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Abstract

In this paper we propose the asymptotic error distributions of the Euler scheme for a
stochastic differential equation driven by Itd6 semimartingales. Jacod (2004) studied
this problem for stochastic differential equations driven by pure jump Lévy processes
and obtained quite sharp results. We extend his results to a more general pure jump
Itd semimartingale.
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1. Introduction

We consider the following stochastic differential equation (SDE):

t
Xi =x0+/ f(Xs—) dYs, ey
0

where f denotes a continuous function and Y is the Itd semimartingale.
According to the equation

X5 = xo, X = X1y + LG Xign = Yi—1y/m), )

the approximated solution of (1) is defined at the time i /n by induction on the integer i. This
scheme is called a Euler scheme. To find an approximation of the law of the path, we need to
study the weak convergence of

unU;n = un(X’[lm]/n - X[nt]/n)' 3)

This problem has attracted the attention of a number of authors. The main gap in this problem is
to find a sharp rate, u,,. Furthermore, this problem is the central topic in the asymptotic analysis
of discretization of stochastic processes. In their monograph, Jacod and Protter [4] collected
the recent developments of this field. It is worth noting that Jacod and Protter [3] provided
some fundamental results on the asymptotic error distributions of SDEs, and studied the SDEs
driven by continuous semimartingales and Lévy processes in detail. They gave the sharp rate
as u, = /n when the continuous martingale part was present in Lévy processes. When the
continuous martingale is not present then the results are quite different. Jacod [2] studied the
SDE:s driven by pure jump Lévy processes. He gave the rates in terms of the concentration of
the Lévy measure.
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In this paper we aim to extend the results in Jacod [2] to more general Itd semimartingales.
Jacod employed the independent and stationary properties of increments of Lévy processes
to obtain the results. However, when we study the same problem for a more general Itd
semimartingale, it is difficult to obtain similar results following the same approach. Recently,
Diop et al. [1] studied the weak convergence of approximate quadrate variations toward the true
quadratic variations of pure jump It6 semimartingales. This topic is very popular, especially in
the study of mathematical finance. We draw support from the method in Diop et al. [1], and
overcome the gap in the extension.

This paper is organized as follows. In Section 2 we express the main result. Some technical
lemmas are presented in Section 3. We give the proof of the main result in Section 4.

2. Main result

A semimartingale M is an It6 semimartingale on some filtered space (2, ¥, (¥7):>0, P)
if its characteristics (B™, CM, vM) are absolutely continuous with respect to the Lebesgue
measure. In other words, the characteristics of M have the form

13 1
Bf”:/o pM ds, cf”:/o cMds,  vM(dr,dx) = drFM (dx). )

Here, b™ and cM are optional processes, with ¢” >0, and F™ is an optional random measure
on R. The triple (b, ¢, FM) constitutes the spot characteristics of M. The details of these
concepts and notions can be found in Jacod and Shiryaev [5].

In this section we look at the common feature of our setting which is that the second
characteristic of Y vanishes identically. It means that the continuous local martingale part
is not present in Y.

Assumption 1. We have
t
Y[ = f Og— dZs,
0

(a) Z is a nonhomogeneous Lévy process with (nonrandom) spot characteristics (b,Z, 0, Gy),
bj? = b? — f{lxlfl} xG,(dx) and constant o € (0, 2), and two functions 6,", 6, > 0 on R
such that,

where

lim sup |x“6,i(x) - 9;i| =0,
0 0<r<1

where G, (x) = G,((x,00)), G, (x) = G,((—00, —x)), bZ is locally bounded, and 6;", 6,

are Riemann integrable over each finite interval.

(b) The process o is an Ito semimartingale with spot characteristics (by , ¢, FY), such that
the processes by , ¢ and f (x2 A 1)F? (dx) are locally bounded.

Assumption 2. We have Assumption 1, and
1
sup / G (x) = G, (x)]dx < o0.
0<t<1J0

Assumption 3. We have that f is a C3 (three times differentiable) function. Set G;(x) =
G ()+G, (x),0=0T+0",0 =0F—0".
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Theorem 1. Under Assumption 3 and in the following cases, the sequence " u, U™
converges in law to (Y, U), where U is the unique solution of the linear equation

t
U = / f/(Xsf)Usf dy, — W, )
0

and where W can be described as follows.
Case I. Under Assumption 1 with « > 1, then u, = (n/logn)'/* and

t
Wi :/ fX ) f(X)ol AV, (6)
0
where V is another Lévy process, independent of Z, with spot characteristics (ti ,0,G ,V )
given by
_a(e/)z
{ =, (7)
2(x — 1)
a 5 _ _ 1
GY (@) = SO + 6,7 L0y 426767 Lie<o)) g e 8)
Case II. Under Assumption 1 with « = 1, then u,, = n/(logn)? and
_ 1 ! / 2 n2
We=—7 f(Xs) f1(Xs-)og_ 65" ds. ©))
0
Case I1l. Under Assumptions I and 2, o < 1 with b;z =0,ora = 1thenu, = (n/log n)l/“,
and ,
W, = f X f1 (X))o AV, (10)
0
where V is another Lévy process, independent of Z, with spot characteristics (btv , 0, GtV )
given by
0%a
vV _ 14 _ v
b/ =0, G,/ (dx) = TS
Note that,
[n1] i/n
U =3 [ Oy~ K dr, an
(i-D/n
[nt] i/n
-y (f (Xs=) = f(Xi—1y/n)) dYs, (12)

(i=D/n

i=1

andset Y, = Yiuei/no X, = X{nr1/n, and

(nt] ni/n
W= f (f (Xs=) = f(X-1)/n)) dY5.
iz1 J=D/n

We obtain .
U = / X+ U™y — (X)) dP! — Wy (13)
Based on (13), and Theore?n 2.2 of Jacod [2], it is enough to prove
X" u W = (Y, W) (14)

to obtain Theorem 1.
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Remark 1. Theorem 2.2 of Jacod [2] can be obtained directly from Theorem 3.2 of Jacod
and Protter [3], which itself is based upon Kurtz and Protter [6]. Theorem 3.2 of Jacod and
Protter [3] concerns the general semimartingale, so it can also work for Y in this paper.

In the following, we will focus on proving (14) under the conditions of Theorem 1.

3. Technical lemmas
In this section we present technical lemmas in order to prove (14).

3.1. Localization

Our task in this subsection is to avoid a lot of technical problems. We will reduce the problem
to a situation where f and Y satisfy some strengthened version of our assumptions, which are
as follows.

Assumption S1. We have Assumption 1, and, moreover,

(a) |AZ;| and |o;| are bounded for all t € [0, 1];

(b) we have sup,._¢ >0 x%G,(x) < oo.

(c) the processes |bf |, ¢, and f szt" (dx) are bounded.

(d) 1im,—0 ¢(2) = lim, .o sup,-(1z%G, (@) — 6,71 + G, (z) — 6, ) = 0.
Assumption S2. We have Assumptions 2 and S1 with a = 1.

Assumption S3. We have that f is a C> (three times differentiable) function with
compact Support.

Lemma 1. In Theorem 1, one can replace Assumption 1, 2, or 3 with Assumption S1, S2, or S3.

Proof. We suppose Theorem 1 holds under Assumptions S1, S2, and S3. We need to prove
that Theorem 1 still holds under Assumptions 1, 2, and 3.

Consider the new Lévy process Z(p); = Z; — y_ ., AZg 1{az,|> p)» Where 1is the indicator
function and a C3 function fp with compact support, satisfying fr(x) = f(x) for |x| < 2.
Similar to Jacod [2], associate with Z(p) and f), the same term with Z and f, writing X (p),
Y(p)", U(p)" instead of X, Y, U"

By hypothesis, we have a sequence of stopping times (7)) »>1, and a sequence of nonrandom
times (¢,) p>1, With 7, < 1,, and 7, 1 00 as p — o0 such that

1
— —+ ——
sup x*G;(x) < p, |th| <p, / |G, (x) =G, (x)|dx < p
xe(0,1] 0
whent <1,
Bl<p. S <p lol<p. /<x2 ADFIA0) <p. |1AZI<p

when t < 7. Set 0(p)i = Oiar,. Y(p) = [y 0(p)s—dZ(p)s, and 65(p) = 6 1<y,
We easily conclude that

t<1, = o(p)=o, Z(p): = Z, Y(p)=Y.
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Our hypothesis now implies that (?n (p), u,U"(p)) converges in law to (Y (p), U(p)) with
6% (p) instead of 6%, fp instead of f, and o (p) instead of 0. We see that the restriction of U
to [0, 7)) is a version of the restriction of U (p) to [0, 7).

For any continuous bounded function ®; on the Skorokhod space D(R ., R?), which depends
on the sample path only up to time ¢, we have

[B(@; (Y, 4, U™)) = B(D; (Y (), un U™ (p)))] < 2[4 [Pz, < 1),
[E(®: (Y, U)) — E(®: (Y (p), U(p))] = 2| D |IP(z) < 1).

Since P(z, < t) — 0 and

E(®,(Y" (p), unU" (p))) — E(®,(Y (p), U(p)))
for every t as p — 00, we obtain this lemma.

3.2. Estimates of nonhomogeneous Lévy processes
Now we split the processes Z, Y, and H = f(X). We recall that Z is the jump measure
of Z and vZ(ds, dx) = G,(dx) ds is its predictable compensator.
Let0 < v < 1, set
Z =AY+ M"+ NV,
where AV = b% — x 1y<jxj<1) ¥vZ, MV = x 1{jxj<p) ¥(0? — v%), and NV = x L{jx|=0} ¥ %,
and ~ ~ ~
Y =AY + MV + NV,
where AV = [J o,_ dAY, MY = [} 05— dM?, and N}’ = [} 05— dN?.
Let g be ff', there is the decomposition
G(x.y) = flx+ yf(x) — f(x) = yg(x) + y*k(x, y),
and, furthermore, we have decompositions of the semimartingale H = f(X),
H=A"+M"+N"
where
~u ~
A" = (X, ) A + k(Xi—, 01-x) (01-%)” Lja <0y #07,
M" = G(X;—, 01-x) Lx)<vy ¥(nZ — v7),

and
U
N = G(X;—, 01—x) L{jx|>v) *,bLZ.

Furthermore, set
ZV =AY+ MY, YV =A"4+M', H'=A"+M".
To prove (14), we need to introduce a sequence v, — 0, from the idea of Jacod [2].

logn\/*
- .

logn logn
—JGwy  Casell:vy = ——, Caselll: v, =

Casel: v, =
For any stochastic process Q;, we define Q"' = Q" — Q" 1), fort = (i —1)/n such that

V@) = G(X—1y/n 0G—1)/n%) Lixizun) L= 1)/m00) () % 1Ty i), nr-
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Denote the successive jump times of Z, after (i — 1)/n and of size larger than or equal to vy,
by T'(n,i),. Let K(n, i) be the integer such that T (n, i) g (n,i) < i/n < T(n, 1) g@u,i)+1-

e The times T'(n, i) fogns a nonhomogeneous Poisson process with intensity G,(uy,), and
set afl , = exp(— fst G, (vy,)dr).

e Conditionally on Jﬁ;’" and T'(n,i)p < 00, (AZ7(n,i);)1<j<p are independent, with
respective laws (1/GT(,,,,-)]. (vn))GT(n,,-)j (dx) Ljjx>v,)-

Denote

¢(v) = f Gy (dx), dt ) = f x1G, (dx),
{lx|<v} {x>v}

d-(v) = / 1x1G (dx), () = / x[G (dx),
{x<—v} {x>v}

pr(w) = / X [G (), dl(v) = d () — d;” (V).
{x<—v}

b=b7+ [ xGi@n. 8w =d W)+ d ()
{lx|>1}

di(v) = b, —d!(v).

Lemma2. Ifl<a<p=<2ora<pc=<l,

T+s T+s
f H, dM,“|P|g;) < KUP—“E(f \H,|Pdr | 9&;).
T T

Lemma 3. Under the Assumptions 1-3, witha € (0, 2), let J. be a random variable satisfying
that J,, K(n,i), and AZry,, are independent conditionally on Fi_1y/n, and
|J,] < K Zr];ll |AZT(n.iy;|, wherer > 2. Let J. =0 AZrg.p, forallr’ > r >2andy > 0,
we have

E (sup

s<t

, L K (r— Doy
P(u,Ji| >y, K(n,i) =r"| Fi_1y/n) <

1
14+log— ), (15
= I e +°gv> (1

n
Kur*(1 +log(1/v,))
(U;})r’—lnr’

Ky>~%u®r2(1 + log(1/v,))
(Ug)r/72nr/

E(unJr* Lk m,iy=ry | Fli-1y/n) <

’

E(|u, J)|? Yyu, 1<y K iy=r'y | Fli—1y/n) <

’

(logn)?
(Uﬁz)r’—lnr’ ’
Ku%r*(1 +log(1/v,))

yotfl (Ugt)r’72nr/

E(lunJ!| Yk n.iy=ry | Fii—1yyn) < Kr (16)

a>1 = E(uJ| Y, s>y k=) | Flimtyn) <

b

Ky'=?u®r?(1 4 log(1/up))?

a<1 = E(uad/| Yju, 101y, Kiv=r} | Fli=1)/n) < 5
g (vg) —*n"

a7)

https://doi.org/10.1239/jap/1429282612 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1429282612

The Euler scheme for a SDE driven by pure jump semimartingales 155

Proof. We use the idea of Diop et al. [1] in the proof of this lemma. In fact, we need
to associate the two filtrations ($;) and (#,”), which are the smallest ones containing (£;),

such that
e N/ is §;—measurable for all ¢;
o > i< l{az,>v} is Hy —measurable for all 7.

It is necessary to use these two filtrations in the argument, but, for simplicity, we do not
present them in the following (see [1] for more details).
The left-hand side of (15) is less than or equal to

/{ 1'[%IS,GY,<un)P(|unJ|>y|3~7, 1y/n) dsi ds - - ds,

SO<S1<-- <€/<z/n}l 1

5/{; HO(SI L1 1_[ Gsl(Un)

0<S1<-- <s;<z/nl 1 I=1,1%r

r—1

y
x/ IP’(Z|AZT(M)J,| > ‘5‘7(1-_1)/,1>Gs,(dx)ds1 dsy - ds,.
(xl=v) \iD] unKx
r—1 r’
f e 1'[ Goun)
=1 {so<si<--<sp<i/n};_ I=1,1#r

y
X P |AZT ,'A|>—‘j:'.7l >Gr(dx)dsld52~-~ds/
/{IXI>U,,} ( D) (r—Du,Kx (=D/n JHs r

!’

r—1 r
> Mt 1 G
=1 {so<si<--<spy<i/n};_ I=1, Ir, I#]

X/ </ 21> y/r—1yuy kx} Gs;(d2) | 3’(1'1)/;1>Gs,(dx)dS1 dsp - --dsy
{lx|>vn}

K (r — D%uf 1
= Z (Uoz)r/ 2nr/ ya 1+ log _n
_ 1ya+l (Jt
SR Sl )
(Ugt)r 72nr ya
Second,
E(J 1% Yk m,iy=ry | ?(ifl)/n)

< /{ 1"[% 1 SIGS,(vn)E<

S0 <81 <-- <S/<l/l‘l}1 1

Un

1
1+ log —)

ZAZT(m)J

‘ J"Yi—l)/n> dsydsy---dsy

r—1
se-ny [
=1 {so<s1<--<s,s<i/n}

r/

x [T, 4 GsWEAZr iy, |* | Fi—tyjn) dsidsy -+ dsys
=1
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r—1 r' r'
=e-vy [ e T1 Gt
i=1 {so<s1<--<ss<i/n} =1 =1, 1]

X / |x|“GSj (dx)dsy dsy - - - ds,s
{lx[>vn}

r—1

-1 Z K +log(1/vy))
j=1

(ng)r’—lnr’

IA

- Kr2(1 +log(1/v,))
- (U;:z)r’—lnr’
Third,
E(|uy J)|? Yyu, 1<yl K miy=ry | Fli—1y/n)

= E(|unJr P|AZ7 (1), 1 YA Zriy 1<y /lunde LK iy=r"y | Fli=1)/n)
i/n 1

< E(lundr * ik (n.iy=r') 2Gy, (dx)ds, | Fi—1y/n)

i—/n Jixi=y/tundrly Gs, (Un)

< Ky* OB (lun Jr | Yk n.ir=ry | Fiim1y/n)

Ky2_°‘ugr2(l + log(1/vy))
(Ug)r’—2nr’

’

and
r—1
E(lun | Yk (.iy=ry | Fli-ty/n) < Z]E(IunAZT(n,i)_,-AZT(n,i),| Likmn=ry | Fi-1)/n)
=1
log n)?
<Ky (logn)

Finally, when o > 1,
E(ltn I} Ly a115 1, K=y | Fli=1)/n)
= E(unJr 1AZ7 (i), | YA Z 1y, 153/ lun I, K (i)=r"} | Fli=1)/n)

i/n 1
< E(unJr| Lig (n,i)=r") / = |x|Gs, (dx) dsy | Fi—1)/n)
(i~ /n J{ix1>y/lun 31y Gs, (Un)

Kv¥
< ya—,"]]E(lunJrla Lk n.iy=ry | Fii=1)/n)

- Ku%r?(1 +log(1/v,))
ya—l(ug)r/—an/

3

and when o < 1,

E(ltn I} Vi, s11<y) K (niy=r'y | Fi—1)/n)
=E(unJr 1AZ7 (i), | LA Z 1), 1</ 11w I 11K (iiy=r"y | Fli=1)/n)

3’(;’—1)/;1>

1-a

y
T
fE(|unJr||AZT(n,z)r| —|un~lr|l p
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Kyl=y® 1
< %(1 +10g<v_>>]E(|MnJr|a Lik,i=ry | Fi-1)/n)

n
- Ky'=u%r2(1 + log(1/v,))?
- (Ug)r’—2nr’ :

157

3.3. Some key lemmas

We will need the following lemmas to prove (14).

Lemma 4. For eachn > 0, every &' are F;;,-measurable random variables, and ay, a,,a,

n,y
are finite constants. Furthermore,
. . / . V
lim a, =0, lim a, =0, lim a, , =0 forally>1.
n—00 n—00 n—00

If one of the following conditions hold:

() .
E[E"'| | Fi-1y/m] < 7”
(ii)
a a’
IBIE" | Fnymll < -5 EUE? | Fanyml < -2,
n Qn
IELE" Leri<ty | Fi—ny/all < -
(iii)
al a, ,
E[jg" Ljen<ny | Fi-ny/ml < 7" Pl >y | Fli—ty/nl < T} forally > 1,
then
[ns]
P
su &N — 0.
=

In the following, for the stochastic process I' = (I'y);>0, we denote sup,, [T'] 50 by
u.c.p.

I' — 0, where ‘u.c.p.” denotes uniform convergence in probability,

[nt]
A" () =Y _EG).

i=1

E7(1) = uy / (H™ — g(Xg1ym)¥"™) d¥,,
1(n,0)
%’[‘(2) = ung(X(,'_l)/n)(/ ij dA7Is“" + A~/I;l,l dgg")a
1(n.i) 1(n,i)

E1(3) = / N v )y dy
1(n.0)

E'(4) =u, / N'C AN 1k iy =3)-
[T (n,i)3,i/n]
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£'(5) = un(@(X1(n.i)1) — 8 Xi—1)/n)AYT 0,1y AYT (.1, LK (n.1)>2)»
£(6) = unk(X1(n,iy,_» AYT(n,i)l)AY%(,,,,-)lAYT(n,i)2 1k (n,i)>2)

(T = Mng(X(i—l)/n)(/
1(n,i)

E'(8) = unk(Xi-1)/n AYT(n,i)l)(AYT(n,i)l)Z(M;7j, - M;’(;,i)l),

n — . . N2(A., A . .

i O) = —)/ns : , : =1}
') = unk(Xi—1)/n> AY10,00 ) (AYT (1)) (Aiyn — AT (n,iyy) Lik (n,py=13

&'(10) = ung(X(i—l)/n)AYT(n,i)lMin/’,i Lk (n,i)=1),

Yo AN — AYT (i), YT (i) 1{K(n,i)21}>,

§1 (1) = ung(X(i=1y/n) / AV + AYrguiy Lk iy=1) dAY
1(n,i)
E1(12) = ung(Xi—1)/ W) AYT (i AYT(n,i)2 LK (n,i)>2)»
where El." (j) is defined in the same way, upon substituting ¥ with Z.

Lemma 5. Assuming that Case I, II, or Il applies, then we have A" (j); ) ifj=
1,2,...,9.

Proof. Inthe j = 1 case, since
. . s ~ ~
H — ¢(X—nym)Yi = f §(Xr2) — g(X(i—1y/) (A + AP
(i-1/n

S
[ K 0000 sy P )
(i—1)/n JR

and g is bounded with a bounded derivative, k is bounded over R x [—a, a].
Firstly,

s 2
E( sup (/ 8(Xr—)—g(X(i—l)/n)Ur—dAf")
(

%-1)/”)
s€l(n,i) i—1)/n

K 2|
< n—zE( sup (g(Xs—) —g(Xi—1)/n)” | Fi—ty/n

sel(n,i)
K s 2
S—JE( sup </ g(Xr)_g(X(i—l)/n)UrdM;)n> ?(i—l)/n>
n- sel(n,i) \J(i—1)/n

IA

8U2—a
. E( sup (g(Xs)—g(X(i1)/n))2?(i1)/n>

n sel(n,i)

8 2—a K
< U"2 E( sup </

n sel(n,i) \J(i—1)/n

2
X/k(Xr—a Ur—x)(ar—x)2 l{van}ﬂy(dsv dx)) -7“V(i—l)/n>
R

4—a 4—a

v v
< n n
~ n + n?
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For the j = 2 case, we firstly consider

]E( / Y™ AP

1(n,i)

IE((/ ijden) ?(in/n)fKU,%_“E(/ (Y™ oy_)?ds
I(n,i) 1(n,i)

T(i—l)/n) =0,

3’<i1>/n>

Ur%_a n,i 2
<K E(( sup IY;|> ’ﬁ(ifl)/n)

sel (n,i)

sKU’%a(U’%aJr 1 )

n n2y2*?
- - 2
]E<< M;)n dA;fn)
1(n.0)

u.c.p.

We obtain A" (2); —— 0. '
The j = 3 case is similar to Jacod [2]. We have N’gi — V@)= U™ % [LZ, where

S

and, finally,
4—3q
v

Fii_ < =z
i 1>/n>_ e

U™ (s, x)
= (X5 ) LT iy H(€(Xs—) — g(Xi—1y/n)) Li—1)/n<s<T (n,i)1}))Os—X L{jx|>v,)
+ k(Xs5—, 05—%) Vs> 1 (n.i)1) H(k(X5—, 05-X)
— k(X (i-1)/n, 05—X)) 1{(:'—1)/n<s§T(n,i)1})(Us—x)2 (x>0, -

We have
‘/ U™ (t, x) G, (dx) sc( sup d,’(vn)+1)(1{K<n,i>zl}+’~‘?)’
R tel (n,i)
/RUn’i(t, 0)2Gi(dx) < CAig =1y +(XDD).
Then

~n.i 1
sup [E(VL = VLG | Famnym) = C(1+ sup d,’(w))(

s€l(n,i) tel(n,i)

1 1
+ = K]
nuy Jﬁ)
/n,i _

~ 1 su - d!(up))? 1 1
E( sup [N/ Vsn,(l')|2 | ﬁi—l)/n) SC;<1 +( Prer(n,i) 1 (Un)) )( +_>.

. o
sel(n,i) n nuvy, n

The j = 4 case is similar to Jacod [2]. Set J, = (AH7,i), + AHrp,i), + -+ +
AHT(n,i)rfl)O-T(n,i)F’ ‘Ir/ = JrAZT(n,i)rv and J]é/ = Up Zk ". Then

r=3vr-:

E' @D = Jg i Likmi=3) -
We need to prove that

"

a
P& @] > ¥ | Fi-nym) < ==, wherea , — 0; (18)
a/
E(|gln(4)|2 1{@(4)'51} | Fi—1y/n) < 7" where a,, — 0; (19)

a
IEE @) gnay <ty | Fi-n/m)l < 7 where a, — 0.
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In view of (18), for y > 0, k > 3, we have

o
P& ] >y | Fi—nym) = D P/ > y. Kn,i) =k | Fi_1ym)
k=3

ook
< ZZP(W,,J | > 5 K@iy =k ' Jf(,-_l)/n>
k=3

r=

(r — D% (k — 2)* log(1/vy)

3
oo k
=Cy ) =
33 (Un)® nky%

k=3 r=
(3)
=0\ —].
n
In view of (19), for k > 3, we have

E(E @ Ygnay <ty | Fi-1y/n)

o0
2
= ZE(U/“ Lyyyi<t,kmi=ky | Fi-1)/n)

~
(5]

k—1
sz—’P<|J,”| > 1, K(n, i) =k | Fi-yn)
o0

Mg

>v-
Il
w

k
+ Z2k+l_rE((unJr/)2 Y, 511<2, K m,iy=k}y | Fi=1)/n)
3r

-c > 2kk2"‘+3uf{log(l/v,,) 2’<k4uf;10g(1/un)>

- = nk(Un)a(k—2) nk(Un)oz(k—Z)

=()

o
IEGE @) Ler @<ty | Fi-nml = Z|E(J]g1{\]{|§1,K(n,i):k} | Fi—v/ml,
k=3

S| =

We have

and
B L=tk iv=k) | Fi—1/n)l
< B Ly <12k =k | Fi—1y/n)l
+ [E(un J; Y, <1/2,0001<1. kK maip=ky | Fi—1)/n)]
FEW Y=y =172 =i Yyap<yzpizn | ik aa=r | Fi-tm)-
When « > 1, by (16), we have
E(un Iy Lju, 5117215011 K naiy=ky | Fli—1/m)| < Elun Jg| Lk uiy=k) | Fi—1)/n)

2
< Kk—(logn) .
(Ur‘;‘)k_lnk
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When o < 1, by (17), we have

EunJg Yy, g1<1/2.1001<1. K iv=ky | Fli—1y/n)l
< E(lu, Jy| Ly, 51<1/2.k miy=ky | Fli—1)/n)

- Ku®k?(1 + log(1/vy))?
— (Ug)k—2nk :

Obviously,

EQL Y=g =12 = Yo i=i20pz0 1 ik en=k | Fa-n/m)

_ i (r = D+t (k — 2)* log(1/v,)
- = (Un)a(k—2)nk
_ (k=1 2ug log(1/va)

(W) &k

Furthermore,

B Yyt k=t | Fi-nml < B Yy <i2,kmn=k | Fi-n/m)]

% (k)**2u (log(1/v,) + (logn)?)
(Un)oc(k—Z)nk :

+

Recalling that J;' = 0, then

k2e+3u% (log(1/vy) + (logn)?)
(Un)a(k—Z)nk

BV 1<,k iv=k) | Fi-vm)l < K

and

o\ k2432 (log(1/v,) + (logn)?)
(Un)a(k—2)nk

B L=<tk i3y | Fi—nm)l < K
k=3
_ Ku(log(1/v,) + (logn)?)
— 2 .
n

In the j = 5 case,
E'(5)] < uni?(n’i)l |AYT (i AYT (02| ik (n,i)>2}

= Un Un
where Z7, i, = SUPse(-1)/n T (nint 125 = Z1)/nl-
Since o is bounded, we need to prove that

~ u.c.p.
UnZT 0.0y | AZT (0,0 AZT i | Lk .y 22) — 0. (20)

Since

SUDse(n,i) ¢t (vn) " (sup,el(n’i)d,(vn))z)
2 9

5 2
EWZT i) | Flimy/nl < < - -
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and using Equation (6.35) of [1], we have, when 0 < @ < 1,

EllunZT iy, | AZT (0,0 AZT i)y | Lk 09221 | | Flim1)/n]

L (SUPer iy €1 Wn)/n A+ (Ui di(un))?/n?)1/2
n

n2

wheno = 1,

E[Iung?(n,i)lIAZT(n,i)lAZT(n,i)ZIl{K(n,i)zz}| | Fi—1)/nl
-y (SUPy e (i) €1 (Un) /1 + (SUP; 1 s 1y di (Vn))? /n*) /2 (log n)?
n

()

E[WnZ/Tn(n,,’)l|AZT(n,i)1AZT(n,i)2| Likwi=2 1 | Fi-1y/al

n2

when o > 1,

3 (SUPses(n.iy €t (Un) /1 + (SUP;ep iy di (Un))? /n?) /2
n

(s~ n)?

and

E[IunZ?(n,i)lIAZT(n,i)lAZT(n,i)zll{K(n,i)zz} 1| Fi—1y/nl
< u? (SUP; 1 n.iy €1 () /1 4 (SUD e (i) dr (U))? /1?)
n

(3)

By Lemma 4, we obtain (20).
In the j = 6 case, set Slf’ = unAZ%(nJ)1 IAZT @iy, | ik n,i)>2}, We have

n2

PS>y | Fi-1y/n)

H. WANG

2
< / [T, o WP AZS 1 1 1AZ1 iy > ¥ | Fityym) dst dss
{so<s1<s2<i/n} 1=1
2
< / [T, / / Gy, (dx)Gy, (dx') dsy ds»
{so<si<sa<i/n} ;| {Ix|>vn} J{IX|>y/unx?}
2

2
uy |x]°*

S/; na?lfl,SI/y—aGn (dx) dsy dsz

so<sp<sy<i/n} I=1

uﬁt
<C 2" ,
n=y<

https://doi.org/10.1239/jap/1429282612 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1429282612

The Euler scheme for a SDE driven by pure jump semimartingales 163

and

E(S} Lsr<1y | ﬂi—l)/n)

5/{ 1_[013, 1s1GSI(Un)

30<A|<b2<l/)’l}l 1

X E(unAZT(n i |AZT(n z)2| l{unAZ <1} | fF(i—l)/n) dsq ds2

T(n,i)| [AZ7n, i)
2

= oy / |x'] / x2Gy, (dx)Gy, (dx) ds; dsa
/{SO<S|<52<i/n}E T oy Jisdmin "
2
2

< f [Tz, f u)x' %2 Gy, (dx') ds; dsa

{so<s1<s2<i/n} =1 {|x’|>vp}

u?

<

n v,‘f/z

Since k(x, y) and o are bounded, we have |§/'(6)| < CS?, andif |S| < 1,

(1) < ISP < 8] Lgneny +1isrs1).

Then e
A"(6), =2 0
by Lemma 4.
In the j = 7 case, it is obvious that
K .
&M < C Z Hy,  where Hy = unZ5(, 1 ni in DZT(00)-
k=2

‘We have

K 2 K
E[(Z Hk) } J"(i—l)/n} = MﬁE[K Z(Z% oni/nAZT0 ) | 3-71-_1)/”}
k=2
2
>y [ e
_ {so<sy<--<sp

r=2 k=2 <i/n}_
x ]_[ Gy, (Un) 1xGy, (dx) ds; dsy - - - ds,
= 1175/{ {Ix|=vn}
Crir—1)
2
29,
Z (U )oz lnr

)

SUP; e (n,i) €t (Un) (Sup,e iy di(Un)?
n n2

where

n = s

https://doi.org/10.1239/jap/1429282612 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1429282612

164 H. WANG

and
K K
Cun| Sup;eqn,iy dr (Un)|
‘EI:Z H; | f(i—l)/ni| < n tel(n,i) n EI:Z|AZT(,, k)| | ?‘(l 1)/n]
k=2 " k=2
Cu”|suptel(n z)dt(Un)I >, -
: Dy JE
=2 k—p Y {so<si<--<sp<i/n} ;_
x H G (vn) |x|Gg, (dx) dsy dsp - - - ds,
1=1,1#k {lx|= vy}
< Cun| SUPtel (n.i) dr (vy)| i Cr—1 SUDPt el (n,i) 8 (un)
B n ()@ 1nr
r=2
()
=ol|l — ).
n
Then o
A" (T, =50
by Lemma 4.

In the j = 8 case, from the previous discussion, it suffices to prove that

[nt] [nt]
u.c.p.

Z;,'n = Zun(AZT(n 1)1) (Mz/n - MT(n l)l) — 0.
= i=1

Set

&n,i () = Elexp(iug)],
i/n
B = [ as [ (el < 1= )G,
t [yI<un}
we see that
On.i () = O‘Z‘—l)/n,i/n/ ' dt/ (exp(z! (x,u, 1) — 1))G(dx) + L.

(n,i) [x]>vn |}

In fact,

i/n
/ ds/ (exp(iuunxzy) —1- iuunx2y)Gs y)
[y]=un}

i/n 2 2.2
< / ds / (unxy] A uttnx®y2)Gs ()
t [y|<un}

i/n
< utyx? / ds / (3G ()
t {ly|>1/uu,x?}

i/n
+ (i) / ds / ()G ()
t {Ily|<1/uunx?}

C
= _|W4nx2|a-
n
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Thus, z;.’ is uniformly bounded, then

Cluunl
|n,i (@) — 1] £ ———
Furthermore,
n2 g . en C|u"|a
E[Ig 1" A1 | Fi—nml =C |1 — Elexp(iug;’) | Fi—1y/mlldu < o
{lul<1}

B Lyem<ty | Fi—iy/mll = CI1 = Elexp(ig") | Fi—ny/nll + ENE P AL | Faztynl-

Then e
A"(8), 255 ¢

by Lemma 4.
For the j = 9 case,

Cun | SUP;ef(pn,iy di (Un)]

1€ (9)| < IAZ7 iy, P Lk v 1)
and
E[|AZT(n,i)1|2 l{K(n,i)Zl} |‘¢(l‘—1)/n]
: / o 5 Gy WE(AZr iy P | Fim1y/n) dsi
{so<s1<i/n}
S f / |x|stl (dx) dSl
{SO<S|<l/n} (1X]>Un}
C
< )
T n
Thus,
Cun| SUP, iy dr (V)|
E[%‘ln(9) | Jr:'(l'—l)/n] < n ten;n,l) n '
Then N
AM9), =% 0
by Lemma 4.

4. The proof of Theorem 1

o prove Theorem 1, we need to study the asymptotics o , an
To prove Th 1, d dy the asymp £y er10), Y"1 €7(11), and
Yl en(12). Set
gi”(IO) = unAYT(n,i)lﬂin/:, Likn,i)>1},
g1l = un/ (AL + AY7 iy, g (niy=1) dAY,

1(n,i)

gin(n) = Un AYT (i), AYT (0,1, Lk (n,1)>2) -
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From Proposition 7.3 and Lemma 7.5 of [1], the following arguments can be obtained.
In case I,

[nt] ~ e [nt] - e [n-] N
YEran =50, Y Eraz =50, Y EA0) = V.

i=1 i=1 i=1

where V is another Lévy process, independent of Z, with spot characteristics (ti , 0, G,V )

given by
v _ _a(et/)Z
2 —-1)]
1% +12 + 1
G/ (dx) = [((9 )%+ (0, 10y +26,76, 1x<0}]| Ta dx.
In case II,

[nt] [n-]

S E10) =% 0, Zg"(11)+2.§ (12) =% /9%

i=1 i=1 i=1
In case III,

[nt] [nt] [n-]

YErao) =50, Y Ean =50, Y E@12) = V.

i=1 i=1 i=1

where V is another Lévy process, independent of Z, with spot characteristics (b,V ,0, G,V )
given by
v 1% 92
bt =0, Gt (dx)_md

Finally, we obtain the results by means of Theorem 3.2 of [3].
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