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CHAPTER 1

Introduction

We will adopt the overall goal of artificial intelligence (AI) to be ‘to build machines with minds, 
in the full and literal sense’ as prescribed by the Canadian philosopher John Haugeland (1985).

Not to create machines with a clever imitation of human-like intelligence. Or machines 
that exhibit behaviours that would be considered intelligent if done by humans – but to build 
machines that reason.

This book focuses on search methods for problem solving. We expect the user to define 
the goals to be achieved and the domain description, including the moves available with the 
machine. The machine then finds a solution employing first principles methods based on search. 
A process of trial and error. The ability to explore different options is fundamental to thinking.

As we describe subsequently, such methods are just amongst the many in the armoury of 
an intelligent agent. Understanding and representing the world, learning from past experiences, 
and communicating with natural language are other equally important abilities, but beyond 
the scope of this book. We also do not assume that the agent has meta-level abilities of being 
self-aware and having goals of its own. While these have a philosophical value, our goal is to 
make machines do something useful, with as general a problem solving approach as possible.

This and other definitions of what AI is do not prescribe how to test if a machine is 
intelligent. In fact, there is no clear-cut universally accepted definition of intelligence. To put 
an end to the endless debates on machine intelligence that ensued, the brilliant scientist Alan 
Turing proposed a behavioural test.

1.1  Can Machines Think?

Ever since the possibility of building intelligent machines arose, there have been raging debates 
on whether machine intelligence is possible or not. All kinds of arguments have been put forth 
both for and against the possibility. It was perhaps to put an end to these arguments that Alan 
Turing (1950) proposed his famous imitation game, which we now call the Turing Test. The 
test is simply this: if a machine interacts with a human using text messages and can fool human 
judges a sufficiently large fraction of times that they are chatting with another human, then we 
can say that the machine has passed the test and is intelligent.
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2    Search Methods in Artificial Intelligence

Since then, many programs have produced text based interactions that are convincingly 
human-like, for example, ChatGPT1 being one of the latest. Advances in machine learning 
algorithms for building language models from large amounts of training data have enabled 
machines to churn out remarkably well structured impressive text. Humans are quite willing to 
believe that if it talks like a human, then it must think like a human. Even when the very first 
chat program Eliza threw back user sentences with an interrogative twist, its creator Edward 
Weizenbaum was shocked to discover that his secretary was confiding her personal woes to 
the program (Weizenbaum, 1966). Pamela McCorduck (2004) has observed in Machines Who 
Think that in medieval Europe people were willing to ascribe intelligence to mechanical toy 
statues that could nod or shake their head in response to a question.

Clearly relying on human impressions based on interaction in natural language is not 
the best way of determining whether a machine is intelligent or not. With more and more 
machines becoming good at generating text rivalling that produced by humans, a need is being 
felt for something that delves deeper and tests whether the machine is actually reasoning when 
answering questions.

Hector Levesque and colleagues have proposed a new test of intelligence which they call 
the Winograd Schema Challenge, after Terry Winograd who first suggested it (Levesque et al., 
2012; Levesque, 2017). The idea is that the test cannot be answered by having a large language 
model or access to the internet but would need common sense knowledge about the world. The 
test subject is given a sentence that refers to two entities of the same kind and a pronoun that 
could refer to either one of them. The question is which one, and the task is called anaphora 
resolution. The ambiguity can easily be resolved by humans using common sense knowledge. 
The strategy is to have two variations of the sentence, each having a different word or a phrase 
that leads to different anaphora resolution. One of the versions is presented to the subject with 
a question about what the pronoun refers to. Guesswork on a series of such questions is only 
expected to produce about half the correct answers, whereas a knowledgeable (read intelligent) 
agent would do much better. The following is the example attributed to Winograd (1972).

 • The town councillors refused to give the angry demonstrators a permit because they feared 
violence. Who feared violence?

 (a) The town councillors
 (b) The angry demonstrators
 • The town councillors refused to give the angry demonstrators a permit because they 

advocated violence. Who advocated violence?
 (a) The town councillors
 (b) The angry demonstrators

In both cases, two options are given to the subject who has to choose one of the two. Here are 
two more examples of the Winograd Schema Challenge, with two sets of sentences, each one 
of which is presented and followed by a question.

 • The trophy doesn’t fit in the brown suitcase because it’s too big. What is too big?
 (a) the trophy
 (b) the suitcase

1  ChatGPT: Optimizing Language Models for Dialogue. h t t p s : / / o p e n a i . c o m / b l o g / c h a t g p t / ,  accessed December 2022.
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 • The trophy doesn’t fit in the brown suitcase because it’s too small. What is too small?
 (a) the trophy
 (b) the suitcase

The following sentence is from the First Winograd Challenge at the International Joint 
Conference on AI in 2016 (Davis et al., 2017).

 • John took the water bottle out of the backpack so that it would be lighter.
 • John took the water bottle out of the backpack so that it would be handy.

What does ‘it’ refer to? Again, two options are given to the subject who is asked to choose one.
The authors report that the Winograd Schema Test was preceded by a pronoun disambiguation 

test in a single sentence, with examples chosen from naturally occurring text. Only those 
programs that did well in the first test were allowed to advance to the Winograd Schema Test. 
Here is an example from their paper which has been taken from the story ‘Sylvester and the 
Magic Pebble’.

 • The donkey wished a wart on its hind leg would disappear, and it did.

What vanished? The important thing is that such problems can be solved only if the subject is 
well versed with sufficient common sense knowledge about the world and also the structure of 
language.

A question one might ask is why should a test of intelligence be language based? After all, 
intelligence manifests itself in other ways as well. Could one of these also be an indicator of 
intelligence?

One area that has been proposed is in the arts, where creativity is the driving force. Computer 
generated art has time and again come to the limelight. Many artworks by AARON, the drawing 
artist created by Harold Cohen (1928–2016), have been demonstrated at AI conferences over 
the years (Cohen, 2016). A slew of text-to-image AI systems including DALL-E, Midjourney, 
and Stable Diffusion have all been released for public use recently.

Erik Belgum and colleagues have proposed a Turing Test for musical intelligence (Belgum 
et al., 1989). In the fall of 1997, Douglas Hofstadter organized a series of five public symposia 
centred on the burning question ‘Are Computers Approaching Human-Level Creativity?’ 
at Indiana University. This fourth symposium was about a particular computer program, 
David Cope’s EMI (Experiments in Musical Intelligence) as a composer of music in the 
style of various classical composers (Cope, 2004). A two-hour concert took place in which 
compositions written by EMI and compositions written by famous human composers were 
performed without identification, and the audience was asked to vote for which pieces they 
thought were human-composed and which were computer-composed. Subsequently, David 
Coco-Pope published an article written by a computer program EWI (Experiments in Written 
Intelligence) in the style of Hofstadter, grudgingly conceded by Hofstadter himself at the end 
of the article (Hofstadter, 2009).

After the 2011 spectacular win by IBM’s program Watson in the game of Jeopardy 
over two players who were widely considered to be the best that the game had seen, the 
company unveiled a program Chef Watson with the following claim – ‘In our application, a 
computationally creative computer can automatically design and discover culinary recipes that 
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4    Search Methods in Artificial Intelligence

are flavorful, healthy, and novel!’2 The market is now abuzz with robots that can cook for you, 
for example, as reported in Cain (2022).

Recently, when DeepMind’s AlphaGo program beat the reigning world champion Lee 
Sedol in the oriental game of go, the entire world sat up and took notice (Silver et al., 2016). 
This followed an equally impressive win almost twenty years earlier in 1997 when IBM’s Deep 
Blue program beat the then world champion Garry Kasparov in the game of chess (Campbell 
et al., 2002). Both the games are two person board games in which programs can search game 
trees as described in Chapter 8. The challenge in these games is to search the huge trees that 
present themselves. While chess is played on an 8 × 8 board, go is played on a 19 × 19 board, 
which generates a much larger game tree. And yet a combination of machine learning and 
selective search proved invincible. Both these games are conceptually simple even though the 
search trees are large. In the author’s opinion, only when a computer program can play the 
game of contract bridge at the level described in Ottlik and Kelsey (1983) can we legitimately 
stake a claim to have created an AI.

Meanwhile, one should perhaps take a cue from Alan Turing himself, move away from the 
bickering, and get on with the design and implementation of autonomous machines who3 do 
useful things for us. In the summer of 1956, John McCarthy and Marvin Minsky had organized 
the Dartmouth Conference with the following stated goal – ‘The study is to proceed on the 
basis of the conjecture that every aspect of learning or any other feature of intelligence can in 
principle be so precisely described that a machine can be made to simulate it’ (McCorduck, 
2004). That is the spirit of our quest for AI.

1.2  Problem Solving

Our quest is for a machine that is autonomous and whose behaviour is goal directed. Whatever 
it does, it should do autonomously. We imagine a scenario in which the machine is an agent to 
serve the goals given it to it by a user. Current applications take a short horizon view of achieving 
specific goals, though we can imagine a persistent agent engaging with the human over long 
periods, perhaps even the user’s lifetime. We ignore the doomsday scenarios in which machines 
overcome and subjugate humans, though this idea has been fashionable amongst certain sections 
of science writers. That so-called singularity is not even on the horizon (Larson, 2021).

We want our machines to solve problems for us. Given a set of goals, the machine must 
engage with the world to achieve those goals. The goals may be short term or long term, and 
the world in which the problem solving agent operates may be changing, even in the simplest 
case when the agent is the only one acting and effecting the change. The agent must sense its 
environment, deliberate over its goals, and act in the domain. The agent must not just be reactive, 
operating in a hard-coded stimulus–response cycle, but should be able to act flexibly in a sense–
deliberate–act cycle autonomously. A schematic of an autonomous agent is shown in Figure 1.1.

In all life forms, deliberation happens in the brain. Incoming sensory data is processed in 
the context of what the creature already knows. Our understanding of the animal brain is that 
it is a collection of a large number of very simple processing components called neurons. Each 

2  h t t p s : / / r e s e a r c h e r . w a t s o n . i b m . c o m / r e s e a r c h e r / v i e w _ g r o u p . p h p ? i d  = 5077, accessed December 2022.
3 In the style of Machines Who Think by Pamela McCorduck.
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neuron is connected to many other neurons and each connection has a weight that evolves with 
experience. This changing of weights is associated with the process of learning.

The neurons at the sensing end of the brain accept information coming in from various 
senses like sight, sound, smell, taste, and touch. The general model of processing is that once a 
neuron is activated, it sends a signal down its principal nerve called the axon, which distributes 
the signal to other connected neurons. The weights of the connections determine which 
connected neurons receive how much of the signal. Eventually the signals reach the neurons 
at the output end, sending signals down the motor neurons that activate muscles that produce 
sounds from the mouth and movement of the limbs.

Some simple creatures may be just reactive, recognizing food or prey and triggering 
appropriate actions, but as we move up the hierarchy, there may be more complex processing 
happening in the brain, involving memory (in Greek mythology, the dog Argos recognizes 
Odysseus at once when humans could not), planning (monkeys in Japan have been known to 
season their food with salt water), and reasoning (remember all those experiments with mice in 
mazes and Pavlov’s dog). Whatever the cognitive capability of the creature, our view of their 
brains can be captured as shown in Figure 1.2.

Different life forms have differently sized brains relative to the sizes of their bodies. Earlier 
life forms had simple brains often referred to as the reptilian brain. In the 1960s, the American 
neuroscientist Paul MacLean (1990) formulated the Triune Brain model, which is based on 

DeliberateSense Act

Figure 1.1 An autonomous agent operates in a three stage cycle. It receives input from its 
sensory mechanism, it deliberates over the inputs and its goals, and acts in the world.

Sight
Sound
Smell
Taste
Touch

Motor activity
Sound

Figure 1.2 The neural animal brain. All life forms represent knowledge in the form of weights of 
connections between neurons in their brain and body. The numbers do not mean anything to 
us, and we say that the representation is sub-symbolic.
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6    Search Methods in Artificial Intelligence

the division of the human brain into three distinct regions. MacLean’s model suggests that the 
human brain is organized into a hierarchy, which itself is based on an evolutionary view of 
brain development. The three regions are as follows:

 1. Reptilian or primal brain (basal ganglia) was the first to evolve and is the one in charge of 
our primal instincts.

 2. Paleomammalian or emotional brain (limbic system) was the next to evolve and handles 
our emotions.

 3. Neomammalian or rational brain (neocortex) which is responsible for what we call as 
thinking.

According to MacLean, the hierarchical organization of the human brain represents the gradual 
acquisition of the brain structures through evolution. The human brain, considered by many 
to be the most complex piece of matter in the universe, is made up of a cerebrum, the brain 
stem, and the cerebellum. The cerebrum is considered to be the seat of thought and, in humans, 
comprises two halves, each having an inner white core and an outer cerebral cortex made up 
of grey matter.

It is generally believed that the larger the brain, the greater the cognitive abilities of the 
owner.

1.3  Neural Networks

A neuron is a simple device that computes a simple function of the inputs it receives. Collections 
of interconnected neurons can do complex computations. Insights into animal brains have 
prompted many researchers to pursue the path of creating artificial neural networks (ANNs).

An ANN is a computational model that can be trained to perform certain tasks by repeatedly 
showing a stimulus and the expected response. It is best suited for the classification task. The 
earliest neural network was the perceptron (McCulloch and Pitts, 1943; Rosenblatt, 1958) 
which had one layer of neurons and could serve as a binary linear classifier. That is, whenever 
two classes in some space could be separated by a line or a plane in appropriate dimensions, the 
perceptron could be trained to learn the position and the orientation of the separator. Research 
in this area suffered a setback when Minsky and Papert (1969) showed its limitations – it could 
only classify linearly separable classes. For example, one cannot draw a line to separate the 
shaded circles, representing data from class A, from the unshaded ones, representing data from 
class B, as shown in Figure 1.3.

The work in neural networks was revived with the publication of the Backpropagation 
algorithm. In the mid-1980s, Rumelhart, Hinton, and Williams (1986) showed that a multi-layer 
perceptron could be trained to learn any non-linear classifier. They also popularized the 
Backpropagation algorithm that fed the error at the output layer back via the hidden layer, 
adjusting the weights of the connections (McClelland and Rumelhart, 1986a, 1986b).

Figure 1.4 shows the schematic diagram of a typical feedforward neural network. On the 
left is the input layer where the discretized input is fed in, activating nodes in the layer. Then, 
activation spreads from the left to the output layer on the right via the nodes in the hidden layer. 
In Figure 1.4, there are five output nodes, which could stand for five class labels. In the simplest 
case, when the network has learned to classify the input, which could be an image, one output 
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node is activated, indicating the class label. What the neural network has learnt is the association 
between the pattern of activation in the input layer and the class label at the output layer.

The fact that the input may be an image of a scene is only in the mind of the user, as is the 
name given to the class label. In the figure, the names are five animals, but the neural network 
has no idea that one is talking of animals, or a particular animal like a horse or a bear. It just 
knows which label to activate with a given image.

X1
X2

Xn

f y = f(X1, X2,  ..., Xn)

Figure 1.3 A neuron is a simple processing device that receives signals and generates an 
impulse as shown on the left. On the right is an example of a classification problem in which 
no line can be drawn to separate the shaded circle from the unshaded ones.

Image

Text

Speech

Horse

Cow

Giraffe

Bear

Lion

Output 
layer

Hidden 
layer

Input 
layer

Figure 1.4 A feedforward artificial neural network learns a function from the input space to the 
output classes. Learning happens via the adjustment of edge weights. The labels of the output 
classes are meaningful only to the user.
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This knowledge is not explicit or symbolic in the network. It is buried in the weights of 
the edges from nodes in one layer to the next one. These weights are instrumental in directing 
the activation from the input layer to the relevant output layer node. Nowhere in the network is 
there any indication that one is looking at a giraffe or a lion. Such representations of knowledge 
are often called sub-symbolic in contrast with the explicit symbolic representations we humans 
commonly use.

Neural networks learn what they learn by a process of training. The most common form of 
training is called supervised learning, in which a user presents input patterns to the network, 
and for each input shows what the output label should be. Every time an input pattern is 
presented, the network makes its own decision of what the activation value of the class label 
is. For example, if a bear is shown to the network, it might compute the output values as [0.2, 
0.1, 0.0, 0.4, 0.3] when the expected output is [0, 0, 0, 1, 0], indicating that it is the fourth 
node (the bear). The error in the actual output defines a loss function that Backprop (as it is 
also known) aims to minimize. Most variations of the algorithm compute the gradient of the 
loss function with respect to the weights and do a small change in the edge weights in each 
cycle to reduce the loss. This can be viewed as gradient descent, an algorithm we look at later 
in the book.

The other forms of learning that are popular are unsupervised learning in which algorithms 
can learn to identify clusters in data, and reinforcement learning in which feedback from the 
world is used to adjust relevant weights. Reinforcement learning has achieved great success 
in game playing programs that learn how to play by playing hundreds of thousands of games 
against themselves, learning how to evaluate board positions from the outcomes of the games.

1.3.1  Deep neural networks

In principle the three layered network could learn any function, but in practice it was hard to 
do so, requiring a large number of neurons in the hidden layer. Geoffrey Hinton persevered 
with neural networks and showed in 2012 that deep networks with many hidden layers can 
achieve phenomenal success in computer vision – recognizing thousands of types of objects. 
Alex Krizhevsky in collaboration with Ilya Sutskever and his PhD advisor Geoffrey Hinton 
implemented the convolutional neural network (CNN) named AlexNet (Krizhevsky et al., 2017). 
This program did phenomenally well on the task of image recognition in the ImageNet Large 
Scale Visual Recognition Challenge in 2012. The network achieved a top-5 error of 15.3%, 
much better than the runner up. Their paper claimed that the depth of the model was essential 
for its high performance. Since then, neural networks with many layers have been doing very 
well in pattern recognition tasks. In 2015, a deep CNN with over 100 layers from Microsoft 
Research Asia outperformed AlexNet. Even though many layers make them computationally 
expensive, the use of graphics processing units (GPUs) during training has made them feasible. 
Figure 1.5 shows a schematic of a deep neural network.

The development of newer architectures and newer algorithms was instrumental in the 
spurt of interest in deep neural networks. Equally responsible perhaps was the explosion in 
the amount of data available on the internet, for example, the millions of images with captions 
uploaded by users, along with rapid advances in the computing power available. In 2018, three 
scientists, Geoffrey Hinton, Yann LeCun, and Yoshua Bengio, were jointly awarded the Turing 
Award for their work in this area. Deep networks got further impetus with the availability 
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of open source software like Tensorflow4 from Google that makes the task of implementing 
machine learning models easier for researchers.

More recently, generative neural networks have been successfully deployed for language 
generation and even creating paintings, for example, from OpenAI.5 Generative models embody 
a form of unsupervised learning from large amounts of data, and are then trained to generate 
data like the one the algorithms were trained on. After having been fed with millions of images 
and text and their associated captions, they have now learnt to generate similar pictures or stories 
from similar text commands. Programs like ChatGPT, Imagen, and DALL-E have created quite 
a flurry amongst many users on the internet.

Deep neural networks are very good at the task of pattern recognition. Qualitatively, they 
are no different from the earlier networks, but in terms of performance they are far superior. The 
main task they are very good at is classification, a task that some researchers have commented 
is accomplished ‘in the blink of an eye’ by all life forms (Darwiche, 2018). The question one 
might ask is what after that?

Both in the case of generative models and deep neural network based classification, one 
must remember that the programs are throwing back at us whatever data has been fed to them. 
They do not understand what they are writing or drawing even though there is some correlation 
between the input query or command and the output generated.

For understanding and acting upon such perceived data, one needs to create models of the 
world to reason with. This is best done by explicit symbolic representations, which have the 
added benefit that they can contribute to explanations.

4  h t t p s : / / d e v e l o p e r s . g o o g l e . c o m / m a c h i n e - l e a r n i n g / c r a s h - c o u r s e / fi  r s t - s t e p s - w i t h - t e n s o r fl  o w / t o o l k i t ,  accessed  
December 2022.
5  h t t p s : / / o p e n a i . c o m / b l o g / g e n e r a t i v e - m o d e l s / ,  accessed December 2022.
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Figure 1.5 The schematic diagram of a deep neural network.
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1.4  Symbolic AI

Imagine that you are the coach of a football team watching the game when your team is down 
two–nil. You have been watching the game for the best part of seventy minutes. The need of the 
hour is to make a couple of changes.6 You pull out two players who are playing under their par 
and send in two substitutes.

Can a neural network take such a decision? Clearly not. The knowledge of the neural 
network is a kind of long term memory arrived at by training on many past examples. The 
neural network does not have the apparatus to represent the world around it in a dynamic 
scenario. What an agent also needs is short term memory that represents the current problem, 
and facilitates reasoning about the situation and planning of actions. We will talk about short 
term and long term memory in a little more detail in Chapter 7. But now we introduce the main 
idea at the core of this book – symbolic reasoning.

1.4.1  Symbols, language, and knowledge

Arguably, humankind broke away from the rest of the animal world with the development of 
language. The ability to give names to concepts combined with a shared understanding of what 
words mean not only has been a boon for communication (remember the boy who shouted 
wolf?) but has also provided a basis for representing complex concepts.

The core of language, whether spoken or written, is the symbol. A symbol is a perceptible 
something that stands for something else. The study of how signs and symbols are created and 
how they are interpreted is called semiotics. We are all familiar with road signs indicating the 
presence of schools, crossings, restaurants, U-turns, and so on. Most commercial activities are 
promoted using logos of companies which too stand for the company. Biosemiotics is the study 
of how complex behaviour emerges when simple systems interact with each other through 
signs. The pheromone trails left by ants for other ants to follow and the waggle dance of the 
honey bees to convey the location of food source to fellow bees are examples. The key feature 
is the use of words, behaviours, and shapes, collectively known as semiosis, as a means of 
transmitting meaningful information encoded in symbols and decoded by the receiver.

Human languages have evolved to describe what we see and perceive. The simplest 
kinds of names were probably just atomic but gradually we learnt to combine words to devise 
compound names, for example, der liegestuhl (the lounge chair) in German and Himalaya (the 
abode of snow) in Sanskrit. But at the simplest atomic level, a word, whether a noun, adjective, 
adverb, or verb, simply stands for something. Once many years ago a curious four-year-old had 
asked me: ‘Why is a (ceiling) fan called a fan, and not something else?’ The answer perhaps 
is that words acquire meaning via wide social agreement and also derive from related words. 
Words vary over regions, sometimes gradually and sometimes abruptly. The English word 
‘potato’ corresponds to ‘patata’ in Sindhi, and ‘batata’ in Marathi. But some languages have a 
radically different name, ‘alu’ or ‘aloo’, for it. A look at the names of numbers across different 
languages also reveals a remarkable similarity that is unlikely to be sheer coincidence. Most 
languages have names starting with ‘s’ for the equivalent of the number six, which is sechs 

6 Even as I write this, France has scored two goals in two minutes to draw level with Argentina in the FIFA World 
Cup final of 2022.
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in German, seks in Norwegian, seis in Spanish and Portuguese, shash in Sanskrit, and sitta in 
Arabic. Likewise, the number seven is saat in Hindi, saith in Welsh, sieben in German, sedam 
in Serbian, septem in Latin, and sapta in Sanskrit. At the same time, the same word may mean 
different things in different languages, much to the consternation of uninformed travellers, 
who may not realize that gift in German means poison or a toxin, and helmet in Finnish means 
pearls. In addition, the diversity in the world across regions results in communities having 
fine-grained words indicating small differences in what they encounter in their lives. Nordic 
countries have a multitude of words for different kinds of snow. A Swede may use Kramsnö for 
squeezy snow, perfect for making snowballs, and Lappvante for thick, falling snow amongst 
the many words that residents of Kerala may club into one word, snow. At the same time, the 
people in Kerala have different names for a variety of what the Scandinavian countries might 
just refer to as a banana. Ethapazham, for example, is the name of the longest banana available, 
chenkadali is the red banana, and poovan a small banana.

Observe that when we talk of trees and fruits and animals, we talk of them as we perceive 
them. There is a process of reification or abstraction that happens here. A human body is made 
up of about 1027 atoms, but we do not think of it at that level of detail. We cannot. We think 
of a person as an individual and think about the body parts as individual entities. The atoms 
that are part of our body are anyway transient, but our notion of the self is persistent. In his 
book titled Creation, author Steve Grand (2001) highlights the fact that when we perceive 
a stationary cloud atop a mountain pass, it is really moist wind blowing over it with water 
molecules condensing as they reach the top and becoming visible even as they flow on. The 
cloud, like our own body, is in our mind. The concepts that we form in our heads are often at 
a convenient level of aggregation. In any case, humans started off by giving names to what we 
see and what we do. Our visual perception system has a finite field of vision. A fascinating 
chronicle on the sizes of objects in the universe, The Powers of Ten, lists different physical 
entities that exist at different scales (Morrison et al., 1986). In the book, and a short movie 
of the same name, the authors zoom out from human-size objects to the very ends of our 
universe, and them zoom back in and onwards onto the subatomic level. Our human perception 
is limited from about 10–4 m where we can see a pollen grain shining in a ray of sunlight, to 
larger objects – a mustard seed (10–3 m), a fingernail (10–2 m), a sunbird (10–1 m), a child 
(100 m), a small tree (101 m), a pond (102 m), the Golden Gate bridge (103 m), and a small 
town seen from a hill (104 m). We find it easy to give names for objects at these scales. For 
larger or smaller scales, we have to rely on science to inform us. We know that the diameter of 
solar system is 11,826,600,000 km, and the diameter of the Milky Way is about 100,000 light 
years across. We know that a virus is about 10–7 m, and the size of the carbon atom nucleus 
is about 10–14 m. All this is secondary knowledge derived from our scientific endeavour, even 
though we often cannot visualize very large or very small distances at the extreme scales. 
Quantum mechanics has further obfuscated our understanding of the world. Marcelo Gleiser 
(2022) writes that quantum physics has redefined our understanding of matter. In the 1920s, 
the wave–particle duality of light was extended to include all material objects, from electrons 
to you. Cutting-edge experiments now explore how biological macromolecules can behave as 
both particle and wave.

When we talk of the spoken word, we think of it as a symbol that stands for something. 
Symbols take on a life of their own when they are represented by tangible marks, which are not 
transitory like sounds, but have a degree of permanency associated with them.
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The earliest humans known to engrave symbols on clay were the Sumerians in ancient 
Mesopotamia, which is often known as the cradle of civilization. The first engravings were 
pictographs, but soon evolved into more abstract entities like symbols from an alphabet. The 
earliest form of writing was cuneiform writing.

First developed around 3200 B.C. by Sumerian scribes in the ancient city-state of 
Uruk, in present-day Iraq, as a means of recording transactions, cuneiform writing 
was created by using a reed stylus to make wedge-shaped indentations in clay tablets. 
Cuneiform as a robust writing tradition endured 3,000 years. The script – not itself a 
language – was used by scribes of multiple cultures over that time to write a number of 
languages other than Sumerian, most notably Akkadian, a Semitic language that was 
the lingua franca of the Assyrian and Babylonian Empires.7

It was replaced by alphabetic writing sometime after the first century AD. The breakthrough 
came when symbols were not only employed as images representing objects and events like a 
hunt, but abstract entities like sounds. A set of symbols forms an alphabet. Alphabetic symbols 
could now come together to form words, and words could form sentences. The spoken word 
became the written word. Different natural languages evolved in many regions of the world. 
The common theme was writing.

The faculty of language in turn created a mechanism of knowledge dissemination. Starting 
with stories in the oral tradition, the invention of writing made it possible for us to leave a 
permanent imprint for anyone to read at any time in any place. The invention of the internet 
made all this information available for everyone instantaneously.

The basis of the written word was the idea of symbols.

1.4.2  Symbol systems

While it is true that ANNs have knowledge about the world encoded in the weights, it is not 
knowledge accessible to the user. Humans beings too have knowledge encoded into our neural 
brains, but we have somehow evolved the ability of representing and reasoning with symbols. 
We have the ability to model the world around us in our heads and describe what we know in 
natural language.

Herbert Simon and Alan Newell (1976) proposed that the ability to represent symbolic 
knowledge and reason with it is sufficient and necessary for intelligence – ‘A physical symbol 
system has the necessary and sufficient means for general intelligent action’. This is known as 
the physical symbol system hypothesis.

 • Symbol: A perceptible something that stands for something else. For example, alphabet 
symbols, numerals, road signs, musical notation.

 • Symbol System: A collection of symbols – a pattern. For example, words, arrays, lists, 
even a tune.

7  h t t p s : / / w w w . a r c h a e o l o g y . o r g / i s s u e s / 2 1 3 - 1 6 0 5 / f e a t u r e s / 4 3 2 6 - c u n e i f o r m - t h e - w o r l d - s - o l d e s t - w r i t i n g ,  accessed  
September 2022
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 • Physical Symbol System: That obeys laws of some kind, a formal system. For example, 
long division, computing with an abacus, an algorithm that operates on a data structure 
(which is a symbol system).

The idea of symbolic reasoning goes back to olden times. John Haugeland (1985) traces the 
evolution of the idea of thinking being symbolic to medieval Europe, reproduced here: Galileo 
Galilei (1564–1642) in The Assayer (published 1623) says that ‘tastes, odors, colors, and so 
on are no more than mere names so far as the object in which we locate them are concerned, 
and that they reside in consciousness’. Further, that ‘philosophy is written in this grand book, 
the universe ... It is written in the language of mathematics, and its characters are triangles, 
circles, and other geometric figures’. Galileo Galilei gave us what we call the laws of motion, 
and his explanations were expressed in geometry. The English philosopher Thomas Hobbes  
(1588–1679) first put forward the view that thinking itself is the manipulation of symbols. 
Galileo had said that all reality is mathematical in the sense that everything is made up of 
particles, and our sensing of smell or taste was how we reacted to those particles. Hobbes 
extended this notion to say that thought too was made up of (expressed in) particles which the 
thinker manipulated. However, he had no answer to the question of how a symbol can mean 
anything. In De Corpore, Hobbes first describes the view that reasoning is computation early 
in Chapter 1. ‘By reasoning’, he says, ‘I understand computation.’ Hobbes was influenced by 
Galileo. Just as geometry could represent motion, thinking could be done by manipulation 
of mental symbols. René Descartes (1596–1650) further extended the idea by saying that 
‘thoughts themselves are symbolic representations’. Descartes was the first to clarify that a 
symbol and what it symbolizes are two different things, but then he ran into the mind–body 
dualism. If reasoning is the manipulation of meaningful symbols according to rational rules, 
then who is manipulating the symbols? It can be either mechanical or meaningful, but how can 
it be both? How can a mechanical manipulator pay attention to meaning? These are some of the 
questions we are still to find answers for.

1.4.3  An architecture for cognition

It has become clear that intelligence cannot be manifested by a single algorithm or a single 
representation. In his influential book The Society of Mind, Marvin Minsky (1986) emphatically 
argues that a mind is a society of many processes working together and in tandem. We have already 
hinted that ANNs are good at certain tasks like pattern recognition, but are not easy to adapt 
to acting autonomously in the world managing dynamic information. We highlight the different 
aspects of intelligence in the next section based on the proposed architecture shown in Figure 1.6.

As one can see, this is a refinement of Figure 1.1 with a society of algorithms coming together 
to constitute an autonomous intelligent agent. AI will not be a monolithic hammer. It will be a 
delicate orchestra of many different processes working together, each playing its own part.

The inputs that the agent works with are the same with the different senses feeding 
information. Much of this information is processed by neural networks that serve as signal 
to symbol transducers. In practice ANNs work with discretized signals, which technically are 
symbols themselves. However, we prefer to think of the input as being at the signal level, 
because it is the raw data that the machine has to work with, for example, an image represented 
as an array of pixels each having a discrete value stored in it. Only when a program processes 
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these pixels and extracts information about the objects in the image do we say that we have 
a symbolic representation. Early work on pattern recognition was syntactic in nature, for 
example, as described in Gonzalez and Thomason (1978). One would extract edges in the 
image and apply grammar rules to combine edges to (say) recognize handwritten characters. 
Processing complex images was not feasible at all. However, neural networks have proven to 
be excellent at processing images and recognizing patterns and individuals.

In our proposed architecture, the task of deliberation is done using symbolic reasoning. As 
shown in Figure 1.6, the deliberation phase may invoke many different algorithms. We outline 
the different process in the next section.

1.5  The Core of Intelligence

Given that it is hard to define what intelligence is, it is easier to adopt a behavioural 
characterization of intelligence – if it behaves intelligently, then it must be intelligent. Alan 
Turing’s imitation game adopted the approach of conversational interaction with the idea that 
if it can talk intelligently, it must be intelligent. We judge a machine to be intelligent if we are 
convinced that it is behaving intelligently.

A question that has often been asked about machine intelligence is that of meaning. How could 
a symbol mean anything to a machine? We have observed that Hobbes was faced with this when 
he said that thinking was the manipulation of symbols. The Scottish philosopher David Hume 
(1711–1776) did away with the notion of meaning altogether. An admirer of Isaac Newton, Hume 
proposed that just like the heavenly bodies moved based on the laws of physics, impressions, and 
ideas were (like) the basic particles to which all mental forces and operations applied. He did not 
question why they did so but was satisfied by the empirical observation that they did do so.
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Figure 1.6 An architecture for cognition. In classical AI, an intelligent agent senses the world 
around it and maps it to a symbolic representation making inferences, and planning for  
its goals.
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The question of meaning was also raised by the American philosopher John Searle (1932–) 
with his Chinese room thought experiment in which a native English speaker locked inside a 
room with boxes of symbols and a set of instructions on how to manipulate them could answer 
questions in the Chinese language slipped below on pieces of paper without understanding a 
word of the Chinese language.

The digital computer manipulates symbols based on a set of instructions given to it. Does 
it understand the meaning of the symbols that it is manipulating? If it is adding two numbers, 
does it know that it is adding numbers? Do all of us understand what a number is (McCulloch, 
1961)? Or if it is beating a world champion in the game of chess, does it even know that it is 
playing chess, or what winning is?

We will sidestep these questions on meaning and focus instead on utility and meaningful 
action. Build machines that operate in a purposeful goal directed manner.

In this book we assume that our goal is to build machines that autonomously solve problems 
for us, and that the goals of the machines are the goals we have given them to solve. Given a 
problem to solve, and given a set of operators in its repertoire, the task of the problem solver is 
to choose actions that will achieve the goal.

At the core is the ability to create a model of the world in which the agent is operating, and 
reason about its goals, plans, and actions with the representation. The model of the world is the 
base for all cognitive activity. This model contains the memories of the agent, lessons learnt, 
and the representation of the world in which it operates. The agent needs the ability to imagine 
worlds that are not immediately perceptible, or which the agent may desire to create.

Broadly speaking, there are three kinds of processes that come together to solve a problem, 
and which form the core of intelligent behaviour.

1.5.1  Remember the past and learn from it

Problem solving refers to the activity of making, and acting upon, decisions to transform a 
given situation to a desired one. The ability to solve problems is perhaps the prime hallmark of 
intelligent behaviour. Very often we look at a problem and a solution comes to our mind. This 
happens because we humans have memory, and we draw upon our past experiences, and that 
of others via language. We ascribe lack of intelligence to people who make the same mistakes 
repeatedly. And we believe that experts are those who learn even from mistakes of others. 
Figure 1.7 shows the learning cycle an agent may go through during problem solving. Different 
mechanisms for exploiting memory may have different forms of learning.

One approach that has focussed on storing past experiences is case based reasoning (CBR). 
CBR has been surprisingly effective in many industrial applications (Watson, 1997, 2002). The 
strategy behind CBR is simple.

 • Similar problems have similar solutions, is the adage behind memory based reasoning.
 • And, importantly, problems are indeed often similar.

In the simplest form, CBR maintains a case base of problem solution pairs <p, s>. The problem 
part of a case is a description of the problem that the case solves. The description may be 
attribute value pairs or it could be in natural language text. The following is the 4R cycle that 
CBR follows.
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16    Search Methods in Artificial Intelligence

 • Retrieve: When the agent encounters a new problem, it searches the case base for the most 
similar problem. Often more than one case is retrieved in the style of k nearest neighbours 
retrieval.

 • Reuse: The solution that is retrieved along with the case is adapted to the current problem. 
This could involve adjusting some parameters that are different in the current description 
and the retrieved one and adjusting the solution part.

 • Revise: If the solution does not work, tweak it. This could involve human intervention.
 • Retain: If the revised solution is significantly different, add it to the case base. The next 

time a similar problem shows up, this could be useful.

CBR has been particularly useful in domains that are not well modelled and where the problem 
solving knowledge is more experiential than analytical. One of the earliest successes was the 
Clavier system developed to cure aircraft parts at Lockheed Missiles and Space Company 
in Sunnyvale, California (Watson, 1997). The task involved placing parts made of composite 
materials that kept changing in an autoclave, which is an expensive resource. The quality of the 
product depended on where it was placed on the tray, and operators were essentially following 
similar layouts from the past. Curing is an unrewarding art, rather than a science, but Clavier 
reduced the discrepancy reports considerably as its case base grew from an initial twenty to 
several thousands. Figure 1.8 shows a schematic of a CBR system employed for knowledge 
management in a manufacturing setting (Khemani et al., 2002).

CBR is a form of instance based learning (see also Chapter 11) in which the system 
memorizes past experiences and remembers them. Another approach is to assimilate the 
knowledge accrued from experience into compact structures that can be used. Neural 

Memory

Problem 

Act

Outcome

Learn
Agent

Domain

Figure 1.7 A memory based agent employs the knowledge stored in its memory to solve a 
problem in the domain. Based on the outcome of each instance of solving a problem, the 
agent refines its knowledge and improves over time.
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networks are examples of such learning, but there have also been more explainable 
structures like decision trees, where attributes and their values used for classification can 
be read from the path in the tree. Consider a small data set shown in Table 1.1 for the sake 
of illustration. There are three attributes A, B, and C in this data set with values {a1, a2, 
a3}, {b1, b2, b3}, and {c1, c2} respectively. There are two class labels ‘Yes’ and ‘No’ in 
each row in the table.

One could of course use CBR for prediction given a new problem in which the values of 
the three attributes are given. But for such well defined domains, it is convenient to build a 
decision tree. A decision tree is a discrimination tree that tests for the value of one variable at 
the root node, and then traverses an appropriate branch to test the value of another variable. The 
algorithm for constructing a decision tree with nominal attribute values is the well known ID3 
algorithm (Mitchell, 1997). The basic idea behind the algorithm is to choose that attribute that 
separates the two classes as best as possible. A decision tree for the data in Table 1.1 is shown 
in Figure 1.9.

When a new record of the values for A, B, and C comes in, it is dropped down the tree. 
At each node, the value of some attribute is tested and the record follows an appropriate 
branch. Leaves in the tree are labelled with class information. Observe that other trees may 
be possible, testing a different attribute at each stage. The ID3 algorithm is designed to build 
short trees.

Case Base

Marketing

Design

Training

Analysis

Recorded
Experience

Revise & Retain

Solution

Reuse

Retrieve

Figure 1.8 A CBR system in the manufacturing industry. The data recorded from different 
locations in the shop floor is assimilated into a case base. The resulting system can have 
multiple applications. The CBR is essentially a tool for knowledge management.
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1.5.2  Understand and represent the present

The world around us and including us operates according to and can, in principle, be explained 
by the fundamental laws of physics. Nothing else is needed. But we do not think of the world 
around us as swarms of particles. This is simply because there are far too many of them, even 
to describe a grain of rice.

Table 1.1    

A B C Outcome
a1 b1 c1 Yes
a1 b1 c2 No
a1 b2 c1 Yes
a1 b3 c2 No
a1 b2 c2 No
a2 b1 c1 Yes
a2 b2 c1 Yes
a2 b1 c2 Yes
a3 b1 c1 Yes
a3 b2 c1 Yes
a3 b1 c2 No
a3 b2 c2 No

B

A

C

a1 a2 a3

No

NoC

b1 b2 b3 c1 c2

c1 c2

Yes

Yes Yes

Yes

Figure 1.9 A decision tree based on the data from Table 1.1. The root nodes tests for the 
attribute A and traverses the appropriate branch. The leaf nodes have the class labels.
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We the thinking creatures create our own worlds in our minds. And it is only our own 
creation that is meaningful to us. We create categories in our heads, for example, a human, a 
fox, a river, and a tree. We define an ontology in terms of which we represent the world. Every 
domain of study from physics to chemistry, to biology, to economics defines its own ontology. 
Or its own terminology. While the notion of an ontology has roots in philosophy, it has found 
a formal definition in computer science, as an explicit specification of a conceptualization 
(Gruber, 1993).

Behind every word of a language there sits a concept, and a knowledgeable agent relates 
that concept to others, within an ontology. For example, we associate the word ‘banana’ with 
a particular kind of fruit, growing on a particular kind of a single stem tree, which has a skin 
that can be peeled off before eating, and which has leaves that can be used to serve a meal on. 
Likewise, with verbs we can conjure up actions mentally, for example, jogging. In any case, 
whenever we use words in a language, they just stand for some concepts that an agent may have 
in its knowledge representation scheme. Roger Schank and his group at Yale university showed 
that the moment one talks of a person going into a restaurant one needs to retrieve all that one 
knows about what typically happens in a restaurant to make sense of the conversation (Schank 
and Abelson, 1977; Schank and Riesbeck, 1981). At around the same time, Marvin Minsky 
(1975) published his idea of frames for knowledge representation, which eventually led to the 
ideas of object oriented programming.

With the advent of the internet, when programs could talk to each other, defining ontologies 
gained prominence. Computational ontologies are a means to formally model the structure 
of a system, that is the relevant entities and relations that emerge from its observation, and 
which are useful to our purposes. The backbone of an ontology consists of a generalization/
specialization hierarchy of concepts, that is a taxonomy (Guarino et al., 2009).

Figure 1.10 shows a snippet of a sample ontology represented as a frame system. The 
shaded squares are abstract frames, corresponding to concepts in an ontology. The IS-A slot in 
a concept defines an abstraction hierarchy, for example, ‘a dog is a mammal’. The unshaded 
nodes represent individuals or instances of concepts. An ontology may have other kinds of 
links, for example, the fact that ‘Ted is a dog owned by Socrates who is a human’.

The idea of semantic networks was already well developed. A semantic network is 
a graphical model in which nodes representing concepts are connected with labelled edges 
representing relations. Early work on semantic nets was motivated by natural language 
processing. Ross Quinlan is often credited with crystalizing the idea (Quillian, 1967, 1968). 
Subsequently, the idea of semantic nets evolved into the idea of knowledge graphs, which 
were semantic networks spread over the internet. The idea of the Semantic Web evolved in the 
twenty-first century. In 2012, Google adopted the term ‘knowledge graph’ (Singhal, 2012).

A knowledge graph is a collection of nodes and named edges. We can create an abstract 
type called event and describe the rest of the relations for an instance of that event. It has 
become common to express these as triples <subject, predicate, object> or <subject, property, 
value>. For example, here is an incident of kids fighting: ‘Divya hit Atul with a stick yesterday 
afternoon in a park.’

(Hitting_event, Instance, e45) : e45 is an instance of Hitting_event
(e45, Actor, divya54) : The actor of e45 is Divya
(e45, Object, atul81) : The object of e45 is Atul
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(e45, Date, March_21) : The date of e45 is March 21
(e45, Loc, park28) : The location of e45 is the park
(e45, Instrument, stick14) : The Instrument of e45 is the stick

Figure 1.11 shows how information about musical performances and poetry could be 
represented as a knowledge graph.

Representation is only one side of the coin. Reasoning is the other.
We are never privy to everything there is to know. We have partial knowledge of the 

world and can try and fill in by making inferences. The process of making inferences is called 
reasoning. There are three kinds of inferences. All are in some way connected with a logical 
relation often captured as ‘IF antecedent THEN consequent’, expressed as a sentence in some 
logic. When the sentence is true, then it often expresses a causal connection from the antecedent 
to the consequent. But as Judea Pearl (2019) has shown to us, there can be confusion between 
causality and correlation, which has been exploited by the tobacco industry to contest the 
connection between smoking and cancer.

 • Deduction: From a given set of facts, infer another fact that is necessarily true. Deduction 
is the bread and butter of logic. We study deduction in Chapter 10. Deduction is sound 
because it goes from the antecedent to the consequent. For example, the statement ‘If 
X is a trapezium then X is a quadrilateral’ is true by definition. So if anyone has drawn 
a trapezium, then she has drawn a quadrilateral. Deduction only makes explicit what is 
implicit in the knowledge base.

(ted
<:INSTANCE-OF Dog>
<:Owner  socrates>)

(Dog
<:IS-A Mammal>)

(Mammal
<:IS-A  Animal>)

(socrates
<:INSTANCE-OF Human>)

(Human
<:IS-A Mammal>)

Figure 1.10 A snapshot of an ontology captured in a frame system. The shaded nodes are 
abstract concepts, and the unshaded ones are instances of concepts. An ontology may define 
an abstraction hierarchy as well as other kinds of relations.
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 • Induction: From a given sets of facts, infer a new fact. Also known as generalization. 
Induction can create new knowledge. Recognizing that a number of entities in the domain 
share some common property and asserting that as a general statement. For example, from 
the observations,

The peepul leaf is green.
The tamarind leaf is green.
The neem leaf is green.
The mango leaf is green.

one can conclude,

All leaves are green.

Induction or generalization is the basis of machine learning. Such conclusions are, 
however, not sound, which means they are not necessarily true. One may know of a plant 
that does not have green leaves, for example, the Japanese maple. Nevertheless, the ability 
to generalize has tremendous use in practice.

 • Abduction: From a given set of facts, infer another fact that is possibly true. For example, if 
one has cough and fever, one might hypothesize that one has COVID. But one might have 
a cough and fever from other causes as well. One cannot say with certainty what the cause 
is. Eric Larson (2021) explains this with a well known example. We know that if it rains, 
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Figure 1.11 A triple subject, predicate, object store can store heterogeneous information in 
a knowledge graph, with nodes connected by directed edges. Each labelled edge goes from 
subject to object and is labelled by the property or the predicate. The figure shows a snippet of 
a knowledge graph relating to music and poetry.
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the lawn will be wet. But we also know that if the sprinkler is on, the lawn will be wet, or if 
children are playing with a hose, the lawn will be wet, or if there was a flood (as is common 
in these times of climate change), the lawn will be wet. Then if we observe that the lawn is 
wet, how can we infer the cause? Which causal connection shall we make use of? Larson 
calls it the selection problem for AI. And yet, we manage to make abductive inferences all 
the time. Very often we use other facts we know. For example, we may know that the sky 
has been clear and so rain cannot be the cause of the grass being wet. Medical diagnosis, 
incidentally, is making abductive inferences. A doctor may suspect COVID if you have 
cough and cold, especially if a new wave has started. But the doctor relies on a clinical 
test to validate the hypothesis. Observe that we do not face this difficulty with deduction 
in which if we know the antecedent of a rule to be true, then the consequent necessarily 
follows.

Larson says that as humans the majority of the inferences we do are abductive in nature, and 
that is why they can be error prone too. The following scenario illustrates plausible inferences. 
If you are running with the ball in a football game, you need to be aware of where the other 
players are and what they intend to do. This inference of intention comes from background 
knowledge about the strategies and tactics used by the team. You should be able to imagine that 
if you kick the ball to where your teammate should be running to, then he would have a better 
shot at the goal. The opponents no doubt are thinking about it too. Why is the opposing team 
player running towards that spot? Making inferences is the basic cognitive act for intelligent 
minds and we are constantly making inferences.

Another example is the work done by Roger Schank and his group with stereotypical 
situations knowledge which is instrumental in generating expectations about what must have 
happened and what to expect. If we hear that ‘John went to a restaurant. He ordered a masala 
dosa. He left satisfied,’ we can imagine what must have happened because we have knowledge 
about how restaurants function, even though the story is cryptic. We know that he must eaten 
the dosa, and must have paid for it, because that is the normal behaviour in a restaurant.

In summary, the agent must be able to reason with what it knows to infer what is implicit 
(deduction) or even what is unknown (induction) to create new knowledge. It must be able to 
hypothesize connections between facts and events (abduction) to anticipate what is happening 
in the world around it, and what other agents are up to. It must be able to recognize intentions 
and plans of collaborators and adversaries, make its own plans, evaluate and choose the best 
ones, execute them, monitor them as they are executed, replan if necessary or take advantage of 
an unexpected opportunity. It must also be able to use the science of probability to judge which 
of its possible decisions is most likely to succeed.

The previous two subsections have described in a nutshell those aspects of AI that would 
each need a complete book for any justice to be done. We have briefly dwelt upon these to 
highlight the fact that they are necessary for building intelligent systems, along with other 
processes shown in Figure 1.6.

While all these are necessary, we now come to the subject matter of this book – solving 
problems by first principles by projecting decisions into the future to tease out those that solve the 
problem. The search methods that we study in this book arrive at solutions by trying out different 
options available to the agent. In the following section we outline the contents of this book.
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1.5.3  Imagine the future and shape it

We have seen that having a memory enables an agent to capture and store experiences that can 
facilitate solving problems. Memory based reasoning allows us to reuse solutions from the past. 
Why would one want to reinvent the wheel every time? In addition, the faculty of language 
allows agents to share knowledge and experience allowing new researchers to ‘stand on the 
shoulders of giants’ (Hawking, 2003).

But the world we live in is not always so simple. For every nugget of wisdom, we can 
find one that says the exact opposite.8 The Greek philosopher Heraclitus of Ephesus (535–475 
BC) believed that change is a constant and famously said – No man can step into the same 
river twice. Problems are often similar, but not always. When faced with a new problem, the 
intelligent agent needs to solve it by first principles, ab initio. This book is devoted to such an 
approach to solving problems, in which the agent searches for solutions by projecting proposed 
actions into the future.

The ability to model the world is central to intelligent behaviour. This model must include 
not only the description of the world but also the moves available to the agent to achieve the 
goals it has. The algorithms that we study allow the agent to imagine the consequences of 
the actions and decisions and try out various combinations in a mental simulation to select 
the sequences that would work. The ability to imagine is perhaps the single most important 
characteristic of intelligence.

We now describe the chapterwise contents of this book.
Chapter 2 introduces the basic machinery of search. We begin by defining the state space, 

which is the space of all possible states. We define a neighbourhood function, Movegen(state), 
that specifies the moves that an agent can make in any given state. The task of the search 
algorithm is to find a sequence of such moves from a given start state to a desired goal state. 
A function called goaltest(state) inspects a state and identifies whether it is a goal state or 
not. The search algorithm begins at the start state, uses to MoveGen function to generate and 
navigate the state space. Then it either returns the solution or reports failure if it has exhausted 
all possibilities. In the process, it has generated and explored a part of the state space in the 
form of a search tree.

We also introduce the notion of a solution space, which is a space of candidate solutions. 
Instead of moves in the state space from one state to another, the neighbourhood function in the 
solution space is perturbation of candidates in search of the solution.

Chapter 3 introduces the simplest search strategies, depth first search and breadth first 
search, familiar to the students of graph algorithms. The difference in AI search is that the graphs 
are generated on the fly. Apart from time and space complexity, we also look at completeness 
and the quality of solution found. We compare the two algorithms and devise a new algorithm, 
depth first iterative deepening, that combines the best features of both. In all three cases, we 
recognize that the search spaces grow exponentially due to combinatorial explosion (CombEx). 
This leads us to explore various approaches to mitigate the effects of CombEx in the chapters 
that follow.

8  Consider the two sayings – ‘Out of sight, out of mind’ versus ‘Absence makes the heart grow fonder’.

Chapter_01 Page 23 26/12/23  1:54 PM

https://doi.org/10.1017/9781009284325.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009284325.002


24    Search Methods in Artificial Intelligence

Chapter 4 introduces informed search aimed to guide the search towards the goal instead 
of the blind or uninformed search methods of Chapter 3. We introduce the idea of a heuristic 
function h(n) that looks at a state n and computes an estimate of its distance to the goal state. 
Search that employs such a heuristic function is called heuristic search. From the set of all 
available candidates, the algorithm best first search picks that node that appears to be closest 
to the goal. We show that if a solution exists, the algorithm will find it. That is, it is complete 
for finite state spaces. The performance of the algorithm depends upon the quality of heuristic 
estimate, and it has been empirically found that most implementations still need exponential 
time and space.

In an effort to save on space, we resort to local search. The algorithm hill climbing burns its 
bridges and considers only the neighbours of the current state (or candidate solution). Instead 
of using the GoalTest function, it looks for an optimum value of the heuristic function. While 
it does result in reduced complexity, it loses out on completeness. It does not guarantee finding 
a solution and can get stuck in a local optimum. Then begins the quest for variations in local 
search more likely to succeed in finding a solution. We look at the algorithm beam search that 
explores more than one path, and at tabu search that allows a search algorithm to get off a 
local optimum and continue exploration. We also introduce an aspect of stochastic search with 
iterated hill climbing.

Chapter 5 is devoted to stochastic local search methods. All the algorithms in the chapter 
draw inspiration from processes in nature. Simulated annealing begins with randomized moves 
and gradually makes them deterministic, reminiscent of the annealing process used to form 
materials in the lowest energy states. Genetic algorithms mimic the process of survival of 
the fittest in natural selection and mix and churn the components available in a population 
of candidates. We look at how genetic algorithms solve the travelling salesperson problem. 
Finally, we introduce the ant colony optimization algorithm that draws inspiration from how 
ants communicate with each other via pheromone trails and collaborate to find shortest paths. 
All the three algorithms studied are popular in the optimization community.

The algorithms studied so far do not guarantee an optimal solution (except breadth first 
search). Chapter 6 introduces the well known algorithm A* that employs heuristic search and 
also guarantees an optimal solution even for infinite state spaces. We say that the algorithm is 
admissible and we present a proof of its admissibility. We introduce the problem of sequence 
alignment from bioinformatics where A* is applicable. We then look at space saving variations 
of A* that can solve much bigger problems than A* can.

Chapter 7 looks at problem decomposition and how problems can be solved in parts. We 
begin by looking at pattern directed inference systems in which an algorithm looks for patterns 
in the given state and triggers appropriate actions. The production system architecture lays the 
foundations of building rule based expert systems. We present the rete algorithm which is an 
efficient implementation that is used in many business rule management systems. Such systems 
also serve as a vehicle of declarative programming exemplified by the language OPS5 in which 
the user just writes the rules and an inference engine decides which rules to apply to what data.

We then look at a goal directed approach to breaking down problems into subproblems 
with And–Or graphs. The idea is to decompose the problem into simpler subproblems and 
continue the process till the reduced problems are primitive problems with trivial solutions. We 
present the algorithm AO* that can be used to find an optimal least cost decomposition strategy.
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In Chapter 8, we turn to games as an example of adversarial reasoning. We introduce games 
that are popular amongst humans and computer programmers, and focus on two person board 
games like chess. We begin with the idea of the minimax value that is the Nash equilibrium 
for a game. Games like chess have game trees that are too large to be analysed completely 
though, and one needs to introduce the notion of an evaluation function that allows the minimax 
algorithm to find a move by limited lookahead. Then we look at efficient versions, alpha beta 
pruning and SSS*, that do progressively more pruning of the game tree. We conclude with some 
commentary on the program AlphaGo that created a sensation by beating the go champion in 
2016, and on the games backgammon and scrabble. Finally, we introduce contract bridge as an 
open challenge.

Chapter 9 is devoted to automated planning that has emerged as an independent area 
of research, with its own representation and move generation schemes. The community has 
devised an array of domain description languages allowing for richer descriptions and actions. 
A distinctive feature of planning domains is that the planning operators have an inbuilt arrow 
of time. When an action that is applicable is applied to a given state in a forward direction, 
it always results in another state. Searching backwards from goal descriptions is desirable 
because of low branching factor but runs into inconsistencies that require double checking the 
plan found. We look at a variation called goal stack planning that gets around this problem. 
We also look at plan space planning that searches in the solution space, allowing in principle 
separation of action selection from action scheduling. Next, we look at two stage approaches 
that first encode the planning problem into an intermediate representation and then solve that. 
Our focus in this chapter is on the algorithms that work in the simplest planning domains 
called STRIPS domains, but we do describe the more expressive planning domains that the 
community has engaged with.

Chapter 10 takes a quick look into the rich world of representation and reasoning. We 
look at the notions of entailment and proof, and at how deduction involves search. Our focus 
is on formal reasoning as has evolved in the logic community with emphasis on sound and 
complete theorem proving. We confine ourselves to first order logic that occupies a major 
part of the representation landscape in computer science. Our goal is to show how search is 
instrumental in reasoning. Like in planning, we explore both forward reasoning from facts to 
conclusions and backward goal directed reasoning for theorems to be proved. Both turn out 
to be incomplete, in the sense that given a knowledge base, there can be statements that are 
entailed, but the two algorithms are unable to find a proof for them. We then introduce the 
well known resolution refutation method that is both sound and complete. We also introduce 
the idea of logic as a programming language and also look at some more expressive languages 
briefly.

Chapter 11, written by Sutanu Chakraborti, takes a brief look at machine learning, 
highlighting the fact that the process of learning or training involves search in the space of 
possible models. A model encapsulates a function from the input to the output and usually 
computes the output quickly. This is because the relation between the input and output is 
acquired and made explicit in the learning phase. Models may go through extensive training 
phase, but the process of using them is quick. We look at some examples of training, including 
Bayesian classification, k nearest neighbours, decision trees, and neural networks. We also look 
at the K-means algorithm as an example of unsupervised learning.
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Finally, Chapter 12 looks at constraint satisfaction which offers the tantalizing possibility 
of integrating the different kinds of processes needed for intelligence into one. We study finite 
domain constraint satisfaction problems, and show how search and reasoning can be combined, 
and look at some algorithms where reasoning is effective in reducing the search effort. The 
most attractive feature of constraints is that they offer a unifying formalism for representation, 
when solutions can be found by general purpose methods. Eugene Freuder (1997), one of the 
founding figures in constraint programming, has said – ‘Constraint Programming represents 
one of the closest approaches computer science has yet made to the Holy Grail of programming: 
the user states the problem, the computer solves it’.

A Note for the Reader

The proof of the pudding is in the eating. It is all very well to speculate upon the nature of 
intelligence and whether machines will ever be able to think or not. There is no compelling 
argument that they will not be able to do so. At the same time, there is no convincing demonstration 
of artificial general intelligence so far. Yet machines continue to excel in individual tasks doing 
many useful things, from diagnosing diseases from images and radiographs, finding routes for 
us in a new city, controlling an autonomous robot on Mars, and beating us humans on all board 
games. All this is done with algorithms to tackle specific problems. Will they all come together 
as one entity that will solve all problems that have been solved independently? A key stumbling 
block is going to be knowledge representation. Can we create a general representation scheme 
in which all problems can be posed and solved? Then the machine will be capable of analogical 
thinking across diverse domains, and perhaps spot connections hitherto unknown. If we can 
do that, then we would have surpassed humans on this aspect, because no individual human 
is a master of all. All of us professionals in the modern world work with our narrow domain 
ontologies and are specialists in our areas of expertise. The frontiers of knowledge have 
expanded so much that the days of the Renaissance men like Leonardo da Vinci are over.

Meanwhile, the student of AI must acquire the tools of the trade. The building blocks. 
Understand the algorithms that are beneath the hood of a problem solver and learn to implement 
them. The crux of this book is a collection of 50 odd algorithms addressing different aspects of 
problem solving. These algorithms are described in pseudo code that may need getting used to. 
S Baskaran, an expert programmer, has put together an appendix that is at the end of the book. 
We urge the reader to study that before embarking upon the book. It should go a long way in 
your quest of a suite of programs for sophisticated, interesting, and useful applications.

Exercises

 1. Alan Turing prescribed the Imitation Game as a test of whether machines can think or 
not. We call the test the Turing Test. Discuss the merits and demerits of the Turing Test. 
Is the ability to chat intelligently a sufficient indicator of intelligence? What is the role of 
world knowledge in a meaningful conversation? How should a machine react to a topic it 
does not know about and still convince the judge that he is chatting with a human? Should 
a machine introduce errors or delays intentionally, for example, when given a massive 
arithmetic problem?
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 2. Devise three sets of questions for the Winograd Schema Challenge that would require 
world knowledge to answer correctly.

 3. Natural language is notoriously ambiguous, a fact that has been widely exploited to create 
punch lines that surprise the listener. For example, ‘Time flies like an arrow, fruit flies like 
a banana’ sometimes attributed to Groucho Marx. When humans parse language, they start 
building a semantic picture of what they are listening to. Garden path sentences force the 
listener to abandon an initial likely interpretation after hearing the complete sentence. For 
example, ‘The old man’s glasses were filled with sherry’. Given the sentence ‘She shot 
the girl with the rifle’, how would a computer chat program answer the following question 
‘Who had the rifle?’

 4. In Chapter 8, we discuss games as models of rational behaviours aimed at maximizing 
the agent’s own payoff. While this is an economic model that explains why individuals, 
corporates, and nations behave the way they do, what does it say about the collective 
intelligence of humankind whose focus is on arms manufacture, sale, and use, even while 
climate change looms upon us?
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