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ABSTRACT 
The number of digital solutions based on machine learning has increased in recent years. In many 
industrial sectors, they try to enhance automation in manual or repetitive tasks or provide decision 
support for complex problems. Data plays an essential role in the selection and implementation of ML 
algorithms, as it determines the quality of the training and the results. As data drive ML models, selecting 
the correct data with the suitable ML algorithm for a given use case is crucial but challenging. This 
paper reviews the application of machine learning in the embodiment design phase addressing the 
challenge. The work focuses on ML applications in conventional product development and non-
conventional additive manufacturing processes. Based on the literature review, the required knowledge 
to implement the ML algorithms has been derived and presented in a systematic approach. This work 
highlights the importance of an initial analysis of the existing knowledge in the engineering and additive 
manufacturing processes in order to implement the proper ML algorithms. 
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1 INTRODUCTION 

Artificial intelligence (AI) has experienced a steady growth and development over the past few years 

and has found widespread use in product development to solve complex engineering problems. 

Machine Learning (ML), a type of AI technology, is particularly useful in solving data-related 

challenges during the engineering process (Najafabadi et al., 2015). The quality and type of data plays 

a crucial role in selecting and implementing ML techniques, as the performance and effectiveness of 

ML algorithms are dependent on this data (Polyzotis et al., 2018). Data sets contain information and 

knowledge about the process that can be optimized using machine learning. Such data sets are stored 

in multiple artifacts throughout the product development process (Preidel et al., 2018b). As data drive 

ML models, selecting the correct data with the suitable ML algorithm for a given use case is key but 

challenging. It remains a significant challenge due to a lack of existing standards in artificial 

intelligence (Braw, 2021). 

This paper reviews the current application of ML in the embodiment design phase addressing the 

challenge mentioned above. The work focuses on conventional product development and non-

conventional additive manufacturing processes. A succinct review of the literature was conducted to 

provide an overview of the ML use cases in embodiment design and their corresponding descriptions. 

Based on the literature review, standard elements of ML use case description such as object of 

consideration and the purpose of application automatization were identified. These two elements assist 

engineers in determining the knowledge required for the effective implementation of ML algorithms. 

In this way, the knowledge relevant to the use cases is captured, which is reflected in data contained in 

various artefacts.  

This work is divided into four sections: Following the introduction, section 2 presents the theoretical 

aspects of the engineering process. The embodiment design phase and the data-driven manufacturing 

process, the additive manufacturing process, are described. Followed by a description of the 

automation of the engineering process using machine learning. Section 3 describes the adopted 

research approach. Section 4 presents and discusses the research results and the development of an 

approach for knowledge-based derivation of data for ML use cases. A summary of the main aspects 

and results of this work is finally presented in section 5. 

2 STATE OF THE ART 

Due to the new challenges in product development, such as legal requirements for the sustainable 

design of products and the increasing proportion of software in products, engineers must process and 

link more information to meet these requirements. Therefore, an understanding of the engineering 

process and the available data in the IT systems need to be built. In addition, integrating new 

technologies such as AI, cloud, and IoT into engineering processes enables them to be automated. 

Automatization can either eliminate repetitive manual tasks or accelerate engineering processes. In the 

following, the engineering process, particularly the embodiment design phase and the design for AM, 

and their automation potentials are presented. 

2.1 Engineering process 

An engineering process (also known as a product development process) is the sequence of activities to 

conceptualize, design, and market a product. The activities are intellectual and organizational rather 

than physical (Ulrich and Eppinger, 2016). Engineers apply their scientific and technical knowledge to 

solve a technical problem in the form of a product. The solution space is subject to requirements and 

other material, technological, economic, legal, environmental, and human constraints (Pahl et al., 

2007). The discipline of virtual product development has emerged, in which most technical solutions 

are first developed virtually, meaning they do not yet exist in the physical world. Engineers use IT 

systems to make these virtual solutions existent, visible, and executable (Stark, 2022). The IT systems 

contain important information and data about the product, from geometric information in Computer-

Aided Design (CAD) to product behaviour in simulations, to manufacturing processes in Computer 

Aided Process Planning (CAPP), but also multi-disciplinary systems such as Product Data 

Management (PDM) or Enterprise Resource Planning (ERP). 
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2.1.1 Embodiment design 

Embodiment design occurs in the engineering process after the concept phase but before the detailed 

design phase (Pradel et al., 2018). It starts with the artifact of the principal solution and ends with a 

definitive design. It is a creative implementation of technical and economic criteria with further 

information. This phase has activities to determine the product's shape, size, and other essential design 

features (Mouritz, 2012). The process begins with preliminary scaled designs based on a rough 

analysis of spatial requirements, and then safety, ergonomics, production, assembly, operation, 

maintenance recycling, costs, and schedules are considered (Pahl et al., 2007). In this phase, the 

following three core elements can be listed (Dieter and Schmidt, 2013): 

1. product architecture, such as the arrangement of physical elements to perform the function. 

2. configuration design, such as preliminary material and manufacturing selection and modelling of 

parts. 

3. parametric design, such as robust design tolerances, final dimensions, and design for 

manufacturing. 

2.1.2 Additive manufacturing 

Additive manufacturing (AM) is undergoing global change and represents today an essential 

complement to conventional manufacturing processes. This is primarily due to AM's various 

advantages compared to conventional manufacturing processes (e.g., casting). These include the 

possibility of manufacturing geometrically complex parts, the reduction of material waste, the time 

and cost reduction in the production of small batches, and the manufacture of entire assemblies in a 

single production step (Chua and Leong, 2014). Due to the special characteristics of AM processes, 

special guidelines and procedures have been developed for the design of components. These 

guidelines can be summarized under the name Design for Additive Manufacturing (DfAM). DfAM 

aims to design or redesign parts, products and components for additive manufacturing with 3D printers 

for more cost-effective, faster and efficient production (Gibson et al., 2021). At the same time, AM 

keeps becoming more data-intensive, generating an increasing amount of newly available data (Park et 

al., 2021). Given the availability of data and the benefits of AM, DfAM set out to properly exploit the 

potential of AM in product manufacturing. DfAM methods are primarily implemented in the 

embodiment and detail design stage (Pradel et al., 2018).  

2.2 Automatization with machine learning 

Activities can be supported by the possible use of machine learning in the engineering processes. The 

type of support varies from feedback to assistance to automatization (Stark et al., 2021). Data must be 

collected and evaluated to raise the level of engineering support from manual activities to feedback. 

The further the support goes toward automatization, the more data is needed (Kim et al., 2019). By 

introducing assistance systems, it is relevant to understand what knowledge engineers need to perform 

the activities so that they lead to automatization (Apt et al., 2018). The knowledge hierarchy pyramid 

describes the linking of collected data to knowledge. Adding semantics to the data generates 

information, which leads to knowledge by linking and experience (Awad and Ghaziri, 2004). ML 

algorithms try to follow this procedure to be able to make decisions and provide assistance. In 

engineering, data are located as representatives in databases and described by data format and 

structure. Information can be represented in engineering, e.g., in the form of product models and 

geometric models. Engineering represents knowledge by rules, frameworks, and heuristics (Preidel et 

al., 2018a). In order to drive automatization in engineering, this data, information, and knowledge 

must be made accessible to ML algorithms (Stark, 2022). The use of ML in engineering creates 

challenges on both sides. On the engineering side, there are challenges, such as the development of 

data-driven tools that enable the analysis of unstructured data and the integration of top-down 

approaches for ML, where knowledge and information are integrated into the ML systems. On the ML 

side, there are challenges, such as structuring design-related data and selecting highly context-

dependent features (Chiarello et al., 2021). The challenges show the importance of clear guidance 

from engineers during the implementation of ML to increase its application and thereby automation. 
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3 RESEARCH APPROACH 

This work aims to outline the current application status of ML in embodiment design. A brief 

literature review of the literature published between 2020 and 2022 was conducted to review the 

current state of ML applications and to get an overview of how ML use cases are described in the 

literature. To obtain structured, targeted, and comprehensible literature review findings, the following 

research question was defined as a guide for this article: Which ML use cases in embodiment design 

have been implemented and what do they have in common, especially in conventional engineering and 

additive manufacturing processes? The predefined research question was answered by conducting a 

simple literature review, which delivered an understanding of the ML applications and the 

corresponding uses cases in embodiment design. The research approach is presented in Figure 1.  

 

Figure 1: Research approach overview  

Given the adopted research approach, specific keywords were first defined to determine the scope of 

this research and narrow down the results. Embodiment design, machine learning, engineering 

processes, and additive manufacturing were the research objectives for this work. The review was 

conducted in Web of Science (WOS) with several search term variants of the primary keywords using 

operators "AND" and "OR" and are shown in Table 1. String#4 was crucial to address research 

sources dealing with the application of ML in the engineering process. String#5 was intended to 

deliver the current application of ML in DfAM, as it is mainly implemented during the embodiment 

design phase. 

Table 1. Research strings 

Set ID String (TS, Topic, SU: Research area, AND/OR: logical operators)  

#1 
TS=("maschinelles lernen" OR ML OR "Maschinelles Lernen" OR "maschinelles Lernen" OR 

"machine learning" OR "machine-learning" OR "Machine Learning" OR "Neuronale Netze" OR 

"Neural Network*" OR "Deep Learning" OR "Deep learning") AND SU=( ENGINEERING) 

#2 TS=("embodiment design" OR "preliminary design" OR "system-level design") AND SU=( 

ENGINEERING) 

#3 TS=("Design for AM" OR "Design for additive manufacturing" OR DfAM) AND SU=( 

ENGINEERING) 

#4 #1 AND #2 

#5 #1 AND #3 

 

The last two defined strings resulted in a total of 91 documents. The retrieved literature was screened 

and sorted into relevant and non-relevant. First, titles and abstracts were sorted according to research 

objectives and keywords. The selection reduced the amount of literature to be screened and provided a 

precise overview of the current state of research. The relevant literature for this work was then 

screened based on the addressed use cases and the applied ML algorithms. The use cases were 

described according to their purpose, which has to be achieved using ML. The descriptions of the use 

cases were then analysed for similarities. Each use case was then examined according to the object of 

consideration and its respective purpose. The different objects of considerations were subsequently 

sorted into seven clusters. This brief literature review was not intended to fill any gaps, but rather to 

provide an overview of what ML use cases exist or have been implemented in embodiment design and 

how they have been described.  
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4 RESULTS 

4.1 Implemented ML use cases 

Table 2 shows an excerpt of identified literature and the description of the use cases covered therein. 

The ML use cases are classified by object of consideration and their purpose for automatization. All 

use cases can be located in the feedback and assistance automation levels. None of the use cases 

describes a complete automatization of the activities around the object of consideration. An object of 

consideration and a purpose could be extracted in all use cases. The combination of these two can 

describe any use case at the smallest unit. The purpose thereby indicates the direction of the use case 

and influences the required knowledge and, accordingly, the data and ML algorithms. Prediction 

involves generalizing known situations and predicting how a new situation will play out. Derivation 

has the meaning to originate from something. The ML use case with derivation as a purpose tries to 

derive new facts from a known basis according to specific rules. During optimization, an attempt is 

made to achieve the best result. ML use cases with the purpose to optimize the object of consideration, 

know the entire situation and search for the optimum from it. Analysing a use case aims to understand 

the topic in all its characteristics and contexts. The ML algorithms try to establish connections or 

explanations of the object of consideration. Use cases with recognition pick up something with the 

senses, and the ML algorithms detect and reproduce things from known facts. 

In the embodiment design, the following objects of consideration were detected:  

(1) Product characteristics as an object of consideration aim to focus on characteristics such as 

material, functions, quality, resistance, and other physical characteristics. 

(2) Product layout concerns use cases that require the determination of parameters, geometries or 

constraints in design or the topology of components in the design. The purpose of use cases with the 

product layout as the object of consideration is to derive, analyse or optimize them. 

(3) Product behaviour tries to describe how the product behaves in different situations or when 

damage occurs, e.g., deformations 

(4) Product performance as an object of consideration aims to predict or optimize the performance of 

sub-aspects or the overall system. 

(5) Product model as the object of consideration refers to the creation of models or the prediction of 

model statements.  

(6) Product functions as an object of consideration are tried to be recognized with the help of ML 

algorithms. 

(7) Process as an object of consideration aims at predicting parameters such as cost or runtime and 

manufacturability. 

The classification of the use cases is made strictly to one object of consideration. The disjoint 

assignment is because, for the successful implementation of ML use cases, this must be described very 

clearly to maintain focus and to identify the relevant data. One object's consideration can also affect 

others, perceived as side effects. An example of this is the optimization of structural design (product 

layout); which also improves the product model through an optimised choice of design (Huang et al., 

2022). 

Most ML algorithms in the use cases are either classifier or regressor, evolutionary, or neural 

networks. The neural networks were implemented for each object of consideration with each purpose. 

For classification algorithms, algorithms such as decision trees, k-nearest neighbors, support vector 

machines, or multiple nonlinear regressions are applied in the use cases. Moreover, if the purpose is 

prediction, at least one classifier/regression algorithm is present. Classifier or regression algorithms 

are well suited to identify a correlation from existing data and then make conclusions about new data. 

Evolutionary algorithms attempt to address optimization problems in a fundamentally different kind of 

massive exploration in a random but supervised manner (Joshi, 2020). In the literature review, the 

evolutionary algorithms are most often used in the use cases for optimization, analysis, and prediction. 

Examples here are genetic programming and gene expression programming. 

In describing the data used, most sources focus on the representation of the main parameters and their 

transformation into features for the ML models. However, it is also essential to consider the 

information and knowledge presented by the use case and what of it an ML model absolutely must 

learn. Additionally, it is worth noting that the same objects of consideration and purposes were 

identified for the embodiment design phase in AM as in a conventional process. 
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Table 2. Excerpt of literature with use cases observed therein and the assignment to object 
of consideration and purpose. 

Paper Use Case Object of consideration Purpose 
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(Liao et al., 

2021) 

Prediction of the critical flutter 

wind speed of streamlined box 

girders in the preliminary design 
x       x     

(Zhao and Kim, 

2022) 

Prediction of ship design 

parameters from previous designs 
 x      x     

(Habib and 

Yildirim, 2022) 

Derivation of parameters of each 

sliding surface to ensure that the 

required effective period, effective 

damping, and displacement 

capacities are met 

 x       x    

(Huang et al., 

2022) 

Optimization of structure design for 

the concrete-filled steel tube 
 x        x   

(Després et al., 

2020) 

Analysis the design of micro lattice 

architectures 
 x         x  

(Posch et al., 

2021) 

Prediction of the combustion engine 

prechamber behaviour 
  x     x     

(Jiang et al., 

2022) 

Prediction of customized ankle 

brace's mechanical performance 

with tailored stiffness 

   x    x     

(Kim et al., 

2022) 

Enable accurate flight performance 

analysis 
   x      x   

(Cepowski and 

Chorab, 2021b) 

Predicting parametric equations for 

power and consumption 
    x   x     

(Cepowski and 

Chorab, 2021a) 

Derivation of preliminary design 

formulas 
    x    x    

(Wang and 

Chen, 2021) 

Determination of clear images of 

the nail fold capillaroscopy. 
     X      x 

(Oh et al., 2021) Build time estimation for additive 

manufacturing 
      x x     

(Ko et al., 2021) Additive manufacturability analysis       x    x  

4.2 Knowledge based approach to identify relevant data for ML 

The approach of this work is to guide the engineer during the application of ML. The analysis of the 

literature has shown that ML use cases can be well described by object of consideration and the 

intended purpose of automation. By prioritizing these factors when deriving data for machine learning 

applications, the relevant data can be identified in a targeted manner to achieve specific goals. Based 

on Wang's knowledge-based data provision process, this approach also recommends deriving data 

through the intermediate steps of knowledge and information (Wang et al., 2020). Therefore, the link 

between use cases, knowledge, information, and datatype has a significant impact on ML 

implementation. If the knowledge is given to the ML model, it can be ensured that the algorithm learns 

the correct one. A connection between the use case, knowledge, and data needs to be established to 

automate engineering processes.  
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4.2.1 Introduction of the approach 

Based on the fact that the knowledge of a company forms the semantic framework about its products, 

processes, and tools (Thoben and Lewandowski, 2016), identifying relevant knowledge for the use case 

can lead to the identification of relevant data. Figure 2 shows the three blocks that should be followed 

when implementing an ML use case. Therefore, auxiliary questions are defined and can be supplemented 

with others. The driving factor here should be the object of consideration (e.g., product/ process) with the 

purpose of ML (e.g., prediction/ optimization). 

 

Figure 2. ML-guideline application  

(1) Knowledge: In the context of embodiment design, knowledge can manifest as factual knowledge, 

which includes process parameter metrics (Ullman, 2009), or object knowledge, which refers to the 

current understanding of the design object being processed (Stark and Weber, 1991). Analysing the 

current use case and its aim is the first step of an automation approach with ML. The benefit of the ML 

application should be described to extract the required knowledge for implementing the ML use case. 

This means the object of consideration, as well as the purpose of ML, should be fully grasped. 

Additionally, it is essential to describe the factors that could influence the object of consideration, such 

as certain development activities in the process related to the object of consideration. Furthermore, it is 

necessary to determine precisely which knowledge is needed to fulfil the purpose. As stated earlier, the 

purpose has implications. For instance, if the ML algorithm is meant to deliver predictions for the object 

under consideration, it is necessary to train the algorithm on situations that have occurred and to identify 

the core elements that allow for generalization to new situations.  

(2) Information: The knowledge required for each use case is obtained by processing, connecting, and 

storing information. To apply an ML use case to a specific object of consideration within an engineering 

process, the information, and the links between them must be described. The information typically 

describes the activities that need to be performed. As discussed above, the factors that affect the object of 

consideration are associated with it and are described in well-defined information. This information 

outlines the object's influences. Therefore, it is important to establish the relationships between the 

information and the object, and then extract features for ML applications.  

(3) Data: The information is usually presented as data. Once the necessary knowledge and information 

are defined, an initial data framework can be created. The first two steps of the presented approach serve 

as the foundation for the data required for ML. The types of data and their location in IT systems assist 

engineers in selecting the appropriate data for each ML use case. As a result, it is essential to categorize 

the relevant data based on data type (numeric, text, time series, images, etc.) and then use the appropriate 

ML algorithms for the use case. 

4.2.2 Application of the approach 

The application of the presented approach is evaluated using two examples. One example is an ML use 

case in conventional product development, and the other is from product development with AM. 

Example 1: Prediction of the progress of CAD modelling 

Use Case Description: Predicting the progress of CAD modelling in the engineering process using ML 

Algorithms. Since this is work on the product model, the object of consideration is the process, and the 

purpose is prediction. Figure 3 shows the introduced approach for the presented use case for one 

knowledge item.  
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Figure 3. Excerpt of the derivation of knowledge, information, and data in context 

Knowledge: The purpose of this ML use case is to predict progress in CAD modelling. The benefit is 

early detection if the activity is still on time and, if not, the possibility to initiate countermeasures. The 

process as object of consideration is influencing by already modelled components and the understanding 

of the finished model and which single parts it has. Furthermore, the empirical knowledge of how long it 

took for the modelling of similar products influences the estimation of the progress.  

Information: The model history of the construction steps shows what has been done, and the 3D 

representation of surfaces and bodies indicate the tasks already completed derived from knowledge of 

already modelled components. From the experience knowledge the information about remaining 

duration of the modelling can be derived by the time history from the modification date or completion 

date of similar CAD models. Knowledge of the finished model is reflected in requirements for the 

finished product, sketches, and how similar finished CAD models look. 

Data: Data is derived from a detailed examination of the information. For this use case, data such as a 

list of construction steps in textual format with sorting according to the execution of the steps, a 

parameter list with numerical values in the backend of the CAD system, and the surfaces and bodies on 

the model. Metadata such as modification date, version, and creator. This allows the duration to be 

calculated from earlier models since the completion date is also available here. From earlier process 

steps, requirements lists are partly available in a system such as PDM or Excel format, and images of 

hand sketches are available. In addition, CAD models from previous projects can be accessed. 

Example 2: Design optimization of parts in additive manufacturing 

Use Case Description: To enhance the quality of printed parts during design optimization as a part of 

DfAM, AM designers must assess scan strategies, building orientation, component positions, and 

support structures. Following the approach defined above, the object of consideration in this example is 

the product layout, and the purpose is optimization. Figure 4 shows the introduced approach for the 

presented use case for a specific knowledge item.  

 

Figure 4. Knowledge based approach for DfAM 

Knowledge: The purpose of this ML use case is to optimize the design of AM parts considering the 

influencing parameters of the printing process. The benefits of optimizing the product layout encompass 

a reduction printing time and cost. The approach involves extracting implicit design knowledge from 

past datasets, along with a priori knowledge and relevant information on standards and norms for DfAM. 

The product layout as an object of consideration can be affected by the way support structures are 

modelled in relation to the entire part. This knowledge can be gained through analysing vast amounts of 

data from previous prints.  

Information: The design model of a component contains information about its shape, as well as the 

structural relationships between the printing parameters. Information may consist of factors such as build 

orientation, support structure size, printing speed, layer hight, temperature, etc. an impact on the final 

printed part. As support structures are a critical component of AM an impact on the final printed part and 

can significantly affect the overall success of the print. Knowledge of the optimal alignment of supports 

for flat, angled, or curved surfaces is reflected in specific AM guidelines of the industry as well as 

similar previous AM prints and experiential knowledge.  
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Data: In this use case, data on numerical values such as density, thickness, and volume of supporting 

structures is obtained through a comprehensive analysis of information, including documentation from 

material suppliers and industry standards. Furthermore, the alignment of support structures can be 

informed by numerical values from prior comparable print jobs in CAD system.  

5 CONCLUSION 

The analysis of the identified literature revealed that use cases from embodiment design can be described 

by an object of consideration and a specific purpose. The identified objects of consideration were 

categorized into seven groups, focusing on either product description or process. In addition, it was 

found that specific ML algorithms are used more for certain purposes. Neural networks were applied 

once in each combination. As for the data, the focus was only on the description of the most important 

parameters, so that no analysis could be carried out here. The automation's degree of the object of 

consideration in the use cases from the literature analysis goes up to assistance. If this level is to be 

increased to automatization, it must be ensured that the data used for learning algorithms are both 

complete and accurate. The paper describes a systematic approach establishing a solution framework 

through knowledge-based derivation of data, in which the relevant data can be searched. By focusing on 

knowledge derivation from the object of consideration, the required knowledge for the use case can be 

specifically identified. It is easier for engineers to determine their knowledge to accomplish their tasks, 

compared to identifying relevant data from outset. This approach offers clear guidance and ensures that 

ML algorithms learn only what is necessary for the particular use case. However, this approach also has 

limitations as it doesn't allow for the training of new knowledge. The ML algorithm can only build its 

knowledge within the framework from knowledge to information to data process. Despite this limitation, 

this approach enhances the comprehensibility and acceptance of proposed ML solutions. 

The approach presented is still relatively qualitative and lacks formalization and standardization for 

widespread use. To address this, models in the form of knowledge, information, and data can facilitate 

the identification of connections between them. Consistent linking of these models can help derive 

relevant data features for ML models more efficiently. It is also important to carefully consider which 

notations are most appropriate for describing knowledge, information, and data to ensure consistency. 

This procedure must be further investigated in academic research and industrial application to validate 

and establish it. 
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