Directed harmonic currents near non-hyperbolic linearizable singularities

ZHA[N](https://orcid.org/0000-0003-4475-849X)GCHI CHEND

Morningside Center of Mathematics, Chinese Academy of Science, Beijing, China, http://www.mcm.ac.cn/people/postdocs/202110/t20211022_666685.html (e-mail: [zhangchi.chen@amss.ac.cn\)](mailto:zhangchi.chen@amss.ac.cn)

(*Received* 29 *November* 2020 *and accepted in revised form* 14 *May* 2022)

Abstract. Let $(\mathbb{D}^2, \mathscr{F}, \{0\})$ be a singular holomorphic foliation on the unit bidisc \mathbb{D}^2 defined by the linear vector field

$$
z\frac{\partial}{\partial z} + \lambda w \frac{\partial}{\partial w},
$$

where $\lambda \in \mathbb{C}^*$. Such a foliation has a non-degenerate singularity at the origin $0 := (0, 0) \in \mathbb{C}^2$. Let *T* be a harmonic current directed by \mathscr{F} which does not give mass to any of the two separatrices ($z = 0$) and ($w = 0$). Assume $T \neq 0$. The Lelong number of *T* at 0 describes the mass distribution on the foliated space. In 2014 Nguyên (see [[16](#page-29-0)]) proved that when $\lambda \notin \mathbb{R}$, that is, when 0 is a hyperbolic singularity, the Lelong number at 0 vanishes. Suppose the trivial extension \tilde{T} across 0 is dd^c -closed. For the non-hyperbolic case $\lambda \in \mathbb{R}^*$, we prove that the Lelong number at 0:

- (1) is strictly positive if $\lambda > 0$;
- (2) vanishes if $\lambda \in \mathbb{Q}_{< 0}$;
- (3) vanishes if $\lambda < 0$ and *T* is invariant under the action of some cofinite subgroup of the monodromy group.

Key words: holomorphic foliation, harmonic current, non-hyperbolic linearizable singularity, Lelong number

2020 Mathematics Subject Classification: 32M25 (Primary); 32S65, 32C30, 53C65 (Secondary)

1. *Introduction*

The dynamical properties of singular holomorphic foliations have recently drawn a great deal of attention; see the discussions in [[9](#page-29-1), [11](#page-29-2), [13](#page-29-3), [15](#page-29-4), [17](#page-29-5), [18](#page-29-6)]. Let us mention one of the remarkable results which establishes the unique ergodicity for general singular holomorphic foliations on compact Kähler surfaces.

THEOREM 1.1. (Dinh, Nguyên and Sibony [[7](#page-29-7)]) *Let F be a holomorphic foliation with only hyperbolic singularities in a compact Kähler surface* (X, ω) *. Assume that* $\mathscr F$ *admits no directed positive closed current. Then there exists a unique positive dd^c-closed current T of mass* 1 *directed by F.*

The first version was stated for $X = \mathbb{P}^2$ and proved by Fornæss and Sibony [[12](#page-29-8)]. Later Dinh and Sibony proved the unique ergodicity for foliations in \mathbb{P}^2 with an invariant curve [[8](#page-29-9)]. So one may expect to describe recurrence properties of leaves by studying the density distribution of directed harmonic currents. One has the following result about leaves.

THEOREM 1.2. (Fornæss and Sibony [[12](#page-29-8)]) *Let* (X, *F*, E) *be a holomorphic foliation on a compact complex surface X with singular set E. Assume that:*

- (1) *there is no invariant analytic curve;*
- (2) *all the singularities are hyperbolic;*
- (3) *there is no non-constant holomorphic map* $\mathbb{C} \to X$ *such that out of E the image of* C *is locally contained in a leaf.*

Then every harmonic current T directed by F gives no mass to each single leaf.

A practical way to measure the density of harmonic currents is to use the notion of Lelong number introduced by Skoda [[22](#page-29-10)]. Indeed Theorem [1.2](#page-1-0) above is equivalent to the statement that the Lelong number of *T* vanishes everywhere outside *E*. Another result holds near hyperbolic singularities.

THEOREM 1.3. (Nguyên [[16](#page-29-0)]) *Let* $(\mathbb{D}^2, \mathscr{F}, \{0\})$ *be a holomorphic foliation on the unit bidisc* \mathbb{D}^2 *defined by the linear vector field* $Z(z, w) = z(\partial/\partial z) + \lambda w(\partial/\partial w)$, *where* $\lambda \in$ C\R*, that is to say,* 0 *is a hyperbolic singularity. Let T be a harmonic current directed by* $\mathscr F$ which does not give mass to any of the two separatrices $(z = 0)$ and $(w = 0)$. Then the *Lelong number of T at* 0 *vanishes.*

Next, Nguyên applies this result to prove the existence of Lyapunov exponents for singular holomorphic foliations on compact projective surfaces [[20](#page-29-11)]. Very recently he has proved in [[19](#page-29-12)] that for every $n \ge 2$, the Lelong numbers of any directed harmonic current which gives no mass to invariant hyperplanes vanishes near *weakly hyperbolic* singularities in \mathbb{C}^n . This result is optimal; see [[10](#page-29-13)]. The mass-distribution problem would be completed once we could understand the behaviour of harmonic currents near non-hyperbolic non-degenerate singularities, and near degenerate singularities.

The present paper answers (partly) the problem in the non-hyperbolic linearizable singularity case. Here is our first main result.

THEOREM 1.4. Let $(\mathbb{D}^2, \mathcal{F}, \{0\})$ be a holomorphic foliation on the unit bidisc \mathbb{D}^2 defined *by the linear vector field* $Z(z, w) = z(\partial/\partial z) + \lambda w(\partial/\partial w)$ *, where* $\lambda \in \mathbb{R}^*$ *. Let T be a harmonic current directed by F which does not give mass to any of the two separatrices* $(z = 0)$ *and* $(w = 0)$ *. Assume* $T \neq 0$ *. Then the Lelong number of T at* 0*:*

- *is strictly positive and could be infinite if* $\lambda > 0$;
• *vanishes if* $\lambda \in \mathbb{O}$.
- *vanishes if* $\lambda \in \mathbb{Q}_{< 0}$.

For the foliation concerned $(\mathbb{D}^2, \mathscr{F}, \{0\})$, a local leaf P_α , with $\alpha \in \mathbb{C}^*$, can be parametrized by $(z, w) = (e^{-v+iu}, \alpha e^{-\lambda v+i\lambda u})$, with $u, v \in \mathbb{R}$. See the parametrization [\(1\)](#page-5-0) for details. The *monodromy group* around the singularity is generated by $(z, w) \mapsto$ $(z, e^{2\pi i \lambda} w)$. It is a cyclic group of finite order when $\lambda \in \mathbb{Q}^*$, of infinite order when $\lambda \notin \mathbb{Q}$.

We are now ready to introduce the notion of *periodic current*, an essential tool in this paper. A directed harmonic current *T* is called *periodic* if it is invariant under some cofinite subgroup of the monodromy group, that is, under the action of $(z, w) \mapsto (z, e^{2k\pi i \lambda}w)$ for some $k \in \mathbb{Z}_{>0}$.

Observe that if $\lambda = (a/b) \in \mathbb{Q}^*$ with $a \in \mathbb{Z}^*, b \in \mathbb{Z}_{>0}$, then any directed harmonic current is invariant under the action of $(z, w) \mapsto (z, e^{2b\pi i \lambda}w)$, hence is periodic. But when $\lambda \notin \mathbb{Q}^*$, the periodicity is a non-trivial assumption. It does not follow from the ergodicity of irrational rotation because the current is only continuous on leaf parameters (u, v) for each fixed α . It may not be continuous in variables (z, w) .

We are in a position to state our second main result.

THEOREM 1.5. *Using the same notation as above, the Lelong number of T at the singularity is* 0 *when* $\lambda < 0$ *and the current is periodic, in particular, when* $\lambda \in \mathbb{Q}_{<0}$ *.*

It remains open to determine the possible Lelong number values of non-periodic *T* when λ < 0 is irrational.

Section [2](#page-2-0) reviews the definition of singular holomorphic foliations, directed harmonic currents, the mass and the Lelong number. Section [3](#page-7-0) describes the topology of leaves near linearizable non-hyperbolic singularities, resolves the ambiguity of normalizing harmonic functions on the leaves and provides practical formulas for the mass and the Lelong number. Section [4](#page-15-0) calculates the Lelong number when $\lambda \in \mathbb{Q}_{>0}$. Section [5](#page-19-0) calculates the Lelong number when $\lambda \in \mathbb{R}_{>0} \setminus \mathbb{Q}$, with an analysis on Poisson integrals of non-periodic currents. Section [6](#page-24-0) calculates the Lelong number when $\lambda < 0$, assuming that the currents are periodic.

2. *Background*

2.1. *Singularities of holomorphic foliations.* To start with, recall the definition of singular holomorphic foliation on a complex surface *M*.

Definition 2.1. Let $E \subset M$ be some closed subset, possibly empty, such that $M \backslash E =$ M. A *singular holomorphic foliation* (M, E, *F*) consists of a holomorphic *atlas* ${(\mathbb{U}_i, \Phi_i)}_{i \in I}$ on $M \backslash E$ which satisfies the following conditions.

- (1) For each $i \in I$, $\Phi_i : \mathbb{U}_i \to \mathbb{B}_i \times \mathbb{T}_i$ is a biholomorphism, where \mathbb{B}_i and \mathbb{T}_i are domains in C.
- (2) For each pair (\mathbb{U}_i, Φ_i) and (\mathbb{U}_j, Φ_j) with $\mathbb{U}_i \cap \mathbb{U}_j \neq \emptyset$, the transition map

$$
\Phi_{ij} := \Phi_i \circ \Phi_j^{-1} : \Phi_j(\mathbb{U}_i \cap \mathbb{U}_j) \to \Phi_i(\mathbb{U}_i \cap \mathbb{U}_j)
$$

has the form

$$
\Phi_{ij}(b, t) = (\Omega(b, t), \Lambda(t)),
$$

where (b, t) are the coordinates on $\mathbb{B}_i \times \mathbb{T}_i$, and the functions Ω , Λ are holomorphic, with Λ independent of b .

Each open set \mathbb{U}_i is called a *flow box*. For each $c \in \mathbb{T}_i$, the Riemann surface $\Phi_i^{-1} \{ t = c \}$ in \mathbb{U}_i is called a *plaque*. Property (2) above ensures that in the intersection of two flow boxes, plaques are mapped to plaques.

A *leaf L* is a minimal connected subset of *M* such that if *L* intersects a plaque, it contains that plaque. A *transversal* is a Riemann surface immersed in *M* which is transverse to each leaf of *M*.

The local theory of singular holomorphic foliations is closely related to holomorphic vector fields. One recalls some basic concepts in \mathbb{C}^2 ; see [[5](#page-29-14), [11](#page-29-2), [17](#page-29-5), [18](#page-29-6)].

Definition 2.2. Let $Z = P(z, w)\partial/\partial z + Q(z, w)\partial/\partial w$ be a holomorphic vector field defined in a neighbourhood \mathbb{U} of $(0, 0) \in \mathbb{C}^2$. One says that *Z* is:

- (1) *singular* at (0, 0) if $P(0, 0) = Q(0, 0) = 0$;
- (2) *linear* if it can be written as

$$
Z = \lambda_1 z \frac{\partial}{\partial z} + \lambda_2 w \frac{\partial}{\partial w}
$$

where $\lambda_1, \lambda_2 \in \mathbb{C}$ are not simultaneously zero;

(3) *linearizable* if it is linear after a biholomorphic change of coordinates.

Suppose the holomorphic vector field $Z = P(\partial/\partial z) + Q(\partial/\partial w)$ admits a singularity at the origin. Let λ_1, λ_2 be the eigenvalues of the Jacobian matrix $\begin{pmatrix} P_z & P_w \\ Q_z & Q_w \end{pmatrix}$ at the origin.

Definition 2.3. The singularity is *non-degenerate* if both λ_1 , λ_2 are non-zero. This condition is biholomorphically invariant.

In this paper, all singularities are assumed to be non-degenerate. Then the foliation defined by integral curves of *Z* has an isolated singularity at 0. Degenerate singularities are studied in [[5](#page-29-14)]. Seidenberg's reduction theorem [[21](#page-29-15)] shows that degenerate singularities can be resolved into non-degenerate ones after finitely many blow-ups.

Definition 2.4. A singularity of *Z* is *hyperbolic* if the quotient $\lambda := (\lambda_1/\lambda_2) \in \mathbb{C} \setminus \mathbb{R}$. It is *non-hyperbolic* if $\lambda \in \mathbb{R}^*$. It is in the *Poincaré domain* if $\lambda \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. It is in the *Siegel domain* if $\lambda \in \mathbb{R}_{<0}$.

One can verify that the quotient is unchanged by multiplication of *Z* by any non-vanishing holomorphic function.

One could consider $\lambda^{-1} = \lambda_2/\lambda_1$ instead of λ , but then $\lambda \notin \mathbb{R}$ if and only if $\lambda^{-1} \notin \mathbb{R}$. Thus, the notion of hyperbolicity is well defined. Also, being non-hyperbolic, in the Poincaré domain or Siegel domain, is well defined. The complex number λ will be called an *eigenvalue* of *Z* at the singularity, with an inessential abuse due to this exchange $\lambda \leftrightarrow \lambda^{-1}$. The unordered pair $\{\lambda, \lambda^{-1}\}$ is invariant under local biholomorphic changes of coordinates.

Consider a holomorphic foliation (M, E, \mathcal{F}) where *E* is discrete. When one tries to linearize a vector field near an isolated non-degenerate singularity, one has to divide power series coefficients by quantities $m_1 + \lambda m_2 - 1$ and $m_1 + \lambda m_2 - \lambda$ where $m_1, m_2 \in \mathbb{Z}_{\geq 0}$

with $m_1 + m_2 \ge 2$. To ensure convergence, these quantities have to be non-zero and not too close to zero.

These quantities are non-zero if and only if $\lambda \notin \mathbb{Q}_{\neq 1}$. They do not have 0 as a limit if and only if $\lambda \notin \mathbb{R}_{\leq 0}$, that is, the singularity is in the Poincaré domain.

We are now ready to state some linearization results in \mathbb{C}^2 .

THEOREM 2.5. (Poincaré; see [[2](#page-29-16), Ch. 4, §1.2, pp. 72]) *A singular holomorphic vector field* in \mathbb{C}^2 is holomorphically equivalent to its linear part if its eigenvalue $\lambda \in (\mathbb{C} \setminus \mathbb{R}_{\leq 0}) \setminus \mathbb{Q}_{\neq 1}$.

Remark 2.6. The linear part of a singular holomorphic vector field is

$$
(az + bw)\frac{\partial}{\partial z} + (cz + dw)\frac{\partial}{\partial w}
$$

for some $a, b, c, d \in \mathbb{C}$ with $ad - bc \neq 0$ if the singularity is assumed to be non-degenerate. It is non-linearizable if and only if the Jordan normal form of the Jacobian matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has a rank-2 block $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$ with $a \neq 0$. In this case $\lambda = 1$, hence Poincaré's theorem holds. The vector field is holomorphically equivalent to its linear part $(az + w)\partial/\partial z + aw(\partial/\partial w)$, but is not linearizable.

For the resonant case $\lambda \in \mathbb{Q}_{\neq 1}$ and the degenerate case, one may use the Poincaré–Dulac normal form [[2](#page-29-16), Ch. 3, §3.2, pp. 54].

In particular, all hyperbolic singularities are linearizable.

To get linearization for λ in the Siegel domain, the following result assumes the more advanced *Brjuno condition*.

THEOREM 2.7. (Brjuno [[2](#page-29-16), [4](#page-29-17)]) *A singular holomorphic vector field with a non-resonant linear part is holomorphically linearizable if its eigenvalue* $\lambda \in \mathbb{R}$ *satisfies the condition*

$$
\sum_{n\geqslant 1}\frac{\log q_{n+1}}{q_n}<\infty,
$$

where p_n/q_n *is the nth approximant of the continued fraction expansion of* λ *.*

The golden ratio

$$
\frac{\sqrt{5}-1}{2} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}}
$$

is a Brjuno number. Indeed, any irrational number whose continued fraction expansion ends with a string of 1s

$$
\alpha = a_0 + \frac{1}{a_1 + \frac{1}{\cdots}} = [a_0, a_1, \ldots, a_k, 1, 1, \ldots] \in \mathbb{R} \setminus \mathbb{Q} \quad (a_0 \in \mathbb{Z}, a_1, \ldots, a_k \in \mathbb{N}),
$$

is a Brjuno number. The Brjuno numbers are dense in $\mathbb{R}\backslash\mathbb{Q}$. See [[14](#page-29-18), Propositions 1.2 and 1.3].

In this paper, all singularities are assumed to be linearizable.

2.2. *Directed harmonic currents.* Let $(\mathbb{D}^2, \mathscr{F}, \{0\})$ be a holomorphic foliation on the unit bidisc \mathbb{D}^2 defined by the linear vector field $Z = z\partial/\partial z + \lambda w(\partial/\partial w)$ with $\lambda \in \mathbb{R}^*$. One may assume $0 < |\lambda| \leq 1$ after switching *z* and *w* if necessary. There are always two separatrices $\{z = 0\}$ and $\{w = 0\}$. Other leaves can be parametrized as

$$
L_{\alpha} := \{ (z, w) = \psi_{\alpha}(\zeta) := (e^{i\zeta}, \alpha e^{i\lambda \zeta}) = (e^{-v+iu}, \alpha e^{-\lambda v + i\lambda u}) \} \quad (\alpha \neq 0), \quad (1)
$$

where $\zeta = u + iv \in \mathbb{C}$. The map

$$
\Psi : \mathbb{C} \times \mathbb{C}^* \longrightarrow \mathbb{C}^2
$$

$$
(\zeta, \alpha) \longmapsto (e^{i\zeta}, \alpha e^{i\lambda \zeta})
$$

is locally biholomorphic. Here α is the coordinate on the transversal and ζ is the coordinate on leaves. It is not injective since $\Psi(\zeta + 2\pi, \alpha) = \Psi(\zeta, \alpha e^{2\pi i \lambda}).$

Two numbers $\alpha, \beta \in \mathbb{C}^*$ are *equivalent* $\alpha \sim \beta$ if $\beta = e^{2k\pi i \lambda} \alpha$ for some $k \in \mathbb{Z}$. The following statements are equivalent:

- *•* α ∼ β;
- $L_{\alpha} = L_{\beta};$
- $\psi_{\alpha} = \psi_{\beta} \circ$ (translation of $2k\pi$) for some $k \in \mathbb{Z}$.

Let $\mathcal{C}_{\mathscr{F}}$ (respectively, $\mathcal{C}_{\mathscr{F}}^{1,1}$) denote the space of functions (respectively, forms of bidegree (1, 1)) defined on leaves of the foliation which are compactly supported on $M\backslash E$, leafwise smooth and transversally continuous. A form $\iota \in \mathcal{C}_{\mathcal{F}}^{1,1}$ is said to be *positive* if its restriction to every plaque is a positive (1,1)-form.

A *directed harmonic current T on* $\mathscr F$ is a continuous linear form on $\mathscr C_{\mathscr F}^{1,1}$ satisfying the following two conditions:

- (1) i∂ $\bar{\partial}T=0$ in the weak sense, that is, $T(i\partial \bar{\partial}f) = 0$ for all $f \in \mathscr{C}_{\mathscr{F}}$, where in the expression $i\partial \overline{\partial} f$ one only considers $\partial \overline{\partial}$ along the leaves;
- (2) *T* is positive, that is, $T(t) \ge 0$ for all positive forms $t \in \mathcal{C}_{\mathcal{F}}^{1,1}$.

It is well known (see, for example, $[3, 6, 11]$ $[3, 6, 11]$ $[3, 6, 11]$ $[3, 6, 11]$ $[3, 6, 11]$ $[3, 6, 11]$ $[3, 6, 11]$) that a directed harmonic current T on a flow box $\mathbb{U} \cong \mathbb{B} \times \mathbb{T}$ can be locally expressed as

$$
T = \int_{\alpha \in \mathbb{T}} h_{\alpha}[P_{\alpha}] d\mu(\alpha).
$$
 (2)

The h_{α} are non-negative harmonic functions on the local leaves P_{α} and μ is a Borel measure on the transversal T. If $h_{\alpha} = 0$ at some point on P_{α} , then by the mean value theorem $h_{\alpha} \equiv 0$. For all such $\alpha \in \mathbb{T}$, we replace h_{α} by the constant function 1 and we set $d\mu(\alpha) = 0$. Thus, we get a new expression of *T* where $h_{\alpha} > 0$ for all $\alpha \in \mathbb{T}$.

Such an expression is not unique since $T = \int_{\alpha \in \mathbb{T}} (h_{\alpha}g(\alpha)) [P_{\alpha}]((1/g(\alpha)) d\mu(\alpha))$ for any measurable positive function $g : \mathbb{T} \to \mathbb{R}_{\geq 0}$ which is finite and non-zero almost everywhere. The expression is unique after *normalization*, which means that for each $\alpha \in \mathbb{T}$ one fixes $h_{\alpha}(z_0, w_0) = 1$ at some point $(z_0, w_0) \in P_{\alpha}$.

Each harmonic function h_{α} on the leaf V_{α} can be pulled back by the parametrization Ψ as the harmonic function

$$
H_{\alpha}(u, v) := h_{\alpha}(e^{-v+iu}, \alpha e^{-\lambda v + i\lambda u}).
$$

The domain of definition for *u*, *v* will be precisely described later in this section.

In [§1](#page-0-0) the notion of *periodic current* was introduced. Here is an equivalent characterization.

PROPOSITION 2.8. *A directed harmonic current T is periodic if and only if there exists some* $k \in \mathbb{Z}_{>0}$ *such that* $H_{\alpha}(u + 2k\pi, v) = H_{\alpha}(u, v)$ *for all* u, *v and for* μ *-almost all* α *.*

Proof. By definition *T* is invariant under $(z, w) \mapsto (z, e^{2k\pi i \lambda}w)$ for some $k \in \mathbb{Z}_{>0}$, which is equivalent to $H_{\alpha}(u + 2k\pi, v) = H_{\alpha}(u, v)$ for all u, v and μ -almost all α . \Box

A current *T* of the form [\(2\)](#page-5-1) is dd^c -closed on $\mathbb{D}^2 \setminus \{0\}$. But its trivial extension \tilde{T} across the singularity 0 is not necessarily dd^c -closed on \mathbb{D}^2 . It is true when *T* is compactly supported, for example when *T* is a localization of a current on a compact manifold, by the following argument (see [[6](#page-29-20), Lemma 2.5] for details).

Let *T* be a directed harmonic current on $M \backslash E$, where *M* is a compact complex manifold and E is a finite set. The current T can be extended by zero through E in order to obtain the positive current \tilde{T} on *M*. Next, we apply the following result.

THEOREM 2.9. (Alessandrini and Bassanelli [[1](#page-29-21), Theorem 5.6]) *Let be an open subset of* \mathbb{C}^n and Y an analytic subset of Ω of dimension less than p. Suppose T is a negative *current of bidimension* (p, p) *on* $\Omega \ Y$ *such that* $dd^cT \geq 0$ *. Then the following assertions hold.*

- (1) *The mass of T near Y is locally finite. In particular, T admits a trivial extension by* 0 *across Y, denoted by* \tilde{T} *.*
- (2) $dd^c \tilde{T} \geq 0$ on Ω .

Here $-T$ is a negative current of bidimension (1, 1) on $M\backslash E$ with $dd^c(-T) \geq 0$ and *E* has dimension 0. So for the trivial extension \tilde{T} on *M* one has $dd^c(-\tilde{T}) \geq 0$. Moreover, \tilde{T} is compactly supported since *M* is compact. Thus

$$
\langle dd^c \tilde{T}, 1 \rangle = \langle \tilde{T}, dd^c 1 \rangle = 0.
$$

Combining with $dd^c \tilde{T} \leq 0$ from the extension theorem, one concludes that $dd^c \tilde{T} = 0$ on *M*. Thus, locally near any singularity, the trivial extension \tilde{T} is dd^c -closed.

Let $\beta := idz \wedge d\overline{z} + idw \wedge d\overline{w}$ be the standard Kähler form on \mathbb{C}^2 . The *mass* of *T* on a domain $U \subset \mathbb{D}^2$ is denoted by $||T||_U := \int_U T \wedge \beta$. In this paper, all currents are assumed to have finite mass on \mathbb{D}^2 .

Definition 2.10. (See [[19](#page-29-12), §2.4]) Let *T* be a directed harmonic current on $(\mathbb{D}^2, \mathcal{F}, \{0\})$. We define the *Lelong number* by the limit

$$
\mathcal{L}(T,0) = \limsup_{r \to 0+} \frac{1}{\pi r^2} ||T||_{r\mathbb{D}^2} \in [0, +\infty].
$$

The limit can be infinite when the trivial extension \tilde{T} across the origin is not dd^c -closed [[19](#page-29-12), Example 2.11]. When \tilde{T} is dd^c -closed, the following theorem ensures the finiteness.

THEOREM 2.11. (Skoda [[22](#page-29-10)]) Let T be a positive dd^c -closed (1, 1)-current in \mathbb{D}^2 . Then *the function* $r \mapsto 1/\pi r^2 ||T||_{r\mathbb{D}^2}$ *is increasing with* $r \in (0, 1]$ *.*

In our case, the function

$$
r \mapsto \frac{1}{\pi r^2} \|\tilde{T}\|_{r \mathbb{D}^2} = \frac{1}{\pi r^2} \|T\|_{r \mathbb{D}^2}
$$

is increasing with $r \in (0, 1]$. In particular,

$$
\mathscr{L}(T,0)=\lim_{r\to 0+}\frac{1}{\pi r^2}\|T\|_{r\mathbb{D}^2}\in\bigg[0,\frac{1}{\pi}\|T\|_{\mathbb{D}^2}\bigg].
$$

In this paper, the symbols \leq and \geq stand for inequalities up to a multiplicative positive constant depending only on λ . We write \approx when both inequalities are satisfied.

3. *Parametrization of leaves*

Recall the parametrization of an arbitrary leaf L_{α} :

$$
\psi_{\alpha}(\zeta) = \Psi(\zeta, \alpha) = (e^{i\zeta}, \alpha e^{i\lambda \zeta}) \quad (\alpha \in \mathbb{C}^*, \zeta \in \mathbb{C}).
$$

To calculate the mass $||T||_{\mathbb{D}^2}$ and the Lelong number $\mathscr{L}(T, 0)$, we shall study $\Psi^{-1}(r\mathbb{D}^2)$ for $r \in (0, 1]$. Define $P_{\alpha} := L_{\alpha} \cap \mathbb{D}^2$ and $P_{\alpha}^{(r)} := L_{\alpha} \cap r \mathbb{D}^2$. Define $\log^+(x) :=$ max $\{0, \log(x)\}\$ for $x > 0$.

LEMMA 3.1. *The range of* (u, v) *for a point* $(z, w) \in P_\alpha$ *and* $P_\alpha^{(r)}$ *is an upper half-plane when* $\lambda > 0$ *, or a horizontal strip when* $\lambda < 0$ *. More precisely:*

(1) *when* $\lambda > 0$,

$$
(z, w) \in P_{\alpha} \Longleftrightarrow v > \frac{\log^+ |\alpha|}{\lambda},
$$

$$
(z, w) \in P_{\alpha}^{(r)} \Longleftrightarrow \begin{cases} v > \frac{\log |\alpha| - \log r}{\lambda} & (|\alpha| \ge r^{1-\lambda}), \\ v > -\log r & (|\alpha| < r^{1-\lambda}); \end{cases}
$$

(2) when $\lambda < 0$, $P_{\alpha} = \emptyset$ for $|\alpha| \geq 1$, $P_{\alpha}^{(r)} = \emptyset$ for $|\alpha| \geq r^{1-\lambda}$ and for the other α ,

$$
(z, w) \in P_{\alpha} \Longleftrightarrow 0 < v < \frac{\log |\alpha|}{\lambda},
$$
\n
$$
(z, w) \in P_{\alpha}^{(r)} \Longleftrightarrow -\log r < v < \frac{\log |\alpha| - \log r}{\lambda}.
$$

Proof. Recall that $(z, w) = (e^{-v+iu}, \alpha e^{-\lambda v+i\lambda u})$ on L_{α} . So for any $r \in (0, 1]$, $(z, w) \in$ $P_{\alpha}^{(r)}$ if and only if both $|z| = e^{-v} < r$ and $|w| = |\alpha|e^{-\lambda v} < r$.

When $\lambda > 0$ one has $v > -\log r$ and $v > (\log |\alpha| - \log r)/\lambda$. In particular, for $r = 1$, one has $v > 0$ and $v > \log |\alpha| / \lambda$.

When $\lambda < 0$ one has $-\log r < v < (\log |\alpha| - \log r)/\lambda$. In particular, for $r = 1$, one has $0 < v < \log |\alpha| / \lambda$. If there is no solution for *v* then $P_{\alpha}^{(r)} = \emptyset$. \Box

When $\lambda > 0$, the range of *v* is unbounded for each fixed $\alpha \in \mathbb{C}^*$. See Figures [1](#page-8-0) and [2.](#page-8-1) When $\lambda < 0$, the range of *v* is bounded for each fixed α . See Figures [3](#page-9-0) and [4.](#page-9-1)

FIGURE 1. The region of ($|\alpha|$, v) for P_{α} .

FIGURE 2. The region of $(|\alpha|, v)$ for $P_{\alpha}^{(r)}$.

3.1. *Positive case* $\lambda > 0$. For any $\alpha \in \mathbb{C}^*$ fixed, the leaf L_{α} is contained in a real three-dimensional Levi flat CR manifold $|w| = |\alpha||z|$ ^{λ}, which can be viewed as a curve in $|z| = e^{-v}$, $|w| = |\alpha|e^{-\lambda v}$ coordinates. The norms $|z|$ and $|w|$ depend only on *v*. When $v \rightarrow +\infty$, the point on the leaf tends to the singularity (0, 0) described by Figures [5](#page-10-0) and [6.](#page-10-1)

If one fixes some $v = -\log r$, then $|z| = r$ and $|w| = |\alpha|r^{\lambda}$ is fixed. The set $\mathbb{T}_r^2 :=$ $\{(z, w) \in \mathbb{D}^2 : |z| = r, |w| = |\alpha|r^{\lambda}\}\$ is a torus and the intersection of the leaf L_{α} with this torus is a smooth curve $L_{\alpha,r} := L_{\alpha} \cap \mathbb{T}_r^2$.

When $\lambda \in \mathbb{Q}$, this curve $L_{\alpha,r}$ is closed. See Figure [7.](#page-11-0)

When $\lambda \notin \mathbb{Q}$, this curve $L_{\alpha,r}$ is dense on the torus \mathbb{T}_r^2 . See Figures [8](#page-11-1) and [9.](#page-11-2)

[†] The name CR has its own history and interest in complex geometry, other than to say that CR stands both for Cauchy–Riemann and for Complex–Real.

FIGURE 3. The region of ($|\alpha|$, v) for P_{α} .

FIGURE 4. The region of $(|\alpha|, v)$ for $P_{\alpha}^{(r)}$.

In this case the two curves $L_{\alpha,r}$ and $L_{\alpha e^{2\pi i \lambda}r}$ are two different parametrizations of the same image. The dashed curve in Figure [8](#page-11-1) is not only the image of $L_{\alpha,r}$ for $u \in [2\pi, 4\pi)$ but also the image of $L_{\alpha e^{2\pi i \lambda}r}$ for $u \in [0, 2\pi)$. This raises ambiguity while normalizing harmonic functions on a leaf L_{α} .

Such ambiguity can be resolved once one restricts everything to an open subset U_{ϵ} := $\{(z, w) \in \mathbb{D}^2 \mid \arg(z) \in (0, 2\pi - \epsilon), z \neq 0, w \neq 0\}$ for some fixed $\epsilon \in [0, \pi)$. Any leaf L_α on U_{ϵ} decomposes into a disjoint union of infinitely many components:

$$
L_{\alpha} \cap U_{\epsilon} = \bigcup_{k \in \mathbb{Z}} \biggl\{ (e^{-v+iu}, \alpha e^{2k\pi i\lambda} e^{-\lambda v + i\lambda u}) \mid u \in (0, 2\pi - \epsilon), v > \frac{\log^+ |\alpha|}{\lambda} \biggr\}.
$$

For example, in Figure [10,](#page-12-0) the curve and the dashed curve are two distinct components of $L_{1,1} \cup U_{\epsilon}$.

FIGURE 5. Case $|\alpha| < 1$.

FIGURE 6. Case $|\alpha| \geqslant 1$.

Such a parametrization is yet not unique. For example, for any $k_0 \in \mathbb{Z}$ one can parametrize

$$
L_{\alpha} \cap U_{\epsilon} = \bigcup_{k \in \mathbb{Z}} \Biggl\{ \bigl(e^{-v+iu}, \alpha e^{2k\pi i\lambda} e^{-\lambda v + i\lambda u} \bigr) \mid u \in (2k_0\pi, 2k_0\pi + 2\pi - \epsilon), v > \frac{\log^+ |\alpha|}{\lambda} \Biggr\}.
$$

The parametrization is unique once one fixes k_0 , for example, $k_0 = 0$. I remark for the time being that all other choices of k_0 will be used for analysing non-periodic currents in [§5.2.](#page-21-0)

3.2. *Resolving ambiguity in the irrational case.* Let $\lambda \notin \mathbb{Q}$. Let *T* be a harmonic current directed by \mathscr{F} . Then $T|_{P_\alpha}$ has the form $h_\alpha(z, w)[P_\alpha]$. One may assume that h_α is nowhere

FIGURE 7. A closed curve on a torus.

FIGURE 8. Two loops.

FIGURE 9. Twenty loops.

0 for every α. Let

$$
H_{\alpha}(u + iv) := h_{\alpha} \circ \psi_{\alpha}\left(u + iv + i\frac{\log^{+}|\alpha|}{\lambda}\right).
$$

This is a positive harmonic function for μ -almost all $\alpha \in \mathbb{C}^*$ defined in a neighbourhood of the upper half-plane $\mathbb{H} = \{(u + iv) \in \mathbb{C} \mid v > 0\}$, determined by the Poisson integral

FIGURE 10. Two components of $L_{1,1} \cup U_{\epsilon}$.

formula

$$
H_{\alpha}(u + iv) = \frac{1}{\pi} \int_{y \in \mathbb{R}} H_{\alpha}(y) \frac{v}{v^2 + (y - u)^2} dy + C_{\alpha}v.
$$

One can normalize H_{α} by setting $H_{\alpha}(0) = 1$. But by doing so one may normalize data over the same leaf for multiple times. Indeed, any pair of equivalent numbers $\alpha \sim \beta$ in \mathbb{C}^* , $\beta = \alpha e^{2k\pi i\lambda}$, may provide us with two different normalizations H_α and H_β on the same leaf $L_{\alpha} = L_{\beta}$. A major task is to find formulas for the mass and the Lelong number independent by the choice of normalization.

The ambiguity is described by the following proposition.

PROPOSITION 3.2. *If* $\beta = \alpha e^{2k\pi i\lambda}$ *for some* $k \in \mathbb{Z}$ *, then the two normalized positive harmonic functions* H_{α} *and* H_{β} *satisfy*

$$
H_{\alpha}(u + iv) = H_{\alpha}(2k\pi)H_{\beta}(u - 2k\pi + iv).
$$

In other words, they differ by a translation and a multiplication by a non-zero constant.

Proof. When $|\alpha| < 1$, by definition

$$
H_{\alpha}(u + iv) = h_{\alpha}(e^{-v+iu}, \alpha e^{-\lambda v + i\lambda u}), \quad H_{\alpha}(0) = h_{\alpha}(1, \alpha).
$$

Thus, the normalized harmonic function is

$$
H_{\alpha}(u + iv) = \frac{h_{\alpha}(e^{-v+iu}, \alpha e^{-\lambda v + i\lambda u})}{h_{\alpha}(1, \alpha)},
$$

and for the same reason

$$
H_{\beta}(u + iv) = \frac{h_{\beta}(e^{-v+iu}, \beta e^{-\lambda v + i\lambda u})}{h_{\beta}(1, \beta)}.
$$

The two functions h_{α} and h_{β} are the positive harmonic coefficient of *T* on the same leaf $L_{\alpha} = L_{\beta}$, hence they differ up to multiplication by a positive constant $C > 0$:

$$
h_{\alpha}(e^{-v+iu}, \alpha e^{-\lambda v+i\lambda u}) = C \cdot h_{\beta}(e^{-v+iu}, \alpha e^{-\lambda v+i\lambda u})
$$

= $C \cdot h_{\beta}(e^{-v+iu}, \beta e^{-2k\pi i\lambda}e^{-\lambda v+i\lambda u})$
= $C \cdot h_{\beta}(e^{-v+i(u-2k\pi)}, \beta e^{-\lambda v+i\lambda(u-2k\pi)}).$

FIGURE 11. Domain U in coordinates (z, w) .

FIGURE 12. Domain U in coordinates (u, v) .

Thus,

$$
H_{\alpha}(u + iv) = \frac{h_{\alpha}(e^{-v+iu}, \alpha e^{-\lambda v + i\lambda u})}{h_{\alpha}(1, \alpha)} = \frac{C \cdot h_{\beta}(e^{-v+i(u-2k\pi)}, \beta e^{-\lambda v + i\lambda(u-2k\pi)})}{C \cdot h_{\beta}(1, \alpha)}
$$

=
$$
\frac{h_{\beta}(e^{-v+i(u-2k\pi)}, \beta e^{-\lambda v + i\lambda(u-2k\pi)})}{h_{\beta}(1, \beta)} \cdot \frac{h_{\beta}(1, \beta)}{h_{\beta}(1, \alpha)}
$$

=
$$
H_{\beta}(u - 2k\pi + iv) \cdot \frac{h_{\beta}(1, \beta)}{h_{\beta}(1, \alpha)}.
$$

When $u = 2k\pi$ and $v = 0$ one has $H_\alpha(2k\pi) = h_\beta(1, \beta)/h_\beta(1, \alpha)$. Thus, one gets the equality. The proof for the case $|\alpha| > 1$ is similar. \Box

Take the open subset $U := \{(z, w) \in \mathbb{D}^2 \mid z \notin \mathbb{R}_{\geqslant 0}, w \neq 0\}$. See Figures [11](#page-13-0) and [12.](#page-13-1)

2242 *Z. Chen*

Any leaf L_{α} in *U* is a disjoint union of infinitely many components. Once α is fixed, there is a one-to-one correspondence between these components and strips in Figure [12.](#page-13-1)

$$
L_{\alpha} \cap U = \bigcup_{k \in \mathbb{Z}} \tilde{L}_{\alpha e^{2k\pi i \lambda}} := \bigcup_{k \in \mathbb{Z}} \bigg\{ (e^{-v+iu}, \alpha e^{2k\pi i \lambda} e^{-\lambda v + i\lambda u}) \, | \, u \in (0, 2\pi), \, v > \frac{\log^+ |\alpha|}{\lambda} \bigg\}.
$$

Normalizing $H_{\alpha}e^{2k\pi i\lambda}$ on $\tilde{L}_{\alpha}e^{2k\pi i\lambda}$ avoids ambiguity. Thus, the mass

$$
\begin{split} \|T\|_{U} &= \int_{(z,w)\in U} T \wedge i\,\partial\bar{\partial}(|z|^2 + |w|^2) \\ &= \int_{\alpha\in\mathbb{C}^*} \int_{v> \log^+ |\alpha|/\lambda} \int_{u=0}^{2\pi} H_{\alpha}(u+iv) 2(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) \, du \, dv \, d\mu(\alpha) \\ &= \int_{\alpha\in\mathbb{C}^*} \int_{v> 0} \int_{u=0}^{2\pi} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^2 \, du \, dv \, d\mu(\alpha) \end{split}
$$

for some positive measure μ on \mathbb{C}^* . Here, $\|\psi_\alpha'\|^2$ is the jacobian coming from the (1, 1)-form $i\partial \overline{\partial}(|z|^2 + |w|^2)$ on L_{α} after a change of coordinates and a translation on *v*:

$$
\|\psi_{\alpha}'\|^2 = \begin{cases} 2(e^{-2\nu} + \lambda^2 |\alpha|^2 e^{-2\lambda \nu}) & (\vert \alpha \vert < 1), \\ 2(\vert \alpha \vert^{-2/\lambda} e^{-2\nu} + \lambda^2 e^{-2\lambda \nu}) & (\vert \alpha \vert \geq 1). \end{cases} \tag{3}
$$

Since *H* is harmonic in a neighbourhood of H , it is continuous in H . So

$$
\|T\|_{U} = \lim_{\epsilon \to 0+} \int_{\alpha \in \mathbb{C}^{*}} \int_{v>0} \int_{u=0}^{2\pi + \epsilon} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^{2} du dv d\mu(\alpha)
$$

=
$$
\lim_{\epsilon \to 0+} \|T\|_{\bigcup_{k \in \mathbb{Z}} \tilde{L}_{\alpha e^{2k\pi i\lambda}}}
$$

=
$$
\|T\|_{\mathbb{D}^{2}}.
$$

Thus, we can express the mass by a formula independent of the choice of normalization

$$
\|T\|_{\mathbb{D}^2} = \int_{\alpha \in \mathbb{C}^*} \int_{v>0} \int_{u=0}^{2\pi} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^2 du dv d\mu(\alpha).
$$

LEMMA 3.3. *For each* $k_0 \in \mathbb{Z}$ *fixed,*

$$
\|T\|_{\mathbb{D}^2} = \int_{\alpha \in \mathbb{C}^*} \int_{v>0} \int_{u=2k_0\pi}^{2k_0\pi + 2\pi} H_\alpha(u+iv) \|\psi_\alpha'\|^2 du dv d\mu(\alpha).
$$
 (4)

Proof. The disjoint union $L_{\alpha} \cap U = \bigcup_{k \in \mathbb{Z}} \tilde{L}_{\alpha e^{2k\pi i\lambda}}$ can be parametrized in many other ways. For instance,

$$
L_{\alpha} \cap U = \bigcup_{k \in \mathbb{Z}} \left\{ (e^{-v+iu}, \alpha e^{2k\pi i\lambda} e^{-\lambda v + i\lambda u}) \mid u \in (2k_0\pi, 2k_0\pi + 2\pi), v > \frac{\log^+ |\alpha|}{\lambda} \right\}.
$$

By the same argument as above one concludes.

3.3. *Negative case* $\lambda < 0$. As in the positive case, for any $\alpha \in \mathbb{C}^*$ fixed, the leaf L_{α} is contained in a real three-dimensional analytic Levi-flat CR manifold $|w| = |\alpha||z|^{\lambda}$, which can be viewed as a curve in |z|, |w| coordinates. The norms $|z|$ and $|w|$ depend only on *v*.

$$
\Box
$$

FIGURE 13. Case $\lambda < 0$.

The difference is that in the negative case, no leaf L_{α} tends to the singularity (0, 0). For *r* sufficiently small, the leaf L_{α} is outside of $r\mathbb{D}^2$. See Figure [13.](#page-15-1)

Like the positive case $\lambda > 0$, when one fixes $|z| = r$ for some $r \in (0, 1)$, $|w| = |\alpha||z|^{\lambda}$ is uniquely determined and the real two-dimensional leaf L_{α} becomes a real 1-dimensional curve $L_{\alpha,r} := L_{\alpha} \cap \mathbb{T}_r^2$ on the torus $\mathbb{T}_r^2 := \{(z,w) \in \mathbb{D}^2 \mid |z| = r, |w| = |\alpha|r^{\lambda}\}\.$ It is a closed curve if $\lambda \in \mathbb{Q}$, and a dense curve on \mathbb{T}_r^2 if $\lambda \notin \mathbb{Q}$.

Let *T* be a harmonic current directed by \mathscr{F} . Then $T|_{P_{\alpha}}$ has the form $h_{\alpha}(z, w)[P_{\alpha}]$. Let $H_{\alpha} := h_{\alpha} \circ \psi_{\alpha}(u + iv)$. It is a positive harmonic function for μ -almost all $\alpha \in \mathbb{D}^*$ defined on a neighbourhood of a horizontal strip $\{(u, v) \in \mathbb{R}^2 \mid 0 < v < \log |\alpha|/\lambda\}.$

As in the case $\lambda > 0$, one only calculates the mass on an open subset $U := \{(z, w) \in$ $\mathbb{D}^2 \mid z \notin \mathbb{R}_{\geqslant 0}, w \neq 0\}.$ For each $\alpha \in \mathbb{D}^*$ one normalizes H_α by setting $H_\alpha(0) = 1$ to fix the expression $T := \int h_{\alpha}[P_{\alpha}] d\mu(\alpha)$. Similarly to Lemma [3.3,](#page-14-0) for each $k_0 \in \mathbb{Z}$ fixed,

$$
\|T\|_{\mathbb{D}^{2}} = \int_{0 < |\alpha| < 1} \int_{v=0}^{\log |\alpha|/\lambda} \int_{u=2k_{0}\pi}^{2k_{0}\pi + 2\pi} H_{\alpha}(u+iv) 2(e^{-2v} + \lambda^{2}|\alpha|^{2} e^{-2\lambda v}) du dv d\mu(\alpha),
$$

$$
\mathcal{L}(T, 0) = \lim_{r \to 0+} \frac{1}{r^{2}} \|T\|_{r\mathbb{D}^{2}}
$$

$$
= \lim_{r \to 0+} \frac{1}{r^{2}} \int_{0 < |\alpha| < r^{1-\lambda}} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} \int_{u=2k_{0}\pi}^{2k_{0}\pi + 2\pi} H_{\alpha}(u+iv) 2(e^{-2v} + \lambda^{2}|\alpha|^{2} e^{-2\lambda v}) du dv d\mu(\alpha).
$$

These formulas will be calculated in later sections.

4. *Positive rational case:* $\lambda = (a/b) \in \mathbb{Q}, \lambda \in (0, 1]$

Write $\lambda = a/b$ where $a, b \in \mathbb{Z}_{\geq 1}$ are coprime. Then in \mathbb{D}^2 , for any $\alpha \in \mathbb{C}^*$, the union $L_{\alpha} \cup$ {0} is the algebraic curve $\{w^b = \alpha^b z^a\} \cap \mathbb{D}^2$. In other words, every leaf is a separatrix. In this section it will be shown that any directed harmonic current *T* has non-zero Lelong number.

The parametrization map $\psi_{\alpha}(\zeta) := (e^{i\zeta}, \alpha e^{i\lambda \zeta})$ is now periodic: $\psi_{\alpha}(\zeta + 2\pi b) =$ $\psi_{\alpha}(\zeta)$. Let *T* be a directed harmonic current. Then $T|_{P_{\alpha}}$ has the form $h_{\alpha}(z, w)[P_{\alpha}]$. Let

$$
H_{\alpha}(u + iv) := h_{\alpha} \circ \psi_{\alpha}\left(u + iv + i\frac{\log^{+}|\alpha|}{\lambda}\right).
$$

This is a positive harmonic function for μ -almost all $\alpha \in \mathbb{C}^*$ defined in a neighbourhood of the upper half-plane $\mathbb{H} := \{(u + iv) \in \mathbb{C} \mid v > 0\}$. Moreover, it is periodic: $H_\alpha(u + iv) =$ $H_{\alpha}(u + 2\pi b + iv)$. Periodic harmonic functions can be characterized by the following lemma.

LEMMA 4.1. Let $F(u, v)$ be a harmonic function in a neighbourhood of \mathbb{H} . If $F(u, v) =$ $F(u + 2\pi b, v)$ *for all* $(u, v) \in \mathbb{H}$ *, then*

$$
F(u, v) = \sum_{k \in \mathbb{Z}, k \neq 0} \left(a_k e^{kv/b} \cos\left(\frac{ku}{b}\right) + b_k e^{kv/b} \sin\left(\frac{ku}{b}\right) \right) + a_0 + b_0 v,
$$

for some a_k , $b_k \in \mathbb{R}$ *. Moreover, if* $F|_{\mathbb{H}} \geq 0$ *, then* a_0 *,* $b_0 \geq 0$ *.*

Proof. By periodicity

$$
F(u, v) = \sum_{k=1}^{\infty} \left(A_k(v) \cos\left(\frac{ku}{b}\right) + B_k(v) \sin\left(\frac{ku}{b}\right) \right) + A_0(v),
$$

for some functions $A_k(v)$, $B_k(v)$. They are smooth since *F* is harmonic. Moreover,

$$
0 = \Delta F(u, v)
$$

=
$$
\sum_{k=1}^{\infty} \left(\left(A''_k(v) - \left(\frac{k}{b} \right)^2 A_k(v) \right) \cos\left(\frac{ku}{b} \right) + \left(B''_k(v) - \left(\frac{k}{b} \right)^2 B_k(v) \right) \sin\left(\frac{ku}{b} \right) \right) + A''_0(v).
$$

Thus,

$$
A''_k(v) = \left(\frac{k}{b}\right)^2 A_k(v), \quad B''_k(v) = \left(\frac{k}{b}\right)^2 B_k(v), \quad A''_0(v) = 0.
$$

Hence,

$$
A_k(v) = a_k e^{kv/b} + a_{-k} e^{-kv/b}, \quad B_k(v) = b_k e^{kv/b} - b_{-k} e^{-kv/b}, \quad A_0(v) = a_0 + b_0 v,
$$

for some a_k , a_{-k} , b_k , $b_{-k} \in \mathbb{R}$. One obtains the equality.

If $F|_{\mathbb{H}} \geqslant 0$, then for any $v \geqslant 0$,

$$
\int_{u=0}^{2\pi b} F(u, v) \, du = 2\pi b (a_0 + b_0 v) \ge 0.
$$

 \Box

Thus, $a_0, b_0 \geqslant 0$.

For $\alpha, \beta \in \mathbb{C}^*$, the two maps ψ_{α} and ψ_{β} parametrize the same leaf $L_{\alpha} = L_{\beta}$ if and only if $\beta = \alpha e^{2\pi i (k/b)}$ for some $k \in \mathbb{Z}$, that is α and β differ from multiplying a *b*th root of unity. Thus, a transversal can be chosen as the sector $\mathbb{S} := {\alpha \in \mathbb{C}^* \mid \arg(\alpha) \in [0, 2\pi/b]}$. One fixes a normalization by setting $H_{\alpha}(0) = h_{\alpha} \circ \psi_{\alpha}(i(\log^{+} |\alpha|/\lambda)) = 1$.

The mass of the current *T* is

$$
||T||_{\mathbb{D}^2} = \int_{(z,w)\in\mathbb{D}^2} T \wedge i\partial \overline{\partial} (|z|^2 + |w|^2).
$$

In particular, one calculates the $(1, 1)$ -form $i\partial \overline{\partial}(|z|^2 + |w|^2)$ on L_{α} , where $z =$ e^{-v+iu} , $w = \alpha e^{-\lambda v + i\lambda u}$, using

$$
dz = i e^{-v+iu} du - e^{-v+iu} dv, \qquad d\bar{z} = -i e^{-v-iu} du - e^{-v-iu} dv, dw = i \alpha \lambda e^{-\lambda v + i \lambda u} du - \alpha \lambda e^{-\lambda v + i \lambda u} dv, \qquad d\bar{w} = -i \bar{\alpha} \lambda e^{-\lambda v - i \lambda u} du - \bar{\alpha} \lambda e^{-\lambda v - i \lambda u} dv,
$$

whence

$$
i\partial\overline{\partial}(|z|^2+|w|^2)=i dz\wedge d\overline{z}+i dw\wedge d\overline{w}
$$

=2(e^{-2v}+ $\lambda^2|\alpha|^2e^{-2\lambda v}$) du\wedge dv.

Thus,

$$
\begin{split}\n\|T\|_{\mathbb{D}^{2}} &= \int_{\alpha \in \mathbb{S}} h_{\alpha}(z, w) \int_{P_{\alpha}} i \partial \overline{\partial} (|z|^{2} + |w|^{2}) \, d\mu(\alpha) \\
&= \int_{\alpha \in \mathbb{S}} \int_{u=0}^{2\pi b} \int_{v>0} H_{\alpha}(u + iv) 2(e^{-2(v + \log^{+}|\alpha|/\lambda)} \\
&\quad + \lambda^{2} |\alpha|^{2} e^{-2\lambda(v + \log^{+}|\alpha|/\lambda)}) \, du \wedge dv \, d\mu(\alpha) \\
&= \int_{\alpha \in \mathbb{S}, |\alpha| < 1} \int_{u=0}^{2\pi b} \int_{v>0} H_{\alpha}(u + iv) 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) \, du \wedge dv \, d\mu(\alpha) \\
&\quad + \int_{\alpha \in \mathbb{S}, |\alpha| \geq 1} \int_{u=0}^{2\pi b} \int_{v>0} H_{\alpha}(u + iv) 2(|\alpha|^{-2/\lambda} e^{-2v} + \lambda^{2} e^{-2\lambda v}) \, du \wedge dv \, d\mu(\alpha).\n\end{split}
$$

By Lemma [4.1,](#page-16-0)

$$
H_{\alpha}(u + iv) = \sum_{k \in \mathbb{Z}, k \neq 0} \left(a_k(\alpha) e^{kv/b} \cos\left(\frac{ku}{b}\right) + b_k(\alpha) e^{kv/b} \sin\left(\frac{ku}{b}\right) \right) + a_0(\alpha) + b_0(\alpha)v,
$$
\n(5)

where $a_0(\alpha)$, $b_0(\alpha)$ are positive for μ -almost all α . Thus,

$$
\|T\|_{\mathbb{D}^{2}}
$$
\n
$$
= 2\pi b \Biggl\{ \int_{\alpha \in \mathbb{S}, |\alpha| < 1} \int_{v>0} (a_{0}(\alpha) + b_{0}(\alpha)v) 2(e^{-2v} + \lambda^{2}|\alpha|^{2}e^{-2\lambda v}) dv d\mu(\alpha) + \int_{\alpha \in \mathbb{S}, |\alpha| \geq 1} \int_{v>0} (a_{0}(\alpha) + b_{0}(\alpha)v) 2(|\alpha|^{-2/\lambda}e^{-2v} + \lambda^{2}e^{-2\lambda v}) dv d\mu(\alpha) \Biggr\}
$$
\n
$$
= 2\pi b \Biggl\{ \int_{\alpha \in \mathbb{S}, |\alpha| < 1} a_{0}(\alpha)(1 + |\alpha|^{2}\lambda) d\mu(\alpha) + \int_{\alpha \in \mathbb{S}, |\alpha| \geq 1} a_{0}(\alpha)(|\alpha|^{-2/\lambda} + \lambda) d\mu(\alpha) + \int_{\alpha \in \mathbb{S}, |\alpha| \geq 1} b_{0}(\alpha) \Biggl(\frac{1}{2} + \frac{1}{2}|\alpha|^{-2/\lambda} \Biggr) d\mu(\alpha) + \int_{\alpha \in \mathbb{S}, |\alpha| \geq 1} b_{0}(\alpha) \Biggl(\frac{1}{2} + \frac{1}{2}|\alpha|^{-2/\lambda} \Biggr) d\mu(\alpha) \Biggr\}
$$
\n
$$
\approx \int_{\alpha \in \mathbb{S}} a_{0}(\alpha) d\mu(\alpha) + \int_{\alpha \in \mathbb{S}} b_{0}(\alpha) d\mu(\alpha).
$$

<https://doi.org/10.1017/etds.2022.46> Published online by Cambridge University Press

The Lelong number can now be calculated as follows:

L(T , 0) = lim r→0+ 1 ^r² ^T rD² = lim r→0+ 1 ^r² ²π b α∈S,|α|<r1−^λ v>− log r (a0(α) + b0(α)v)2(e−2^v + λ2|α| ²e−2λv) dv dμ(α) + α∈S,r1−λ-|α|<1 v>(log |α|−log r)/λ (a0(α) + b0(α)v)2(e−2^v + λ2|α| ²e−2λv) dv dμ(α) + α∈S,|α|1 v>− log r/λ (a0(α) + b0(α)v)2(|α| [−]2/λe[−]2^v ⁺ ^λ2e−2λv) dv dμ(α) = lim r→0+ 2π b α∈S,|α|<r1−^λ a0(α)(1 + λ|α| ²r2λ−2) dμ(α) + α∈S,|α|r1−^λ a0(α)(|α| [−]2/λr2/λ−² + λ) dμ(α) + α∈S,|α|<r1−^λ ^b0(α) ¹ 2 + 1 2 |α| ²r2λ−² − log r − λ|α| ²r2λ−² log r dμ(α) + α∈S,r1−λ-|α|<1 ^b0(α) ¹ 2 + 1 2 |α| [−]2/λr2/λ−² − log r − |α| [−]2/λλ[−]1r2λ−² log r + log |α| + λ−1|α| [−]2/λ log |α|r2λ−² dμ(α) + α∈S,|α|1 ^b0(α) ¹ 2 + 1 2 |α| [−]2/λr2/λ−² − log r −λ−1|α| [−]2/λr2λ−² log r dμ(α) .

First one analyses the $a_0(\alpha)$ part. When $|\alpha| < r^{1-\lambda}$,

$$
1 < 1 + \lambda |\alpha|^2 r^{2\lambda - 2} < 1 + \lambda r^{2 - 2\lambda} r^{2\lambda - 2} = 1 + \lambda,\tag{6}
$$

is uniformly bounded with respect to α and *r*. When $|\alpha| \geq r^{1-\lambda}$

$$
\lambda < |\alpha|^{-2/\lambda} r^{2/\lambda - 2} + \lambda < 1 + \lambda,\tag{7}
$$

is also uniformly bounded with respect to α and r . Thus,

$$
\mathscr{L}(T,0) \approx \underbrace{\int_{\alpha \in \mathbb{S}} a_0(\alpha) \ d\mu(\alpha)}_{\text{linear part}} + \underbrace{\lim_{r \to 0+} (b_0(\alpha) \text{part})}_{\text{with } v \text{ part}}.
$$

Next one analyses the $b_0(\alpha)$ part.

LEMMA 4.2. *The Lelong number of T at* 0 *is finite only if* $b_0(\alpha) = 0$ *for* μ -almost all $\alpha \in \mathbb{S}$.

Proof. Suppose not, that is, $\int_{\alpha \in \mathbb{S}} b_0(\alpha) d\mu(\alpha) = B_0 > 0$. Then

$$
\mathcal{L}(T, 0) \ge \lim_{r \to 0+} 2\pi b \left\{ \int_{\alpha \in \mathbb{S}, |\alpha| < r^{1-\lambda}} b_0(\alpha) (-\log r) d\mu(\alpha) + \int_{\alpha \in \mathbb{S}, |\alpha| \ge r^{1-\lambda}} b_0(\alpha) (-\log r) d\mu(\alpha) \right\}
$$

$$
= 2\pi b B_0 \lim_{r \to 0+} (-\log r) = +\infty,
$$

contradicting the finiteness of the Lelong number stated in Theorem [2.11.](#page-6-0)

Thus, one may assume $b_0(\alpha) = 0$ for μ -almost all $\alpha \in \mathbb{S}$. Then the Lelong number

$$
\mathscr{L}(T,0) \approx \int_{\alpha \in \mathbb{S}} a_0(\alpha) \, d\mu(\alpha) \approx \|T\|_{\mathbb{D}^2}
$$

is strictly positive.

5. *Positive irrational case* $\lambda \notin \mathbb{Q}, \lambda \in (0, 1)$

Now $\{z = 0\}$ and $\{w = 0\}$ are the only two separatrices in \mathbb{D}^2 . For each fixed $\alpha \in \mathbb{C}^*$, the map $\psi_{\alpha}(\zeta) = (e^{i\zeta}, \alpha e^{i\lambda \zeta})$ is injective since $\lambda \notin \mathbb{Q}$.

5.1. *Periodic currents, still a Fourier series.* Periodic currents behave similarly to currents in the rational case $\lambda \in \mathbb{Q}$. Suppose H_{α} is periodic, that is, there is some $b \in$ $\mathbb{Z}_{\geq 1}$ such that $H_\alpha(u + iv) = H_\alpha(u + 2\pi b + iv)$ for any $u + iv \in \mathbb{H}$. Periodic harmonic functions are characterized as in [\(5\)](#page-17-0) of Lemma [4.1.](#page-16-0)

According to Lemma [3.3,](#page-14-0) the mass is

$$
\|T\|_{\mathbb{D}^2} = \int_{\alpha \in \mathbb{C}^*} \int_{v>0} \int_{u=2k_0\pi}^{2k_0\pi + 2\pi} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^2 du \wedge dv \, d\mu(\alpha),
$$

for any $k_0 \in \mathbb{Z}$, in particular for $k_0 = 0, 1, \ldots, b - 1$. Thus, we may calculate

$$
b\|T\|_{\mathbb{D}^{2}} = \int_{\alpha \in \mathbb{C}^{*}} \int_{v>0} \int_{u=0}^{2\pi b} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^{2} du \wedge dv \, d\mu(\alpha)
$$

\n
$$
\|T\|_{\mathbb{D}^{2}} = \frac{1}{b} \int_{\alpha \in \mathbb{C}^{*}} \int_{v>0} \int_{u=0}^{2\pi b} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^{2} du \wedge dv \, d\mu(\alpha),
$$

\n
$$
= \frac{1}{b} \Biggl\{ \int_{|\alpha|<1} \int_{v>0} \int_{u=0}^{2\pi b} H_{\alpha}(u+iv) 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) du \wedge dv \, d\mu(\alpha)
$$

\n
$$
+ \int_{|\alpha| \geq 1} \int_{v>0} \int_{u=0}^{2\pi b} H_{\alpha}(u+iv) 2(|\alpha|^{-2/\lambda} e^{-2v} + \lambda^{2} e^{-2\lambda v}) du \wedge dv \, d\mu(\alpha) \Biggr\},
$$

\n
$$
= \frac{2\pi b}{b} \Biggl\{ \int_{|\alpha|<1} \int_{v>0} (a_{0}(\alpha) + b_{0}(\alpha)v) 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) dv \, d\mu(\alpha) + \int_{|\alpha| \geq 1} \int_{v>0} (a_{0}(\alpha) + b_{0}(\alpha)v) 2(|\alpha|^{-2/\lambda} e^{-2v} + \lambda^{2} e^{-2\lambda v}) dv \, d\mu(\alpha) \Biggr\},
$$

\n
$$
= 2\pi \Biggl\{ \int_{|\alpha|<1} a_{0}(\alpha)(1+|\alpha|^{2}\lambda) d\mu(\alpha) + \int_{|\alpha| \geq 1} a_{0}(\alpha)(|\alpha|^{-2/\lambda} + \lambda) d\mu(\alpha)
$$

 \Box

2248 *Z. Chen*

$$
+\int_{|\alpha|<1} b_0(\alpha) \left(\frac{1}{2} + \frac{1}{2}|\alpha|^2\right) d\mu(\alpha) + \int_{|\alpha| \geq 1} b_0(\alpha) \left(\frac{1}{2} + \frac{1}{2}|\alpha|^{-2/\lambda}\right) d\mu(\alpha) \left\{\approx \int_{\alpha \in \mathbb{C}^*} a_0(\alpha) d\mu(\alpha) + \int_{\alpha \in \mathbb{C}^*} b_0(\alpha) d\mu(\alpha),\right\}
$$

which is the same expression as in the case $\lambda \in \mathbb{Q}_{>0}$.

Next, the Lelong number is calculated as

$$
\mathcal{L}(T, 0)
$$
\n
$$
= \lim_{r \to 0+} \frac{1}{r^2} ||T||_{r} \mathbb{D}^2
$$
\n
$$
= \lim_{r \to 0+} \frac{1}{r^2} 2\pi \Biggl\{ \int_{|\alpha| < r^{1-\lambda}} \int_{v > -\log r} (a_0(\alpha) + b_0(\alpha)v) 2(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) dv d\mu(\alpha) + \int_{r^{1-\lambda} \leq |\alpha| < 1} \int_{v > (\log |\alpha| - \log r/\lambda)} (a_0(\alpha) + b_0(\alpha)v) 2(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) dv d\mu(\alpha) + \int_{|\alpha| \geq 1} \int_{v > -\log r/\lambda} (a_0(\alpha) + b_0(\alpha)v) 2(|\alpha|^{-2/\lambda} e^{-2v} + \lambda^2 e^{-2\lambda v}) dv d\mu(\alpha) \Biggr\}
$$
\n
$$
= \lim_{r \to 0+} 2\pi \Biggl\{ \int_{|\alpha| < r^{1-\lambda}} a_0(\alpha)(1 + \lambda |\alpha|^2 r^{2\lambda - 2}) d\mu(\alpha) + \int_{|\alpha| \geq r^{1-\lambda}} a_0(\alpha)(|\alpha|^{-2/\lambda} r^{2/\lambda - 2} + \lambda) d\mu(\alpha) + \int_{|\alpha| < r^{1-\lambda}} b_0(\alpha) (\frac{1}{2} + \frac{1}{2} |\alpha|^2 r^{2\lambda - 2} - \log r - \lambda |\alpha|^2 r^{2\lambda - 2} \log r) d\mu(\alpha) + \int_{r^{1-\lambda} \leq |\alpha| < 1} b_0(\alpha) (\frac{1}{2} + \frac{1}{2} |\alpha|^{-2/\lambda} r^{2/\lambda - 2} - \log r - \lambda^{-1} |\alpha|^{-2/\lambda} r^{2\lambda - 2} \log r + \log |\alpha| + \lambda^{-1} |\alpha|^{-2/\lambda} \log |\alpha| r^{2\lambda - 2}) d\mu(\alpha) + \int_{|\alpha| \geq 1} b_0(\alpha) (\frac{1}{2} + \frac{1}{2} |\alpha|^{-2/\lambda} r^{2/\lambda - 2} - \log r - \lambda^{-1} |\alpha|^{-2/\lambda} r^{2\lambda - 2} \log r) d\mu(\alpha) \Biggr\},
$$

exactly the same expression as in the positive rational case with $b = 1$. Using the same argument as in Lemma [4.2,](#page-18-0) one may assume that $b_0(\alpha) = 0$ for μ -almost all $\alpha \in \mathbb{C}^*$. One concludes that

$$
\mathscr{L}(T,0) \approx \int_{\alpha \in \mathbb{C}^*} a_0(\alpha) \, d\mu(\alpha) \approx ||T||_{\mathbb{D}^2}.
$$

The Lelong number is strictly positive, the same as in the case $\lambda \in \mathbb{Q} \cup (0, 1)$.

5.2. *Non-periodic current.* For periodic currents, one takes an average among *b* expressions [\(4\)](#page-14-1) in the previous section. For non-periodic currents, there is no canonical way of normalization. The key technique is to calculate expressions [\(4\)](#page-14-1) for all $k_0 \in \mathbb{Z}$.

The Lelong number is expressed as

$$
\mathcal{L}(T, 0) = \lim_{r \to 0+} \frac{1}{r^2} \Bigg\{ \int_{|\alpha| < r^{1-\lambda}} \int_{v > -\log r} \int_{u=0}^{2\pi} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 du \ dv \ d\mu(\alpha) \n+ \int_{r^{1-\lambda} \leq |\alpha| < 1} \int_{v > (\log |\alpha| - \log r)/\lambda}^{2\pi} \int_{u=0}^{2\pi} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 du \ dv \ d\mu(\alpha) \n+ \int_{|\alpha| \geq 1} \int_{v > -\log r/\lambda}^{2\pi} \int_{u=0}^{2\pi} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 du \ dv \ d\mu(\alpha) \Bigg\}
$$

Recall the Poisson integral formula after multiplying by a non-zero constant:

$$
H_{\alpha}(u + iv) = \frac{1}{\pi} \int_{y \in \mathbb{R}} H_{\alpha}(y) \frac{v}{v^2 + (y - u)^2} dy + C_{\alpha} v.
$$

Using the same argument as in Lemma [4.2,](#page-18-0) one may assume $C_{\alpha} = 0$ for all $\alpha \in \mathbb{C}^*$.

LEMMA 5.1. *For any* $v \geq 1/\lambda > 1$ *and for any* $u \in \mathbb{R}$,

$$
\frac{\partial/\partial v(-\frac{1}{2}(v/(v^2 + (u-y)^2)e^{-2v}))}{v/(v^2 + (u-y)^2)e^{-2v}} \in \left(\frac{1}{2}, 2\right),
$$

$$
\frac{\partial/\partial v(-(1/2\lambda)(v/(v^2 + (u-y)^2))e^{-2\lambda v})}{v/(v^2 + (u-y)^2)e^{-2\lambda v}} \in \left(\frac{1}{2}, 2\right).
$$

Proof. This can be calculated directly:

$$
\frac{\partial}{\partial v} \left(-\frac{1}{2} \frac{v}{v^2 + (u - y)^2} e^{-2v} \right) = \left(\frac{v}{v^2 + (u - y)^2} + \left(-\frac{1}{2} \right) \frac{1}{v^2 + (u - y)^2} + \left(-\frac{1}{2} \right) \frac{v(-2v)}{(v^2 + (u - y)^2)^2} \right) e^{-2v}
$$
\n
$$
\frac{\partial}{\partial v} \left(-\frac{1}{2} (v/(v^2 + (u - y)^2)) e^{-2v} \right) = 1 + \left(-\frac{1}{2} \frac{1}{v} \right) + \frac{v}{v^2 + (u - y)^2}
$$
\n
$$
\leq \left(1 - \frac{1}{2v}, 1 + \frac{1}{v} \right) \leq \left(\frac{1}{2}, 2 \right) \quad (v > 1),
$$
\n
$$
\frac{\partial}{\partial v} \left(-\frac{1}{2\lambda} \frac{v}{v^2 + (u - y)^2} e^{-2\lambda v} \right) = \left(\frac{v}{v^2 + (u - y)^2} + \left(-\frac{1}{2\lambda} \right) \frac{1}{v^2 + (u - y)^2} + \left(-\frac{1}{2\lambda} \right) \frac{v(-2v)}{(v^2 + (u - y)^2)^2} \right) e^{-2\lambda v}
$$
\n
$$
\frac{\partial}{\partial v} \left(\frac{\partial v - (1/2\lambda)(v/(v^2 + (u - y)^2)) e^{-2\lambda v}}{v/(v^2 + (u - y)^2) e^{-2\lambda v}} \right) = 1 + \left(-\frac{1}{2\lambda} \frac{1}{v} \right) + \frac{1}{\lambda} \frac{v}{v^2 + (u - y)^2}
$$
\n
$$
\leq \left(1 - \frac{1}{2\lambda v}, 1 + \frac{1}{\lambda v} \right) \leq \left(\frac{1}{2}, 2 \right) \left(v \geq \frac{1}{\lambda} \right).
$$

FIGURE 14. $1/r^2$ (The integration on $v > -\log r \approx$ (The value at $v = -\log r$).

COROLLARY 5.2. *For any r such that* $0 < r \le e^{-1/\lambda}$,

$$
\frac{1}{r^2} \int_{v > -\log r} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 dv \approx H_{\alpha}(u + (-\log r)i) \quad (0 < |\alpha| < r^{1-\lambda}),
$$
\n
$$
\frac{1}{r^2} \int_{v > (\log |\alpha| - \log r)/\lambda} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 dv
$$
\n
$$
\approx H_{\alpha}\left(u + \left(\frac{\log |\alpha| - \log r}{\lambda}\right)i\right) \quad (r^{1-\lambda} \leq |\alpha| < 1),
$$
\n
$$
\frac{1}{r^2} \int_{v > (\log |\alpha| - \log r)/\lambda} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^2 dv \approx H_{\alpha}\left(u + \left(\frac{-\log r}{\lambda}\right)i\right) \quad (|\alpha| \geq 1).
$$

Figure [14](#page-22-0) explains Corollary [5.2.](#page-22-1) We remark that Corollary [5.2](#page-22-1) is true for $r \in (0, 1)$ after a dilation $(z, w) \mapsto (e^{1/2\lambda} z, e^{1/2\lambda} w)$.

Proof. The assumption $0 < r \le e^{-1/\lambda}$ implies $-\log r \ge 1/\lambda$. Hence, for $v \ge -\log r \ge$ $1/λ$, Lemma [5.1](#page-21-1) holds.

First, when $0 < |\alpha| \leq r^{1-\lambda}$,

$$
\int_{v>- \log r} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^{2} dv
$$
\n
$$
= \frac{1}{\pi} \int_{v>- \log r} \int_{y \in \mathbb{R}} H_{\alpha}(y) \frac{v}{v^{2} + (u-y)^{2}} 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) dy dv
$$
\n
$$
\approx \frac{1}{\pi} \int_{y \in \mathbb{R}} H_{\alpha}(y) \left\{ \int_{v>- \log r} \frac{\partial}{\partial v} \left(\frac{v}{v^{2} + (u-y)^{2}} (-e^{-2v} - \lambda |\alpha|^{2} e^{-2\lambda v}) \right) dv \right\} dy
$$
\n
$$
= \frac{1}{\pi} \int_{y \in \mathbb{R}} H_{\alpha}(y) \frac{-\log r}{(-\log r)^{2} + (u-y)^{2}} (r^{2} + \lambda |\alpha|^{2} r^{2\lambda}) dy
$$
\n
$$
= H_{\alpha}(u + (-\log r)i)(r^{2} + \lambda |\alpha|^{2} r^{2\lambda})
$$
\n
$$
\approx r^{2} H_{\alpha}(u + (-\log r)i).
$$

For the same reason, when $r^{1-\lambda} \leqslant |\alpha| < 1$, which implies $(\log |\alpha| - \log r)/\lambda \geqslant$ $-\log r \geqslant 1/\lambda$,

$$
\int_{v > (\log |\alpha| - \log r)/\lambda} H_{\alpha}(u + iv) \|\psi_{\alpha}'\|^{2} dv
$$
\n
$$
\approx H_{\alpha}\left(u + \left(\frac{\log |\alpha| - \log r}{\lambda}\right)i\right) (\alpha|^{-2/\lambda} r^{2/\lambda} + \lambda r^{2})
$$
\n
$$
\approx r^{2} H_{\alpha}\left(u + \left(\frac{\log |\alpha| - \log r}{\lambda}\right)i\right).
$$

Finally, when $|\alpha| \geq 1$ one has $-\log r/\lambda \geq -\log r \geq 1/\lambda$ and

$$
\int_{v>- \log r/\lambda} H_{\alpha}(u+iv) \|\psi_{\alpha}'\|^{2} dv \approx H_{\alpha}\left(u+\left(\frac{-\log r}{\lambda}\right)i\right) (|\alpha|^{-2/\lambda}r^{2/\lambda} + \lambda r^{2})
$$

$$
\approx r^{2} H_{\alpha}\left(u+\left(\frac{-\log r}{\lambda}\right)i\right).
$$

Thus,

$$
\mathcal{L}(T,0) \approx \lim_{r \to 0+} \left\{ \int_{|\alpha| < r^{1-\lambda}} \int_{u=0}^{2\pi} H_{\alpha}(u + (-\log r)i) du d\mu(\alpha) \right.+ \int_{r^{1-\lambda} \leq |\alpha| < 1} \int_{u=0}^{2\pi} H_{\alpha}\left(u + \left(\frac{\log |\alpha| - \log r}{\lambda}\right)i\right) du d\mu(\alpha) + \int_{|\alpha| \geq 1} \int_{u=0}^{2\pi} H_{\alpha}\left(u + \left(\frac{-\log r}{\lambda}\right)i\right) du d\mu(\alpha) \right\},
$$

by inequalities [\(6\)](#page-18-1) and [\(7\)](#page-18-2) in the previous subsection. All terms are positive, so the order of taking the limit and integration can change:

$$
\mathcal{L}(T,0) \approx \lim_{v \to +\infty} \int_{\alpha \in \mathbb{C}^*} \int_{u=0}^{2\pi} H_{\alpha}(u+iv) du d\mu(\alpha)
$$

=
$$
\lim_{k \to +\infty} \int_{\alpha \in \mathbb{C}^*} \int_{u=0}^{2\pi} \int_{y \in \mathbb{R}} H_{\alpha}(y) \frac{2k\pi}{(2k\pi)^2 + (u-y)^2} dy du d\mu(\alpha).
$$

Fix some $k \in \mathbb{Z}, k \geq 2$. Define intervals I_N for all $N \in \mathbb{Z}$ as follows:

$$
I_0 = [-2k\pi + 2\pi, 2k\pi),
$$

\n
$$
I_N = \begin{cases} [2kN\pi, 2k(N+1)\pi) & (N > 0), \\ [2k(N-1)\pi + 2\pi, 2kN\pi + 2\pi) & (N < 0). \end{cases}
$$

Thus, $\mathbb{R} = \bigcup_{N \in \mathbb{Z}} I_N$ is a disjoint union.

LEMMA 5.3. *For any* $u \in (0, 2\pi)$ *, one has*

$$
\frac{2k\pi}{(2k\pi)^2 + (u - y)^2} \geq \frac{1}{1 + (N + 1)^2} \frac{1}{2k\pi} \quad (y \in I_N).
$$

Proof. Elementary.

 \Box

Thus,

$$
\mathcal{L}(T,0) \approx \lim_{k \to +\infty} \sum_{N \in \mathbb{Z}} \int_{\alpha \in \mathbb{C}^*} \int_{u=0}^{2\pi} \int_{y \in I_N} H_{\alpha}(y) \frac{2k\pi}{(2k\pi)^2 + (u-y)^2} dy du d\mu(\alpha)
$$

$$
\geq \lim_{k \to +\infty} \sum_{N \in \mathbb{Z}} \int_{\alpha \in \mathbb{C}^*} \int_{y \in I_N} \int_{u=0}^{2\pi} H_{\alpha}(y) \frac{1}{1 + (N+1)^2} \frac{1}{2k\pi} du dy d\mu(\alpha)
$$

$$
= \lim_{k \to +\infty} \sum_{N \in \mathbb{Z}} \int_{\alpha \in \mathbb{C}^*} \int_{y \in I_N} H_{\alpha}(y) \frac{1}{1 + (N+1)^2} \frac{1}{k} dy d\mu(\alpha).
$$

By Lemma [3.3](#page-14-0) and Corollary [5.2](#page-22-1) after a dilation,

$$
\|T\|_{\mathbb{D}^2} = \int_{\alpha \in \mathbb{C}^*} \int_{v>0} \int_{u=2k_0\pi}^{2k_0\pi + 2\pi} H_\alpha(u+iv) \|\psi_\alpha'\|^2 du \wedge dv \, d\mu(\alpha) \quad (k_0 \in \mathbb{Z})
$$

$$
\approx \int_{\alpha \in \mathbb{C}^*} \int_{\alpha \in \mathbb{C}^*} \int_{y=2k_0\pi}^{2k_0\pi + 2\pi} H_\alpha(y) \, dy \, d\mu(\alpha)
$$

is the integral of *y* on any interval of length 2π . Since I_0 has length $(2k - 1)2\pi$ and I_N has length $2k\pi$ for $N \neq 0$,

$$
\int_{\alpha \in \mathbb{C}^*} \int_{y \in I_0} H_{\alpha}(y) \, dy \, d\mu(\alpha) \approx (2k - 1) \|T\|_{\mathbb{D}^2}
$$
\n
$$
\geq k \|T\|_{\mathbb{D}^2},
$$
\n
$$
\int_{\alpha \in \mathbb{C}^*} \int_{y \in I_N} H_{\alpha}(y) \, dy \, d\mu(\alpha) \approx k \|T\|_{\mathbb{D}^2} \quad (N \neq 0).
$$

Thus,

$$
\mathscr{L}(T,0) \gtrsim \lim_{k \to +\infty} \sum_{N \in \mathbb{Z}} \frac{1}{1 + (N+1)^2} ||T||_{\mathbb{D}^2} \approx ||T||_{\mathbb{D}^2}
$$

is non-zero.

6. *Periodic currents in the negative case* $\lambda < 0$

Now we treat the case $\lambda < 0$. We assume the currents are periodic. Recall that when $\lambda \in \mathbb{Q}$ all directed currents are periodic. So such currents include all currents for $\lambda \in \mathbb{Q}_{< 0}$.

Recall the formulas of the mass and of the Lelong number obtained in [§3.3,](#page-14-2) for each $k_0 \in \mathbb{Z}$ fixed:

$$
\|T\|_{\mathbb{D}^{2}} = \int_{0<|\alpha|<1} \int_{v=0}^{\log |\alpha|/\lambda} \int_{u=2k_{0}\pi}^{2k_{0}\pi + 2\pi} H_{\alpha}(u + iv) 2(e^{-2v} + \lambda^{2}|\alpha|^{2}e^{-2\lambda v}) du dv d\mu(\alpha),
$$

$$
\mathcal{L}(T, 0) = \lim_{r \to 0+} \frac{1}{r^{2}} \|T\|_{r\mathbb{D}^{2}}
$$

$$
= \lim_{r \to 0+} \frac{1}{r^{2}} \int_{0<|\alpha|
$$

We now prove Theorem [1.5.](#page-2-1) Suppose that there exists some $b \in \mathbb{Z}_{\leq 1}$ such that $H_{\alpha}(u +$ iv = $H_\alpha(u + 2\pi b + iv)$ for all $\alpha \in \mathbb{D}^*$ and all (u, v) in a neighbourhood of the strip $\{(u + iv) \in \mathbb{C} \mid u \in \mathbb{R}, v \in [0, \log |\alpha|/\lambda]\}.$ One proves the following result.

LEMMA 6.1. *Let* F (u, v) *be a positive harmonic function on a neighbourhood of the horizontal strip* $\{(u + iv) \in \mathbb{C} \mid u \in \mathbb{R}, v \in [0, C] \}$ *for some* $C > 0$ *. Suppose* $F(u, v) =$ $F(u + 2\pi b, v)$ *on this strip. Then*

$$
F(u,v) = \sum_{k \in \mathbb{Z}, k \neq 0} \left(a_k e^{kv/b} \cos\left(\frac{ku}{b}\right) + b_k e^{kv/b} \sin\left(\frac{ku}{b}\right) \right) + a_0 (1 - C^{-1}v) + b_0 v,
$$

for some $a_k, b_k \in \mathbb{R}$ *with* $a_0 \ge 0$ *and* $b_0 \ge 0$ *.*

Proof. The proof is almost the same as that of Lemma [4.1.](#page-16-0) Using Fourier series and calculating the Laplacian, one concludes that

$$
F(u, v) = \sum_{k \in \mathbb{Z}, k \neq 0} \left(a_k e^{kv/b} \cos \left(\frac{ku}{b} \right) + b_k e^{kv/b} \sin \left(\frac{ku}{b} \right) \right) + p + qv,
$$

for some $a_k, b_k, p, q \in \mathbb{R}$. For any $v \in [0, C]$, $F(u, v) \geq 0$ implies

$$
\int_{u=0}^{2\pi b} F(u, v) du = 2\pi b(p + qv) \geqslant 0.
$$

Thus, $p \ge 0$ and $q \ge -C^{-1}p$. One may write $p + qv = p(1 - C^{-1}v) + (q + C^{-1}p)v$ with $p =: a_0 \ge 0$ and $q + C^{-1}p =: b_0 \ge 0$. \Box

For periodic currents one may assume

$$
H_{\alpha}(u + iv) = \sum_{k \in \mathbb{Z}, k \neq 0} \left(a_k(\alpha) e^{kv/b} \cos\left(\frac{ku}{b}\right) + b_k(\alpha) e^{kv/b} \sin\left(\frac{ku}{b}\right) \right) + a_0(\alpha) \left(1 - \frac{\lambda}{\log |\alpha|} v \right) + b_0(\alpha) v,
$$
\n(8)

for some $a_k(\alpha)$, $b_k(\alpha) \in \mathbb{R}$ with $a_0(\alpha) \geq 0$ and $b_0(\alpha) \geq 0$. According to Lemma [3.3,](#page-14-0) for any $k_0 \in \mathbb{Z}$, use the Jacobian [\(3\)](#page-14-3):

$$
||T||_{\mathbb{D}^2} = \int_{0<|\alpha|<1} \int_{v=0}^{\log |\alpha|/\lambda} \int_{u=2k_0\pi}^{2k_0\pi+2\pi} H_{\alpha}(u+iv) 2(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) du dv d\mu(\alpha).
$$

Next, using $0 = \int_0^{2\pi b} \cos(ku/b) du$ for $k \neq 0$ and the same for $\sin(ku/b)$, let us calculate the average among $k_0 = 0, 1, \ldots, b-1$ for the mass

$$
\begin{split} \|T\|_{\mathbb{D}^{2}} &= \frac{1}{b} \int_{0 < |\alpha| < 1} \int_{v=0}^{\log |\alpha|/\lambda} \int_{u=0}^{2\pi b} H_{\alpha}(u + iv) 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) \ du \ dv \ d\mu(\alpha) \\ &= \frac{2\pi b}{b} \int_{0 < |\alpha| < 1} \int_{v=0}^{\log |\alpha|/\lambda} (a_0(\alpha) \left(1 - \frac{\lambda}{\log |\alpha|} v\right) + b_0(\alpha) v) 2(e^{-2v} + \lambda^{2} |\alpha|^{2} e^{-2\lambda v}) \ dv \ d\mu(\alpha), \end{split}
$$

and for the Lelong number

$$
\mathcal{L}(T, 0)
$$
\n
$$
= \lim_{r \to 0+} \frac{1}{r^2} \|T\|_{r\mathbb{D}^2}
$$
\n
$$
= \lim_{r \to 0+} \frac{1}{br^2} \int_{0 < |\alpha| < r^{1-\lambda}} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} \int_{u=0}^{2\pi b} du \, dv \, du
$$
\n
$$
= \lim_{r \to 0+} \frac{2\pi b}{br^2} \int_{0 < |\alpha| < r^{1-\lambda}} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} du \, dv \, d\mu(\alpha)
$$
\n
$$
= \lim_{r \to 0+} \frac{2\pi b}{br^2} \int_{0 < |\alpha| < r^{1-\lambda}} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} du \, dv \, d\mu(\alpha)
$$
\n
$$
\left(a_0(\alpha) \left(1 - \frac{\lambda}{\log |\alpha|} v\right) + b_0(\alpha) v\right) 2(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) \, dv \, d\mu(\alpha).
$$

We introduce the two functions of $r \in (0, 1]$ given by elementary integrals,

$$
I_a(r) := \frac{1}{r^2} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} 2\left(1 - \frac{\lambda}{\log |\alpha|} v\right) (e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) dv
$$

\n
$$
= 1 + \lambda |\alpha|^2 r^{2\lambda - 2} + \frac{1}{2 \log |\alpha|} (-2|\alpha|^{-2/\lambda} r^{2/\lambda - 2} \log(r) + \lambda |\alpha|^{-2/\lambda} r^{2/\lambda - 2}
$$

\n
$$
+ 2\lambda^2 |\alpha|^2 r^{2\lambda - 2} \log(r) - \lambda |\alpha|^2 r^{2\lambda - 2}),
$$

\n
$$
I_b(r) := \frac{1}{r^2} \int_{v=-\log r}^{(\log |\alpha| - \log r)/\lambda} 2v(e^{-2v} + \lambda^2 |\alpha|^2 e^{-2\lambda v}) dv
$$

\n
$$
= \frac{1}{2} \left(-\frac{|\alpha|^{-2/\lambda} r^{2/\lambda - 2} (\lambda + 2 \log |\alpha| - 2 \log(r))}{\lambda} + |\alpha|^2 r^{2\lambda - 2} (1 - 2\lambda \log(r)) - 2 \log |\alpha| \right),
$$

to describe the contributions from the $a_0(\alpha)$ part and from the $b_0(\alpha)$ part. Here we recall that every positive linear function of *v* on $[0, (\log |\alpha|)/\lambda]$ is a sum of $a_0(\alpha)$ $(1 - \lambda/(\log |\alpha|)v)$ and $b_0(\alpha) v$ with $a_0(\alpha), b_0(\alpha) \ge 0$. The two summands correspond to the dotted line and the dashed line in Figure [15.](#page-27-0)

Then we can express

$$
\|T\|_{\mathbb{D}^2} = 2\pi \int_{0 < |\alpha| < 1} (a_0(\alpha)I_a(1) + b_0(\alpha)I_b(1)) \, d\mu(\alpha),
$$
\n
$$
\mathscr{L}(T, 0) = 2\pi \lim_{r \to 0^+} \int_{0 < |\alpha| < r^{1-\lambda}} (a_0(\alpha)I_a(r) + b_0(\alpha)I_b(r)) \, d\mu(\alpha).
$$

Observe that

$$
I_a(1) = 1 + \lambda |\alpha|^2 + \frac{\lambda (|\alpha|^{-2/\lambda} - |\alpha|^2)}{2 \log |\alpha|},
$$

$$
I_b(1) = \frac{1}{2} \left(-\frac{|\alpha|^{-2/\lambda} (\lambda + 2 \log |\alpha|)}{\lambda} + |\alpha|^2 - 2 \log |\alpha| \right).
$$

FIGURE 15. A positive function = a dotted one (gives $I_a(r)$) + a dashed one ($I_b(r)$).

Fix any $\alpha \in \mathbb{D}^*$; by definition $r^2I_a(r)$ and $r^2I_b(r)$ are increasing for $r \in (0, 1]$, since the interval of integration $(- \log r, (\log |\alpha| - \log r)/\lambda)$ is expanding and the function integrated is positive. In particular, for any $r \in (0, 1]$,

$$
I_a(r) \leq r^{-2} I_a(1), \quad I_b(r) \leq r^{-2} I_b(1).
$$

It is more subtle to talk about monotonicity of $I_a(r)$ and $I_b(r)$. We expect upper bounds of $I_a(r)/I_a(1)$ and $I_b(r)/I_b(1)$ for $r \in (0, 1]$ which are independent of α , that is, depend only on λ.

LEMMA 6.2. *For any* $r \in (0, 1)$ *and any* $\alpha \in \mathbb{C}$ *with* $0 < |\alpha| < r^{1-\lambda} < 1$ *, one has* $0 < I_a(r) < I_a(1)$.

Proof. Differentiation gives

$$
\frac{d}{dr}I_a(r) = \underbrace{\frac{|\alpha|^{-2/\lambda}}{\lambda r^3 \log |\alpha|}}_{>0} \left(\lambda^2 (|\alpha|^{2+2/\lambda} r^{2\lambda} - r^{2/\lambda}) - 2(1-\lambda)(\lambda^3 |\alpha|^{2+2/\lambda} r^{2\lambda} + r^{2/\lambda}) \log(r) - 2(1-\lambda)\lambda^2 |\alpha|^{2+2/\lambda} r^{2\lambda} \log |\alpha| \right).
$$

It suffices to show that $\left(\frac{d}{dr}\right)I_a(r) > 0$ when $r \in (0, 1)$ and $0 < |\alpha| < r^{1-\lambda}$.

Introduce the new variable $t := |\alpha|/r^{1-\lambda} \in (0, 1)$. In the big parentheses, replace $|\alpha|$ by $tr^{1-\lambda}$ and $\log |\alpha|$ by $\log(t) + (1-\lambda) \log(r)$:

$$
\frac{d}{dr}I_a(r) = \underbrace{\frac{|\alpha|^{-2/\lambda}r^{2/\lambda}}{\lambda r^3 \log |\alpha|}}_{>0} (\lambda^2 (t^{2+2/\lambda} - 1) - 2(1 - \lambda)(t^{2+2/\lambda} + 1) \log(r)
$$
\n
$$
\xrightarrow[0]{-2(1 - \lambda)\lambda^2 t^{2+2/\lambda} \log(t))}_{>0}
$$
\n
$$
>\frac{|\alpha|^{-2/\lambda}r^{2/\lambda}}{\lambda r^3 \log |\alpha|} (\lambda^2 \underbrace{(t^{2+2/\lambda} - 1)}_{\geq 0} \underbrace{-2(1 - \lambda)(t^{2+2/\lambda} + 1) \log(r)}_{>0}) > 0,
$$

since $\lambda \in [-1, 0)$ implies $t^{2+2/\lambda} \geq 1$.

 \Box

It is not true that $I_b(r)$ is increasing on $(0, 1]$, but on a smaller half-neighbourhood of 0, independent of α , it is increasing. This suffices to give an upper bound for $I_b(r)/I_b(1)$.

LEMMA 6.3. *For any* $r \in (0, e^{1/2\lambda(1-\lambda)})$ *and any* $\alpha \in \mathbb{C}$ *with* $0 < |\alpha| < r^{1-\lambda} < 1$ *, one has*

$$
0 < I_b(r) < I_b(e^{1/2\lambda(1-\lambda)}) \leq e^{1/(-\lambda(1-\lambda))}I_b(1).
$$

Proof. Differentiation gives

$$
\frac{d}{dr}I_b(r) = \underbrace{\frac{|\alpha|^{-2/\lambda}}{\lambda^2 r^3}}_{>0} (-\lambda^2 (|\alpha|^{2+2/\lambda} r^{2\lambda} - r^{2/\lambda}) + 2(1-\lambda)(\lambda^3 |\alpha|^{2+2/\lambda} r^{2\lambda} + r^{2/\lambda}) \log(r)
$$

$$
- 2(1-\lambda)r^{2/\lambda} \log |\alpha|).
$$

It suffices to show that $d/drI_b(r) > 0$ when $0 < r < e^{1/2\lambda(1-\lambda)}$ and $0 < |\alpha| < r^{1-\lambda}$.

Again, introduce the variable $t := |\alpha|/r^{1-\lambda} \in (0, 1)$ and replace α and log $|\alpha|$ in the parentheses:

$$
\frac{d}{dr}I_b(r) = \underbrace{\frac{|\alpha|^{-2/\lambda}r^{2/\lambda}}{\lambda^2r^3}}_{>0}(-\lambda^2(t^{2+2/\lambda}-1)+2\lambda(1-\lambda)(\lambda^2t^{2+2/\lambda}+1)\log(r)
$$
\n
$$
= \frac{-2(1-\lambda)\log(t)}{\lambda^2r^3} \Biggl(-\lambda^2(t^{2+2/\lambda}-1)+2\lambda(1-\lambda)(\lambda^2t^{2+2/\lambda}+1)\biggr) \underbrace{\log(r)}_{<0} + \frac{|\alpha|^{-2/\lambda}r^{2/\lambda}}{\lambda^2r^3}(-\lambda^2(t^{2+2/\lambda}-1)+\lambda^2t^{2+2/\lambda}+1) = \frac{|\alpha|^{-2/\lambda}r^{2/\lambda}}{\lambda^2r^3}(\lambda^2+1) > 0.
$$

End of proof of Theorem [1.5.](#page-2-1) From the foregoing, the Lelong number is zero:

$$
\mathcal{L}(T, 0) = 2\pi \lim_{r < e^{1/2\lambda(1-\lambda)}, r \to 0+} \int_{0 < |\alpha| < r^{1-\lambda}} (a_0(\alpha)I_a(r) + b_0(\alpha)I_b(r)) \, d\mu(\alpha)
$$
\n
$$
\leq 2\pi \lim_{r \to 0+} \int_{0 < |\alpha| < r^{1-\lambda}} (a_0(\alpha)I_a(1) + b_0(\alpha)e^{1/(-2\lambda(1-\lambda))}I_b(1)) \, d\mu(\alpha)
$$
\n
$$
\approx 2\pi \lim_{r \to 0+} \int_{0 < |\alpha| < r^{1-\lambda}} (a_0(\alpha)I_a(1) + b_0(\alpha)I_b(1)) \, d\mu(\alpha) = 0,
$$

since $||T||_{\mathbb{D}^2} = 2\pi \int_{0<|\alpha|<1} (a_0(\alpha)I_a(1) + b_0(\alpha)I_b(1)) d\mu(\alpha)$ is finite.

Acknowledgements. The author thanks Joël Merker and an anonymous referee for valuable suggestions which help to improve the presentation.

REFERENCES

- [1] L. Alessandrini and G. Bassanelli. Plurisubharmonic currents and their extension across analytic subsets. *Forum Math.* 5(6) (1993), 577–602.
- [2] V. I. Arnold and Y. S. Ilyashenko. Ordinary differential equations. *Dynamical Systems, I (Encylopaedia of Mathematical Sciences, 1)*. Eds D. V. Anosov and V. I. Arnold. Springer, Berlin, 1988, pp. 1–148.
- [3] B. Berndtsson and N. Sibony. The ∂¯*-*equation on a positive current. *Invent. Math.* 147 (2002), 371–428.
- [4] A. D. Brjuno. *A Local Method of Nonlinear Analysis for Differential Equations*. Nauka, Moscow, 1979.
- [5] M. Brunella. *Birational Geometry of Foliations (IMPA Monographs, 1)*. Springer, Cham, 2015.
- [6] T. C. Dinh, V. A. Nguyên and N. Sibony. Heat equation and ergodic theorems for Riemann surface laminations. *Math. Ann.* 354(1) (2012), 331–376.
- [7] T. C. Dinh, V. A. Nguyên and N. Sibony. Unique ergodicity for foliations on compact Kähler surfaces. *Duke Math. J.* to appear.
- [8] T. C. Dinh and N. Sibony. Unique ergodicity for foliations in P² with an invariant curve. *Invent. Math.* 211(1) (2018), 1–38.
- [9] T. C. Dinh and N. Sibony. Some open problems on holomorphic foliation theory. *Acta Math. Vietnam.* 45(1) (2020), 103–112.
- [10] T. C. Dinh and H. Wu. Harmonic currents directed by foliations by Riemann surfaces. *Proc. Amer. Math. Soc.* 149(8) (2021), 3453–3461.
- [11] J. E. Fornæss and N. Sibony. Riemann surface laminations with singularities. *J. Geom. Anal.* 18(2) (2008), 400–442.
- [12] J. E. Fornæss and N. Sibony. Unique ergodicity of harmonic currents on singular foliations of P2. *Geom. Funct. Anal.* 19(5) (2010), 1334–1377.
- [13] J. E. Fornæss, N. Sibony and E. F. Wold. Examples of minimal laminations and associated currents. *Math. Z.* 269(1–2) (2011), 495–520.
- [14] E. F. Lee. The structure and topology of the Brjuno numbers. *Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT) (Topology Proceedings, 24)*. Ed. G. Gruenhage. Auburn University, Auburn, AL, 1999, pp. 189–201.
- [15] V. A. Nguyên. Oseledec multiplicative ergodic theorem for laminations. *Mem. Amer. Math. Soc.* 246(1164) (2017).
- [16] V. A. Nguyên. Directed harmonic currents near hyperbolic singularities. *Ergod. Th. & Dynam. Sys.* 38(8) (2018), 3170–3187.
- [17] V. A. Nguyên. Ergodic theory for Riemann surface laminations: a survey. *Geometric Complex Analysis (Springer Proceedings in Mathematics & Statistics, 246)*. Eds J. Byun, H. Cho, S. Kim, K. H. Lee and J. D. Park. Springer, Singapore, 2018, pp. 291–327.
- [18] V. A. Nguyên. Ergodic theorems for laminations and foliations: recent results and perspectives. *Acta Math. Vietnam.* 46(1) (2021), 9–101.
- [19] V. A. Nguyên. Singular holomorphic foliations by curves. III: Zero Lelong numbers. *Preprint*, 2022, [arXiv:2009.06566v2.](https://arxiv.org/abs/2009.06566v2)
- [20] V. A. Nguyên. Singular holomorphic foliations by curves I: Integrability of holonomy cocycle in dimension 2. *Invent. Math.* 212(2) (2018), 531–618.
- [21] A. Seidenberg. *Reduction of singularities of the differential equation* Ady = Bdx. *Amer. J. Math.* 90 (1968), 248–269.
- [22] H. Skoda. Prolongement des courants, positifs, fermés de masse finie [Extension of closed, positive currents of finite mass]. *Invent. Math.* 66(3) (1982), 361–376 (in French)