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Abstract

We exhibit an interesting Cayley graph X of the elementary abelian group Zg with the property that
Aut(X) contains two regular subgroups, exactly one of which is normal. This demonstrates the existence
of two subsets of Zg that yield isomorphic Cayley graphs, even though the two subsets are not equivalent
under the automorphism group of Zg.
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1. Introduction

Given group G and a subset C C G, called the connection set, we define the Cayley
digraph Cay(G, C) to be the directed graph with vertex set equal to G and arc-set
consisting of all ordered pairs of the form (g, cg) where ¢ € C. It is well known that
the automorphism group of Cay(G, C) contains a regular subgroup isomorphic to G,
and in fact this condition characterizes Cayley (di)graphs (see, for example, [2]). If we
insist that 1 ¢ C, then Cay(G, C) has no loops, and if we further insist that C = C -1
then Cay(G, C) is undirected. In this paper, both conditions will apply and we will
consider only undirected and loopless Cayley graphs. It is clear that, if 8 € Aut(G),
then
Cay(G, C) = Cay(G, C?),

but it is well known that the converse is not true, in that two Cayley graphs of G might
be isomorphic even though their connection sets are not equivalent under Aut(G). A
Cayley graph X of a group G is said to be a Cayley-invariant graph (CI-graph) of
G if every isomorphism between X and another Cayley graph of G is induced by an
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automorphism of G. A graph may be a CI-graph of one group, but not a CI-graph of a
different group, so it is essential to specify the group in question. A group G is said to
be a Cayley-invariant group (CI-group) if all Cayley graphs of G are CI-graphs of G.
There has been considerable research into determining which graphs are CI-graphs,
which groups are CI-groups, and the directed analogues of these questions. This work
is beautifully surveyed by Li [5], who presents all the main results and outlines the
many remaining open questions in this area. One useful tool is the observation that
whether a graph is a CI-graph or not can be determined from its automorphism group
(that is, without direct reference to the putative isomorphic graph).

THEOREM 1. A graph X is a Cl-graph for a group G if all regular subgroups of
Aut(X) isomorphic to G are conjugate in Aut(X).

One of the open questions highlighted by Li is the problem of characterizing normal
non-Cl-graphs, that is, non-Cl-graphs for a group G whose automorphism group
contains a normal regular subgroup isomorphic to G. According to Li, normal non-
Cl-graphs ‘seem to be very rare’. In the current paper we contribute to this study
by exhibiting an interesting 35-regular normal non-CI-graph for Zg that appears to
be sporadic. We note in passing that its complement is the unique smallest non-CI-
graph for an elementary abelian 2-group, as it is known that Z’z‘ is a CI-group for
k <5, and the smallest previously known non-CI-graph for Zg is a 31-regular example
complementary to one given by Nowitz [6].

2. Hadamard graphs

The Hadamard graph H(n) has the 2n &= 1 vectors of length n as its vertices,
where two vertices are adjacent if and only if they are orthogonal. This graph has
previously been studied in several contexts (see Ito [3, 4] and Frankl [1]), with
one of the more surprising being the fact that determining its chromatic number
has applications in quantum computing. The graph H(8) has 256 vertices, and is
disconnected with two components, with the vectors with an even (respectively, odd)
number of ‘—1’s forming the two components. It is easy to see that x.y =0 if and
only if x.(—y) = (—x).y = (—x).(—y) =0, and therefore each component of H (8) is
a lexicographic product X[2K], where X is a 64-vertex graph. Each of the vertices
of X consists of a pair {x, —x} of vectors, where x has an even number of ‘—1’s. We
will identify such a vertex with the vector from {x, —x} containing the fewer ‘—1’s,
or the vector with first coordinate x; = 1 if x and —x both contain four ‘—1’s. The
valency of H(8) is (2) =70 and so X has valency 35. The following series of lemmas
describes the properties of the 35-valent graph X, with respect to the special vertex
a=(1,1,1,1,1,1, 1, 1).

LEMMA 2. The neighbours of a are the 35 vectors x with four ‘—1’s and x1 = 1, and
the vertices at distance two from a are the 28 vectors with two ‘—1°s.

LEMMA 3. The graph X is a (64, 35, 18, 20) strongly regular graph.
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PrROOF OF LEMMA 3. Consider two adjacent vertices, which without loss of
generality may be takentobe (1, 1,1, 1,1, 1, 1, 1) and (—1, —1, —1, —1, 1, 1, 1, 1).
A vector is mutually orthogonal to these if and only if it has two ‘—1’s in the first
four coordinates, and two ‘—1’s in the last four coordinates. There are 36 = (g) X (3)
such vectors, but, as we have counted each vector and its negative, these correspond
to 18 distinct vertices. The common neighbours of two nonadjacent vertices, say
(r,1,1,1,1,1,1, 1) and (-1, —1, 1, 1, 1, 1, 1, 1), must have one ‘—1’ in the first
two coordinates, and three ‘—1’s in the last six positions. There are 2 x (g) =40 such
vectors, corresponding to 20 distinct vertices. O

LEMMA 4. The full automorphism group of X is equal to the semidirect product
78 x Sym(8).

PROOF. Let [8] denote the set {1, ..., 8} and, for s C [8], let p; denote the operation
on Zg defined by negating the components in the coordinate positions in s. It is easy
to see that p; is an involution and that

PsPt = PtPs = Psdt

(where @ is the symmetric difference operator on subsets of [8]). If s has even
cardinality, then p; induces an automorphism of X, which we shall also denote
by ps, noting that as automorphisms ps = p; if and only if s =17 or s =1 & [8].
Therefore, there are 2° distinct automorphisms py, each taking « to a different vertex,
so the collection of all such automorphisms forms a regular subgroup of Aut(X)
isomorphic to Zg . There are 8! permutations of the eight coordinate positions, each
of which induces an automorphism of X, with no two permutations inducing the
same automorphism. If we interpret the ordered pair (o, ps;) as meaning ‘permute
coordinates according to o, and then apply p;’, it follows directly from the definitions
that

(0, ps)(T, pr) = (0T, P57 1),

and therefore Aut(X) contains the semidirect product Zg x Sym(8). The vertices at
distance two from « induce a subgraph isomorphic to the complement of the line graph
of Kg, which has full automorphism group isomorphic to Sym(8). Any automorphism
of X fixing this subgraph is necessarily the identity, and so the stabilizer of « has order
8!. Therefore we have identified the full automorphism group of X. O
COROLLARY 5. The graph X is a normal Cayley graph for Zg.

PROOF. The automorphisms of the form p; form a normal subgroup of Aut(X). O

THEOREM 6. The graph X is a non-CI-graph.

PROOF. We will exhibit another regular subgroup of Aut(X) isomorphic to Zg.
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Up to isomorphism, the graph Kg has a unique 1-factorization with the additional
property that the union of any two 1-factors is the union of two 4-cycles. From each
1-factor in this 1-factorization, form a permutation of [8] whose cycles correspond to
the edges of the 1-factor, yielding the following seven permutations:

hy = (12)(34)(56)(78),  he = (16)(25)(38)(47),
h3 = (13)(24)(57)(68),  h7 = (17)(28)(35)(46),
hs = (14)(23)(58)(67), hg = (18)(27)(36)(45).
hs = (15)(26)(37)(48),

The special property of the 1-factorization ensures that these permutations
commute, and in fact they comprise all the nonidentity elements of a subgroup of
Sym(8) isomorphic to Z;’ . Every 4-subset of [8] determines a subgraph K4 with six
edges. This K4 either contains two edges in each of three distinct 1-factors, h;, hj, hy,
where h;h; = hy, or no two edges belong to the same 1-factor. There are 14 different
4-subsets in the former category, and taking one from each complementary pair, we
get the following seven 4-sets:

{1,2,3,4}, {1,2,5,6}, (1,2,7,8}, {I,3,5,7},
{1737678}’ {1343578}? {1747677}'

These sets have the property that the intersection of any two of them has cardinality
two, and the intersection of any set with the complement of another also has
cardinality two. Let A and B be the following sets of automorphisms, where e is
the identity element.

A B

(e, pg) (e, pg)

(h2, p1,2) (e, p(1,2,3,4)
(h3, pg1,3) (e, p{1,2,5,6))
(ha, p(1,4)) (e, p(1,2,7.8)
(hs, pg1,5)) (e, p(1,3,5,7})
(he, p(1,6) (e, p(1,3,6,8))
(h7, pi1,7y) (e, p(1,4.,5.8))
(hs, p(1,8) (e, p(1,4,6,7})

Now for x, y € [8],
chy — qhshy
and
(hy, p{l,x})(hy» ;O{l,y}) = (hxhy7 P{l,lhxhy}),

and so A is a subgroup of Aut(X) isomorphic to Z% . It is simple to verify that B is
a subgroup of Aut(X), also isomorphic to Z;. Furthermore, if we let a = (o, ps) and
b= (e, p1), then

ab= (0, pyey) and ba= (0, proas)-
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If ¢ contains an orbit of o, then it is the union of two orbits of o and hence invariant
under o. Otherwise t° =t & [8] and, as s contains exactly one element in ¢7, it
follows that

s®dt=1t" ®s dI[8].

In either case it follows that ab = ba, and so AB=BA,andas ANB=e¢, ABisa
subgroup of Aut(X) isomorphic to Zg. The product (hy, p{1,x)) (e, ps) maps « to the
vector with ‘—1’s in coordinate positions in s @ {1, x}. If s ® {1, x}=r & {l, y} or
sO{l,x}=td{l,y}d[8],thens &t ={x, y}ors &t = {x, y} ® [8] respectively,
neither of which are possible when s and ¢ are chosen from the 4-subsets associated
with the elements of B. Thus every element of AB maps « to a different vertex of X,
and so AB is a regular subgroup of Aut(X). O
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