo f(x) (u € &). So, the set of characters of & /kerg can be
indentified with the set { Xx:XE€ hkerp)} U {xs0}. Since ker(,o C keryr N of there
exists a homomorphism v : &/ ker — L(X) such that ¢ o 7 = ¥, where 7 is the
canonical surjection from & onto &/ Ker ¢.

Let v(x) = ¢ (x > 0) and v(x) = 0 (x < 0), so that v € L,(R). The spectrum
o (m(v)) of m(v) in &/ ker ¢ is given by

o) ={(1+ix)" :x € h(kerp)} U {0}.

We have oo
v(T) = / T(®)e " dt,
o

and the relation between the Carlemann transform of T and the resolvent of A,
recalled in the beginning of this paragraph, implies that v(T) = (I — A)"!. Since
v(T) = p(v) = I;(JT(U)), we have o (v(T)) C o(w(v)). Soif x € o(A) then
x#1, 1/(1 —x) € c((T)) C o(x(v)), and 1/(1 — x) = 1/(1 + iy) with
y € h(kerp),and so ix = y € h(kerg). Thus io (A) C h(kerp).

Forn > 1, set e, = nly /), Where 1y, is the characteristic function of the
interval [0, 1/n]. We have forall f € L,(R), || f xe, — fllo = 0asn — +00[13,
Proposition 1.1].

Let I be the closure of the set of all functions f € L, (R) such that f has compact
support; [ is a closed ideal of L, (R) such that k() = ¢. Wiener’s Tauberian theorem
for regular Beurling algebras shows that / = L, (R) (see [2] and [5]). It follows
that for n > 1, there exists &k, € L,(R) such that the support of 12,, is compact and
lkn — €nllo < 1/n. Thus || f *k, — fll, — Oasn — +o00 (f € L.(R)).

Fix now f € L, (R) and let x be in the domain of A%, which we denote by Z(A?).
It follows from Lemma 4.1 that

+00

(f xk)(T)x = % lim F@Okn(t) [B(€ — it)x — B(—e — it)x] dt.
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Suppose that f vanishes on a neighbourhood of io(A). Then it is clear that
(f *k,)(T)x = 0. Since 2(A?) is dense in X [11, Theorem 2.7] and since (f xk,)(T)
is a bounded operator, we have (f « k,)(T) = 0. Using the inequality

T
AT = (f k) < sup =0y we = £
teR w(t)

we see that f(T) = 0.

The map ¢ is continuous and so J,,(io (A)) C kerg. Thus h(ker¢) C h(J,(io (A)).
Since the algebra L, (R) is regular, #(J,(io (A))) = io (A), which concludes the proof
of the theorem.

THEOREM 4.3. Let k > 0 be an integer and let T be a Cy-group with a generator
A. Assume that the following conditions hold:

@ NTOI=o(**) (- +00);
(i) log" IT(=)l =0(?) (¢ - +00).

If 0 (A) = {1}, then A is bounded and (A — A)*™! = 0.

PROOF. We have Re A = 0 and multiplying 7 (¢) by e™* we can assume without
loss of generality that A = 0.
Set w(t) = max(||[T @], (1 + |£])¥), (¢ € R); w is a weight satisfying the three
conditions of Theorem 3.2 and we have ||T (¢)]] = O(w(®)) (t = +00).
Let
if o] = 1,
u(t) = ce~ V-1 if g < 1.

the constant ¢ is chosen such that f_l1 u()dt = 1. The function u is infinitely
differentiable and Supp(u) = [—1, 1]. Set, forn > 1, and for ¢t € R, u,(t) = nu(nt)
and e,(¢) = u®*V(r). Clearly, Supp(e,) = [—1/n,1/n] and e, € L,(R). We have
é,(t) = (i)', (t). Thus é9(0) = O0fori =0, 1,..., k and Theorem 3.2 shows
that e, satisfies w-synthesis for {0}. It follows from Theorem 4.2 that h (ker ¢) = {0},
sothate, € kerg. Soe,(T) = 0.

Let x be in the domain of A**!. Themaph, : R — X, ¢+ T (t)x is (k + 1)-times
continuously differentiable and A%**+V(¢) = T (1) A**'x [9, Theorem 11.5.3].

We have oo

en(T)x = f en(th (1) dt;

applying integration by parts (k + 1)-times we obtain

+00

e.(T) = (=1)*"! / up ()R (1) dt.

—00

https://doi.org/10.1017/51446788700037435 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037435

{12} Spectral synthesis and applications to Cy-groups 139

So

+00
llea(T)x — (=D} A% x| = f un ()T (A x — A x) dt ”

o0

e 1 t ! k+1 k+1

= —u, |~ )T =) A 'x — A*'x } dt
e N n n
! ¢

= / u(t) (T (—) Aty — A"“x) dt
~1 n

T (!_) Ak+1x . Ak+lx)

n

Since the map ¢ > T (¢) A**'x is continuous, the latter quantity converges to 0 as
n — +4o00. Thus €,(T)x — (—1)*1A**1x as n — +o0. Since ¢,(T) = 0, we obtain
A¥*1x = 0. Hence A**! = 0. It follows from [9, p. 56] that A is bounded.

IA

sup

—1<e<1

We will make precise the relation between Theorem 3.2 and Theorem 4.3 in the
case k = (. We will say that a regular weight w satisfies property (P) if .

(P) For all Co-groups T with o(A) = {0} and |T(2)|| = O(w(t)) (t| = +00),
we have A = 0.

THEOREM 4.4. Let w be a regular weight. Then o satisfies property (P) if and only
if points satisfy w-synthesis.

PROOE. We will use the notations introduced in the proof of Theorem 3.2. Suppose
that  satisfies property (P). The Cy-group (7 (5,)),cr € L, (R)/J,({0}) is such that
o) =0and ([7(6) < llplloew () (t € R). Hence u =0 and 7(5,) = 7w () (r € R).

Let f € 1,({0}) and let g € J,({0})*. Then

+o0
(f.g) = (f % p.g) =f F)p 8., g)ds

+00
= f FG) (5, 8)ds = (n(p), §) f(0) =0.

Thus g € [,({OD*. It follows that 1,({0}) = J,({0}).

Conversely, suppose that {0} satisfies w-synthesis and let T’ be such that o (4) = {0}
and [T (1)l = O(w(®)) (Jt] > +00).

Consider the function ¢ : L,(R) - £(X), f — f(T). By Theorem 4.2,
h(kerp) = {0}. Since {0} satisfies w-synthesis, ker¢ = I,({0}). For each integer
n > 1 let e, be the function defined in the proof of Theorem 4.3 for k = 0. We have
e,(T)x — —Ax for all x in the domain of A. Since €,(0) = 0, e,(T) = 0. Hence
A=0.
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5. The discrete case

We now give a result, analogous to Theorem 4.3 as announced in the introduction.

THEOREM 5.1. Let k > O be an integer and let R be a bounded operator on a
Banach space with spectrum equal to {\} and such that

@ IR = o(n**!) (n — +o00);

(i) log* |R™] = o(n'/2) (n — +00).
Then (R — M) = 0.

PROOF. We have |A| = 1 and we can assume without loss of generality that A = 1.
Let

A=logR=Y D" g gy
n>1 n .
(This series is convergent since lim,_, ;o [[(R — I)"||'/" = 0.) Set T (¢) = ¢4 (¢t € R).
It is well-known and easy to check that 0 (A) = {0} and T (n) = R" (n € Z).
For all ¢ € R there exists n € Z such that |t — n| < 1 and [n| < |¢t]|. We have

ITON < IT@ ~mIITEI < sup ITSONT @I < T @)I.

—l<s<1

Since |n| < |¢|, we see that the group T satisfies conditions (i) and (ii) of Theorem
4.3. Hence A¥*! = 0. We have

k+1
k+1 __ Ykt (=" _ gyl
A = (R-1 (Z . (R=1) )

n>1

Since the operator ), ., ((—1)"~!/n)(R—1)""" is invertible, we obtain (R—I)**' = 0.

REMARK. Let w be a weight on Z and let

4,0 ={f %M : Y Ifmlem) < +ool,
neZ
where T is the unit circle. As in Definition 3.1 we can define the w-spectral synthesis
property for a closed subset of I" [14]. By the same methods we can prove results
analogous to Theorems 3.2 and 4.4 in the discrete case. The result analogous to
Theorem 4.2 is given in [14].

Finally we give examples to show that conditions (i) and (ii) in Theorem 4.3 and
Theorem 5.1 are essentially the best possible.

https://doi.org/10.1017/51446788700037435 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037435

[14] Spectral synthesis and applications to Cy-groups 141

EXAMPLE 1. Let £ > 0 be an integer and let A : C**?2 — C**? be the operator
defined by the matrix
01

0 o1
0

with respect to the canonical basis of C**2. Define T(t) = &4 (t € R). A direct
calculation gives ||T(¢)|| = O(|t|**") (|t| = +00). But is is clear that A**! # 0.

EXAMPLE 2. Let H? be the Hardy space, let 8(z) = e“tV/¢=D (|z] < 1) and
let 7# = H? © §H?. Denote by P, the orthogonal projection on S# and set
R(f) = Pye(zf) (f € 52). Then R is a contraction with spectrum {1} such that
log |R™"|| = O(n'/?) (n - +00) [11, Remark 2.c]. But (R — I)* # 0 for all integers
k=>0.

If we set

(=17
A= R-1I),
le ——(R-1)
then 0 (A) = {0} and A is the infinitesimal generator of a norm-continuous group T
which satisfies |[T(#)|| = O(1) (¢t = +00), log" |T(=t)|| = 0@¢'?) (t - +00)
and A* # 0 for all integers k > 0 (see the proof of Theorem 5.1).
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