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Validating the theoretical work on Rayleigh—Taylor instability (RTI) through experiments
with an exceptionally clean and well-characterized initial condition has been a
long-standing challenge. Experiments were conducted to study the three-dimensional RTI
of an SFe—air interface at moderate Atwood numbers. A novel soap film technique was
developed to create a discontinuous gaseous interface with controllable initial conditions.
Spectrum analysis revealed that the initial perturbation of the soap film interface is half
the size of an entire single-mode perturbation. The correlation between the initial interface
perturbation and Atwood numbers was determined. Due to the steep and highly curved
feature of the initial soap film interface, the early-time evolution of RTI exhibits significant
nonlinearity. In the quasi-steady regime, various potential flow models accurately predict
the late-time bubble velocities by considering the channel width as the perturbation
wavelength. Differently, the late-time spike velocities are described by these potential
flow models using the wavelength of the entire single-mode perturbation. These findings
indicate that the bubble evolution is influenced primarily by the spatial constraint imposed
by walls, while the spike evolution is influenced mainly by the initial curvature of
the spike tip. Consequently, a recent potential flow model was adopted to describe the
time-varying amplitude growth induced by RTI. Furthermore, the self-similar growth
factors for bubbles and spikes were determined from experiments and compared with
existing studies, revealing that a large amplitude in the initial soap film interface promotes
the spike development.
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1. Introduction

Rayleigh—Taylor instability (RTI) (Rayleigh 1883; Taylor 1950) occurs at an interface
where a heavier fluid is accelerated by a lighter fluid, resulting in the formation of bubbles
(lighter fluids penetrating the heavier ones) and spikes (heavier fluids penetrating the
lighter ones), often culminating in a transition to turbulent flow (Zhou et al. 2019). RTI is
recognized as a major obstacle to achieving net energy gain in inertial confinement fusion
(Lindl et al. 2014; Betti & Hurricane 2016). Furthermore, understanding RTI and the
resulting hydrodynamic mixing is crucial for comprehending supernova dynamics (Arnett
2000; Miiller 2020).

The unconstrained RTI undergoes an initial regime of exponential growth, during
which perturbations remain significantly smaller than their wavelength. This regime is
followed by a growth saturation, resulting in quadratic growth over time within a nonlinear
self-similar regime (Zhou 2017a,b). Noteworthy experiments include those conducted by
Banerjee, Kraft & Andrews (2010) at an Atwood number (A = (o5, — p01)/(on + p1), Where
on and p; denote the densities of the heavier and lighter fluids, respectively) up to 0.6, by
Akula & Ranjan (2016) at A up to 0.73, by Dimonte & Schneider (2000) at A up to 0.96,
and others. Typical simulations involve those carried out by Cook & Dimotakis (2001),
Cabot & Cook (2006), and Livescu et al. (2010) at A = 0.5, Cabot & Zhou (2013) at A up
to 0.8, Livescu (2013) and Youngs (2013) at A up to 0.9, and so forth.

Most of previous experimental and numerical studies focused primarily on
comprehending unconstrained RTI (Sharp 1984; Boffetta & Mazzino 2017; Zhou 2017a,b;
Banerjee 2020; Livescu 2020), with only a limited portion of the literature exploring RTI
arising from single-mode perturbations. However, most of the theoretical research on RTI
is based on the evolution of a single-mode interface in a channel (Layzer 1955; Dimonte
2000; Oron et al. 2001; Goncharov 2002; Abarzhi, Nishihara & Glimm 2003; Sohn 2003;
Guo & Zhang 2020; Liu, Zhang & Xiao 2023). Validating the theoretical work on the RTI
through experiments with an exceptionally clean and well-characterized initial condition
has been a long-standing challenge. The evolution of RTI on a single-mode perturbation
constrained by walls or periodicity conditions starts with a linear regime, transitions into a
quasi-steady regime (where the velocities of bubbles and spikes become time-insensitive),
and is followed by a re-acceleration regime (where the velocities of bubbles and spikes
increase again) (Zhang & Guo 2016).

Theoretically, several successful attempts have been made to model the single-mode
RTI in different regimes. For example, the initial analysis was conducted by Rayleigh
(1883) and Taylor (1950), leading to the development of linear theory. At early times, the
perturbation amplitude (a(¢)) exhibits exponential growth, as described by

a(t) = ap cosh(yt), (1.1)

where ag is the initial amplitude of the interface, y = +/Agk, g is acceleration, and k is the
perturbation wavenumber.

Moreover, Layzer (1955) developed a potential flow model for the late-time bubble
velocities at A = 1 in the quasi-steady regime. Layzer’s model was subsequently extended
for arbitrary A by Goncharov (2002) and Sohn (2003), and more recently by Guo & Zhang
(2020) and Liu et al. (2023) to include bubbles and spikes for arbitrary A. Furthermore, a
buoyancy-drag model, established by Dimonte (2000) and Oron et al. (2001), describes the
motion of bubbles and spikes by balancing inertia, buoyancy and Newtonian drag forces.
This model predicts the late-time bubble velocities identical to those of Layzer (1955)
and Goncharov (2002). In addition, Abarzhi et al. (2003) adopted a multiple harmonic
approach and derived analytical solutions for the late-time bubble velocities for A ~ 0 and
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A = 1. Overall, bubble velocities in the quasi-steady regime have been studied extensively.
In contrast, the late-time spike velocities have received less attention due to the challenges
posed by the large curvature and roll-up of spikes.

Numerically, Ramaprabhu & Dimonte (2005) utilized implicit large eddy simulations
to simulate three-dimensional (3-D) single-mode RTI across various Atwood number
scenarios. Their findings indicated that the late-time bubble velocities align more closely
with the model proposed by Goncharov (2002) than with the models proposed by Sohn
(2003) and Abarzhi et al. (2003). Ramaprabhu et al. (2006, 2012) further observed
the re-acceleration regime at low Atwood numbers. They concluded that the secondary
Kelvin—Helmbholtz instability (KHI) contributes to vorticity generation, leading to bubble
re-acceleration. However, they noted that this re-acceleration regime is transient, with
bubbles eventually decelerating and returning to their terminal velocity over time.
Furthermore, Ramaprabhu et al. (2006, 2012) observed that the bubble re-acceleration
is completely suppressed for high-density ratios with A > 0.6.

Using direct numerical simulations, Wei & Livescu (2012) explored the two-dimensional
(2-D) single-mode RTI at a low Atwood number (A = 0.04). They concluded that
at long times and sufficiently high Reynolds numbers, the bubble’s acceleration
becomes stationary, indicating a period of mean quadratic growth. The authors also
found good agreement between their late-time bubble velocity results and the models
proposed by Oron et al. (2001) and Goncharov (2002), while also noting the late-time
bubble re-acceleration. Recently, Bian et al. (2020) revisited single-mode RTI in 2-D
and 3-D flows using fully compressible high-resolution simulations. They discovered
that that for a sufficiently high perturbation Reynolds number, the late-time bubble
re-acceleration persists and does not diminish. Additionally, their findings indicated that
the re-acceleration is more likely to occur in 3-D flows than in 2-D flows, requiring lower
Reynolds number thresholds.

Experimentally creating an unstable stratification of heavier fluids over lighter ones
under gravity’s influence is a challenge. Banerjee (2020) classified the experimental
configurations in RTI studies into three categories.

(i) The accelerated interface/tank approach with lighter fluids initially over heavier
fluids. For example, Lewis (1950) pioneered the use of rarefaction waves to
drive the RTI of a liquid—gas interface. Morgan, Likhachev & Jacobs (2016)
recently examined the single-mode RTI of various diffusive, gaseous interfaces in a
rarefaction tube. Read (1984) and Youngs (1989) used a rocket rig to drive the RTI of
an initially stable stratified mixture. Jacobs & Catton (1988) employed compressed
air to push water downwards in a vertical tube to study 3-D RTI. Dimonte &
Schneider (2000) set up a linear electric motor to accelerate a tank containing two
fluids with complex acceleration histories. It is noteworthy that Wilkinson & Jacobs
(2007) studied the 3-D RTI on a single-mode interface in a miscible liquid system
at a low Atwood number (A = 0.15). The results showed that the early stage of the
instability evolution is quite similar to its counterpart with a 2-D initial perturbation
for the same wavenumber. In contrast to the 2-D case (Waddell, Niederhaus & Jacobs
2001), the 3-D instability eventually develops two vortices per wavelength instead of
the single one found in the 2-D case. Overall, imaging the flow in an accelerated
tank is challenging, and surface tension between immiscible fluids can introduce
unwanted perturbations.

(i) The situational tank approach with heavier fluids initially over lighter fluids.
For example, Duff, Harlow & Hirt (1962) were the first to create a diffusive
Rayleigh—Taylor unstable interface by withdrawing a barrier that separated a heavier

994 A7-3


https://doi.org/10.1017/jfm.2024.754

https://doi.org/10.1017/jfm.2024.754 Published online by Cambridge University Press

Y. Liang and others

gas over a lighter one in a tank. However, the wake left behind the barrier introduces
unwanted long-wavelength disturbances. To address this issue, Dalziel, Linden &
Youngs (1999) employed a solution by stretching nylon fabric on both surfaces of
the barrier to eliminate viscous boundary layers. Moreover, Huang et al. (2007)
were the first to utilize magnetic force to precisely control the initial conditions by
placing a strong paramagnetic, heavier fluid over a diamagnetic, lighter fluid. Later,
this method was extended by White et al. (2010) using magnetorheological fluids to
examine the nonlinear regime of 2-D single-mode RTI. They obtained the late-time
velocities of bubbles and spikes, and reported that the spike amplitude growth rate
in the A = 1 system does not saturate at late times, in agreement with Zhang (1998).

(iii) The flow channel approach with heavier fluids initially over lighter fluids. For
example, Snider & Andrews (1994) were the pioneers to set up a water channel
to study the RTI of parallel, co-flowing cold and warm streams initially separated
by a thin plate. The two streams enter the channel with the same speed, mainly
eliminating the KHI. However, the water tunnel experiment is limited to a low A
(~1073). To address the limitations of the water channel approach, Banerjee et al.
(2010) set up a gas channel that uses air and helium as the two streams to study RTI
mixing. The gas channel allows for a large A (~0.75). The flow channel approach
offers extended data capture times, although the associated devices are sizable and
intricate.

Overall, due to the surface tension of immiscible fluids and the diffusion of gaseous
interfaces in previous RTI experiments, there is a need to develop a novel approach
for creating a discontinuous gaseous interface with precise initial conditions. There is
substantial evidence indicating that the flows caused by hydrodynamic instabilities may
depend on initial conditions (Zhou 2017a,b). It is important that the initial perturbation
shape can be described accurately in experiments. In this work, we employ soap films
to create a 3-D single-mode Rayleigh-Taylor unstable interface at moderate A. The
morphologies of RTI are captured by high-speed shadow photography. The variations in
amplitudes, Froude numbers and self-similar factors for bubbles and spikes are measured
from experiments and compared to other studies.

2. Experimental method

Soap films offer a unique and versatile platform for studying various fluid dynamics
phenomena due to their ability to create thin, stable interfaces between different fluids
or phases (Couder, Chomaz & Rabaud 1989). The soap film technique has been widely
adopted to investigate complex phenomena such as interfacial instabilities (Ranjan et al.
2005; Ranjan, Oakley & Bonazza 2011), surface tension (Sane, Mandre & Kim 2018),
viscoelasticity (Seiwert, Dollet & Cantat 2014), fluid—structure interactions (Zhang et al.
2000; Alben, Shelley & Zhang 2002), and others. The efficacy of the soap film technique in
creating a discontinuous interface between SFg and air for Richtmyer—Meshkov instability
studies has been demonstrated recently by Liu et al. (2018) and Liang et al. (2019, 2021).
This technique primarily reduces the presence of additional short-wavelength disturbances
and interface diffusion. In this study, we apply the soap film to create a 3-D single-mode
Rayleigh—Taylor unstable interface for the first time.

As depicted in figure 1(a), two transparent acrylic boxes, each measuring 50.0 mm in
width and length, are used. One box, 70.0 mm tall, has an open bottom, while the other,
150.0 mm tall, has an open top. The top box features two 2.1 mm diameter openings on its
top cover. One opening accommodates a steel tube, secured at the centre of the box with
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Figure 1. Schematics of the experiment set-up. («). The interfacial contours extracted from the experimental

images at time zero in cases (b) A0.40#1 and (c) A0.50#1, as marked in red.

springs, while the other houses an oxygen (O3 ) detector positioned near one of the corners.
The experimental steps are as follows.

®

(i1)
(iii)

(iv)

We applied a soap mixture (60 % distilled water, 20 % concentrated liquid soap, and
20 % glycerine by volume) to the bottom edges of the top box, creating a flat soap
film.

The top and bottom boxes were placed vertically, connected together.

Pure SF¢ was introduced to displace the air in the top box through the steel tube,
while the remaining air was expelled through the O, detector. To regulate the flow
of SF¢ injected into the system, a gas regulator was utilized, maintaining a flow rate
0.1 £0.02 1 min~!. As a result, a homogeneous mixture of SFg and air was formed
in the top box. The volume fraction of SF¢ (Vsr,) in the mixture can be calculated
as 1 — Vp,/0.22, where Vy, is the volume fraction of O recorded by the detector,
and 0.22 is the proportion of O3 in air.

Upon reaching a specific Vgr, level, we stopped the injection of SFg and gently
pushed the steel tube downwards at a speed of about 0.0l m s~!, which is
significantly slower than the RTI growth rate. Moreover, different Atwood number
conditions result in varying times for Vgr, rising to a specific value. For instance,
in the case for A = 0.36, the injection time for SF¢ is approximately 1.5 min; for
A = 0.46, it is approximately 2.0 min; and for A = 0.50, it is approximately 2.5 min.
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Case Vsre on (kg m?) v (m?sh) A agp (mm) ap/A JAgkw s™hH
A0.40#1  0.33+£0.01 2.82+£0.03 8.9x107% 040 5.0=£0.1 0.10 22.2
A0.40#2  0.32+0.01 2.80+0.03 9.0x 107° 040 5.4+0.1 0.11 22.1
A0.43#1  0.36 £0.01 3.00 £ 0.02 8.5x107% 043 7.2+0.1 0.14 22.9
A0.46#1 0.41 £0.01 3.224+0.02 8.1x107% 046 7.2+0.1 0.14 23.7
A0.47#1 0.44 +0.01 3384002 7.8x107° 047 8.5+ 0.01 0.17 24.2
A0.48#1 0.46 +0.01 3.47 £0.02 7.6x 1070 048 8.4+0.1 0.17 24.4
A0.48#2  0.45+0.01 3454002 7.6x107° 048 8.7+0.1 0.17 24.4
A0.49#1  0.47 +£0.01 3524002 75x107° 049 10.1 £0.1 0.20 24.6
A0.50#1 0.48 +0.01 358+0.02 74x107% 0.0 9.6 +0.1 0.19 24.7

Table 1. Physical parameters for 3-D RTT in various cases, where Vi is the volume fraction of SFg in the test
gas, pp, is the density of the test gas, v is the weighted viscosity coefficient, A is the Atwood number, ag is the
initial amplitude, and \/Agky is the classical growth rate of RTI, in which g is acceleration and ky (= 21t/W)
is wavenumber.

(v) The sharp end of the steel tube broke the soap film, initiating the RTI driven by
Earth’s gravity. The time elapsed between stopping SFg injection and puncturing
the soap film is approximately 2 s, which is much shorter than the injection time of
SFe. During this period, we continued to monitor Vg, readings from the O, monitor.
The Vg, value increased by no more than 0.01 (equal to the device’s measurement
error) during these 2 s.

In this paper, we focus on 3-D RTI with Vgp, ranging from 32 % to 48 %, corresponding
to A ranging from 0.40 to 0.50. Physical parameters for 3-D RTI in different cases are
provided in table 1. As Vg, increases, the surface curvature of the soap film intensifies,
resulting in greater surface tension to counteract the enhanced gravity of the test gas in the
top box. For example, in the A0.50#1 case (figure 1¢), the soap film interface is steeper and
more curved compared to that in the A0.40#1 case (figure 15). We conducted experiments
with the box width W fixed at 50.0 mm, but varied Vsp, in the top box. The relationship
between the initial perturbation ap/W and the Atwood number A is depicted in figure 2. It
is clear that ap/W increases as A becomes larger, and a curve fit ag/W = 0.75A% closely
matches the experimental data. It is notable that the current set-up cannot be used to run
with almost pure SFg since the soap film easily breaks when Vgr, in the top box reaches
approximately 48 %. We look forward to utilizing a mixture of SF¢ and air in the top box,
and a mixture of helium and air in the bottom box. This approach has the potential to push
the limits and conduct single-mode RTI experiments with high Atwood numbers in the
near future.

The distinctive initial morphology of the soap film interface in shadow photography,
exemplified by figures 1(b,c), facilitates the extraction of interface contours using
image-processing software. The x, z coordinates of these interfacial contours at y =0
for cases A0.40#1 and A0.50#1 can be obtained from the experimental images, depicted
in ‘real space’ with x values ranging from —25.0 to 25.0 mm in figure 3(a). Since the
initial soap film geometry represents only half of the entire sinusoidal perturbation, we
acquired coordinates in the complementary half (referred to as ‘virtual space’ in figure 3a)
by shifting data from x values between 0 and 25.0 mm to a range of —50.0 to —25.0 mm,
and data from —25.0 to 0 mm to a range of 25.0 to 50.0 mm, while also reversing the
signs of y values. Subsequently, spectrum analysis is performed on the complete sinusoidal
perturbation, encompassing both real and virtual spaces, on the specific x—z plane aty = 0.
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Figure 2. The variations of ag/W versus A, with W denoting the box width.
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Figure 3. (a) The coordinates and (b) the initial spectrum of the initial interfacial contour in cases A0.40#1
and A0.50#1.

Figure 3(b) illustrates the ratio between each Fourier mode’s magnitude (m,,) and the
initial perturbation of a soap film interface (2ag). It is clear that the short-wavelength
disturbances are largely eliminated. Specifically, the fundamental mode emerges as
the primary component in the initial interface perturbation, with the third-order mode
exerting a secondary influence. The magnitude ratio between the third-order mode and the
fundamental mode is approximately 6 %. Therefore, density loading can cause consistent
and predictable deformation of the soap film, leading to a highly compact spectrum with
only one Fourier mode in each horizontal coordinate direction. In comparing our initial
interface spectrum with that of White et al. (2010) in their single-mode RTI experiments
employing magnetorheological fluids, we observed a dominant mode perturbation of
1.66 mm and a secondary mode of 0.36 mm in their studies. Consequently, the magnitude
ratio between the secondary mode and the dominant mode was approximately 22 %,

994 A7-7


https://doi.org/10.1017/jfm.2024.754

https://doi.org/10.1017/jfm.2024.754 Published online by Cambridge University Press

Y. Liang and others

(@) (b)

0 5
&

-18 25 20-15-10-5 0 5 10 15 20 25

15 5
S x (mm)

7 (o) 15 5505 ¢

Figure 4. The initial interface perturbation in (a the 3-D view), and () the top view in the A0.50#1 case,
with the colour bars indicating the values of z.

exceeding our experimental findings. These spectrum analysis results underscore the
soap film technique’s ability to generate a well-defined, reproducible 3-D single-mode
Rayleigh—Taylor unstable interface.

According to the above analysis, the initial 3-D perturbation of a soap film interface can
be represented as

z = 2ap cos(mtx/W) cos(my/W), 2.1

in which x and y coordinates range from —25.0 to 25.0 mm, as illustrated in figures 4(a,b).
The single spike can be seen positioned at the centre, while four bubbles are situated at the
corners of the channel. The flow field is captured by high-speed shadow photography,
illuminated by a continuous light source. The frame rate of the high-speed camera
(FASTCAM MINI WX) is 1250 fps, with shutter time 2.78 ps. The spatial resolution
of images is 0.1 mm per pixel. The ambient pressure and temperature are 101.3 kPa and
293.5 £ 0.5 K, respectively.

3. Results and discussion
3.1. Qualitative analysis

Figures 5(a,b) illustrate the bursting of soap films in cases A0.40#1 and A0.50#1,
respectively. Background subtraction has been utilized to enhance the visibility of the
interfacial morphology, with detailed information provided in Appendix A. Time zero
(t=0) is defined as the moment when the centre of the soap film ruptures. The
numbers in the images represent the dimensionless time t (calculated as /Agkyw t, where
g is the acceleration and equals 9.8 m s~2, and ky is the wavenumber and equals
27/W = 125.7 m~! by considering W as the perturbation wavelength). As the Atwood
number increases, the collapse of the soap film becomes more pronounced, leading to
a longer completion time for the bursting of the soap film in the A0.50#1 case (7.2 ms,
corresponding to a dimensionless time T = 0.178) compared to the A0.40#1 case (5.6 ms,
corresponding to a dimensionless time 7 = 0.125). The soap film bursts over much shorter
time scales than the entire experimental duration (z = 5.0).

When the centre of the soap film is punctured, the shadow of the soap film immediately
darkens, and this dark area then spreads from the bottom to the top of the film. This
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0 0.018 0.036 0.053 0.071 0.089 0.107 0.125

0 0.020 0.040 0.059 0.079 0.099 0.119 0.139 0.158 0.178

Figure 5. The bursting of soap films in (a) the A0.40#1 case and (b) the A0.50#1 case. Red dashed lines
indicate the initial interface. Numbers indicate the dimensionless time /Agkw f, and similar hereinafter.

darkening phenomenon reflects density fluctuations on the soap film, which are observed
through shadow photography. As the soap film bursts, the soap solution gathers more in
the unburst regions, leading to varying densities during the bursting process. The radial
spread of soap film bursting from the point of puncture creates a broad perturbation in the
surrounding gas. This rolling up of gases along the bursting surface is attributed to the
KHI between SFg and air. Unlike the classical single-mode RTI, where bubbles and spikes
evolve symmetrically in the linear regime, the early-time development of RTT in this study
exhibits strong nonlinearity.

Figures 6(a,b) illustrate the evolution of the 3-D single-mode RTI in cases A0.40#1 and
A0.50#1, respectively. Background subtraction maintains the outline of the initial soap film
in all images. Following the rupture of the soap film, a single coherent spike penetrates
downwards at the centre, while balanced bubbles form at the four corners, completing
reflective symmetry (r = 1.0). This process involves the presence of small vortices. The
small vortices within the top box merge into two sizeable bubbles, positioned near the
left and right edges of the visualization window (tr = 2.0-3.0). Concurrently, the vortices
within the bottom box merge into a single, prominent spike located at the centre. As time
progresses, the two bubbles continue their ascent, while the head of the spike becomes a
mushroom-like shape (v = 4.0-5.0). Additionally, we observed that the boundary layer on
the walls causes the heads of bubbles to slightly deviate from the side walls. Details on the
boundary layer can be found in Appendix B.

3.2. Quantitative analysis

Time-varying dimensionless amplitudes, denoted as n (= kw(a — ap)), in various cases,
are measured from experiments and presented in figure 7. The amplitude (a) is defined
as the average of the bubble amplitude (a;) and spike amplitude (a;), both labelled in
figure 6. Because the error bars for the measured amplitudes are smaller than the symbols
themselves, we have chosen not to display the error bars. In the experiment, the soap
film undergoes vertical deformation by a significant fraction of its width. As a result, the
initial interface is steep and highly curved, potentially leading to immediate growth at a
rate inconsistent with the early-time linear regime. The prediction from the linear theory
((1.1), considering kw as the wavenumber) is indicated by a black line. It has been observed
that the linear theory overestimates the experimental data beyond a dimensionless time
7 = 0.2. Consequently, the subsequent flow quickly transitions to a multi-modal structure
after the soap film is punctured, underscoring strong nonlinearity in the early evolution
of RTI in this study. Since the deformation of the initial soap film interface is directly
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Figure 6. Shadow images of the evolution of RTI in (@) the A0.40#1 case and (b) the A0.50#1 case, with a;,
and ag denoting the amplitudes of bubbles and spikes, respectively.

influenced by the Atwood number, the departure rate from the linear regime increases
with higher Atwood numbers.

The dimensionless amplitudes of bubbles 1, (= kw(ap —ap)) and spikes
ns (= kw(as — ap)) deviate from each other as nonlinear effects become dominant, as
shown in figure 8. Because heavier fluids exert a greater drag force on bubbles, while
lighter fluids impose a smaller drag force on spikes, the bubble growth is slower than the
spike growth. The time-varying amplitude growth rates of bubbles (ap) and spikes (ay)
are respectively calculated by taking the first derivative of time with respect to a; and ag,
as shown in figure 9. It is found that a;, saturates around the initial value. In contrast, a;
increases as time progresses, and then saturates after a dimensionless time t = 4.5. This
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Figure 7. Time-varying dimensionless amplitudes measured from experiments. Black and cyan lines
represent the predictions of the linear theory and the Guo & Zhang (2020) model at A = 0.50, respectively.
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Figure 8. Time-varying dimensionless bubble amplitudes and spike amplitudes measured from experiments.
Pink and cyan lines represent the predictions of the Guo & Zhang (2020) model for bubbles using the
wavenumber kyw, and spikes using the wavenumber kaw, at A = 0.50, respectively.

indicates that the development of bubbles enters the quasi-steady regime from the very
beginning, while the development of spikes depends on time and enters the quasi-steady
regime at a later time in our experiments.

The amplitude at which a mode transitions from exponential growth to nonlinear
evolution, as anticipated by various late-time models, can be deduced by identifying
the time when the linear and nonlinear modal velocities become equal (Ramaprabhu &
Dimonte 2005). This method is commonly employed to model the influence of initial
conditions on late-time dynamics (Layzer 1955; Dimonte 2004). The dimensionless
transition bubble amplitude, denoted as kaZl , can then be calculated using the equation

Uy
ka! = —2 | (3.1
b JAgkw
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Figure 9. The time-varying amplitude growth rates of bubbles and spikes. Symbols represent experimental
results in various cases. Pink and cyan lines represent the predictions of the Guo & Zhang (2020) model for
bubbles using the wavenumber kw, and spikes using the wavenumber kow, at A = 0.50, respectively.

where U, represents the late-time bubble velocity. The expressions for the terminal
velocities of bubbles (Up) and spikes (Us) in the quasi-steady regime, derived from various
theoretical investigations, are detailed in table 2. Figure 10 illustrates the saturation bubble
amplitude kagl as a function of the Atwood number A, comparing various theoretical
models, numerical simulations, and experimental data (the bubble amplitude when the
linear growth rate matches the measured growth rate). Our findings demonstrate that the
kazl values obtained from experiments are consistent with multiple potential flow models
(Goncharov 2002; Guo & Zhang 2020; Liu et al. 2023), as well as with simulation results
(Ramaprabhu & Dimonte 2005). In cases with lower Atwood numbers, a longer linear
regime is observed, possibly attributed to the interface maintaining an approximately
sinusoidal shape even at higher amplitudes. Conversely, higher Atwood number cases tend
to exhibit square wave characteristics earlier, resulting in the generation of higher-order
harmonics on the interface and deviating from the linear regime.

Expressions for bubble Froude numbers (Frp) and spike Froude numbers (Fr;), from
various theoretical studies, are provided in table 2. According to Ramaprabhu et al. (2006)
and Wilkinson & Jacobs (2007), Frp and Fr, can be calculated as

ap/s
o/ —
s = A A)

Figures 11(a,b) respectively depict the plots of Fr, and Fr, as functions of their respective
values of &, (= (ap — ag)/A) and & (= (ag — ap)/A) for all experiments, considering the
box width W as the perturbation wavelength A, as shown with hollow symbols. The average
values of Frj, and Fry in various cases are presented with solid symbols. These plots also
include horizontal lines representing the predictions of the various models listed in table 2.

As illustrated in figure 11(a), the experimental values of Fr;, exhibit oscillations around
0.60. The models proposed by Abarzhi et al. (2003) for A &~ 1 and A =~ 0 overestimate
the experiments, while the model suggested by Sohn (2003) for A = 0.50 underestimates
them. In contrast, the average values of Fr; closely resemble the predictions of potential
flow models proposed by Goncharov (2002) (Frp = 0.56), as well as those by Guo
& Zhang (2020) and Liu et al. (2023) for A = 0.50. This indicates that the late-time
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Model U, Fry,
3/2 3/2

Abarzhi et al. (2003) (A ~ 0) (g) 4 (%) [E

Abarzhi et al. (2003) (A ~ 1) \/% (1 - 3<11gA>> [14 (1 3“;”)

Goncharov (2002) (f:%)k 1172

Sohn (2003) \/A;g [La
8[3+A+V2(1+A4)!22Ag AB+A+V2(1+A) 2]

Guo & Zhang (2020) \/(1+A)(3+A>[4(3+A)+J§<9+A)(1+A)1/2]k \/ B+A)[4B+A)+v2(9+A) (1+4) /2]

Liu et al. (2023) (1.456 — 0.014) (1+A)k (1.03 — 0.007A)n~1/2

Model U, Fry

Goncharov (2002) (lzj‘g) . =172
8[3—A+v2(1-4)1/2]2A¢ 4[3-A+v2(1-4)!/22

Guo & Zhang (2020) \/(I—A)(3—A)[4(3*A)+\/§(97A)(|*A)l/z]k \/(3*A)[4(3*A)+ﬁ(97/‘\)(|7A)]/2]‘r[

Liu ef al. (2023) (1.456 4+ 0.014) (1.03 4+ 0.0074)n—1/2

(T=A)k A)k

Table 2. The expressions for the terminal bubble velocities (Uj) and spike velocities (Uy) in the quasi-steady
regime, and the corresponding Froude numbers for bubbles (Frp) and spikes (Fry).
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Figure 10. Nonlinear saturation bubble amplitudes kazl from theoretical models, simulations and experiments
as a function of Atwood number A. Round symbols represent the numerical results extracted from Ramaprabhu
& Dimonte (2005), and square symbols represent the present experimental results.

behaviour of bubbles is influenced mainly by the spatial constraint imposed by walls. The
presence of corners in the channel may contribute to the observed oscillations in Frp during
experiments.

In figure 11(b), the experimental values of Fry; show a continuous increase over the
experimental duration. This suggests that the quasi-steady regime differs between bubbles
and spikes, highlighting the asymmetry between them. Consequently, the predictions of
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Figure 11. The variations of (a) the Froude numbers of bubbles Fr;, versus &, and (b) the Froude numbers
of spikes Fry versus &;, using the wavenumber k. Hollow symbols indicate experimental results in various
cases, solid symbols indicate their average, and lines indicate the predictions of various models, and similarly
hereinafter.

—_
N

the three potential flow models (Goncharov 2002; Guo & Zhang 2020; Liu et al. 2023)
indicating that Fry saturates around 0.60 underestimate the experimental observations.
The RTI experiment is conducted with a large initial amplitude, and progresses with
a broad spectral signature that is dominated by a fundamental mode. The initial soap
film interface in the channel is not purely symmetric, being between a single-mode
case and a free-space multi-mode case. The curvature of the spike tip correlates with
the entire sinusoidal perturbation, having wavelength 2W, as shown in figure 3(a).
Thus characterizing the spike instability with a new wavenumber ko (= 7/W) is more
appropriate than using kw (= 21/W), which considers only the space constrained by
walls. We derive a new Froude number (Fr}¢") for spikes using 2W as the perturbation
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Figure 12. The variation of the new Froude numbers of spikes Fri®" versus /", using wavenumber ko
(= m/W).
wavelength, given by the expression
as
Frie = : (3.3)

s V2AgW/(T =AY

Figure 12 presents Fr{® plots as functions of their respective values of
£ (= (as —ap)/2W). We observe that although the experimental values of Fry®"
continue to rise, they align with the predictions of potential flow models proposed
by Goncharov (2002), Guo & Zhang (2020) and Liu et al. (2023) at a later time
(corresponding to £/ = 0.7 in figure 12, and v = 4.5 in figure 9). This demonstrates
that the late-time evolution of spikes is influenced primarily by the curvature of the initial
spike tip.

Then we compare the experiments with the potential flow model developed by Guo &
Zhang (2020) for 3-D RTI with arbitrary A using the equations

iipys = —€pysk(ayys — Uy, (34)

where a5 is the second derivative of time with respect to a;, or a,, k = ky for the bubble
and k = kow for the spike, and €5 is expressed as

(1+£A)GBLAMB LA+ (9+A)V20 E£A)]
23+A+V2ZAEAIABEA) + 220 LA @ F24)]

The Guo & Zhang (2020) model’s prediction for the average amplitude is depicted by
a cyan line in figure 7. Similarly, in figure 8 (or figure 9), the Guo & Zhang (2020)
model’s predictions for bubble amplitudes (or bubble amplitude growth rates) and spike
amplitudes (or spike amplitude growth rates) are represented by pink and cyan lines,
respectively. These findings suggest that the Guo & Zhang (2020) model provides a
reasonable description of the 3-D RTI studied here, particularly when taking into account
that bubble evolution is affected mainly by spatial constraints from walls, while spike
evolution is influenced primarily by the curvature of the initial spike tip.

€p/s = 3.5
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Figure 13. Measurements of self-similar factors for (a) bubbles « and (b) spikes «, determined by a linear

fitting to ,/ap and ,/ag versus t \/Ag.

Case op o

A0.40#1 0.041 0.172
A0.40#2 0.056 0.158
A0.43#1 0.055 0.167
A0.46#1 0.067 0.167
A0.47#1 0.053 0.171
A0.48#1 0.047 0.158
A0.48#2 0.072 0.167
A0.49#1 0.067 0.203
A0.50#2 0.058 0.195

Average 0.057 £0.015 0.173 £ 0.015

Table 3. The values of the self-similar factors for bubbles (o) and spikes («;) in various cases, and their
averages.

Since turbulence is required for self-similarity, we calculated the maximum Reynolds
number (Re) of the experiments as 4300 using Re = aa/v, with v denoting the weighted
viscosity coefficient. The maximum Re is larger than the critical value 3700 proposed
by Dalziel et al. (1999). Therefore, it is reasonable to discuss the self-similar factors for
bubbles («}) and spikes (o) based on our experiments. As mentioned by Banerjee et al.
(2010), one approach to determine the self-similar factors «j, and « is to plot /a; and /ag
against 7 ,/Ag, as shown in figure 13. Subsequently, a straight line can be fitted (using the
method of least squares) through the linear portion of the curve at a later time (e.g. after
dimensionless time 0.4 in figure 13). Squaring the slope of this line yields an averaged
value for o, and «. The values of «y, and «; in various Atwood number cases, along with
their averages, are listed in table 3.

Our results indicate ap = 0.057 £0.015 and «y = 0.173 £0.015. In the similar A
studies, Youngs & Read (1983) found «p = 0.066 and oy = 0.086, Kucherenko et al.
(1991) obtained ap, = 0.055 and a; = 0.070, and Dimonte & Schneider (2000) acquired
ap = 0.050 and oy = 0.063. More recently, Roberts & Jacobs (2016) discovered even
smaller values, such as ap = 0.044 £ 0.009 and oy = 0.057 4= 0.014 for the immiscible
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forced experiments. Therefore, the oy, value obtained from our experiments is similar to
the earlier studies, but the o; value is noticeably higher. It is worth noting that we start with
a much larger initial amplitude in the soap film interface (ap/A ranges from 0.10 to 0.20, as
listed in table 1) compared to previous studies, resulting in strong turbulent mixing zone,
which spreads into the spike (Sharp 1984). Additionally, in the current experiment, the
spike spans only one wavelength, contrasting with previous unconstrained RTI studies.
Because of these two possible factors, the spike develops more rapidly compared to
previous experiments.

4. Conclusions

We conducted precise experiments on the three-dimensional (3-D) Rayleigh—Taylor
instability (RTT) of an SFg—air interface driven by Earth’s gravity at an Atwood number
(A) ranging from 0.40 to 0.50. To eliminate small-scale disturbances and diffusion
layers, we employed a soap film technique to create a discontinuous gaseous interface.
The relationship between the initial interface perturbation and the Atwood number was
determined. Spectrum analysis revealed that the initial perturbation of the soap film
interface is half the size of an entire single-mode one.

The radial propagation of soap films bursting from the point of piercing creates a
broadband perturbation in the surrounding gas on both sides. Since the initial soap film
interface is steep and highly curved, the early-time evolution of RTI exhibits strong
nonlinearity. The experimental transition of a mode from exponential growth to nonlinear
evolution in bubble amplitude aligns well with various potential flow models (Goncharov
2002; Guo & Zhang 2020; Liu et al. 2023) and previous simulations (Ramaprabhu &
Dimonte 2005). Later, bubbles grow at a slower rate than spikes as nonlinear effects
become dominant.

In the quasi-steady regime, we accurately predicted the bubble Froude number using
various potential flow models (Goncharov 2002; Guo & Zhang 2020; Liu et al. 2023) by
considering the box width W as the perturbation wavelength, indicating that the late-time
evolution of bubbles is influenced mainly by the spatial constraints imposed by walls.
Differently, the spike Froude number can be described effectively by these potential
flow models by considering the wavelength of the entire sinusoidal perturbation 2W,
illustrating that the late-time evolution of spikes is affected primarily by the curvature of
the initial spike tip. Therefore, the quasi-steady regime for bubbles and spikes is different,
highlighting the asymmetry of bubbles and spikes. The recent potential flow model (Guo
& Zhang 2020) was employed appropriately to describe well the time-varying perturbation
growth induced by 3-D RTI.

The self-similar factors for bubbles («}) obtained from our experiments match previous
research at similar A, but the self-similar factors for spikes (o) are notably larger
than in previous studies. The large amplitude in the initial soap film interface with a
3-D single-mode perturbation may lead to strong turbulent mixing zone, promoting the
development of spikes.
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Figure 14. Sketch of the background subtraction process for experimental images.

Appendix A. Background subtraction

Throughout the sequence, we implemented background subtraction on the images,
excluding the final image before the soap film is ruptured. This approach preserves the
outline of the initial soap film across all images. As an example, figure 14 illustrates the
background subtraction process for the image at T = 5 in the A0.50#1 case. We utilized
the ‘Photron FASTCAM Viewer 4’ software to subtract the image at t = 0 from the image
at T = 5, applying a greyscale threshold from O to 10. This process yielded an improved
image showing the interfacial morphology. Additionally, the black streaks observed near
the initial interface position in the T = 5 image are shadows caused by the bursting soap
film. Some bursting soap films adhered to the acrylic of the tank. Moreover, in the T = 0
image, the dark horizontal region near the initial interface signifies the boundary between
the top and bottom boxes. After background subtraction, the boundary in the consecutive
image is determined by subtracting the background image’s boundary, resulting in a white
horizontal area between bubbles and spikes.

Appendix B. Boundary layer thickness

We evaluated the thickness of the boundary layer on the walls as it may impact
bubble evolution. To simplify calculations, we assumed laminar and incompressible flow
throughout the experiment. Consequently, the displacement thickness of the boundary
layer (6*) can be approximated using the formula

s =172 |2 (B1)
ap

where a;, is the bubble amplitude, g, is the bubble amplitude growth rate, and v is the
weighted viscosity coefficient. Figure 15 shows the time-varying boundary layer thickness
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Figure 15. Time-varying displacement thickness of boundary layer on walls.

in various cases. We note a linear increase in §* until a dimensionless time 7 = 2.0, beyond
which the rate of increase in §* levels off. Finally, §* attains a value 0.045 times the box
width at T = 5.0. The boundary layer causes the leading edge of bubbles to slightly deviate
from the side walls, as illustrated in figure 6.
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