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BERNSTEIN-TYPE INEQUALITIES WITH 
BOMBIERI NORM 

FRANCK BEAUCOUP AND CATHERINE SOUCHON 

ABSTRACT. If P(z) — ££= 0 a*z* is an univariate polynomial with degree n then 
Bombieri norm of P is defined by 

\*=° (k) 

where (jj) denotes the binomial coefficient. 
In the present paper we give, under assumptions on the roots of P, optimal Bernstein-

type inequalities for the ratio between Bombieri norm of P and that of its derivative P'. 
We also give such inequalities for the polar derivatives of P defined by 

P, (a, z) = nP(z) - (z - a)P'(z), a € C. 

If P is an univariate polynomial with degree n, a well-known theorem due to Bernstein 
asserts that 

ll^llco -

where || • ||oo denotes the Zoo-norm, defined by 

||P||00 = max|P(z)|. 
|z| = l 

Of course this estimate is optimal since equality holds for P(z) = zn. 
This theorem inspired numerous works on polynomials and trigonometric polynomi­

als. Many of them proposed to sharpen Bernstein inequality under assumptions on the 
roots of P. 

Malik (see [10]) proved that if P has no root inside the disc {\z\ < R} with R > 1 
then 

\\n2o<_n_ 
\\P\\oo - 1 + * 

with equality for P(z) = (z + R)n; a result due to Lax (see [9]) in the case R = 1. Let us 
mention that the optimal upper-bound for this ratio when P has all roots in smaller discs 
(that is, R < 1) is not known. 
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It can be deduced (see [5]) from Malik's result applied to the reciprocal polynomial 
that if P has all roots in the disc {\z\ < R} with R < 1 then 

nioo> n 
\\P\\oo - 1 + * 

with equality for P(z) = (z + R)n, but the problem remains open when R > 1. 
Such inequalities are known for the Lp-norms, 1 < p < +oo, defined by 

UP 0f27T d t \ ' P 

The general one is due to Zygmund (see [13]): if P has degree «, then 

llP'll 
\\P\\P 

<n. 

Here again, P(z) — z" gives equality. 
De Bruijn (see [4]) proved the following optimal refinement: if P has degree n and no 

root inside the unit disc {\z\ < 1}, then 

II^II. 
with 

n<nCp, 

It is easily seen that equality holds for P{z) = zn + 1. 
Further refinements do not seem to be known for the Lp-norms, except for/7 = 2. In 

this case the Z,2-norm coincides with the /2-norm on the coefficients of the polynomial; 
that is, 

( n \ V 2 n 

= E k l 2 if P(z)=Ylak2*. 
\k=0 J k=0 

Rahman (see [11]) got with this norm an optimal estimate for polynomials with degree 
n having no root inside the disc {\z\ < R} with R < 1, namely 

r i b < n 
\\p\\i - VTTR^ 

with equality for P(z) = z" + R". For R > 1 Govil and Rahman (see [7]) proved the 
estimate 

rik< n 
Vl+R2 

https://doi.org/10.4153/CMB-1996-019-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-019-5


BERNSTEIN-TYPE INEQUALITIES 153 

and conjectured the following one: 

! 2 \\p'h ^ 
< «max 

i iKz+flr" 
| | z»+^ | | 2 ' \\(z + R)"\\2. \\p\\2 

a conjecture which is still open. 
For polynomials with all roots in such discs, estimates are known (see [5]) but they 

seem to be far from optimality. 
In the present paper, we give such inequalities with Bombieri norm. Introduced in 

[2], this norm depends on the degree of the polynomial on which it applies. If P{z) = 
££=0 ak^ is a polynomial with degree n then Bombieri norm of P is defined by 

[]" IE © J 
where (£) denotes the binomial coefficient. 

We give estimates for the ratio ^pf* under each of the above assumptions on the 
roots of P. All of these estimates are optimal and we give the extremal polynomials. We 
also derive optimal bounds for the ratio between Bombieri norm of P and that of its polar 
derivative with respect to any point a G C. This polar derivative is defined by 

Pl(z) = nP(z)-(z-a)P,(z). 

In this case, the roots of P are assumed to stay inside or outside discs or half-planes 
related to a. 

In Section 1, we study elementary properties of Bombieri norm with respect to poly­
nomial derivatives and we state our main theorem. This theorem is proved in Section 2 
and estimates are derived in Section 3 for polar derivatives. 

1. Bombieri norm and polynomial derivatives. If P(z) = E£=0
 a ^ *s a polyno­

mial with degree n then Bombieri norm of its derivative is given by 

"ie\ak\
2^i2 

V*=o (*_,) J 

V *=o {k) J 

It is easy to see that Bombieri norm off and P' are connected by the following identity. 

PROPOSITION 1. IfP(z) = T,"k=0 a^ has degree n, then 

n2[P?n = [P']U+Vr)t-x 
where P* denotes the reciprocal polynomial ofP, defined by 

r(z) = ZnP{\lï) = YJàn-k? 
k=0 
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Of course the reciprocal polynomial P* has degree at most n, less than n ifP(0) = 0. So 
(P*)f may have degree less than n — 1, but in Proposition 1 we still consider its Bombieri 
norm at degree n — 1. 

From Proposition 1 follows that if P is self-reciprocal (that is, if P* — XP with A E C, 
|A| = 1) and thus if P has all roots of modulus 1, then 

[P']n-\ = n 

[P]n V T 

Note that the Lœ-norm has this property as well: the ratio | j4p is constant (equal to | ) 
for self-reciprocal polynomials with degree n (see [5]). However, it is easy to see that it 
is not the case for the Z,2-norm. 

From Proposition 1 we deduce that if P has degree n, then 

< n. 
[P]n -

Of course, this bound is optimal since equality holds for P(z) = zn. Hence the ratio is 
close to n if the roots of P are small, and it follows from Proposition 1 that it is small (as 
small as wanted) if the roots of P are big. The quantitative formulation of this behaviour 
is part of our main theorem below. 

THEOREM 2. Let P be a polynomial with degree n. 
IfP has no root inside the disc {\z\ < R} then 

(i) £ ^ < - = L = * r * < i 

(2) <-jJL=i/R>l. 
VI +R2 

IfP has all roots in the disc {\z\ < R} then 

(3) [~^± > ~A= ifR < 1 V } [P]n ~ y/ÏTRÏ J ~ 

(4) > J^—ifR>\. 
Vl+R2n 

All of these estimates are optimal since equality holds in (1) and (4) for P(z) = zn+Rn, 
in (2) and (3) for P(z) - (z + R)n. 

2. Proof of the main theorem. We first observe that estimates (1) and (2) are de­
rived from the last two ones by applying Proposition 1 to the reciprocal polynomial. 
Hence we only have to prove estimates (3) and (4). For this, we need the following the­
orem of comparison between Bombieri norms of polynomials under assumptions on the 
values. 
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THEOREM 3. Let P and Q be two polynomials with degree n. Assume that P has all 
roots in the closed unit disc {\z\ < 1} and that \P(z)\ > \Q(z)\ for every z, \z\ = 1. Then 

[p]n > [g]». 

PROOF. Arguing from continuity, we may assume that P has all roots in the open unit 
disc{|z| < 1}. Then, fora G C, |a| > 1, we considerthe two polynomials/?! = aP — Q 
and Ri = âP — Q. The fonction/ = p being holomorphic on {\z\ > 1}, the maximum 
modulus principle ensures 

\P(z)\ > \Q(z)\ for every z, \z\ > 1. 

Hence the leading coefficient in P is bigger than or equal to that in Q so R\ and R2 have 
degree w, and they clearly have all roots in the open unit disc. 

Then we apply the following lemma, immediate consequence of Grace's apolarity 
theorem (see [1] for details), in which [•,]„ denotes Bombieri scalar product defined by 

V n n 

Y, ckz*, YL dk^ 
U=0 k=0 

LEMMA 4. Let P and Q be two polynomials with degree n having all roots in the 
open unit disc {\z\ < I}, then 

Here Lemma 4 gives 

[*i,*2]» ¥ 0 

that is, 

This being valid for every a9\a\ > 1, this trinomial in a has its roots of modulus at most 
1. Therefore its trailing coefficient is not bigger than its leading one; that is, 

[P]n > [Q\n. 

This completes the proof of Theorem 3. • 
Before using Theorem 3 to prove estimates (3) and (4), let us make three remarks. 

REMARK 1. We have seen that assumptions of Theorem 3 imply that \P(z)\ > | Q(z)\ 
for every z,\z\ > 1. It may be asked whether this condition yields by itself the conclusion 
[P]n > [Q]n • The answer is negative, as shown by the following counter-example. 

Given R, 0 < R < 1 and a £ C, \a\ > 1, we consider the polynomials 

E 
k=0 

P(z) = (z + a)(z + R) 
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and 
Q(z) = (z + a)(Rz+\). 

It is easily seen that \P(z)\ > \Q(z)\ for every z, \z\ > 1, but one checks that if a = ^ 
then[P] 2 <[0] 2 . 

This proves that there is no monotone integral representation for Bombieri norm; that 
is, 

\.P^=f{!Js{z)h(\P{z)\)dz) 

with/ and h monotone and g non-negative, taking into account the values of the polyno­
mial only on {\z\ > 1} and neither is there with the values only on the unit disc {\z\ < 1} 
as seen with the reciprocal polynomial. 

Let us mention that the only known such representation for Bombieri norm is due to 
Boyd (see [3]) and takes into account the values of the polynomial on the whole complex 
plane. This integral representation is the following one: 

( 7T r+™ f2« I W ) I 2 , , V / 2 

REMARK 2. As shown in [1], Lemma 4 is also valid for half-planes whose boundary 
contains the origin. Moreover, for such half-planes, it is valid with the Euclidean scalar 
product as well (the Euclidean scalar product is the one associated with the L2-norm). 
Hence an analogue of Theorem 3 may be stated as follows: 

THEOREM 5. Let P and Q be two polynomials with degree n and let H be a closed 
half-plane whose boundary 8H contains the origin. Assume that P has all roots in Hand 
that \P(z)\ > \Q(z)\ for every z on dH, then 

[P]n > [Q]n 

and 

\\ph > neii2. 

Once again it is easily seen that the previous assumptions cannot be replaced by the 
weaker condition "|P(z)| > \Q(z)\ for every z in the closed complement of//". 

REMARK 3. Following the proof of Theorem 3, one can check that this theorem 
remains valid if Q has degree less than n (and so does Theorem 5), provided that we still 
consider its Bombieri norm at degree n. 

We can now establish estimates (3) and (4). We begin with estimate (3). From Propo­
sition 1 follows that estimate (3) is equivalent to the following one: 

R[p']n-i > [ ( n V i . 

Since P has all roots in the closed unit disc, so does P' by Lucas theorem. Thus, 
in order to apply Theorem 3 with polynomials RP' and (P*)f we only have to use the 
following lemma, due to Malik (see [10]) and of which we give here a more direct proof. 
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LEMMA 6. Let P be a polynomial with all roots in the disc {\z\ < R} with R < I, 
then 

R\P'{z)\ > |(F*)'(z)| 

for every z, \z\ = 1. 

PROOF. Letz0 £ C, |z0| = 1. It is easily seen that 

\(P*y(zo)\ = \nP(zo)-zoP'(zo)\ 

where n is the degree of P. 
To prove Lemma 6 we may assume that R < 1 (the result with R = 1 will follow by 

continuity), which ensures by Lucas theorem that P'{z$) ̂  0; so we can write 

Kn^o)i 
\P'(zo)\ 

Pjzo) 
P'(zo) 

1 - É 

•zo 

Writing a\,..., an for the roots of P we have 

n 

1 * 

^0 

Of; 

l-/3y 

with /?,• = | , 1 <j < n. Note that |/?y| = |ay| < #, 1 <y < «. 

One checks that the Môbius transform t\\z —> - ^ maps the disc A? = {|z| < #} 
onto the disc D with center -—^ and radius -j-^j. Hence each complex number -^j, 
1 <y < w belongs to D and so does £ by convexity. 

Therefore it remains to show that 

1 - z 
<R 

for every z in D. 
This follows from the fact that the Môbius transform ^ = —t\x\z —» — maps D 

onto DR, which completes the proof of Lemma 6 and thus that of estimate (3). • 
To complete the proof of Theorem 2 we must now establish estimate (4). From Propo­

sition 1 follows that estimate (4) is equivalent to the following one: 

Rn[p']n-x > t ( n V i . 

Since P has all roots in {\z\ < R}, the polynomial Q{z) = P(Rz) has all roots in the 
unit disc. So estimate (3) gives 

[Q%-
[Q]n '- y/ï 

> 
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that is, with Proposition 1, 

[ Ô V I >[(e*)Vi. 
But Q'(z) = RP'(Rz) and R > 1, so that 

by définition of Bombieri norm. 
On the other hand a straightforward calculation gives 

and 

Therefore, since R > 1, 

Q*(z) = R"P*Q 

{Q*)'{z) = R"-\P*)'(^). 

[(fi*)Vi>KnVi. 
This completes the proof of Theorem 2. • 

3. Polar derivatives. Let us first give the following identity, analogue of Proposi­
tion 1 for polar derivatives. 

PROPOSITION 7. Let P be a polynomial with degree n and a e C, a ^ 0. Then 

1 M2 
n\\+\oc\2)[Pfn = [Pi(a,z)£_, +\a\2[px(--,z) 

n-\ 

PROOF. We only need to deal with polynomials P such that P(0) ^ 0. The general 
result will follow by continuity. We write 

and 

Then 

and 

jP1(a,z)=((P*) /)*(z) + aP/(z) 

/ 1 \ 1 + Irvl2 

P , ( a , z ) - P , ( - - , z ) = — M - P ' ( z ) 

P,(cr, z) + |a |2P, ( - - , z) = (1 + |a|2)((P*)')*(z). 

Hence,since [(P*)'~\„-\ = [((^*)') ] ..Proposition 1 gives 

[/>,(«, z) - P, ( - - , z ) | + [/>,(a, z) + |a |2P, ( - - , z)l 
L \ a /in-\ L V a /J« 

= nl{\ + \a\l)2[Pfn. 
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Expanding Bombieri norms in the left-hand side of this equality, the result follows. • 

REMARK. Viewing, with suitable conventions, the classical derivative as the polar 
derivative with respect to the point at infinity; that is, 

P ' ( z ) = l i m ^ ^ = ^ ^ , 
a^oo OC OO 

Proposition 1 appears as the limit case a = 0 or a = oo in Proposition 7. 
Of course Proposition 7 yields the following optimal general estimate for Bombieri 

norm of the polar derivative of any polynomial P with degree n with respect to any point 
a in C : 

[Pi(a,z)]n_, <nfi + or 
[P]n 

with equality for P{z) = (z+±)n. 
It can be seen in [8] that polar derivation appears in a natural way by subjecting the 

complex plane to Môbius transformations 

az + b 
t(z) = 

cz + d' 

with a, b, c, d in C, ad — bc^ 0. Indeed, if P is a polynomial with degree n and a a point 
in C, consider the Môbius transformation 

ta(z) = - . 
z — a 

Writing A = \ _ for the matrix associated with ta, consider the polynomial 

CA,U(P) with degree at most n defined by 

<OCZ+\" 
Q„(P) = ( z - â ) » p ( ^ i ) . 

V z — oc J 
Taking the derivative of this polynomial and subjecting the complex plane to to the re­
verse Môbius transformation, it is easy to check that one finds precisely the polar deriva­
tive of P with respect to a; that is, 

CA,n(Pl(a,z)) = (CA^l(P))\z). 

Looking at polar derivatives through Môbius transformations makes very attractive the 
use of Bombieri norm. Indeed, as proved simultaneously Frot (see [6]) and Reznick (see 
[12]), Bombieri norm and the associated scalar product have the following remarkable 
property for Môbius transformations. 

THEOREM 8. Let M = , ) be an invertible matrix of order 2 with complex 

coefficients and let P and Q be two polynomials with degree n. Writing 

raz + b^ 
CM,n(P)(z) = (cz + d)np(^—), 

\cz + d; 
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we have 

Theorem 8 implies that Bombieri norm is stable by polynomial composition with 
unitary Môbius transformations; that is, 

[CM,n(P)]n = [P]n 

if M is unitary. The Môbius transformation ta involved in the polar derivative of P with 
respect to a is "almost unitary"; that is, its matrix A satisfies 

AÀ1 = (1 + \a\2)I2 

where h denotes the identity matrix of order 2. Thus Theorem 8 yields 

[CA,„(P)]n=(\ + \a\2)hP]n 

and 

[C^^PKcz^L^Cl + lal2)^^^,^]^! 
that is, 

[{CAAP)),]n_l = (1 + \oc\2)^[Px(a,z)\n_x. 

In order to use these identities to deduce from Theorem 2 analogous estimates for polar 
derivatives, we have to study how the zeros of CA,U{P) depend on those of P. Precisely, 
we have to find, for every R > 0, the region SR in which (respectively outside of which) 
the zeros of P have to be assigned to stay in order to make sure that those of Q,„(P) are 
in DR = {\z\ < R} (respectively outside ofDR). 

Writing z\,..., zn for the zeros of P, those of CA,n(P) are clearly t~](z\),...9t~
l (z„). 

So SR = ta(DR); that is, 
- the closed disc with center Q = Rl~^an & and radius ^ p Ri if R < M» 

- the closed half-plane limited by the mediatrix À of (a, — i ) and containing — i 
ifR= \a\, 

- the closed complement of the disc with center Q — Rl^an
 a a n ( i radius ^2_|^2 

if R>\a\. 
We can now state the following theorem, analogue of Theorem 2 for polar derivatives. 

THEOREM 9. Let P be a polynomial with degree n and a £ C. Writing ta{z) = ^ A 
and SR = ta({\z\ < R}) for every R > 0, we have: 

- ifP has no root in the interior O/SR, then 

[/>.(«, z)]„ l 1 + |a 2 

<n 
\ 1 + R2 ~ 
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ifP has all roots in SR, then 

[Pi(«,z)l l/i-i 

[Pin 
>n 

1 + ld2 

l + # 2 ifR<\ 

> nJ 1 ' ' i/fl > l. 
~ \ l+tf2w ^ ~ 

^4// of these etimates are optimal. 

PROOF. We just apply Theorem 2 to CA,n{P) and use the above identities for 
Bombieri norm of the involved polynomials. These estimates are optimal since those 
of Theorem 2 are and extremal polynomials are found by composition with the reverse 
Môbius transformation t~l from polynomials extremal for the estimates of Theorem 2. • 
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FIGURE 3 
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