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THE STABILITY THEOREMS FOR DISCRETE DYNAMICAL
SYSTEMS ON TWO-DIMENSIONAL MANIFOLDS

ATSURO SANNAMI

§1. Introduction

One of the basic problems in the theory of dynamical systems is the
characterization of stable systems.

Let M be a closed (i.e. compact without boundary) connected smooth
manifold with a smooth Riemannian metric and Diff” (M) (r > 1) denote
the space of C” diffeomorphisms on M with the uniform C” topology. Let
feDiff* (M) with s >r. Then f is called C” structurally stable if and
only if there is a neighborhood #(f) of f in Diff (M) such that for any
g€ %(f) there exists a homeomorphism A: M — M satisfying gh = hf.

Another important notion of stability is the Q-stability. Recall that
x € M is a non-wandering point of f if and only if for any neighborhood
U of x, there is a nonzero integer m such that f~(U) N U +# ¢. The set
Q2(f) of all the non-wandering points of f is a closed invariant set. f is
called C7 Q-stable if and only if there is a neighborhood #(f) of f in
Diff” (M) such that for any ge %(f) there exists a homeomorphism A: 2(f)
— 0(g) satisfying gh = hf on Q(f).

The essential condition to characterize these stabilities is “Axiom A”
introduced by S. Smale in [17]. Namely, f satisfies Axiom A if and only if

(a) 2(f) is a hyperbolic set,

(b) Per(f) = 2(f),
where Per (f) denotes the set of all the periodic points of f. Recall that
a compact f-invariant subset 4 C M is a hyperbolic set if and only if there
exist constants ¢ >0, 0 <1< 1 and a Tf-invariant splitting TM|4 = E*
@ E* such that

I Tf" | Epll < e
1Tf" | Ep|l < ea”
for all pe 4 and non-negative integers n.
Received April 22, 1981.
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In [9], [18] and [8], the following is conjectured.

Structural stability conjecture. f is ¢” structurally stable if and only
if f satisfies Axiom A and Strong transversality condition.

Q-stability conjecture. f is ¢™ 2-stable if and only if f satisfies Axiom
A and No cycle property.

For the definitions of Strong transversality condition and No cycle
property, we refer to [9], [18].

The purpose of this paper is to give an affirmative answer to these
conjectures for f of class C? in case of dim M = 2 and r = 1.

The sufficiency parts are known to be true for arbitrary dimension,
that is; if f satisfies Axiom A and Strong transversality condition, then
f is C' structurally stable (Robbin [13] for f of class C? and Robinson [15]
for f of class C'), and if f satisfies Axiom A and No cycle property, then
fis C* Q-stable (Smale [18]). Remark that if f is C' structurally (resp.
£-) stable and of class C¢, then C7 structurally (resp. 2-) stable for all
1<r<s.

Concerning the converses, it is known that C~ structural stability
plus Axiom A implies Strong transversality condition [14], and C™ Q-
stability plus Axiom A implies No cycle property [8], for all r > 1. Thus,
if we can verify that Q-stability implies Axiom A, then the above con-
jectures are established.

In this paper, we investigate a certain class F(M) of C' diffeomor-
phisms introduced by Mafié [5], [6] which contains all C' 2-stable diffeo-
morphisms; namely, we put

F(M) = int, {g € Diff'(M): any periodic point of g is hyperbolic},
where int, means “interior”’ with respect to C' topology of Diff' (M) and
a periodic point x of g with period m is hyperbolic if and only if
T.g™: T.M— T,M has no eigenvalue of absolute value one.

Our result is the following;

TuEoREM. Let dim M = 2 and fe F(M). If f is of class C% then Q(f)

is a hyperbolic set.

By the theorem of Kupka-Smale [14], it can be seen that if f is C'-
Q-stable, then fe F(M). Furthermore, by the “C' Closing lemma”, we
have Per (f) = 2(f), namely Axiom A(b) holds for fe F(M), (see Lemma
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3.1 in [6] for the proof).
Thus, as corollaries of our Theorem, we get;

Structural stability theorem. Let dim M = 2 and fe Diff* (M). fis C!
structurally stable if and only if f satisfies Axiom A and strong trans-
versality condition.

Q-stability theorem. Let dim M = 2 and f e Diff* (M). fis C' 2-stable
if and only if f satisfies Axiom A and No cycle property.

In this paper, we investigate only C' stability, namely F(M), because
the “C” Closing lemma” has not been established for r > 2. As we men-
tioned above, for the proof of Axiom A(b) for fe F(M), we need the “C!
Closing lemma”, and this is again our main tool for the proof of our
Theorem. As is pointed out by Robinson in [14], it seems to be an
interesting problem whether C? structural (or 2-) stability implies C!
structural (or £2-) stability or not.

This paper consists of 15 sections. In Sections 2~9, we give technical
preliminaries. The essential part of the proof of our Theorem is given
in Sections 10~15.

For the understanding of the basic ideas of the proof, the reader is
recommended to look at the statements of (2.3), (4.1), (12.1), (12.2), (12.3)
and all of Section 13; “Proof of the Theorem”. Then it will be understood
how easily the Theorem may be proved provided that (12.2) Lemma and
(12.3) Lemma have been verified. The essence is in (12.2) Lemma and it
is proved without much difficulty, once (11.1) Key lemma is established.
Therefore, we will expend our almost all efforts in proving this Key lemma.

The present work is motivated by Maiié [5], Robinson [16] and Pliss
[10], [11], especially, Pliss’s excellent idea of “cutting off the suborbits”
in [10]. We apply it to the proof of our (11.2) Main lemma in Section 15,
but in his argument, there are some points which are not clear and we
use this idea in a different way from his.

After I had finished this work, I was informed that in [Chin. Ann.
of Math. 1(1980), 9-29.] S.D. Liao also asserted that he proved the sta-
bility conjectures for C' diffeomorphisms on 2-manifolds and for C' flows
with isolated singularities on 3-manifolds. But his method is considerably
different from ours.

I would like to thank Haruo Suzuki, Kenichi Shiraiwa and Takashi
Sakai for helpful advices and supports. Especially, Masahiro Kurata
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must be thanked for his guidance and many valuable suggestions.

LisT oF SymBoLS

[ ]: integer part of a number.

d(x, y): distance from x to y.
Z.: non-negative integers.
a,: §5.

A,: (11.1).

b,(v, a,, @;): §7.

B(r), B(r’,r"). §6.
B,(r), B,(r’,r"): §6.
c: (2.3), (2.4), (2.5).

c,: (6.4) (vi).

d,: §5.

EXf), EXP): §2

E' E* E}, E2: (2.3) (ii).
F(M): §1.

G: (10.1).

G;: (11.2).

my: (2.7), §5.

m,: proof of (10.3).
M,: 6.4) (v).

: §65.

. (11.2).

N,: (10.1).

N;: (9.1).

LS

N;: (10.1).
N;: (10.2).
N,: (12.2).

§2. Some preliminary results

ry: (5.4).

ry: (5.4).

ry: (6.1).

r.: (6.2).

rs: §7.

rs: (9.1).

r.: (9.1).

rs: (10.2).

ry: (14.4).
T(r,r’): (14.1).
T, (r,r): (14.3).
U(r): (5.4) ().
«,: (2.3) ().
U,: (2.9).

U, f): §2.
V,(r): §5.

B = 21" §14.
&: (10.1).

7(p, n): §6.
6(p, n): §6.

10 (2.3), (2.4), (2.5).
A= A(f): §4.
A): (2.1).
vo(IN): (11.2).
¥,: §5.

o(p, n): §86.

From now on, we assume that M is a fixed closed 2-dimensional

smooth manifold with a smooth Riemannian metric. For fe F(M), pe
Per (f) is hyperbolic and we denote by E}(f) (Ei(f)) the unstable (stable)
subspace of T,(M). We put

2.1)

A(f) = closure {p e Per (f): dim E¥f) = i}
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Note that 4,(f) and A,(f) are the sets of all the sources and the sinks
of f respectively. In [11], Pliss proved the following,

(2.2) LEmmA. For fe F(M), A(f) and A(f) are finite sets.

From this lemma, we know that A(f) and /,(f) are hyperbolic sets.
The following lemma proved by Maifié [5] will play a key role in studying
the precise properties of fe F(M).

(2.3) LEMMA. For fe F(M), there exist ¢ >0 and 0 < 2 < 1 satisfying;
(i) there exists a C'-neighborhood %, of f such that

| Tg=» | Ex8)ll=ca®
[T~ | E3(8)|<ca™™

for all ge %, and p € Per (g), where n(p) denotes the period of p.
(i1) there exists a Tf-invariant continuous splitting TM | A(f) = E' ® E*
such that

| TF | EQll- | Tf ™ | Efa iy | S 2™

forallne Z, and p € A(f). Moreover if p € A(f) N Per (f), then E} = E(f)
and E} = E)(f), where E} (i =1, 2) denotes the fiber of E* over p.

Note that dim E} = dim E? = 1 for all p e A,(f).
By changing 0 < 1 < 1 if necessary, we may assume that the constant
¢ >0 of (2.3) (i) equals 1 on saddles, that is;

(2.4) LEMMA.

|Tg=™ | El(g)|< 2@
|Tg = | Ey(g)||I<A®

for all ge %, and p € A,(f) N Per (f).

To simplify the notations and calculations in the succeeding sections,
we also assume that,

@5 (i) 1221 and
(ii) e=>1.

(i) will be used only to formulate (14.5). Throughout this paper, the
symbols ¢ and A denote the constants given by (2.3), (2.4), and (2.5).
The next lemma is a modification of Lemma 2.1 in [10].
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(2.6) LEMMA. Let n be a positive integer and h:{0,1,2,---,n} - R
be o map. Take m < miny,,_, {hG@ + 1) — AG)}, and ¢ > m. If h(n) —
h0) < ¢ for some £e€R with no — ¢ = 0, then there exist v = [(no — ¢)/
(¢ — m)] + 1 integers 0 < k, < k, < --- < k, < n such that

hE + k) — h(k)) < ko
for al0<k<n—kand 1<j< .

Proof. We shall select %, inductively as follows. Let &, be the largest
integer in {0, 1, - - -, n} satisfying A(k,) — A(0) > k0. Such an integer exists,
because zero satisfies this condition. %, has the property that

h(k + k) — h(k) < ko foral 0< k< n—~k,
because if h(k + k) — h(k,) > ko for some 0 < k < n — k,, then
h(k + k) — h(0) = h(k + k) — (k) + h(k) — h(0) > (k, + k)o

which contradicts the definition of k.
Assume that %, is defined and %k; < n. We select k;,, as the largest
integer in {k, + 1, k, + 2, - - -, n} satisfying
hk;.) — h(R; + 1) > (Ry,y — k; — 1) .
Such an integer exists because k; + 1 satisfies this condition. By the
same argument as above, we have,
Mk + k) — ARy, < ko foral 0 < k< n—k,y,,.
Now we shall estimate how many {k,} we can select. Since
¢ > h(n) — h(0) = (h(n) — h(k,)) + (h(k;) — h(k;_, + 1))
+ (h(kj—l + 1) - h(kj—x)) + -+ (h(kn + 1) - h(kl))
+ (h(k,) — R(0))
Z(n—kj)m—{—(kj——kj_1—1)0+m+ AR +m+k10‘
=nm — (j — Do —m) + ko —m),
and ¢ — m >0, we have
B <(G—1)+ ¢ —nm)fc—m).

Namely, if j < (ne — £)/(c — m), we can define k,,, because

k; < (ne — &)@ —m) — 1+ (£ — nm)/(c — m)
=n—1.
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This completes the proof.
Applying (2.6) to our situation with A(k) = log || Tf*|E.|, we get the
following,

2.7 LEmmA. Let fe F(M), pe A(f) and n be a positive integer. Put
my = inf,c ., 5 (| Tf| ELl, | Tf | EX|l}, and take p > m,. If log || Tf"|EL| < ¢ for
some ¢ € R with n(log p) > 4, then there are

v = [(n(log p) — &)/(log p — log my)] + 1
integers 0 < &, < k, < .-+ < k, < n such that
I Tf* | Efesnll < 0"

forall 0<k<n—k;and 1 <j <.

Now we shall give here a C’-distance on a neighborhood of fe
Diff* (M). The definition is a usual one.

Let {U;, a;}ic; and {V,, B;};e, be local coordinate systems on M with
finite index sets, and 7:I—<J be a map such that f(U) C V,, for all
icl Let g,g,cDiff' (M) be sufficiently near f so that g,(U,) < V,,, for
all iel (k=1,2). We define a C'-distance on a neighborhood of f by

d(g, &) = Sup sup max 1B, & (%) — Brn&eeti ()],
| T8, 81ct; N — T.(B, &7 .

With this distance we can define an e-neighborhood of f for small
¢ > 0, which is denoted by %, f).

Clearly we have the next lemma which guarantees simultaneous
perturbations with disjoint supports, that is;

(2.8) LEMMA. Let ¢ > 0 be small and g,, g, U, f). If supp (g.f™) N
supp (g.f") = ¢, then we have;

(&f " N&f e %, ]) .

Next lemma is an easy modification of (1.1) Lemma in [1], and will
be used in Sections 3 and 8.

(2.9) LEmMMA. Let fe Diff' (M). There exists a C'-neighborhood %, of
[ satisfying the following: For any ¢ > 0, there exists § > 0 such that, if
{ps, -+, P} s a finite set of points in M, gec ¥, and A,i=1,---,m) are
linear automorphisms on T, ,M satisfying ||A;, —id|| <4 forall1 <i<m,
then there exists a C' map g’ such that
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(i) dig, g) <e
(ii) (Tg"),, = A,o(Tg),, foralll<i<m.

Moreover, for any neighborhood U of {p,,---,p.}, we can require that
g = g’ outside U.

§3. Stability of sinks and sources

Throughout the rest of this paper, f denotes a fixed C? diffeomorphism
in F(M). In this section, we shall show that the sinks and sources of f
are stable under small perturbations.

(8.1) LEmMA. Given ¢ > 0, there is a C'-neighborhood % of f with the
following property; for any ge ¥, there is a bijection h: A(f) U A(f) —
A(g) U 4,g) such that dyh,id) < e, where d, denotes the C° distance.

Remark that if f is structurally stable, this lemma is obvious by the
stability of hyperbolic sets [3]. But for fe F(M), it is not so easy, because
we must guarantee that there appear neither new sinks nor sources under
small perturbations. We may find an idea of our proof in [11]. Using
(2.3) and (2.9), we can modify Theorem 3.1 in [11] as follows.

(8.2) LEMmMmA. There exist a C'-neighborhood % of f and 6, > 0 satisfy-
ing the following; for any integer 6 > @, there is m(d) > 0 such that for
ge¥ and p e A(g) with =(p) > m(l), we have

[=(p)/0]

[T (T )pct-noem | < @)@,

i=1
where n(p) denotes the period of p.

Proof of (3.1). We only need to prove the lemma for A, that is; for
any ¢ > 0 there is a C!-neighborhood # of f such that for any ge %,
there exists a bijection A: A(f) — 4(g) with dyh, id) <.

Suppose the contrary, i.e., there exist ¢ >0 and sequences g, —f,
p. € 4(g,) such that d(p,, 4,(f)) > e.

If n(p,) are bounded as n — oo, by taking a subsequence we can
assume that there is a k¢ Z, with z(p,) = k for all n and p,—p for
some p. Clearly f%(p) =p. Since d(p, 4(f)) >¢, p is not a sink of f.
As p is hyperbolic, there is a non-zero vector v e T,M such that the norm
of Tf{(v) increase exponentially as i — c. This is a contradiction be-
cause p, is a sink of g, and g, —f.
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Next, we see that the period of p, are bounded as n — co. We can
apply the same technique which Pliss used to prove the finiteness of
sinks and sources of fe F(M) in [11]. He showed that the period of
sinks of the diffeomorphism in F(M) cannot be arbitrarily large. Using
(3.2), we can estimate the supremum of the period of the sinks uniformly
in a C'-neighborhood of f, and get the boundedness of {z(p,)}. This com-
pletes the proof.

§4. Preliminary lemmas about the spectrum of f,
In what follows, we put 4 = A,(f). Let
2*(E?) = {bounded sections 4 — E?} i=12,
and let f,: Y*(E?) — 2°(E*) be defined by
flo) = Tfoaof  aeX¥E).

Y*(E*) is a Banach space with the natural sup. norm and f, is the auto-
morphism of Y% E?) canonically induced by f.

In this section we shall prove two lemmas that will be used in Sec-
tions 5 and 13.

The next lemma is a modification of an argument in [5].
(4.1) LemMmA. Let > 0. If
spec. rad. f;'|2YE) > v,
then there is a recurrent point p, € A such that
T EL| < " for all nez,,
where spec. rad. denotes the spectral radius.

Proof. Let S be the family of compact f-invariant subsets of 4 such
that

spec. rad. f;|2(E' | K) > p KeS.

We define an order on S by inclusion. Then S is an inductively ordered
set, and by Zorn’s lemma, we may find a minimal element K,€ S. By an
argument in [7], there is a sequence g, € 2% E'| K,) such that ||¢,| = 1 and

I(fx — rDo,|| < 1/n,

where r = (spec. rad. f;'|2%E'| K,))!, and I denotes the identity. Note
that r < p.
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Choose p, € 4 such that |o.(p,)| > n/(n + 1), p, — p, for some p, e A
and ¢,(p,) >ve E},. Clearly |v|=1.
Now we shall prove

\Tf™|EL)| <r~ for all me Z, .

Put L =f,|2%E"'| K,) and w = max {Sup,<;<n, | L*|,, 1}, where m is now fixed.
Then we have

IL™ — r"Do,| = (L™ — rL™" + rL™ ' — r™Da, |
<w/n + rlL"* = r"De,|l,

and therefore
IL" — Do, || < (W)L + 1+ 712+ o0 770
= (w/n)-1 —rMi1—r).
Since dim E' = 1 and [v] = 1, it suffices to show that
[T < rm.
In fact,

TF"0(p)| = | Tf 0. f-"(F* () — o (f™(D.) + r"au(f™(D.)]
< @™ — Dol + .

Since ¢,(p,) — v and ||(L™ — r"I)s,|| — 0 as n— oo, we have |Tf"(v)| < r™
as claimed.

We can also see that o(p,)e S, where w(p,) denotes the w-limit set
of p,. Since K, is a minimal element in S, w(py) = K,. This implies that
Py 18 a recurrent point, and completes the proof.

The next lemma is necessary to prove that the pre-laminations {W}},.,
and {W}},c, are of class C* in Section 5.

(4.2) LEMMA.

spec. rad. f'|2%(E) <1
spec. rad. f, |Z(EH) < 1.

Proof. We shall only prove the first case.
Suppose that there is a g > 1 such that

spec. rad. f'|2(E) > p.

Then from (4.1), there is a recurrent point p, € 4 such that
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NI EoL| < g for all ne Z, .
From (2.3) (ii), we have
T EL || < cQp')" for all ne Z, .

This implies that a neighborhood of p, contracts exponentially under the
iteration of f. Using the recurrence of p, with precise but straightforward
arguments, we can see that there is a sink sufficiently near p,. This
contradicts (2.2).

§5. Semi-invariant coordinate

In the succeeding sections, we study the behavior of the iterated
images of a neighborhood of a point in 4. A certain local coordinate
system is indispensable for the precise estimates, and we shall define it
in this section.

The definition is not a peculiar but a natural one. This local co-
ordinate is defined on a neighborhood of each point pec 4, and has the
laminae W;, W} of the locally f-invariant C* prelaminations {W}},c. {W},es
as the x-axis and the y-axis of R® respectively. Thus, with respect to this
coordinate, f preserves x and y-axes.

The arguments in this section heavily depend on Section 5 (especially
(5.1) Theorem and (5.5) Theorem) in [4], so refer to it for details.

Recall that, from (2.3) (ii), we have,

NTf | B - \NTf " | Efnpy || < €A™ for all ne Z, and pe 4.
Moreover, we have the following,
(5.1) LEmMA. There is an n,e Z, such that if n > n,,
1T | EZNl- I Tf " | B I < c(27)"
for all pe A and k=1, 2.

Proof. For k =1, this is just (2.3) (ii).
We shall show the case of 2 = 2. From (4.2), we have

1 > spec. rad. f;1|2%E")
= Tim | £ B

Hence, there exists n,e Z, such that if n > n,,
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Ifm | ZHED < 270
Since
Ifz | ZCEN > | Tf"|E}ll  for all pe 4,
we have
N Tf" | Efanll < @) for all pe .

Combining with (2.3) (ii), we get the lemma.
Put E=TM|A = E'® E* and we regard E as a vector bundle over
E' by projecting each fiber onto E' along E% Let

2(E', E) = {continuous sections E' — E} .

Define a metric on J(E', E) by

le — d’|l4 = sup supu .
ped zeE1 [xl
T#0
Let
2y ={oe2(E', E):|ally < oo}
and

2(1/2) = {oe€Z:0,(0) =0, L(s,) < 1/2 for all pe 4}
where ¢,: E} — E} is defined by
(| E)x) = (x,0,(x) e E;®E;, for xeE,,

and L(s,) denotes the Lipschitz constant of ¢,. With the metric |- ||, 2,
is a Banach space and X(1/2) is a closed subset (ref. (5.2) in [4]).

We define f: TM| A — TM| A by exp7(, f exp, on a neighborhood of 0
in T,M for each pe 4, and extend it to all over TM| A by combining with
Tf by a smooth bump function. Note that sup,.,L({(f — Tf)| T,M) can
be forced as small as desired by restricting f to a smaller neighborhood
of 0 before averaging with TF.

Let Ne Z, satisfy N > n, and ¢(2"?)" < 1, and put g = f¥. Then from
(5.1), there is a 0 < p < 1 such that

1Tl ESll- 1 T8 | Ezm IIF < o
for all ped and E=1,2.
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For any ¢ ¢ 2(1/2), we define
&o = goh, h=@mgo)’,

where g = f¥ and #,: E — E' is the canonical projection. By the almost
same estimates as in [4], we can see that g, is well-defined and a con-
traction on 2(1/2). This gives a unique invariant section ¢' which satisfy

(6.2) For all pe 4,

(i) L) <1f2

(i) a0) =0

(i) o): E} — E} is of class C*

@iv) Ty, =0

(v) &(graph (4})) = graph (s;)

(vi) o}: E} — E} depends continuously on pe 4 as C* map.

Put Wj(r) = exp, (graph (¢;) N V,(r)) for r > 0, where

Vi(r) ={(, v) e E;® E;: V| <1, v <1}

{WX(r)},ca is called locally g-invariant C® pre-limination for small r > 0
(ref. (5.5) in [4]).

Now we shall show that by taking sup,¢, L((f — TH|T,M) and r >0
small, {Wj(r)},e, is f-invariant.

Recall that g =f", and Ne Z, satisfy N> n, and c(2*)" < p < 1.
Consider g, = f", g, = f¥*' and g, = f¥¥*Y,  As above, they satisfy

1 Tg: | Epll- 1 T8 [ Egum I* < p < 1
for all pe 4, k =1,2. Therefore,
8u: 2(1/2) —> 2(1/2)

has a unique fixed point ¢, for i = 1,2,8. Taking sup,., L(f — Tf)| T, M)
sufficiently small, by induction, we can see that,

(i) (8" = g = (84)" on 2(1/2)
(i) f,: 2(1/2) — %, is well-defined by
f.io = foh, where h = (z,fo)"!

and has the property that
8 =fﬁ°gw on 2(1/2) .

From (i), we get g, = g, = g, Denoting this ¢!, from (ii), we have
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' = guo' = f,8u0" = fio' .
This implies that
f (graph (¢) = graph (¢") .
Similarly, there is a f-invariant section
B ——»E@®E =E=TM|4,

satisfying the similar property to (5.2).
Now we are ready to give the precise definition of the “Semi-invariant
coordinate for f”’. ”Semi-invariant” means the invariance of x and y-axes

by f.
For each pe 4, we define a C* diffeomorphism a,: T,M — T,M by
@y (Ui, ) = (v — 03(v,), U, — a3 (Vy)
for v, € Ej.
By the properties of ¢°, we can see that a, satisfy
(56.3) For all pe 4,
(i) a, is a C* diffeomorphism
(ii) a,(0) =0 and Ty, =id
@iii) a, (graph (s;)) = E; @ {0}
a, (graph (¢})) = {0} @ E}.
Remark. The properties L(cl) < 1/2, L(s}) < 1/2 are used to prove (i).

Let pe/ and e, be a unit vector in E. Define an isomorphism
d,:T,M =E.®E:— R by
dp(c1e1 + ce) = (¢, c), c;eR.
Remark that this definition of d, depends on the choice of the basis
of E,® E. = T,M.
For small r >0 and each pe 4, we define a C? local coordinate
Vp: (Uy(r), p) — (R?, 0) by
Yy = dp°ap°exP;1 s
where U,(r) denotes the r-neighborhood of p.
v, has the property that,
P (Wi(r’)) C {x-axis}
¥(Wir’)) C {y-axis}
for small r’ >0 and pe 4.
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Put f, = Vypmofe, for pe A
From the above argument, we can see that,

(5.4) There exist r, > 0 and r, > 0 with the following properties .

(1) ;' (U(ry), 0) — (M, p) is a well-defined C’-diffeomorphism for all
pe A, where U(r) is the r,-neighborhood of the origin in R

(i) f,: (U(ry), 0) — (R 0) is well-defined and preserves x and y-axes,
for all pe 4.

(1) for p,ge 4, if d(p, @) < r, then 4" U(r,) — R* is a well-defined
C? diffeomorphism.

(iv) for any e > 0, there exists 0 << § < r, such that if d(p,q) <o
then ||y,y;' —id|, <e on U(r,), where +, and +, are defined with the
bases which are near each other, and |- |, denotes the C*norm for func-
tions on R

(v)

%(x)‘:Mo<m

ped,eery) | 0X,0%;
i,7,k=1,2

where f, = (f;, ;).
(vi) there is ¢, > 0 such that, for any measurable subset A of U(r),

as(A4) < s(¥;'(A4) < er's(A)
for all p ¢ 4, where s(A) denotes the measure (area) of A.

From the definition of +,, we get

(5.5) | TF | E2|| = L%(o, 0)\ for all pe 4, and i =1,2.

Regard fj(x,y) as a function of x. Applying the Taylor expansion
up to 2nd order around (0, y), we have,

af; x2 aZfl
Oa — Lt 0x7 )
50,9+ £ 0T m, )

(%, ¥) =50, 5) + x-
for some 0 < § < 1. By the Mean value theorem,
1 1 241
. (0,5) = (0,00 + 5220, 0'5)
0x ox 0x0y
for some 0 < ¢ < 1. Since f, preserves y-axis, f;(0,y) = 0. Thus, we get
) ofy
[, W] < |- %—(0, 0) + My(x| + [¥Dy -

Similarly,
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e = 191 { 250,01 + M0z + 130}

Put
my = inf \TfIEil and M, = M,/m,.
pE

i=1,2

Then, from (5.5), we have

(e, DI < || N TFL B - {1 + Mi(lx| + [y])}
[foxe, DI < 1y I TFI E3lI- {1 + Mi(x| + D}

for all pe 4 and (x, y) e U(ry).

(5.6)

§6. Tracing boxes

In this section, we shall define the box neighborhoods for each pe 4
with respect to the semi-invariant coordinate, and see how the iterated
images of these boxes behave.

Put

B(r',r") = {(x,y) e B*: x| <7/, [y| < 7"}
and
B(r) = B(r,r) .
For ped and 0 <r,r’,r” <r/2, we define (p,r’, r"”)-box B,(r’,r"”) by
By(r', ") = ¥ (B(r', 1))
and (p, r)-box B,(r) by
B,(r) = 43'(B(r)) .
DerFINITION. Let pe 4, ne Z, and § > 0. B, (r',r”) is (p, n, d)-tracing
box if and only if
FHB(r', ")) C Bi(9) foral0<k<n.

Remark. While the definition of v, depends on the choice of the
basis of E, @ E}, the set B,(r’, r”) does not, because B(r’, r”) is symmetric
with respect to x and y-axes respectively.

Two near boxes are related in the following way.

(6.1) LEMMA. There exists r, > 0 such that, if p,qe 4 and B,(r) N
B/(r'y# ¢ for 0 <r, r' <, then

https://doi.org/10.1017/50027763000020328 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020328

DISCRETE DYNAMICAL SYSTEMS 17
(i) qeB,r+2r)
(ii) B,r’) C B,(r + 4r').
Proof. Assume that B,(r) N B/(r) + ¢, that is;
B(r) N v 'B(r') # ¢ .

From the above remark, B,(r’) does not depend on the choice of the
basis with respect to which 4, is defined. So, we can assume that +,
and 4, are defined by the bases which are near each other. Choose 0

<d<r, as in (5.4) (iv) with ¢ = 1/2. Take r, < 3. Then for xec B’
with r’ < r,, we have from (5.4) (iv),

Wby (%) — Yy '(0) — x|
= |(Yp¥rg’ — 1d)(x) — (Ppirg* — 1d)(O)]
< {sup |IT,00pi" — id)[}-[x
<lxl2<V2@02).
So, for i =1, 2,

| (@) — (¥ O] < vV 2([2) + |, < 2r'

where x = (x,, x,) and ( ), denotes the i-th coordinate.
Take a point x,e B(r) N y,4;'B(r’) and put x = (Y, 97" ""(x) € B(r’).
Then, since g = ¥;'(0) and 47 (x) € B(r),

[ @)e] < W () — (Wro(@)e] 4 [ (g (%))
L2r’'4+r.

This implies (i). A similar argument gives (ii).

Let ped, neZ, and N > 0 (possibly not integer). For the sake of
convenience, we put

6(p, n) = | Tf"| E}||
o(p, n) = | If*| E} ||
7(p, N) = Jnax | Tf* | B -

Remark that, since dim E' = dim E? = 1,

6(p, n + m) = 6(p, n)-6(f*(p), m)
o(p, n + m) = o(p, n)- o(f"(p), m)

for any ped and n,me Z,.

https://doi.org/10.1017/50027763000020328 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020328

18 ATSURO SANNAMI

The iterated images of the box neighborhoods behave as follows.

(6.2) LEMmMA. Let pe A, N > 1 (possibly not integer), Ke Z, and r, =
min {r,/2c, 1/M,(1 + ¢)}. If p > 9(p, K) and 0 <r <r,, then

fi(By(r[eN)) C By (ré(p, i)[o(N — i), ra(p, i)[o(N — i))
for all integers 0 <i < min{K, N — 1}.
Proof. Since p > 5(p, K) > 6(p,i) and N — i > 1 for all integers 0 <
i <min{K, N — 1}, we have d(p, ))/p(N — i) < 1. From (2.3) (ii), o(p, i)
< cf(p,i). Then since r < r,, we have

ré(p, )/o(N — i) < r/2c
ro(p, [N — 1) < r/2.

This implies that B:,,(r0(p, i)/o(N — i), ro(p, i)[e(N — 7)) is well-defined
for all integers 0 < i < min {K, N — 1}.

We shall prove the lemma by induction. For i = 0, it is trivial. To
simplify notations, we put

B; = B,i(ro(p, j)loN — j), ro(p, HIN — j))

for all integers 0 <j < min{K, N — 1}
Suppose that the lemma is true for i — 1. Then

[ (By(r/oN)) C B;_, .

It suffices to show that f(B,.,) C B,, Namely we shall see that for (x,y)
= Yi-1pn(2) and ze B,_,, we have

ré(p, Dlp(N — i) > |fi(x, »)|
ro(p, Dfp(N — i) > |f(x, )|

where (f,, f,) = Vi ofo¥jiiy. In fact, from (5.6),

ré(p, D)[o(N — i) — |fi(x, y)]
> {ré(p, )/p(N — D)} — |x|- | Tf | Eji-1 |- {1 + Mi(x| + | ¥D}
> {ro(p, D/p(N — 1)} — {ro(p, i)/o(N — i + 1)}
{14+ Mir@(p,i — 1) + o(p,i — 1)/p(N — i + 1)}
= {ré(p, i)/p}-{1/p(N — i + 1)}(N — i)}
AN =i 4+ Do — Mir(6(p,i — 1) + o(p, i — 1))
+ Mir(0(p,i — 1) + o(p, i — 1)} .
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Thus, we only need to prove p — Mir(0(p,i — 1) + o(p,i — 1)) > 0. In
fact, we get

o— Mr@ + o) >p— Mr@ + cd)
= po{l — Miré(p,i — 1)1 + ¢)/p}
>po{l-=Mr(1+c} >0,

because w(p,i — 1) < cl(p,i — 1), p > 60(p,i — 1) and r < 1/M,(1 + ¢).
Similarly ro(p, i)/o(N — i) — |fi(x, )| > 0. This completes the proof.
By this lemma and (2.3) (ii), the next lemma is easily proved.

(6.3) LEmMa. Under the same hypothesis as in (6.2),
F{(By(r[eN)) C Byigy(cro(p, 1) o(N — i)
for all integers 0 < i < min {K, N — 1}.

This lemma says that the box B,(r/eN) is a (p, min {K, N — 1}, cr)-
tracing box. A more useful modification of (6.2) is the following,

(6.4) LEmMA. Under the same hypothesis as in (6.2),
/(B (r(p, Do(N — ))) C Bjirsipn(cré(p, i + j)o(N — i — j))
for all integers i,j satisfying 0 < i + j < min{K, N — 1}.
Proof.
Wfip), K — 1) = Jmax [ Tf"| B} |
— max (|| E}I/| TF| E}l)
< n9(p, K)[6(p, 1) < p/6(p, i) .
From (6.3), we have
F(Bucn(ré, DIp(N — D)
= fI(B»(r/(p/6(p; D)N — 1))
C Byisin(ero(fi(p), i)(ol0(p, DN — i — j))
= Bjisypcro(p, i + j)lo(N — i —j)) .

This implies the lemma.

§7. The fundamental lemma for the closing lemma

In this and the next sections we shall formulate “the closing lemma
for F(M)” which plays an essential role in the proof of our theorem.
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In the general case, “The C' closing lemma” has been established by C.
Pugh and C. Robinson in [12], and here we just adapt their method to
our situation. In our case, dim M = 2 and we are given a Tf-invariant
splitting TM |4 = E' @ E*, so we don’t need the “Linear algebra” which
complicates the argument of [12]. On the other hand, we will need
delicate perturbations of f in the succeeding sections, so we must formulate
the closing lemma precisely for our purpose.

In this section, we shall prove the fundamental lemma by which we
can select a pair of points that are particularly well situated regarding
other points considered. The proof is a fairly easy analogy of (4.2)
Fundamental Lemma in [12] in terms of our semi-invariant coordinate.

To simplify computations, we use the following norm on TM|A.

vl = (vif + [wf)”

where veT,M, ped and v=v, + v,e E;® E,. Clearly this norm is
equivalent to the norm defined by the Riemannian metric.

Before formulating the Fundamental lemma, we need the following
technical lemma.

(7.1) LEmMA. For any € > 0, there exists 6 > 0 such that
sup {” Tz(ap - 1d)”’ ” T.t(a’z_>1 - id)”} S €.

PEA,TEV p(3)
The proof is straightforward by using (5.2) (vi), (5.3) (i) and com-

pactness of /.
Let pe M, ve T,M and A: T,M — T,M be linear. We define a map
b,(v, A): {a neighborhood of 0 in T,M} — M by

b, (v, A)(x) = exp, (v + Ax) for xe T,M .
Especially, for p ¢ 4 and positive numbers a,, a,, we define
bp(v’ Q,, aZ) == bp(v, A(al, az))

where A(a,, @,)(v; + v;) = av; + a,v; for v, € EL.
Let 5, >0 be given in (7.1) with ¢ = 1/8. Define a number, r; =
min {r,/60, 3,/60}.

(7.2) LemmAa (Fundamental lemma). Let {p,} be a finite subset of M,
0<r<r;and ped. If there exist two points p,, p; < {p.,} satisfying p,, p,
€ B,(r), then there exist two points p,, p, € {p,}, ve T,M and positive num-
bers a,, a, such that
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(i) |v|+ a4+ a, < 30r

(ii) (2\/?)_‘ < afa, < 2/2

(iii) b,(v, a;, a,)(V,(1)) C B,(30r)

(iv) ps, p. € b,(v, a;, a)(V,(V3]4))

(V) pi2byv, a, a)(V,(1) for p.e{p,} with p, # p,,p..

Proof. Suppose that p;,p;e B,(r). For p, near p, we put p, =
exp,' p,. Remark that we don’t need to consider the points that are far
from p. Put x, = p;, ¥, = P, and we shall select a sequence (x,, y,) of the
points of {p,} as follows. Define

&x,y) ={ze T,M:|x — 2| < ¥/3/4|x — y| or |y — 2| < V/3[4|x — y]}
for x,ye T,M. If some point ze€ {p,} is contained in &(x,, y,), let

z replace y, if |2 — x)) < |2 —
z replace x, if |2 =y <2 — x.

Let (x,, y,) be the pair so formed. Proceed as with (x,, y,), generating a
sequence (x,,y,). This process ends at finite steps, because

(1) lxn—ynlﬁ(\/?”/‘l)nlxo—yol

and {p,} is a finite set. Let (x,, y,) = (,, D,) be the final pair. This has
the property that no other point of {f,} is contained in &(x,,y,). Also
we can see that

(2) [ — 20| < 2001 1% — %0 < {20521 (3/49)"} 2y — o
because either x, = x,_, or y, = y,_,, and
X, — X,y < V3[A|x,_; — ¥u_i) -
Now set
v = (1/2)(D, + B
and
a; = ((1/3)| 5 — p.l; + (1/16) | b, — p.[)”*  for i =1,2

where |u|, = |u,| for u = u, + u, e E,® E: = T,M.
By easy calculations, we have

v+ A, a)(V,() C &5., )
P, Boe v + Alay, a)(V,(vV3/4))
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@V2)! < afa, <202 .

It remains to show (i) and (iii). Since ,(p,) € B(r), we have d;,(p,) €
V,(r). Therefore

| D] = |exp," pi| = |a;'d; "V, D4
<|(a;' — id)(@; "V (P))| + [d; (P
<AV2r84+V2r=(vV2/8)r.

Similarly |5,] < (9v/'2/8)r. By using (1), (2) and (7.1), we can show that
[v] + a; + a, < 30r

and

v+ A(a,, a,)(V,(1)) C a;'d,;*B(30r) .

This completes the lemma.
To simplify notations in the succeeding sections, we introduce the
following definition.

(7.3) DEFINITION. Let pe 4 and r>0. Let x,ye M, ve T,M and
a,, a, be positive numbers. A quintuple (x, y, v, a,, a,) is (p, r)-connectable
if and only if

(i) vl+a+a<r

(i) V2) ' < afa, <20/ 2
(i) 2x,y e b,(v, ai, a)(V,(v/3/4)
1Av) b,(v, @), a)(V(1)) C By(r) .

With this definition, we can formulate (7.2) as follows.

(7.4) LEmma. Let {p,} be a finite subset of M, 0<r<r, and pe A
If there are two points p,, p,€ By(r), then there exist ve T,M, positive
numbers a,, a, and two points p,p, in {p,} such that (p,p,V,a,a,) is
(p, 30r)-connectable and moreover p, + b,(v, a,, &.)(V,(1)) for p,e{p,} with
Dy F Ds Dy

§8. Closing lemma for F(M)

In this section, we shall give a precise formulation of the “Closing
lemma for F(M)”.

First, by an entire analogy with [12], using TM|4 = E'® E* and
(2.3) (ii) instead of V'@® V* and hyp (Tf": resp. V'® V? in [12], and
perturbing f around the points {f*(p4)}-ry<ecn-1» We get the following;
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(8.1) LEemMmA. For any C'-neighborhood % of f, there exist r >0 and
Ne Z, with the following property. Let p,e A and p,qe M. If veT, M
and positive numbers a,, a, satisfy

(I) w+a+a<r

(I) @V2)' <afe, <202

I  f(b,,v, a,, a,)(V, (1)) are disjoint for —N <n < N.
AV) p,qeb, v, a, a)(V,(V3/4),

then there exists ge % such that

(i) g*(F"a) =1"(p)
(ii) supgf~' C Uiy ["(0,,(0; a1, a)(V,, (1)) .

When we apply the closing lemma in the succeeding sections, we
require that the perturbation g should preserve the Tf-invariant subbundle
E', E* and the norm of differentials restricted to them (for precise mean-
ing, see (8.2) below). For that purpose, we must extend the splitting 7TM| A
= E'® E* to a neighborhood of 4 beforehand. Since both M and the
1-dimensional Grassmann bundle over M (whose fiber over x ¢ M is the
Grassmann manifold of all 1-dimensional subspaces of T,M) are ANR,
we can extend E°® continuously to a neighborhood U of 4 (see (4.4) Lemma
in [2] for the proof). We still call them E! Although E' and E? are
not necessarily Tf-invariant outside 4, by restricting U to a neighborhood
sufficiently near 4, we can assume that TM|U = E' @ E*.

The following is the version of the closing lemma which we shall use
afterwards.

(8.2) LEmMA. For any C'-neighborhood % of f, there exist r > 0 and
Ne Z, with the following property. Let p,e A and p,qe M. If veT, M
and positive numbers a,, a, satisfy

(I) v|+a+a.<r

(II) @V2)'<ajfa, <242

I f,(v, a, a,)(V, (1) are disjoint for —N+1<n<N
AV) p,qe b, v, a, a)(V,(vV3[4),

then there exists ge U such that

(i) g™(f"@) = "(p)
(i) sup g~ C Ui -waa (55,0, @y, a)(V, (D))
(i) Tg(Ein-riwy) = Efnvis-vn
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foral 0 <n<2N—-1andi=1,2

(@iv) NTg| Efnis-wignll = N Tf | Ejn-ny |l
forall0<n<N-—-1landi=12

1 T8 Egnis-vianll = |l Tf | Efu-vnll
forall N<n<2N—1andi=12.

Proof. The basic idea of the proof is simple. We only have to
perturb the differentials of g in (8.1) around the points {g"(f~¥(@)}o<nczy
by using (2.9).

Take ¢ > 0 so that #(/,f) C % N %,, where %, is given in (2.9). Let
r>0and Ne Z, be given in (8.1) with #(¢'/4,f) as a C'-neighborhood
of f. Let p,geM, ve T, M and a, > 0, a, > 0, with the properties (I) ~
(IV). Then from (8.1), there exists g € %(¢'/4, f) satisfying (i) and (ii)). Take
r > 0 so small that for all —N < n <N, f*(b,,(v, a,, a,)(V, (1)) are con-
tained in U on which extended E' and E? are defined. Define linear maps

G?: TgN+j(f—N(q))M——‘) Tfj(q)M fOI' "—N Sj S O
and
Gg: TgN+j(f—N(q))M"——+ Tfj(p)M fOI' 0 Sj S N

so that they preserve E', E* and are isometry on them. Note that G2,
and G% are identity maps on T,-»,M and T'x,,M respectively.

Now we shall apply (2.9) to g with {g"(f "(@))}o<n<2y-: @s a finite set.
As linear maps, we take

A; = (G (TF) 13 GUTE Vgwss1¢s-nay for —-N<j<~1
and
AJ' = (G:}?H)_I(Tf)ﬂ(p)ag(Tg_l)gN+j+1(f—N(q)) for 0 S] < N-1.

By taking r >0 smaller, the distance from f/(q), resp. f’(p), to
g¥(f"(q) for —N<j<0, resp. 0<j< N, can be small enough to
satisfy ||A; —id|| < ¢’ for all —N<j < N — 1, where ¢’ > 0 is given in
(2.9) with ¢ = ¢’//4. Then from (2.9), we can find g’ such that

(1) d(g g) <4
(ii) Tg, = Afng on TgN+](f—N(q))M for al]. —Néj S N"— 1 .
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Moreover, the support of this perturbations can be arbitrarily small. This
proves the lemma.

To simplify notations in the succeeding sections, we introduce the
following definition.

(8.3) DeFiNITION. Let p,e 4, NeZ, andr > 0. Let (p,q,v,a, a,) be
(p4, r)-connectable, where p,qge M, ve T,,M and @, > 0, a, > 0. Assume
that f*(b,.(v, a;, @.)(V,,(1))) are disjoint for —N < n < N and contained in
a neighborhood U of 4 on which extended E' and E® are defined. C!
diffeomorphism g is (py, N, p, q, v, a,, a,)-connector if and only if g satisfies
i) ~ (iv) in (8.2).

With this definition, we can formulate (8.2) as follows.

(8.4) LEmma. For any C'-neighborhood % of f, there exist r > 0 and
Ne Z, with the following property; let p, e A, p,qe M, ve T, M and a, >
0, @, > 0. If (p,q, v, ay,a,) is (py, r)-connectable and f*(b, (v, a,, a,)(V,, (1))
are disjoint for —N + 1 < n < N, then there exists a (py, N, p, q, v, a,, a,)-
connector g in %.

Remark that the definition of (p,, N, p, q, v, a,, a,)-connector depends
on the order of p and q, so generally (p,, N, p, q, v, a,, a,)-connector and
(P4 N, q, p, v, a,, a,)-connector are different. This difference plays a re-
markable role in the proof of our main lemma. Roughly speaking, if
q = f"(p) for some positive integer n, (p4, N, p, q, v, a,, a,)-connector closes
up the orbit {f*(p)lo<r<. and (p4 N, q, p, v, a,, a,)-connector cuts off it.

§9. Existence of a saddle

In this section, we shall give the following technical lemma which
asserts that a sufficiently near recurrence with exponential expansion of

the norm of Tf on E' and contraction on E? implies the existence of a
saddle.

(9.1) LEmma. There exist Nye Z,, r; > 0 and r, > 0 such that if pe A
and me Z, satisfy

1) T Epl = @
|TF | B2 < ey

(i) d(p, f™(p) < 1%

(iv) Putting (x,y) = ¥,(f"(p)) and r=max{x| |y}, B,(4r) is a
(p, m, r)-tracing box,
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then, there is a saddle in B,(4r). Moreover, the period of this saddle is
a divisor of m.

This kind of argument is used sometimes in the theory of hyperbolic
sets, but in our case, the condition on the norm of differentials of f* at
p are not given for 0 < k2 < m. Instead, we have a condition on the size
of the tracing box B,(4r). While the basic idea of the proof is the same
as in the case of hyperbolic sets, the precise estimation is rather messy.

Firstly, for a vector v = [Z‘] € R* with v, # 0, we define
slope (v) = s(v) = |v,)/|v,] .
For A = [;“ g] ¢ GL2, R) with « 0, 5 = 0, define

h(A) = [3]]la] -
Now we consider for A the following condition,
(1) BLITI<e, a<|al,|d] for positive constants ¢, a .
Then, we have easily,
(9.2) LEmma. If A satisfies (1) and 1 > ea™'s(v), then
s(Av) < MA)A — ea's(v)) (ea™* + s(v)) .

Next, let us consider a sequence {Ai = [(;‘ B ‘]} satisfying (1) and
i1€EZ+

t 2

furthermore
(2) I h(A,) < c(ary-it for all i,jeZ, with i <j.

We shall estimate the slope of A, --- Ajv. For the sake of simplicity, we
put

o= (1 _ 18/10)—1 , p= A-1/10 , = ea-!.

(9.3) LEmMma. Assume that s(v) < 8pct and let ¢ > 0 be so small that
1 — co(1 + 8¢c)r) ' < p. Then we have

s(A, - A) < 305 (T15-: #h(A D) + 8pc [15- uh(Ap)r

(3) for all ne Z, .

Proof. We shall prove the lemma by induction.
For n = 1, by using s(v) < 8pct and (9.2), we get
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s(Aw) < (A — 8pct)~'(r + 8pcr)
< WA )1 + 8pc)r
because, (1 — *8pc)™' < (1 — cp(l + 8c)c) ' < .
Suppose the lemma is true for n — 1. Then from (2), we have
S(A, -+ - Aw) < {3772 ([T525 (A ) + 8pc [1521 ph(A e

é {Z?;II lun—ic(zs/lo)n—i _+_ 8pC‘Ltn_1C(29/10)n—l}T

S {Z?:l (za/lo)i + 8pc(28/10)n—1}cz_

< {1 + 8c(2*)"Ypcr .

Namely,
(4) S(A, ;- Ap) < {1 + 8c(2")*Ypcr .
This implies that
A—rs(A,.; - AV) ' <A — A + 8c)po) ' < ot
and
8(A, ., - -+ Av) < (1 + 8c)oc
<1—p'<1.
so, by (9.2), we get
S(A, -+ Aw) < A(A)pe{l + 232 (TT525 ph(A)) + 8pc 1521 ph(A )}
which implies (3) for n.
By the same calculation proving the above (4), we have
(9.4) LEmMmA. Under the same hypothesis as (9.3),
s(A, .- Apv) < {1 + 8c(2")lpct  for all ne Z, .
Proof of (9.1). For qe A and x e B(r,), we put
rh=lp 5l et na= 3]
where f, = Y,y ofo s’

By taking r, small, we can assume that
(5) (i) there is a constant a > 0 such that
a <|a,l, |8, for any ge 4
(ii) there is ¢ > 0 such that |3,],|7,] < e for any g 4 and

(1 — cp(1 + 8c)ea ) < p
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(i) 27 < aglfjog| < A7V
A <565 ] < AR for any ge 4.

We put r =ea™! as before, and ,(f™(p)) = (x,y), r = max {{x], |y} as in
the assumption of the lemma.

Put ¢ = f~(p) and let z be an arbitraly point in B(4r). Take ve T,R*
such that s(v) < 8pcr. Let us consider T,(Y,of™o;)(v). To simplify
notation, put f = Y of" oy, 2, = fi(2) and p, = f*(p) for 0 < n < m.

Noting that T,(y,of™oy;") = T, (¥, o T.fr, first, we estimate the
slope and the norm of T,f7(v).

From (5) () ~ (iii), (9.1) (iv) and (2.3) (ii), a sequence {T.,fp.}n=0,..,m-1
satisfies the hypothesis of (9.3). Therefore, if we take m large enough
so that 8c(2)™ < 1, then by (9.4), s(T.fr(v) < 2pcr. If d(p, f™(p)) is suf-
ficiently small (i.e. we take r, small enough), then by (56.4) (iv), we get
STy o 7 0 ")) <dper.

Thus, T.(y,of™ ;") preserves the sector

Sipe. = {ve T.R*: s(v) < 4pcz, x e B(r,)}

for z e B(4r).
Next, we investigate the norm of T,(y,of™o+;")(v). Assume that

v = [z‘] and |v;] = 1. Generally, if a matrix A = [? ‘g] satisfy the
2

assumption of (9.2), then

|mAv] = |av; + Bv,| = [e][vi] — [B][ve]

(6) > |a||v| 1 — ea's(v) ,

where =, denotes the canonical projection to the first coordinate. From
this (6), (9.4), (6) (iii) and (9.1) (ii), we have

=) 2| Lo ) =TSO = e )
2 | Moo o) [T — (L + 80)o0)
= #a?Tml_l_(ZM—l) A= T Ly )]
"t Ofp Lm0
= {10 | L2

2 (Z—B/lO)mzm/lO — (2—7/10)m .
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Namely, if we take m large enough to satisfy (-7)™ > 5, then we have
|7, T.fr(v)] > 5. If we take d(p, f™(p)) sufficiently small (i.e. by lessening
rs), using (5.4) (iv), we have |7, T.(¥, o f™ o ;)(v)| = 4.

Applying the same argument to f~!, we have that;

(i) for zey,f"(B,(4r)) and v = [z] ¢ T.R* with |v,| = 1 and §(v) =

2
[vil|v,] < 8pcz, Yy of ™oqr,! preserves the sector
§4m = {ve T,R*: 5(v) < 4pcz, x € B(r,)}

on +,f™(B,(4r)).

(i1) |7 T (Wrp o f ™oy )(v)| > 4, where m, denotes the canonical projec-
tion to the second coordinate.

Thus, we know that ,of™o+;' expands B(4r) with respect to the
first coordinate and contracts with respect to the second coordinate.

Then, by using the above properties, it can be seen that (M), f™™(B,(4r))
consists of only one point which must be a saddle.

§10. Disjointness of tracing boxes

The purpose of this section is to prove the following (10.2) Lemma
which gives a precise estimate about the length of the positive orbit on
which the iterated box neighborhoods are pairwise disjoint. This (10.2)
plays two important roles in the arguments in Sections 12 and 15. One
is to guarantee the disjointness of the supports of perturbations when we
apply the closing lemma, and another is to guarantee that the length of
suborbits are not smaller than a given number. Refer to (15.1) and (15.2)
for details.

We need the following constants to formulate (10.2).

(10.1) ConstanTs. N, e Z, is given in (9.1). C' neighborhood %, of
f is given in (2.3) (i). Let C' neighborhood %, of f be given in (3.1) with
e = (1/4)d(4, 4, U 4,). Let r,> 0 and N,e Z, be given in (8.2) with # =
% (e, ), where ¢, > 0 is chosen so that #(e, f) € %, N %,. Moreover, we
assume that N, is so large that c2¥° < 1 and r, is small enough to satisfy
B,(r) C U,((1/8)d(4,, 4, U 4y)) for any pe A, where U, (r) denotes the r-
neighborhood of p. Define N, = max {2N,,4N,} and G = 12 (log m;")/(log 277).

(10.2) LEMMA. There exist ry > 0 and N, e Z, with the following prop-
erty. Let ped and 0 <r <r,. If integer N> N, satisfy log n(p, GN) <
(GN/10) (log 27", then B,(r) N Br) = ¢ for any integers 0 < i <j < 2N,
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where B(r) = B, (ré(p, /n(p, GN)(GN — 1)).

Main tools for the proof of (10.2) are (8.2) and (9.1). To apply them,
we need that length of the suborbit of the positive orbit of pe 4 is not
so small. So we must manage the case of short suborbits (i.e. j — i is
small) before proving (10.2), namely;

(10.3) LemMA. There exist r; > 0 and Nj e Z, with the following prop-
erty. Let ped and 0 <r<ri. If integer N> N] satisfy log(p, GN) <
(GN/10) (og 2°Y), then B(r) N B(r) = ¢ for any integers 0 <i<j <3N
with j — i < N,.

(10.4) Remark. Since G > 12 and 4(p, i)/7(p, GN) < 1 for i < 12N, we
have 6(p, i)[5(p, GNYXGN — i) <1 for i < 11N. Therefore B,(r) is well-
defined if { < 11N and r < r,/2 (vef. (5.4)).

For the proof of (10.3), we need the following;

(10.5) LEmMmA. Let ny € Z, be given. For any ¢ > 0, there exists 6 > 0
such that for x € M and a positive integer k < n, with d(x, f*(x)) < d, there
is a periodic point of f in the e-neighborhood of x. Moreover, the period
of this periodic point is a divisor of k.

The proof is straightforward and left to the reader.

Proof of (10.3). Suppose that B,(r) N B,r) # ¢ for some integers 0 <
i <j<3N with j — i < N,. From (10.4), 6(p, i)/7(p, GN)GN — i) < 1 for
i <11N. So, by taking r < r, we can apply (6.1) and have;

(i) if 6(p, )GN — i) = 6(p, HGN — j), then f(p) € B,@3r)
(ii) if &(p, DI(GN — i) < 6(p, DI(GN — j), then f(p) e B3r) .

Namely, we have

(1) there exist ge 4 and integers 0 < ¢t < 3N, 0 < m < N, such that
q,/™(q) € BA3r) .

In fact, take m=j — i, g = fi(p) and ¢ =i in case of (i), t =j in case
of (i1) accordingly.
Now we claim that;

(2) Let K>3 If Kr < min/{r,r}, then
f™(B(Kr)) C B(10cm’Kr)  where m, = sup {|Tf | E;||, | Tf | E;|} .
ped
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In fact, from (6.4), we have f™(B,Kr)) C B,,.(cKr), and from (1),
f™(q) € B(Kr) N B,,,(cKr). Putting 6, = 6(p, i) and » = y(p, GN), we get
from (6.1) that;

B,on(cKr) C By (Kr0,/n(GN — &) + 4cKr6,. ,[f(GN — t — m)) .
By taking N with 9N > 2N,, we have 1/(GN — t — m) < 2/(GN — t) and

B p(Krf,/[9(GN — t) + 4cKr0,, ,[f(GN — t — m))
c Bf‘(p)(Kret(l + SCmI”)/ﬂ(GN - t)) >

because 0,,, = 0,-0(f(p), m), m < N, and 6(f(p),m) < mpy. Since c¢>1
and m, > 1, this proves (2).
From (1) and (2), we have that;

q,™(q), f""(q@) € B,(10cm{*3r) .

Taking r so that 3r(10cmi?)¥*-! < min {r;,, r,} and applying (2) N, — 1 times,
we get

( 3) 9, fm(Q)9 ] lem(Q) € Bz((locmin)Nl_l‘?’r) .

Choose ¢ > 0 so that, for «,ye A with d(x,y) <e we have 1¥° <
WTFIENNTFIE <277 for i = 1,2, and ¢ > 0 so that, for x,ye M with
d(x, y) < &, d(f*(x), f"(y)) < ¢ holds for all 0 < n < N,N.,.

Now let §, be a positive number given in (10.5) with ¢ = ¢, and n,
= N,N.,.

Next, take r so small that B,(K,r) is contained in §,/2-neighborhood
of fi(p), where we put K, = 3(10cm{®)*-'. Then, since q, ™" (q) ¢ B(K,r)
and Nym < N,N,, there exists a periodic point z whose period is a divisor
of Nym in eneighborhood of ¢ by (10.5). From the definition of e,

(4) d(f (), ["(2) <e  for all 0 <n < Nm.

By taking e, smaller than (1/4)d(4,, 4, U 4,), we know that z is a
saddle of f. Therefore, from (2.4),

| Tf @B\ = A7

(5) 2 (2
| Tf2 | B2 < &7

where 7(z) denotes the period.

Since Nym is a multiple of 7(2), from (4), (5) and the definition of ¢,

we have

https://doi.org/10.1017/50027763000020328 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020328

32 ATSURO SANNAMI

I TF™m | Bl = (A1)

6
(6) | TP B2 < (myeen

From (3), q,f"™(q) € B(K,r). Applying (6.1), we have B,(K,r) C
B,(4K,r8,/7(GN — ?)). Therefore,

(7) f™(@) € B,(4K,r0,/9(GN — 1)) .
Since fY(p) € B,(4K,r8,/7(GN — t)), from (6.1), we have
(8) B, (16K,ré,[7(GN - 1)) C B,(64K,r) .

Take r so small that 64K,r < r,. Then from (6.4),
(9) B,(64K,r) is a (f'(p), GN — t — 1, 64cK,r)-tracing box .

Since G > 12, t < 3N and m < N,, taking N large, we can assume
that Nm < GN — ¢t — 1. So, from (6), (7), (8), ¢ and m satisfy the hy-
pothesis of (9.1). Applying (9.1), we know that there exists a saddle 2z’
in B,(16K,r0,/7(GN — #)) and the period of 2’ is a divisor of N,m. So,
from (8), we get;

(10) there exists a saddle 2’ whose period is a divisor of Nym in
B,64K,r) . ’

One can easily see that if N > N,m then;
(11) there exists &' € Z, such that
5N (log my)[(log2™) < FNm < GN —t — 1.

Take r so small that 64cK,r-boxes are contained in e-neighborhood
for all points in 4. Then from (9), (10), (11), we have that d(f"(2'), f**"(p))
< for all 0 < n < KNm. From (2.4) and the definition of e,

(12) I Tf 5 | B || = (@700

Now it remains only easy calculations to finish the proof. Using
dim E* = 1 and (11), (12), we have,
log || Tf* " | Ey|| = log | Tf* | E, || + log || Tf* ™™ | E}. oy |
> —t(log mg?) + (9/10)k’ Nym (log 27)
> (9N/2) (log mg") — 3N (log m; ")
= (3N/2) (log m;”) .

From (11), ¢ + ¥ Nym < GN — 1. Therefore,
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log || Tf***' ™| E;|| < log 7(p, GN) .
On the other hand, from the hypothesis of the lemma,
log 7(p, GN) < (GN/10) (log 27")
= (6N/5) (log m;™) ,
which is a contradiction. This completes the proof of (10.3).
Now we shall prove (10.2).

Assume that B,(r) N B,(r) # ¢ for 0 < i <j < 2N. By the same argu-
ment as in the proof of (10.3), we have

(13) there exist ge 4 and integers 0 < ¢ < 2N, 0 < m < 2N such that
q,f™(q) e B@r) .

Take r so that 3r <r,. Applying (7.4) with {f*(@)}<n<n as a finite
subset of M, we have from (13) that there exist ve 1., M, positive num-
bers a,,a, and two points f*(q), f*(q) with 0 < k, < k, < m, such that
(f*(q), f*(q), v, a;, @) is (f«(p), 90rd,[p(GN — t))-connectable and moreover,
1) Q) 2 bV, a1, @)V, (1) for 0<n<m with n#k,k,.

We claim that;

(15) {f(BAOOr))} - xo<neno are disjoint .

In fact, suppose that f"(B,(90r)) N f"(B,(90r)) + ¢ for some —N, < n,
< n, < N,, namely,
B,90r) N fr™(B(0r)) = ¢ and 0<n, — n, <2N;.
From (6.4), we have that

f'ﬂz—nl(Bl(QOr)) - BH—ng-nl(gorc) .
Since ¢ > 1,

(16) By(90cr) N Biypy-r(90cr) # 6 .

If we take N > 2N, then t + n, — n, < 2N + 2N, < 3N. By taking r with
90cr < ry, (16) contradicts (10.3) and this proves (15).

With (15), we can apply the closing lemma to (f*(q), f*(q), v, a, a,).
Take r so that 90r < r,. From (8.4) and (10.1), we have that there exists
a (f'(p), N, f*(q), f*(q), v, a,, a;)-connector g in %(e, f).

From (14), f*~"(q) is a periodic point of g whose period is k, — k..
Put g, = f"(q). From the definition of r, (ref. (10.1)), q, is a saddle of
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g. Since g preserves E' and E?, by using (2.3) (ii), we see that E; =
EX(g) and E} = E;(g). Therefore, from (2.4),

| Tgt | Byl >
| Tgh | B < 2 .

So, from the properties of g (ref. (8.3) and (8.2) (iv)), we get;

an [ Tf*" | Efpp | > (A7)0
| TF=" | Efua || < 227"
Recall that f*(q), f**(q) € B,(90r). From (6.1), we have
(18) f*(q) € B(90r) C B ,,,(360r8,/y(GN — t)) ,
(19) B i,,(16-90r8,/9(GN — t)) C B,(64-90r) .
By taking r with 64.-90r < r,, we have from (6.4) that
(20) B,(64-90r) is a (f(p), GN — t — 1, 64-90cr)-tracing box .

By the same argument as in the proof of (15), it can be seen that
k, — k, > 2N,. Since k, — k, < 2N and GN — ¢t > 10N, GN —t — 1> 9N
> k, — k. Thus, from (17), (18), (19) and (20), taking r with 64-90cr < r,,
we can apply (9.1) and have a periodic point z in B x,,(16-90r8,/7(GN — ?))
whose period is a divisor of k, — k,. Therefore from (19), we get;

(21) there exists a saddle z in B,(64-90r) whose period is a divisor of
kz - kl‘

The rest of the proof is the same as that of (10.3).

§11. Main lemma and Key lemma

In this section, we state (11.2) Main lemma and by using it, prove
(11.1) Key lemma which is literally the key to the proof of our theorem.
The proof of (11.2) will be given in Section 15.

(11.1) KeYy LEMMA. There exists a constant A, > 0 such that if for
meZ, and £ >0,

log |Tf™ | E | < — ¢
holds at some pe A, then m > A, ¢*.

For the statement of our Main lemma, we put
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G, = (log 27%)/8 (log m;") ,
and

vo(IN) = [G,N/4N,] for an integer N .

In what follows, we use a terminology *“Z,-interval” which means a
interval in Z,, and denote it by I = [u, v] for u, ve Z, with u < v, namely,

I=[u,v]={neZ,:u<n<u}.
We define length (I) = v — w.

(11.2) MAIN LEmMMA. There exists an integer N, > 8N,/G, with the

following property: Let pe A. If for an integer N> N, and me Z,,
log | Tf™ | E;|| < (N'*/2) (log 2)

holds, then there exist integers 0 < m’ < m, 0 <y < y(N), and v disjoint
Z ,-intervals {I, = [u;, v,]}<ic, in [0, m — m’] with the following properties;

(1) ITf"|Ejwpll <1 forall 0<n<m—m,

(i1) 2351 (vs — w) > v(N)-N,

i) [T | Ecempll = Q)7 for all i =1,---,».

(11.3) Remark. Since G, < 1/8, N, > 64N, > 64.
Now we prove (11.1) assuming (11.2). For that purpose, we consider
the following proposition depending on two numbers § > 1 and A > 0.

Pror. [, Al. If for me Z, and ¢ > 0,

log | Tf" B} < —¢ holds at some pe /A,
then m > A.¢°.

If Prop. [0, A] is true for some 6 > 4 and for some constant A > 0,
then clearly we get (11.1). In what follows, we shall investigate for what
values of § and A, Prop. [, A] holds.

As the first step to see this, we give;

(11.4) LEmma. Prop. [1, (log mg*)~*] holds.

Recalling that m, = inf,.,{| Tf | E;|, | Tf | EZ|}}, this lemma is obvious.
Now our strategy is to increase the value of 6 by applying (11.2)
inductively, namely;

(11.5) LEmma. Assume that Prop. [0, A] is true and for me Z, and
¢ > 0, we have;
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(1) = (Ng"[2) (log 27)
(ii) log||Tf™|E;|| < —¢ for some pe A, then m > k()-A. 400
where k(@) = 2-¢*+70. (log 271)¢ -2/ G,|N,.
Proof. We put
(1) N = [(24/dog 27))"*] + 1.
Then, from the assumption on m, ¢ and N,, we have
(2) N> N, >8N,/G, and log|Tf"|E;|| < (N'"[2) (log ) .

Therefore we can apply (11.2) and have that; there are integers 0 < m’

< my, 0 <y < y(N) and v disjoint Z,-intervals {L}},<,<, in [0, m — m’] with

the properties (i) ~ (iii) in (11.2). We put I, = [u;, v,]. Without loss of

generality, we can assume that [, <L, < - .- <I, (i.e. v,_, < u,; for 2 < i <v).
Define disjoint Z,-intervals {ji}lsiSv in [0, u,] as follows.

J=[0,u] and J,=[v,.,u] for2<i<yv.
We put ¢ = f™'(p) and

—a, = log | Tf“| Ej|

3
( ) —d,, = ].Og ” Tfui_w_llElfvi_l(q)” fOI' 2 < i <v.
From (11.2) (iii), (8) and dim E* = 1, we have

log || Tf™ | Eqll = log || Tf " | Eqll + log || Tf*=** | Ejuio I
+ log | Tf =" | Ejuip |l + + -+ + 1og [ Tf* ™™ | Ejuo
2 _d] + ]-Og (2-1)@1—11,1 —|— (—dz) + . e _|.. (_dy)+log (Z—I)vv—uv .

On the other hand, from (11.2) (i),
log | Tf>| B2} < 0 .
So, we have
(4) (=251 @) + Qog 27) 255, (v, — w) < 0.

We select intervals in {ji}lgsu with the property that @, > 0 and denote
them by J, < J, < - < d,. Put J,=][s,t] and

(5) —a; = log || Tf"*| Els. ) | for1<i<y.
Note that a, > 0 for all 1 <i <. Clearly

(6) vV <y,
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(7) Z;=1dz 322;1 a; .
From (11.2) (i) and (2),

25i-1 (0 — w) > w(N)-N = [G.N/4N,]- N
> (G\/4N, — 1/N)-N* > (G,/8N,)- N* ,

namely;

(8) 2 (v — u) > (G/8Ny)-N* .
From (4), (7) and (8),

(9) 22w a; > (Gy (log 27)/8N,) - IN* .

From hypothesis, we can apply Prop. [4, A] to (5) and have
(10) t;, — s, = length (J)) > A-a’ forall 1 <i<y .

First, we consider the case of § = 1. From (9) and (10) with 4 =1,
one can easily see that

(11) >7; length (J;) > (AG, (log 27')/8N,)- N* .
Next, we assume that § > 1. From (10),

12) A-1.37 length (J) > >, al.

By the Hélder’s inequality, we have

(13) eyt (0N > 2 a,

From (6), v’ < G,N/4N,. Since 1 — (1/6) > 0,

(14) V)~ < (GNJANY- .

From (12), (13) and (14), we have
(15) Suiia, < {A7- 270 length (J)}° - (G,N/AN,)! -0
From this (15) and (9),

(A1 32, length (J)}/* - (GNJAN)'- 0
> (G, (log 27")/8N,)- N* .

By an easy calculation, we have
an 271 length (J) > ((log 271)/2)"-(AG,[4Ny)- N7

Although we proved (17) for 8 > 1, if we put 6 = 1 in (17), this coincides
with (11). Namely, (17) is valid for 6 > 1.

(16)
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From (1), we have
N > {2¢/(log 2717 .
By substituting it in (17), we have
Z:;l length (Ji) > 2-(o+11)/1o.(10g 2‘1)(6"9)/10'(AG1/N0)- £oareo
Since {J;} are disjoint intervals in [0, m — m/],
m > > length (J)) .
This completes the proof.

Now we remark that we can take away formally the hypothesis (i)
in (11.5). In fact, put 4, = N (log 17)/2, and we shall consider the case
of 0 < ¢ < 4, Suppose that for me Z, and 0 < ¢ < 4,

log | Tf™ | B3|l < — ¢
holds at some pe 4. Then m > 1, because ¢ > 0. Putting k@) = £;°¢+9/0,
we get ky(f)- £°+9/1 < 1, namely,

m 2 ko(a)_gs)(uo)/lo .
Now define k@, A) = min {k(6)- A, k,0)}. Then, from (11.5), we have;

(11.6) Lemma. If Prop. [6, A] holds, then Prop. [9(1 4 6)/10, k46, A)]
also holds.

Recall that Prop. [1, (log m;?)~'] is true by (11.4). Starting from this,
by applying (11.6) repeatedly more than 5 times, we can get Prop. [6, 4,]
for 8 > 4 and for some constant A, > 0. This implies (11.1) Key lemma.

Remark that applying (11.6) much more times, we can have Prop. [4, A]
for ¢ arbitrarily close to 9. But we don’t need such large 6.

§12. Expansive intervals

(12.1) DeFINITION. Let pe 4 and Ne Z,. A Z.-interval I = [u, 1] is
called a (p, N)-expansive interval if and only if I satisfies

(i) length()=v—u>N
(1) NTf** | Ejun | = @)%

(12.2) LEmMA. There exists N, e Z, such that if
log || Tf™ | E;|| < (NJ2)(log 1)  for ped, me Z,

and integer N > N,, then there exists a (p, N)-expansive interval in [0, m].

https://doi.org/10.1017/50027763000020328 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020328

DISCRETE DYNAMICAL SYSTEMS 39

(12.3) LEmmA. For any ped and NeZ,, there exists a (p, N)-
expansive interval.

The essence of the proof of our Theorem is in (12.2). (12.3) merely
asserts the existence of the expansive intervals and doesn’t claim where
such intervals exist in Z,. By a straightforward argument with rather
rough estimates, one can prove (12.3) using (10.5) and (8.2), so, the proof
is left to the reader. In the rest of this section, we shall prove (12.2).

Suppose for pe 4, and m, Ne Z,, it holds that;

(1) log || Tf™ | E;|| < (IV/2) (log 2) .
Let 0 < B < m be the largest integer such that
log || Tf*| E;|| = (N]4) (log 2) + (log m,) .

Then, we can see that;

(2) log | Tf*| E,|l < (N/4) (log 2) ,
(3) T | Efp |l < 1 foral 0<n<m—Fk,
(4) log [| Tf™~*| Efun | < (N/4) (og 2) — (log my) .

From (2), log || Tf*| E;|| < 0. Therefore, by applying (2.7) with p = exp (IN-*%),
we have v = [RN-**[(N-** — (log my))] + 1 integers 0 < kb, < k,--- <k, <k
such that

log | Tf* | Eviin || < nIN-¥°

5
(5) for all0<n<k—kandi=12---,v.

From (3), we can easily see that

(6) log | Tf" | Ejtim | < nIN-*?
forall0<n<m—k, and i=1,2,.--,v.

From (4),

log [| Tf™ *| Efiny || < —{(IN/4) (log 27%) — (log m;?)} .

Taking N so large that (IV/4) (log 27') > log my?*, and applying (11.1), we
have

m — k> Af(N/4) (log 27') — (log mg")}*
= A{(1/4) (og 27") — (1/N) (log mg")}'- N* .

If we choose NN so that
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(1/4) (log 2°") — (1/N) (log m;") > (1/8) (log 27) ,
then we have
(7) m— k> AN, where A, = A,{(1/8) (log 2-)}*.
Now we fix a constant r > 0 such that
(8) 270cr <r, and 90r<r,, where r, is given in (10.2) .
We consider boxes Bk, (r/GN) for each f*(p). From (5.4) (vi),

(9) 8(Brip(r/GN)) = ¢,8(B(r/GN))

= ¢,(2r/GN)*, where s(-) denotes the area .
Now let us estimate v. From (2),

log | Tf*| E;|| < —{(N/4) (log 271} .
From (11.1), &k > A{(N/4) (log 27Y)}*. Therefore,
(10) k> A,N*.
From this (10),
RN-|[(N-** — log mg) > A N*N-**|(N-** + log m;") .

Taking N with N-** < log m;*, we have

vy > EN-*?[(N-** — log m,)
> {A,/2 (log mg")}- N .

Namely, putting A, = A,/2 (log my?), we get;
1 v > AN,

We consider the sum of the area of B, (r/GN) (i=1,---,v). By (9)
and (11),

21i-18(Brun(r/GN)) = 27, ¢i@r/GN)?
> A,c(2r/G)- N,

which exceeds the surface area of M by taking sufficiently large N.
Therefore,

(12) there exist at least two points f*i(p), f¥(p) such that
Btip(r/GN) N By (r/GN) + ¢ .
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Assume that k, < k; and put f*(p) = p,, f*(p) = q, and k; — k, = k,.
By taking N with r/GN < r,, where r, is from (6.1), and applying (6.1),
we have;

13) q € B, (3r/GN) .

Then applying (7.4) with {f"(Po)}ocn<i, @s a finite set, we have from
(13) that;

(14) there exist ve T, M, positive numbers a,, @, and two points f"(py),
f*(p) with 0 <n, <n, <k, such that (f"(py), f"(po), v, a;, a;) is
(Po, 90r/GN)-connectable and f"(p,) ¢ b, (v, a;, a,)(V, (1)) for all 0 < n
< k, with n %= n, n, .

We want to close up this suborbit from f™(p,) to f™(p,) using closing
lemma, but we need some preparations beforehand.

By taking N so large that A,N*> 2GN and 2GN-'* <1, we have
from (6), (7);

(15) log |Tf"|E; || < nN-** < 1 for all 0 < n < 2GN.
Thus, we have;
(16) log n(py, GN) < 1.

Next, take N with N > N, and (GN/10) (log 2~') > 1, then by (8) and
(10.2), we have;

17  B,(270cr) N B,(270cr) = ¢ for any integer 0 < i <j < 2N,
where
B(270cr) = By, ,(270cré(p;, i)/9(poy GN)XGN — 7)) .
We claim that;
(18) (B, ,(90r/GN)) are disjoint for —N, < n < N, .
In fact, assume that
£*(B,(90r/GN)) N £*(B,(90r|GN)) + ¢ ,
for some —N, < n < n’ < N, namely,
B, (90r/GN) N f*~-"(B, (90r/GN)) + ¢ .
By (6.4) and (16),
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¥ "B, (90r/GN)) C f*~"(B, (270r/7(p,, GN)GN))
C B y(270cr(po, 0 — n)[7(po, GNYGN — n’ + n)) ,

which contradicts (17).
By the same argument, we can see that;

(19) nz_n1>N.

From (8), (14), (18) and (8.4), there exists a (po, N, f"(Po), f*(D0), V, @1, @2)-
connector g in (e, f). Therefore, f*"(p,) is a periodic point of g with
period n, — n,. By the definition of %(s, f) (vef. (10.1)), it can be seen
that f™-Y%(p,) must be a saddle of g. From the properties of g (ref. (8.3)
and (8.2) (iii) (iv)) and (2.3) (il), we can see that;

E?ng—Nq(po)(g) = E.lfng—No(po) .
Therefore, from (2.4),
(20) | Tg™ " | Efne-woipp | = (A7) .
By the property of g (rvef. (8.2) (iv)), we have;
(21) NTf™=" | By | = @717

(19) and this (21) imply [n,, n,] is a (p,, N)-expansive interval in [0, &,].
Recall that p, = f*(p), q» = f“(p) and k; — k; = k. So, [k, + n,, k; + 1.l
is a (p, N)-expansive interval in [0, m]. This completes the proof.

§13. Proof of the Theorem

In this section, we shall prove our Theorem assuming (11.2) Main
lemma whose proof will be given in Section 15. Since we have already
finished the essential part, the proof of the Theorem itself is now easy.

Proof. From Lemma 3.1 in [6], we have
Q) = ALf) U A(f) U 4Lf) .

From (2.2), 4,f) and 4,(f) are finite sets and consequently they are hy-
perbolic sets. Therefore we have only to show that A,(f) is a hyperbolic
set.

Let TM| A(f) = E*'@® E* be the Tf-invariant splitting given in (2.3) (ii).
Put 4 = A(f) as before. It is enough to show that

(1) there exist ¢/ > 0 and 0 < ¥ <1 such that
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(1) T E| <2,
(ii) || TfE < 2™, for all neZ, and pe 4.
We shall only prove (i). The same argument as (i) with f-! on E® gives
(ii).
Suppose that (i) does not hold, then it follows that
spec. rad. ;| 2(E) > 1.
From (4.1), we have that
(2) there is a recurrent point p, € 4 such that

ITfEL| <1  for all keZ, .

We fix a positive integer N > N,. From (12.3), there exists a (py, N)-
expansive interval. Let I = [m, n] be the minimum element of the set of
all (p4, N)-expansive intervals, where the order for intervals is given
lexicographically, that is; for I, = [m,, n,] and I, = [m,, n,], I, < I, iff m,
< m, or, m; = m, and n, < n,.
From the definition of the expansive interval, we have
WTF BNl = T | Epnpp 1| Tf™ | B,
> @Y T Bl -

From (2), we have
log || Tf™ | E,, || < (N/2) (log 2) .

Then, by (12.2), it follows that there exists a (p,, IN)-expansive interval in
[0, m]. This contradicts the fact that I = [m, n] in the minimum among
all (py, IN)-expansive intervals. This proves the Theorem.

§14. Taper neighborhoods

In this section, we shall introduce for each pe 4 a certain class of
neighborhoods with special shape which plays an essential role in the
proof of the Main lemma in Section 15.

For notational convenience, we put

@ = 8= yR
(14.1) DerFINITION. Let r’ > r > 0. We define a subset of R* by
T(r, 1) = Uo<icqog rmsaog sy Brat, rf) .
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In other words, (x,y) € T'(r, r’) iff there exists 0 < ¢ < (log r’/r)/(log ) such
that |x| < rat, |y| < rp.
By elementary computations, we can see that

s(T(r, r")) = (4/Dr/°A0r"* 1 — p¥1) |
where s( ) denotes the area. Since r’ > r > 0, we have
(14.2) LEMMA.
s(T(r,r")) > 4rn/i0.prone |

It is very important that s(7'(r, r’)) has order 11/10 with respect to
r (ref. (11) in Section 15).

(14.3) DeFINITION. Let r/2>r'>r>0and pe 4. We define T, (r, r’)
= Y, (T(r, ).

We call such a neighborhood T'(r, r"), taper neighborhood. By draw-
ing the picture, one can see the reason of the name.

Remark that, since T'(r, r’) is symmetric with respect to x and y-axes
in R, T,(r,r’) is independent of the choice of the basis of E,® E} with
which + is defined.

The iterated images of T,(r, r’) under f are given as follows.

(14.4) LEmMA. Let r, = min {r,/2, (A-* — 1)/2M,c}, r,>1r'>r> 0 and
ped. If

1T/ Ell <1 for all 0 < n < [(ogr'/r)/(log )] + 1,
then
f(By(rat, 1)) C Biupy(@(p, D)rat~, o(p, rp - "(AV*))
for all 0 <t < (log r’/r)/(log B) and integers 0 < i < [t + 1].

Proof. We fix 0 < t < (log r’/r)/(log B) and prove this lemma by induc-
tiononi=20,1, -, [t + 1].

When i = 0, it is trivial. Assuming that the lemma is true for i — 1,
we show that,

FBecsip@(p, i — Drat =+ w(p, i — Drp-1@-1rmy-n
C Bup(@(p, iyra' 4 alp, rf= 0"y |

Let (fy, f2) = Vrim of o ¥7loai, and (X, ¥) € Vi1 (Byi-1n(—)). It is enough
to show that
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[filx, y)| < 0(p, D)ra‘~

[fox, ¥)| < o(p, Drp=HA-1) .
By using the fact that 6(p,i — 1) <1, o(p,i — 1) < e2"'9(p,i — 1) and
i<[t+1]ie. t—1i+1>0, we have

le + |yl é 0(p’ i _ l)rat-i+1 + (D(p, i _ 1)r‘Bt—i+1(2—11/20)i—1
é r(at—in + ‘Bl—i+lc(29/20)i_l)
<r@+cgY<r+ecerp
<r4cr’ <2er’.
So, by the hypothesis on r’/, we have
14+ M|+ [y) < 2.
By (5.6),

[filoe, I < (%[N TF | Efieai [ {1 + Mi(lx] + [y}
<O0(p,i — Drat= | Tf | Eficrp |- 277
= 0(p, Yra’~*,

1o, I < [N TF | Efimsin {1 4 Mi(lx] + [ ¥D}
< 0P, i — D=t | TF | By | 25
= o(p, Drp-i(A- =) .

This completes the proof.

Let 0 <t < (logr//r)/logp) and i = [t + 1]. Then, since —1<t—1
<0, we have &' * < a'= 2" <2 and g <1, and since o(p,i) <
c26(p, i), o(p, DA < cd(p, YA < cl(p, i). So, from (14.4), we have

F{(B,(re, 189) C Bun(@(p, dra~, 6(p, drc) .
Thus, recalling that 1-' < 2 from (2.5), we get;
(14.5) LemmA. Let ry,>r'>r>0and ped. If
ITf*|Ejl <1 for all 0 < n < [(logr'/r)/log Pl + 1,

then for any ze T,(r,1’), there is an integer 0 < i < [(log r’/r)/(log B)] + 1
such that

fi(2) € B, (2crb(p, 1)) .

Remark. The assumption 1 > 1/2 (ref. (2.5)) is only used to simplify
the notation. The argument in Section 15 works similarly without it.
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§15. Proof of (11.2) Main lemma

In this section, we shall give a proof of (11.2) Main lemma. It is
rather hard but completes our whole work.
Let ped, meZ, and Ne Z,. Assume that

(1) log || Tf™ | E5|| < (N'[2) (log 2) .

We want to show that, if N is sufficiently large, then we can select a
positive integer m’ < m such that

| Tf" | Bty <1 forall0<n<m—m

and construct pairwise disjoint intervals in [0, m — m’] with the properties
given in the statement of (11.2).

As the first step, we choose a suborbit of the positive orbit of pe A
which is nearly recurrent and satisfies a good condition for norms of
differential of f restricted to E.

Let 0 < n; < m be the largest integer with the property;

(2) log || Tf™ | E;|| > (N'*/4) (log 2) + (log my) .
If we take N large enough to satisfy
(3) NE > Gt
then by easy computations, it can be seen that
(4) log | Tf™ | E;|| < (N*[4) (log 2) ,
(5) log | Tf™ ™| Ejm || < (N'"*/8) (log 2) .
Recalling (11.4), we have
(6) Ifged neZ, and £ > 0 satisfy
log | Tf*E}| < — ¢, then n > (log mg")-'-4 .
Then, from (5) and (6),
(7) m— n, > GN"* .

By applying (2.7) to (4) with p =1, we find v, = [N (log 27")/4 (log m;")]
4+ 1 integers 0 < k, << k, < --- < k,, < n, with the property that;

(8) ITf"|Eipnl <1 foral0<n<n —k and 1 <i <y, .

From the definition of n, and (8).
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(9) NTf | Bl < 1 forall0<n<m-—k,.
We fix r > 0 such that
(10) 180c'r < min {ry, ry, 1y, 75} ,

and consider the taper neighborhoods Tk, (r/GN, r) for each 1 <i <y,
Let us estimate the sum of the area of these taper neighborhoods. From
(14.2) and (5.4) (vi),

2t S(Trrum(r|GN, 7)) = >0, ¢ s(T(r/GN, 1)) > v;-c-4-(r/GN)"?. o/
— {Qog 1-/(log mi}-c,- G-/0.rs NV,

which exceeds the surface area of M by taking N large enough. So, we
have

(11) there are at least two points f*(p), f*(p) such that;
Tiki(r/GN, 1) N Tyiji(r/GN, 1) - & .

We assume that k; > k,, and put;

(12) f(p) = po, f(P) = q and k; — k=1, s0 f(p) = q, .

From (7), (8), (9),

ITf*ELl<1  forall 0< n< GN™ + ¢,

13
(13) ITf*|EL| <1 for all 0 < n < GN™,

From (11), we may take a point ze T, (r/GN,r) N T,(r/GN,r). We take
N large enough to satisfy (log g)~' (log GN) + 1 < G,N'", then from (14.5),
we have

(14) (i) there is an integer 0 <i < (logp) (log GN) -+ 1 such that
fi(2) € Byi(p(2c70(py, )/GN) ,

(i1) there is an integer 0 <j < (logf) (log GN) + 1 such that
() € By, (2c10(q0, J)/GN) .

Take large N such that
(15) (log B)~* (log GN) + 1 < [G,N] < [GN] < G,N*™* .
We put 7, = [G,N], then from (13) and (6.4),

£ (B e (2r0(po, 1)/ GN)) C Biesy)(26r0(po, 7)/(GN — 7, + 1))
C Bjrpy(2r60(po; 7)[(GN — 7)) .
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So, from (14), we have

(16) f(2) € B )(2¢°r(p,, 7)/(GN — 7)) .
Similarly,

amn f(2) € Bjuip(2cr0(qo, t)/(GN — 7)) .
Let N,e Z, be given in (10.1), and take N so large that,
(18) N > 8N, (log my")/(log 2-*) = G['N, .

Put v, = vy(N) = [G,N/AN,] and for each integer 1 < k < v,, put
=1+ (k—D4N, and [X(py) = ps, fq) = qs -
Note that, from (12), f(p,) = q, for all 1 < k <y, Also clearly,
19 7, <2[GN]<2G,N forall 1<k<y,.
From (16), (17),
B, (2¢'r0(py, t)/(GN — z)) N B, (2c'r6(qo, t)/(GN — 7)) + ¢ .
By (6.1),

(i) if 6(py, t)) > 0(qo, 7)), then g, € Bpl(6c2r6’(p0, )/(GN — 7)),
(ii) if 0(ps, 7)) < 0(gs, 7.), then p, € B, (6cré(qe, t)/(GN — 7)) .

So, from (9), in either case, we have
(20)  there exist p, € 4 such that

|Tf*|EL| <1  for all 0 < n< GN*° and
P,q, € Bfn(p*)(6czr0(p*, ‘L‘l)/(GN —_— Tl)) .

In fact, we can take p, = p, (resp. ¢, = p,) in case (i) (resp. (ii)). From
this (20) and (6.4), we get

@)  pur 4 € Bagu6r0(pyy t)(GN — 7)) for all 1<k <.

Now, since k, in (11) and (12) satisfies the property (i) of the statement
of (11.2), we can take m’ = k; in (11.2). In what follows, we shall con-
struct the disjoint intervals in [0, 7 + 7,] with the properties (ii), (iii) in
the statement of (11.2). Our strategy is the following. We identify the
Z.-interval [0,z + r,] with the positive orbit of p, = f*(p), that is
{F(Pocngern, ={Po - Prv PV Q-+ q - qu}. First, we select con-
nectable subintervals inductively by using (21) and (7.4). These intervals
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are not necessarily disjoint. We regard the union of these intervals as
a disjoint union of w,, intervals, so w,, is possibly less than y(N). We
will prove that these disjoint intervals are exactly the intervals wanted.
Concerning the above positive orbit of p, remark that g, can not be

contained in {f"(py)}cn<s,,, namely, = > z,. In fact, as we will see later,
7> N and z,, < N/4.

Before proceedings to the main step of the proof, we shall make some
preparations.

From (10), (15), (20) and (10.2), we get

22) B,:(,,(180c'ré(py, 1)/(GN — 1))
are disjoint with each other for 0 <i < 2N.

By this, we have the following two lemmas.
(15.1) LEmma. For 7, <i <, and —N, < n < N,, any two of
F"(Byip0(180cr0(py, DI(GN — 1))
are disjoint when they have different i + n.
(15.2) LEMMA. Let xe M, se Z, and 0 < n, < n, < 2r,. If

X € Bina(p,,)(180c’r8(py, n,)[(GN — ny))

and

f(x) € B/ni(,,(180c°r0(py, n)[(GN — ny)) ,
then s > N.

The proofs of (15.1) and (15.2) are straightforward by using (6.4), (18)
and (22). (15.1) will guarantee the disjointness of the supports of the
perturbations when we apply the closing lemma on several places sim-
ultaneously, and (15.2) guarantees the length of the suborbit with such
recurrence.

To complete the proof of the Main lemma, we first fix the following
notation.

For a set of pairs of integers {s, < t,}h<i<i, in [7y, T + 7,,], We put o,
= Ui, [s;, 8] and J, = ¢, where [s;, ¢;] denotes the Z .-interval. Regard
J, as a disjoint union of Z,-intervals and denote it by J, = [UJ}%, I} and
I¥ = [uf, v¥], where I} < If < ... <If. Note that w, < k. Next we put
ph = “(py) for 1 < k<,

Then we give;
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(15.3) LEmMMA. There exists a set of pairs of integers {s, < t,}icrcs, iN
[z, T + 7,] with the following properties for all 1 < k < v,;

(1) There exist v,e€ T,M and positive numbers af,af such that
(F*(po), (Do), U, aF, @) is (DY, 180c°rf(py, ©.)/(GN — z.))-connectable, namely;

(ia) |v] + of + af < 180c’rb(py, )/(GN — )

(ib) @V2)' < dblaf <2/ 2

(ic) Fpy), (D) € byu(vs, b, a)(Vi(V34)

(id) b0y, af, a)(V,x(D) C By(180r8(p,, <)/(GN — z,) .

(i) s,tied,_.

(iii) If neley,t + 1] — Jioy and n =+ s, &y, then

F(Dy) € by(ve, @k, a)(V(D) -

(iv) t, <t + 7.

(v) s,> 4[G,N] = 4z, .

(vi) length(I) =vi—u:>N for al 1< j<w,.

(vii) > ¥x, length (I¥) > kN .

(vidd) [ TF5 5| Byl = @55 for all 1<j < w, .

If this (15.3) is verified and such integers s,, ¢, exist for all 1 < k& < v,
then the Main lemma will be established, because from (vii) and (viii),
{I*}<j<w,, are exactly the intervals we want.

Proof of (15.3). We shall prove (15.3) by induction on k=1, ---, v,

First, let us select s, ¢, €[r,  + 7,,]. From (21), p, = f*(p,) and g, =
f(q) = fr*(p,) are contained in B,(6c*rf(py, ,)/(GN — z,)). So, applying
(7.4) with {f"(py):nelr, 7 + 7,]} as a finite set, we have integers s, t,
(s <t)in [z, 7 + 7., vi€ T,;M and positive numbers ai, a; satisfying (i)
and (iii) in the statement of (15.3). For k = 1, (ii) is not necessary. So,
let us prove that s, and ¢, satisfy (iv) ~ (viii).

From (ic) and (id),

(o), f(po) € By(180c’rd(py, 7)/(GN — 7)) .
Applying (15.2) with x = f**(p,), s = t, — s, and n, = n, = 7,, we get;
(23) tl - s] > N .

So, (vi) and (vii) are satisfied.
Let us prove (iv), i.e. t, < v 4+ r,. Suppose ¢, > 7 + 7,. As we observed
above,

f*(po) € B(180c°r0(py, t)/(GN — 7)) .
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On the other hand, from (21) and (6.4), we have
Fo(po) = f*"7(qy) € Bti—e(pp(6¢'r(py, t, — 7)/(GN — &, + 7)),
which contradicts (22), because from (19),
Lh—t<(+1)—1t=r1,<2GNIN/H4.

Next, let us prove (viii). From @), (f(py), f(py), v, ai, ai) is
(p%, 180c*ré(py, t)/(GN — 1,))-connectable. By (10), (10.1), (15.1) and (8.4),
there exists a (pl, NV, f**(po), f(po), Uy, @}, a3)-connector g in (e, f). From
the definition of the connector g, f*"(p,) is a periodic point of g.
Moreover, its period is ¢, — s, and from (10) and (3.1), this periodic point
must be a saddle of g. From (8.3), (8.2) (iii) (iv) and (2.3) (i), we can see
that

Efi-vopp(8) = Eju-mgpy -

Therefore, from (2.4),
[ Tg" | Efu-nogpyll = A7)
From (8.2) (iv), we get,
| Tf=t | Eysipp | = (@717,
which implies (viii).
Finally, we shall prove (v). Suppose s, < 4r, = 4[G,N]. From (vi)
and (viii),
I TF By Nl = I TF | Edsscop |- | TF | Bl
> @y my > @) mt
Namely, we have,
log || Tf* | E; | > N (log 2™) — 4G.N (log m;") = (N/2) (log 27) ,
which contradicts (13), because from (15) and (19),
t<t+<rt+4+ GN,

Next, assuming that (15.3) is valid for all 1 <i <k — 1, we prove
that there exist integers s, and ¢, in [z, ¢ + z,,] with the properties (i) ~
(viii).

Let @ = {f*(py):nelry,c + 1,] — J._i}. Since s, > 4r, and ¢, <7+ 74
for all 1<i<k—1, p, = f«p,) and q, = [***(p,) are contained in Q.
Moreover, from (21),
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Py qr € Bp§(6c3r6’(p*, w/(GN — z,)) .

So, applying (7.4) with @ as a finite set, we get v, € T,:M, positive num-
bers af, af and integers s, t, € [c;, ¢ + 7,,] — Ji-1 (s, < ¢,) satisfying (i), (i1)
and (iii).

By the same argument as in case of k=1, we can see that ¢, <=t
+ 7., 1.e. (iv). Let us prove that s, and ¢, satisfy (v) ~ (viii).

Consider {I’"}1c cu .. Since (ii) holds for all 1 < i < k, we have;

(24) Each I} satisfies IF' C [s;, t] or I! ' N [s, 8] = & .
(25) Each I} coincides with some of {[s; t.]}i<ci<k-1 -

Let L, <L, < --- <L, be intervals in {I{'};c.,_, satisfying I}~ C
[s, £]. If there are no such intervals, that is; I¥™* N [s, t] = ¢ for all
1<j< w,, then by the same argument as in case of k=1, it can be
seen that {s,, ¢},<,<, satisfy the properties (i) ~ (viii). So, we assume that
w> 1.
From (25), for any 1 <n < w, we can put L, = [s;,t;] with some
1<i,<k—1 From the definition of {L,},.,.., we have;
8, < 8, -
Since (ic) and (id) hold for all 1 < i < &,
f*1(po) € B,u(180c°rd(py, 7. )/(GN — 7,,))
and
f(po) € B,(180c’rd(py, 7:)[(GN — 7)) .

So, applying (15.2) with x = f*(p,), s = s, — S, n, = t;, and n, = ¢, we
get
S, — 8 > N.
From this fact and the hypothesis of induction, one can easily see
that {s,, t;}i<:<: satisfy (vi) and (vii).
If (viii) is proved, by the same argument as in case of k= 1 using
(vi) and (viii), we can verify (v). Thus, we shall finish the proof of (15.3)
(and so the Main lemma) by proving (viii).
Since 1<i, <k—1, from @), (f(p), f“(po); Vi, ai" a@f") 1is
i 180c°r0(py, t:,)/(GN — 7, ))-connectable. By (id), (10.1), (15.1) and (8.4),
(26) there exists a (pir, N, f*"(po), f*(Do), V.,, ai*, @i")-connector g,
in e, f) .
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And since (i) holds for k, (f*(po), f*(po), Ve, af, af) is (D%, 180c’r0(py, i)/
(GN — t,))-connectable, and similarly;

(27) there exists a (p%, Ny, (o), f*(p0), Us, af, a5)-connector g, in %(e, f) .

It is important to remark that f‘(p,) appears before f*~(p,) in (26)
and f*(p,) appears before f*(p,) in (27). From (8.3) and (8.2), g, and g,
have the property that

g2 (p)) = [ (py)
& (" (P0) = 4P

It means that g, cuts off the suborbit {f*(py):s;,, < n <t¢;,}. It seems that
8, closes up the suborbit {f*(py):s. < n < t}. But, f**"(p,) is not neces-
sarily a periodic point of g, because from (iii), the points {f"(p,):ne
UJ%.: L;} may be contained in the support of g,f~!. We construct a periodic
point by cutting off these intervals {L,},c,<., by g..

We put,

(28) hy=gf "' and h, = g,f* fori<n<uw,
and
(29 g=nhyoh, o ohohyof.
From (26), (27), (id), (8.2) (ii) and (15.1),
(30) {supp A,} are disjoint for 0 < n< w.
Since g, € %(e, f) for all 0 < n < w, from (2.8), we have
(31) ge U f) .
Let us consider the positive orbit of f%o(p,) for g. We put

gr(f* " (py)) = % ,

(32) R .
gr(frr"(p)) =%, forl<n<w.
Then, from (26), (27), (30), (ic), (id) and (iii), we get;

gHTMx) = %,
(33) gsin—tin_x(xn_l) =X, forall2<n<w ,

gtk—lw(xw) = X .
Thus, x, is a periodic point of g with period

(B — s0) — 20y (b, — 84
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Since ge %(e, f), from (10.1) and (3.1), x, must be a saddle of g.

Now, it holds that EX(g) = E}, and Ei(g) = E.. In fact, as g pre-
serves E' and E? on the orbit of the saddle x,, E!, and E? must be either
Ex(g) or E:(g). From (33) and the properties of the connector (8.3) and
(8.2) (iii), (iv), we have;

B4) forj=1,2,

| Tgee=| EZ | = (| Tf =% | Efsepy
“Tgsin—lin—llEgn—l” - “ Tf“"-”"—llE}tin—x(po) ”

for all 2< n < w, and
| Tg*~ | EL Il = | Tf " | Eftinipp || -
From the construction of s, ¢, it is clear that
Sy, — t;, = 4N, forall2<n<w,
and
t, — t,, > 4N, .

And as we observed above, s, — s, > N. If we take N large so that ca"
< 1, then from (2.3) (ii), (34) and the hypothesis of N, in (10.1) (i.e. ci™
< 1), we have,

| Tg= | EL |- T | Bz, < 1,
where zn(x;,) denotes the period. So, from (2.4), we have that
E:(g)=E,, E(g=E,,
and moreover,
(35) | Tg== | Bz, |l > (A7) .
From the hypothesis of induction,
| Tf o= sn | Efsinipp || = (A77)6n 50

for all 1 < n < w. Therefore, from (34), (35) and the fact that dim E! =
1, we get (viii) for k.
This completes the proof of (15.3) and so (11.2) Main lemma.
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