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Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the
pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected
by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of
studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the
cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, athero-
thrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorp-
tion/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty
acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages.
In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas
ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of
n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the
role of CD36 and dietary fatty acids in cholesterol metabolismmight be considered in medical nutrition therapy in the near future. Therefore, the
novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis
are discussed in this review.
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Introduction

In the last decade, CVD has become the leading cause of mortal-
ity and morbidity, with increasing prevalence worldwide(1,2).
One of the main causes in the pathogenesis of CVD is impair-
ment of cholesterol homeostasis(3). Cholesterol and lipoprotein
homeostasis is influenced by the endogenous synthesis of cho-
lesterol, absorption of dietary cholesterol in the gastrointestinal
tract, transport of cholesterol via lipoproteins in the circulation,
and the reabsorption of cholesterol excreted in the form of bile
acids. Likewise, recent studies have noted that the levels and/or
expressions of enzymes, transporters, receptors and transcrip-
tion factors involving in cholesterol metabolism are influenced
by dietary fat and fatty acids(3-6).

The amount of dietary total fat, fatty acids and fatty acid
pattern are important for cholesterol homeostasis and CVD.
Dietary fatty acids affect cholesterol homeostasis in different
ways depending on the existence of double bonds and their cis
or trans forms(7). Under these circumstances, high dietary SFA

and trans-fatty acids (TFA) might cause dyslipidaemia and hyper-
cholesterolaemia by impairing cholesterol metabolism(8,9). On the
contrary, it has been reported that a diet high in MUFA might be
protective against CVD by improving cholesterol and
lipoprotein homeostasis(10). Though the effects of total PUFA,
n-3 PUFA and n-6 PUFA content in the diet on cholesterol
homeostasis are still controversial, the amount of total PUFA,
n-6 PUFA andn-3 PUFA, and then-3:n-6 PUFA ratio are important
for cholesterol homeostasis(5,6).

Although some of the mechanisms by which dietary fatty
acids affect cholesterol metabolism are clearly known, novel
mechanisms that may influence cholesterol metabolism are also
argued in the literature(6,11). One of the proposed novel mecha-
nisms is the function of CD36 (fatty acid translocase/cluster of
differentiation 36) as a fatty acid transporter, but there are a
limited number of studies clarifying this role in cholesterol
homeostasis(12,13). Dietary fatty acids might influence CD36-
mediated cholesterol metabolism by altering CD36 levels
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and/or expression in macrophages, liver, small intestine, and
some other cells and tissues involved in cholesterol homeosta-
sis(12,14,15). All this information highlights that the CD36 receptor
is thought to be a novel nutrient-sensitive biomarker for choles-
terol homeostasis.

Nowadays, there is an increasing number of studies related to
the effect of dietary fatty acids on cholesterol metabolism
induced by CD36 in the literature(16,17). However, there is a lack
of knowledge in combining the potential mechanisms of dietary
fatty acids on CD36-mediated cholesterol metabolism. Thus, the
novel nutritional target of CD36 and interventions that focus on
dietary fatty acids on potential mechanisms underlying choles-
terol homeostasis need to be discussed. Therefore, the present
review is written to reveal the novel effects of dietary fatty acids
on CD36-mediated cholesterol homeostasis in terms of absorp-
tion, endogenous synthesis, circulation and excretion of
cholesterol.

Method of literature search

The literature search was performed by using the databases of
PubMed, Science Direct, Google Scholar and Scopus with the
keywords ‘dietary fatty acid types and CD36 and/or the CD36
related mechanisms of cholesterol metabolism’. Reviews, system-
atic reviews, meta-analyses, epidemiological studies, randomised
controlled trials and experimental studies conducted on human
subjects, animals and cell cultureswere included from the relevant
literature. Articles in the English language and published between
2000 and 2019 were involved in the present review.

Structure and functions of CD36

CD36, of which many functions have been discovered in recent
years, was first found in platelets and was named platelet glyco-
protein IV (GPIV). After that, CD36 was defined as fatty acid
transporter (FAT) and receptor in macrophages for oxidised
LDL (oxLDL)(18,19). In spite of its simple molecular structure,
the transmembrane domain provides receptor properties in
addition to its carrier protein property. Additionally, CD36 is a
part of the class B scavenger receptor family along with scav-
enger receptor class B tip I (SR-BI) and lysosomal integral mem-
brane protein II (LIMP II)(18,19). The molecular weight of CD36
ranges from 80 to 90 kDa and has two transmembrane domains
(Fig. 1). First, it was determined that the amino acid sequence
93–120 is the binding site for thrombospondin (TSP) 1 and
TSP2. Subsequently, it was revealed that the binding site located
in amino acid sequence 155–183 is for oxLDL, advanced glyca-
tion endproducts and apoptotic cells, sequence 146–164 is for
Plasmodium falciparum-infected erythrocytes, and sequence
127–279 is for long-chain fatty acids (LCFA)(18-20). Additionally,
hexarelin and EP80317 are ligands for the CD36 receptor(18,19).

In humans, CD36 is expressed on many cells and tissues
including platelets, microvascular endothelial cells, monocytes,
macrophages, adipocytes, heart and skeletal muscle cells, retinal
pigment epithelial cells and enterocytes, whereas it is partially
expressed on hepatocytes and smooth muscle cells(18).
Initially, CD36 was described as a scavenger receptor that plays

a role in endocytosis by binding to its ligands such as TSP1 and
oxLDL. Nowadays, CD36 has a variety of metabolic effects since
it is expressed in many cells and tissues and has many ligands.
Therefore, it is currently being discussed whether CD36 might
influence the pathogenesis of hyperlipidaemia, dyslipidaemia,
inflammation, atherothrombosis and angiogenesis(17,18).

Fatty acid uptake into cardiomyocytes, adipocytes, entero-
cytes and skeletal myocytes requires protein-mediated transport
by fatty acid transport protein (FATP), fatty acid binding protein
(FABP) and CD36(21,22). LCFA uptake into cardiomyocytes is
regulated by the vesicular recycling of CD36 from endoplasmic
reticulum to the plasmamembrane(22). In this context, short-term
regulation of LCFA uptake at the plasma membrane is provided
both by heart muscle contraction and insulin signalling(21). For
long-term regulation, expression of CD36 in the nucleus is regu-
lated by PPAR and other transcriptional factors(23,24).
Furthermore, CD36 accelerates the entry of fatty acids from
the cytoplasm tomitochondria for β-oxidation(23). Since fatty acid
uptake into the cytoplasm initiates the signalling pathways
related to PPAR, the expressions of genes especially involved
in lipid metabolism are circuitously altered by CD36(23,24). In this
context, CD36 may cause the degradation of 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR) and inactivation of
sterol regulatory element-binding protein 2 (SREBP2) by
inducing PPARγ and thus decrease endogenous cholesterol
synthesis(16,25). Furthermore, CD36-mediated liver X receptor
(LXR) activation might accelerate reverse cholesterol transport
by up-regulating the activities of ATP-binding cassette trans-
porter (ABC) A1 (ABCA1) and G1 (ABCG1) in the liver and
macrophages(17,26,27). Considering its roles in cholesterol synthe-
sis, transport and reverse cholesterol transport, CD36 might be
effective in cholesterol homeostasis and play an important role
for dyslipidaemia and hyperlipidaemia-induced CVD(17,23).

In addition to its role for LCFA uptake and lipid metabolism,
the binding of CD36 to oxysterols, TSP1, oxLDL and oxidised
phospholipids in endothelial cells, macrophages and platelets
is important in the onset and development of atherosclerosis
by inducing platelet aggregation, thrombosis, production of

Fig. 1. Transmembrane structure of the cluster of differentiation 36 (CD36)
receptor(19,20).
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inflammatory cytokines and foam cell formation(18,19,28,29).
Studies have shown that there was a positive correlation
between soluble CD36(28) or macrophage CD36(30) levels and
formation of atherosclerotic plaques. Furthermore, CD36 coop-
erates with toll-like receptors (TLR) and their heterodimers
(TLR4-TLR6) to bind oxLDL and stimulate inflammation-induced
atherosclerosis(31). Moreover, it has been reported that CD36 has
an important role for the accumulation of cholesterol within the
macrophages resulting in lysosomal disruption and activation of
NLR family pyrin domain containing 3 (NLRP3) inflamma-
somes(31,32). Human studies have reported that CD36 increases
the release of inflammatory cytokines such as TNFα, IL-1β and
interferon-γ by inducing activation of NF-κB in monocyte-
derived macrophages(33). On the other hand, CD36 is a receptor
for several proteins containing peptide domains known as TSP1
repeats. Thus, in endothelial cells, CD36 functions as an endog-
enous negative regulator of angiogenesis(34). CD36 accom-
plishes this function by suppressing growth factor-induced
pro-angiogenic signals and generating anti-angiogenic signals
that cause apoptosis(34,35). All these functions of CD36 reveal
the vital role of this receptor in cardiovascular metabolism.

Role of CD36 in cholesterol metabolism

Cholesterol homeostasis is a metabolic process that involves the
absorption of dietary cholesterol, endogenous synthesis, trans-
port of cholesterol, cholesterol excretion in the form of bile acids
and reabsorption of bile acids. Any change in cholesterol
homeostasis might cause pathophysiological conditions and
induce increased risk of cardiometabolic disorders(36). The
effects of CD36 on lipid metabolism might be different due to
its expression level in many cells and the presence of many
ligands. As shown in Fig. 2, the possible effects of CD36 on cho-
lesterol homeostasis include absorption of dietary cholesterol,
cholesterol synthesis, lipoprotein formation, reverse cholesterol

transport, and synthesis and reabsorption of bile acids
(Fig. 2)(17,18).

One of the components of cholesterol homeostasis is the
absorption of dietary cholesterol in the gastrointestinal tract.
CD36 is expressed in the small intestine, especially on the
apical membranes of the duodenum and jejunum, and, there-
fore, is proposed to facilitate the absorption of fatty acids and
cholesterol(37). Drugs (i.e. ezetimibe), used in the treatment of
hypercholesterolaemia, are known to suppress the absorption
of cholesterol in the small intestine by inhibiting important
carriers for cholesterol absorption (such as CD36, Niemann–
Pick C1-like 1 (NPC1L1), SR-BI)(36,38). In animal studies, it has
been shown that dietary cholesterol absorption in the small
intestine(37,39) and the rate of passage to the lymph circulation
of cholesterol(37) are lower in CD36 gene knock-out mice. It
has also been reported that CD36 increased the absorption of
cholesterol by affecting the level of NPC1L1 carrier protein(39).
On the other hand, it was found that, in CD36 and SR-BI
knock-out mice, cholesterol absorption was delayed with a
high-fat diet compared with standard chow feed(40).
Additionally, it has been shown that secretion of apo-B to the
lymphatic circulation is decreased in CD36 knock-out mice
and therefore, the absence of CD36 suppresses chylomicron
formation in enterocytes(37).

In addition to the effect on the absorption of dietary choles-
terol, CD36 might affect cholesterol homeostasis by altering the
activities and/or levels of regulatory enzymes for endogenous
cholesterol synthesis in many tissues, especially in the liver.
CD36 binding to ligands such as hexarelin, oxLDL or oxysterols
induces PPARγ expression by activating PPARγ coactivator 1α
(PGC1α)(17,41). PPARγ is a member of a nuclear receptor family
that regulates the expression of many glycogenic and lipogenic
genes in many tissues, mainly in the liver, cardiomyocytes and
adipose tissue(16,17,42). Increased expression of PPARγ might
decrease endogenous cholesterol synthesis by activating insu-
lin-stimulated gene 1 (Insig1) and insulin-stimulated gene 2

Fig. 2. Roles of cluster of differentiation 36 (CD36) in cholesterol metabolism(17,18). ABC, ATP binding cassette transporters; AMPK, 5 0AMP-activated protein kinase;
CYP, cytochrome P450 family; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; LKB1, liver kinase B1; LXR, liver X receptor; NPC1L1, Niemann–Pick C1-like 1;
SREBP2, sterol regulatory element-binding protein 2; VLDL-C, VLDL-cholesterol.
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(Insig2) and inducing the degradation of HMGCR and retention
of SREBP2 in the endoplasmic reticulum(17). In a study, it was
found that expression of PPARγ in adipose tissue was reduced
and therefore Insig1 level was decreased in CD36 gene
knock-out mice(43). However, in a recent study, it was reported
that CD36 expression increased in macrophages incubated with
advanced glycation endproducts, and the expression levels of
HMGCR and acetyl-CoA acetyltransferase (ACAT) 1 were
elevated(44). Furthermore, a study conducted on mice showed
that the expressions of CD36 and HMGCR were increased in
epididymal white adipose tissue, while PPARγ expression was
not affected(45). Also, CD36 activates liver kinase B1 (LKB1),
which is serine/threonine kinase 11 (STK11), known as a
tumour suppressor(46). 5 0AMP-activated protein kinase α
(AMPKα) stimulated via LKB1 activation might inhibit choles-
terol synthesis by providing phosphorylation of HMGCR(17,47).
In a recent study, it was reported that liver CD36 expression
was decreased, hepatic fatty acid and cholesterol accumulation
was increased, and blood lipoprotein profile was impaired due
to decreased activity of the LKB1/AMPK pathway in mice fed
with a high-fructose diet(48).

In reverse cholesterol transport, another pathway induced by
ligands binding to CD36 is the LXR-mediated pathway, and
increased hepatic LXR expression was found to positively corre-
late with CD36 expression in the liver(49). Increased LXR expres-
sion in the liver may have an impact on the levels of ABCA1 and
ABCG1 transporters that are important for reverse cholesterol
transport, and hence may influence the formation of foam cells
in the vessels by altering cholesterol transport from peripheral
tissues, primarily from macrophages, to the liver(17,50).
Elevating the level of ABCA1 inmacrophages transfers phospho-
lipids and cholesterol to apo-A1, while ABCG1 transfers choles-
terol to immature HDL-cholesterol (HDL-C)(50). In CD36 gene
knock-out mice, liver expressions of apo-A1 and apo-A4, which
are mainly found in the HDL-C structure, were higher than in
wild-type mice(51). In addition to reverse cholesterol transport
and HDL-C, elevation of CD36 in the liver may induce the syn-
thesis and release of VLDL-cholesterol (VLDL-C) due to the fact
that CD36 increases the uptake of LCFA into the liver(52,53). Also,
it was found that serum total cholesterol and LDL-cholesterol
(LDL-C) levels were significantly elevated in type II CD36-
deficient humans (CD36 is expressed on monocytes but not
on platelets)(53).

Cholesterol is used in the synthesis and reabsorption of bile
acids from the intestine, which are metabolic pathways for cho-
lesterol excretion. Increasing levels of CD36 in the liver might
cause elevation of the key enzymes of bile acid synthesis, i.e.
cholesterol 7α hydroxylase (CYP7A1) and sterol 27 hydroxylase
(CYP27A1)(54). Furthermore, studies have reported that CD36-
mediated LXR stimulation influences the reabsorption of bile
acids by increasing ABCG5/G6 expression and decreasing
NPC1L1 transporter expression(26,49). It was also been reported
that an increase in CD36 expression in the hepatocytes of mice
fed with a high-fat and high-cholesterol diet leads to an increase
in LXR and therefore ABCG5/G8 levels(55).

Accordingly, ligand-receptor downstream signalling of CD36
might affect cholesterol metabolism via different proposed
mechanisms. CD36 may elevate dietary cholesterol absorption,

increase or decrease endogenous cholesterol synthesis and
reverse cholesterol transport, and may increase synthesis and
reabsorption of bile acids(17,18,26). The results of human studies
have shown that CD36 deficiency induces dyslipidaemia
(elevated blood TAG, total cholesterol and LDL-C, and
decreased HDL-C) and increases the concentration of lipopro-
tein remnants(52,53). However, more preclinical and clinical
studies are needed to clarify the mechanisms of how CD36
affects cholesterol metabolism.

Dietary fatty acids, CD36 and cholesterol metabolism

The dietary fatty acid pattern is essential for cardiovascular
health which may increase or decrease blood total cholesterol,
and circulating lipoprotein and apolipoprotein levels(5,7,56).
Moreover, the saturation (saturated, monounsaturated, polyun-
saturated) and the form (cis/trans) of fatty acids may change the
expression of CD36 in many tissues and cells involved in choles-
terol homeostasis, especially in the liver, small intestine, adipose
tissue and macrophages(12,30,57). Therefore, the studies on the
combining effects of novel biomarkers (i.e. CD36) and dietary
fatty acid intake on cholesterol metabolism have been currently
accumulating in the literature.

SFA and CD36-mediated cholesterol metabolism

Dietary SFA might have an impact on cholesterol homeostasis
due to various mechanisms including absorption of dietary
cholesterol in the small intestine, endogenous cholesterol syn-
thesis, circulating lipoproteins and cholesterol excretion in the
form of bile acids(6,58). Depending on the source of food, high
dietary SFA intake resulted in higher serum total cholesterol,
LDL-C(59,60) and non-HDL-C levels(61) in meta-analyses. It was
also shown that consumption of red and processed meat was
positively associated with serum non-HDL-C level(61). Though,
since dairy products, butter, red meat, fish, eggs and poultry
have different SFA contents(56), they might influence cholesterol
homeostasis depending on the dietary fatty acid pattern(61,62).

Cholesterol absorption. NPC1L1 has been identified as a cho-
lesterol transporter localised at the apical membrane of the small
intestine; while ABCA1, ABCG5 and ABCG8 are presumed to
facilitate cholesterol efflux from the enterocyte(63). As summar-
ised in Table 1, it has been generally hypothesised that high
dietary SFA might result in elevated cholesterol absorption
(NPC1L1 and CD36), chylomicron formation (microsomal TAG
transfer protein (MTTP) and ACAT), and cholesterol efflux from
enterocytes to lymphatic circulation (ABCA1/G1/G5/G8)(64-68).
These results showed that the absorption/transport of choles-
terol from the apical and basolateral membranes of enterocytes
was a complex process with many carriers, proteins and
enzymes. In this context, the hypothesis of acceleration of
cholesterol absorption and chylomicron formation in the small
intestine via CD36 has been presented in the literature in the last
decade(37,39). Expression of CD36 at the proximal end of the
small intestine was higher than at the distal end of the body
and cholesterol absorption decreased by 50 % in CD36(–/–) mice
compared with CD36(þ/þ) mice(37). Hence, down-regulation,
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dysfunction or deficiency of CD36 in the intestine might lead to a
delay of efficient chylomicron formation (MTTP, FABP) and
clearance (apo-C2) in the jejunum induced by impaired gene
expression(37,39). A study conducted on mice fed with a high-
SFA diet showed that although CD36 and NPC1L1 expressions
in the small intestine did not change, the expressions of diacyl-
glycerol acyltransferase 1 (DGAT1), MTTP, FABP and apo-B
increased in enterocytes, inducing chylomicron formation(14).

Cholesterol synthesis. SFA might induce the endogenous syn-
thesis of cholesterol in many tissues. As shown in Table 1, in this
process, SREBP2 might be up-regulated by dietary SFA which
regulates the synthesis and uptake of cholesterol by altering the
expression of HMGCR and LDL receptor (LDLR)(12,67).
Additionally, PPARγ coactivator 1α (PGC1α) may be stimulated

by dietary SFA and contribute to higher SREBP2 mRNA levels. In
the endoplasmic reticulum, a sterol sensor was proposed for the
modulation of SREBP2 transcriptional activity in response to
changes in intracellular free cholesterol levels(67). Although
ACAT2 is responsible for the esterification of cholesterol, the effects
of high SFA intake on ACAT2 have not been clarified yet(68). Mice
fedwith a high-SFA diet showed increased endogenous cholesterol
synthesis by decreasing expression of CD36 and thus expression of
PPARγ in the liver(69,70). SFA are generally thought to increase
endogenous cholesterol synthesis, but the effect of CD36 on this
mechanism is still unclear.

Cholesterol transport. Intervention studies showed that SFA
elevated atherogenic lipoproteins/apolipoproteins and decre-
ased non-atherogenic lipoproteins/apolipoproteins(11,59,71-75) as

Table 1. Potential effects of SFA on CD36-related cholesterol homeostasis

Fat component*

Species Cells/tissues
Total fat/SFA
(% energy) SFA (mM) Main outcomes References

Cholesterol absorption C57BL/6 mouse Intestine 42/26 SR-BI and NPC1L1 ↓
ABCG5/G8 =

(65)

45/11·3 ABCA1/G5/G8 ↓
NPC1L1 ↓
MTTP ↑

(64)

45/22·5 DGAT1 ↑
apo-B ↑

(14)

Cell line Caco-2 line 0·5 or 1 NPC1L1 ↑
ACAT2 ↑

(66)

Cholesterol synthesis C57BL/6 mouse Liver 60/22·6 HMGCR and SREBP2 ↑
Insig1 ↑

(13)

41·5/29·8 PPARγ2 ↑
CD36 ↑

(70)

45/11·3 HMGCR ↑ (64)

F1B hamster Liver 26·7/20·7 HMGCR, SREBP2 ↑
PPARα ↓

(67)

Cell line HepG2 line 0·3 HMGCR and SREBP2 ↑
Total cellular cholesterol ↑

(13)

Cholesterol transport C57BL/6 mouse Serum and liver 60/22·6 Liver TC, serum TC ↑
Liver PCSK9 and LDLR ↑

(13)

42/27·3 Serum TC, HDL-C, oxLDL,
oxHDL ↑

Liver ABCG1/G5/G8 ↑

(15)

Plasma and liver 45/22·3 Liver TC, plasma TC, non-HDL-C ↑
Liver SR-BI and ABCB1 ↑

(73)

ddY mouse Serum and liver 58/41 Liver TC ↑
CD36 ↑

(69)

F1B hamster Serum and liver 26·7/20·7 Serum TC, non-HDL-C ↑
Liver SR-BI and apo-A1 ↑

(67)

Human Serum 40·45/18·2 TC, LDL-C and LDL-C:HDL-C ↑ (71)

Cholesterol excretion C57BL/6 mouse Liver and intestine 42/27·3 Liver CYP7A1 ↑
Intestine ABCG1/G5/G8 ↑

(15)

42/26 Intestine ABCG1/G5/G8 ↑
CYP7A1 and SR-BI =

(65)

Liver 45/11·3 CYP7A1 ↓ (64)

31·3/29·5 Bile acid pool ↓
CYP7A1 ↓

(103)

F1B hamster Liver 26·7/20·7 NPC1L1, ABCG1/G5/G8 = (67)

Golden Syrian hamster Liver 27·3/20·6 CYP7A1 and CYP27A1 = (81)

↑, Increase; ↓, decrease; =, no change; ABC, ATP binding cassette transporter; ACAT, acetyl-CoA acetyltransferase; CD36, cluster of differentiation 36; CYP7A1, cholesterol 7α
hydroxylase; CYP27A1, sterol 27 hydroxylase; DGAT1, diacylglycerol acyltransferase 1; HDL-C, HDL-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; Insig1,
insulin-stimulated gene 1; LDL-C, LDL-cholesterol; LDLR, LDL receptor; MTTP,microsomal TAG transfer protein; NPC1L1, Niemann–Pick C1-like 1; oxHDL, oxidisedHDL; oxLDL,
oxidised LDL; PCSK9, proprotein convertase subtilisin/kexin type 9; SR-BI, scavenger receptor class B type I; SREBP2, sterol regulatory element-binding protein 2; TC, total
cholesterol.

* The molarity or percentage of the energy for total fat/SFA is recorded or calculated from the diets in the reference studies.
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summarised in Table 1. It was also reported that high dietary SFA
intake increased the oxidation of lipoproteins (such as oxLDL and
oxHDL) in serum compared with dietary unsaturated fatty
acids(15). In the literature, it has been generally reported that high
dietary SFA intake might decrease plasma HDL-C levels.
However, a meta-analysis found that high dietary SFA intake from
hydrogenated vegetable oils consisting of TFA might elevate
plasma HDL-C(59). Likewise, high dietary SFA due to dietary total
fat intake might cause higher plasma HDL-C level relative to
increase in plasma total cholesterol level in the case of hyperlipi-
daemia(76). In addition, cholesteryl ester transfer protein (CETP)
might be up-regulated by high SFA intake, induce cholesterol
transport from HDL-C to VLDL-C, and thus decrease reverse cho-
lesterol transport(77). Moreover, high dietary SFA has been shown
to up-regulate(15,78), down-regulate(13) or not change(79) the
expression of transporters such as CD36, SR-BI, ABCA1 and
ABCG1 in reverse cholesterol transport in the liver and
macrophages.

Cholesterol excretion. As shown in Table 1, high dietary SFA
might inhibit the synthesis of bile acids in the liver via
CYP7A1 and CYP27A1 enzymes, and might accelerate the reab-
sorption of bile acids via ABCG5/G8 in the intestine(15,64,80,81).
Moreover, activation of LXR increases bile acid synthesis from
cholesterol and cholesterol excretion into bile. CD36 might be
involved in this mechanism due to the fact that it stimulates
LXR expression(17,49). However, studies on how SFA affect
CD36-mediated bile acid synthesis in the liver and reabsorption
in the intestine are not completely clarified yet.

To sum up, high dietary SFA intake might impair cholesterol
homeostasis by a variety of mechanisms including absorption,
synthesis, transport and excretion of cholesterol (Table 1). In
these mechanisms, many enzymes, transcription factors and
transporters such as CD36may be influenced by dietary SFA con-
tent. Thus, according to the results of recent studies it was indi-
cated that SFA of 12–43 % from daily energy intake disrupts
cholesterol homeostasis and elevates atherogenic lipoprotein
levels in the blood(59,71,74). International authorities recommend
limiting dietary SFA due to the adverse effects of SFA intake on
cholesterol metabolism and homeostasis(5,7,82). In this context,
the European Food Safety Authority (EFSA) recommends reduc-
ing SFA intake as low as possible in order to prevent the eleva-
tion of LDL-C(83), while the American Heart Association (AHA)
recommends limiting SFA to 5–6 % of the daily energy intake
for healthy adults(7). The European Society of Cardiology, the
2015–2020 US Department of Agriculture Dietary Guidelines
for Americans, and Turkey Dietary Guidelines(84) recommend
that dietary SFA should be <10 % (as little as possible) of daily
energy intake(1,84). Therefore, since dietary SFA might influence
CD36-induced cholesterol homeostasis, the importance of CD36
in human nutrition and diet therapy should be considered in the
future.

MUFA and CD36-mediated cholesterol metabolism

Cholesterol absorption. Intestinal cholesterol absorption and
chylomicron formation involve several cholesterol transporters
including NPC1L1, ABCG5/8, SR-BI and CD36(85), enzymes

and proteins such as apo-B48, MTTP and and ACAT2(86).
Since absorption of dietary cholesterol mainly occurs in the
proximal side of the small intestine, NPC1L1, CD36 and
ABCG5/G8 are highly expressed on the proximal side(87).
According to results of the studies, a high MUFA intake might
decrease cholesterol absorption by suppressing the expression
of these transporters(6,7,88,89) or might not affect the absorption
(Table 2)(66,67,88). It was also reported that CD36 expression in
enterocytes increased after high olive oil intake in mice(87).
Although this suggests that a high MUFA intake might increase
cholesterol absorption, the increase in cholesterol absorption
might be due to high fat intake rather than high MUFA intake.

Cholesterol synthesis. As summarised in Table 2, the MUFA
content of the diet might decrease endogenous cholesterol syn-
thesis by reducing HMGCR and SREBP2 expression(67,90,91).
Although these effects are not clear, studies have shown that a
high oleic acid intake reduces HMGCR activity(90) or does not
have an impact on HMGCR enzyme level(91). A high consump-
tion of MUFA may induce LDLR expression by stimulating
ACAT1 and by increasing intracellular cholesteryl ester con-
tent(92). In addition, CD36 stimulates PPARγ expression in the
liver, and therefore might suppress cholesterol synthesis. In
rodent studies, it has been reported that a high consumption
of MUFA elevates CD36 and PPARγ expression, and accordingly
decreases plasma and liver total cholesterol levels(93,94). These
results of studies propose that a relatively higher dietary
MUFA content might reduce cholesterol biosynthesis and the
levels of plasma and liver total cholesterol to prevent dyslipidae-
mia or hyperlipidaemia.

Cholesterol transport. MUFA are generally thought to have
positive effects on cholesterol homeostasis(95,96). The results of
studies reported that high dietary MUFA intake might reduce
atherogenic lipoproteins/apolipoproteins(72,97,98), and might
increase non-atherogenic lipoproteins/apolipoproteins(71,99), as
shown in Table 2. In contrast, as high dietary MUFA intake might
result in high dietary fat intake, the levels of total cholesterol,
LDL-C and non-HDL-C might increase after high MUFA
intake(73). Moreover, high dietary MUFA might activate the syn-
thesis of TAG-rich lipoproteins containing apo-E and apo-CIII
and therefore might accelerate the catabolic pathways for these
TAG-rich lipoproteins(98). In macrophages, since CD36-medi-
ated PPARγ and LXR activation may suppress ABCA1 and
ABCG1 expression, decreasing ABCA1/G1 levels might cause
impairment of reverse cholesterol transport(100). In human stud-
ies, it has been found that the CD36 in monocytes is
decreased(101) or is not affected(102) in the individuals consuming
a high intake of olive oil. Studies on how MUFA influence the
CD36-mediated circulating lipoproteins levels and reverse cho-
lesterol metabolism are controversial depending on the fatty acid
source of the food, other dietary components, research model
and dietary manipulation.

Cholesterol excretion. Removal of excess cholesterol from the
body in the form of bile acids in the liver is one of the important
steps for maintaining cholesterol homeostasis(103). It has been
reported that a high MUFA intake might up-regulate the
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synthesis of bile acids in the liver(103,104), but might have no sig-
nificant effect on the expression of transporters involving the
reabsorption of bile acids (Table 2)(67,89). The mechanisms of
synthesis and release of bile acids in the liver and the reabsorp-
tion of bile acids in the intestine might be affected by the CD36
receptor in the liver and intestines(54,55). Studies have reported
that a diet high in MUFA up-regulates the expression of CD36
in the liver(94) and small intestine(39). However, because the
effects of dietary MUFA on cholesterol excretion are not yet
clear, there is need for further randomised, controlled human
studies related to the effect of high MUFA intake on CD36,
and other related factors in bile metabolism.

Basically, it is accepted that sufficient dietary MUFA improves
cholesterol homeostasis and prevents the impairment of choles-
terol metabolism. Studies have shown that 15–25 % of total
energy from MUFA decreases the endogenous synthesis of
cholesterol(67,90) and levels of atherogenic lipoproteins/
apoproteins, but increases non-atherogenic lipoproteins/
apoproteins(73,99) and cholesterol excretion via increased

synthesis of bile acids(103). Therefore, the guidelines published
in European countries recommend that daily MUFA intake to
be 10–15 % of the total energy intake for healthy adults(105).
Also, the AHA(106) and TurkeyDietaryGuidelines(84) recommend
increasing dietary MUFA intake, while decreasing dietary
SFA(84,106). Nonetheless, there is need for more preclinical and
clinical studies to combine the effects of dietary MUFA and
CD36-mediated cholesterol homeostasis.

Trans-fatty acids and CD36-mediated cholesterol
metabolism

Dietary TFA are generally assumed to have adverse effects on
cholesterol metabolism(6,107). TFA might be formed industrially
in the production process of foods as well as naturally in
animal-based foods(9,108). Although the effects of TFA both
obtained from animal-based foods(9) and processed foods(9,109)

on CD36-mediated cholesterol metabolism have not been
explained yet, the general belief is that they may disrupt choles-
terol homeostasis.

Table 2. Potential effects of MUFA on CD36-related cholesterol homeostasis

Fat component*

Species Cells/tissues
Total fat/MUFA
(% energy) MUFA (mM) Main outcomes References

Cholesterol
absorption

F1B hamster Intestine 26·7/20·7 NPC1L1 and ABCG5/G8 = (67)

Cell line Caco-2 line 0·5 or 1 NPC1L1 and ACAT2 ↑ (66)

0·5 or 1 NPC1L1 ↓
ABCG8 =

(88)

0·5 NPC1L1 and ABCA1 ↓ (89)

Cholesterol
synthesis

C57BL/6 mouse Liver 49/34·4 CD36 ↑
PPARα =

(94)

45/22·3 LXRα ↑ (73)

KK-Ay mouse Liver 15·6/10 PPARγ, CD36 and LPL ↑ (93)

F1B hamster Liver 26·7/20·7 HMGCR and SREBP2 ↓
PPARα ↑

(67)

Cell line C6 glioma 0·1 HMGCR ↓ (91)

Cholesterol
transport

C57BL/6 mouse Liver and plasma 45/22·3 Liver ABCA1, ABCG5 and SR-BI ↓
Plasma TC, non-HDL-C ↓
Plasma HDL-C =

(73)

Liver and serum 31·3/23·2 Serum TC, LDL-C, HDL-C and LDL:HDL ↓
Liver TC ↓

(103)

Macrophages 40·3/35·9 CD36 ↓ (79)

Human Plasma 35/15·3 TC and LDL-C ↓
HDL-C =

(75)

Plasma and liver 37/24 Liver VLDL-C catabolism ↑
Synthesis and catabolism TRLs containing

apo-E and apo-CIII ↑

(98)

Serum 40/28 TC, LDL-C and LDL-C:HDL-C ↓ (71)

45/26 apo-A1 production rate and pool size ↑
apo-A1 catabolism ↓

(99)

Serum and monocytes 40/22 LRP1, LDLR and CD36 = (102)

Cholesterol
excretion

C57BL/6 mouse Liver 31·3/23·2 Liver bile acid pool ↑
CYP7A1 ↑

(103)

42/31·5 CYP7A1 ↑ (104)

Faeces 45/22·3 Faeces cholesterol content ↑ (73)

F1B hamster Liver and intestine 26·7/20·7 Liver CYP7A1 =
Intestine ABCG5/G8 =

(67)

↑, Increase; ↓, decrease; =, no change; ABC, ATP binding cassette transporter; ACAT, acetyl-CoA acetyltransferase; CD36, cluster of differentiation 36; CYP7A1, cholesterol 7α
hydroxylase; HDL-C, HDL-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; LDL-C, LDL-cholesterol; LDLR, LDL receptor; LPL, lipoprotein lipase; LRP1, LDL
receptor-related protein-1; LXR, liver X receptor; NPC1L1,Niemann–PickC1-like 1; SR-BI, scavenger receptor classB type I; SREBP2, sterol regulatory element-binding protein 2;
TC, total cholesterol; TRLs, TAG rich lipoproteins; VLDL-C, VLDL-cholesterol.

* The molarity or percentage of the energy for total fat/MUFA is recorded or calculated from the diets in the reference studies.
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High dietary TFA intake impairs the blood lipoprotein profile
by elevating the levels of blood total cholesterol(9,110),
VLDL-C(111), LDL-C, apo-B(112) and Lp(a)(9) and by decreasing
HDL-C and apo-A1 levels(72,111). However, the consumed amount
of TFA is important and ≤0·6 % of the daily energy requirement
has no significant effect on cholesterol metabolism(113). In parallel,
a few epidemiological(107) and randomised controlled studies(114)

have reported that TFA (2–4%of daily energy) taken fromanimal-
based foods had no significant effect on blood lipoprotein profile
and would not pose a risk for CVD. On the other hand, a study
concluded that replacement of 1 % of the daily energy intake
of TFA with SFA, MUFA or PUFA decreased the ratios of total
cholesterol:HDL-C and apo-B:apo-A1 and Lp(a) levels(96).

There are few studies in the literature on the effects of TFA
on CD36-mediated cholesterol metabolism. In a study con-
ducted on mice, it was reported that high dietary TFA intake
resulted in an increased level of CD36 in hepatocytes and thus
induced the synthesis and release of apo-B and VLDL-C(115).
On the contrary, it was been reported that a diet high in TFA
did not alter CD36 expression in hepatocytes and cardiomyo-
cytes in mice(116). Nevertheless, it is not clear how TFA affect
CD36-mediated cholesterol metabolism in the liver and other
tissues involved in cholesterol homeostasis.

The literature has indicated that taking more than 0·6 % of
total energy from TFA has a negative impact on cholesterol
homeostasis(96,113), while the potential factors affecting these
mechanisms such as CD36 need to be further explained. Due
to the undesirable effects of TFA on cholesterol metabolism,
EFSA recommends the reduction of TFA intake as much as pos-
sible(5). The Turkey Dietary Guidelines and AHA reported that
daily TFA intake should be less than 1 % of total energy(7,84).
In this context, more studies are needed to combine the effects
of TFA on cholesterol homeostasis mediated by CD36 and other
related factors.

PUFA and CD36-mediated cholesterol metabolism

Dietaryn-3 PUFA andn-6 PUFA amounts andn-3:n-6 PUFA ratio
are important for cholesterol homeostasis, since the amount and
pattern of PUFA in the diet may distinctly affect cholesterol
metabolism(6,7). Thus, the dietary PUFA pattern might influence
severalmechanisms related to cholesterol homeostasis including
the absorption, endogenous synthesis and transport of choles-
terol, and bile acid metabolism(54). Although PUFA generally
have positive effects on the metabolism, the effects of excess
intake of n-6 PUFA on cholesterol homeostasis are debatable.
Hence, international guidelines for nutrition recommend paying
attention to the consumed amounts of PUFA(5,7,117). Therefore,
for healthy adults, EFSA recommends taking 5–10 % of daily
energy intake from PUFA and increasing the n-3 PUFA:n-6
PUFA ratio(5); the Turkey Dietary Guidelines and AHA recom-
mend that PUFA intake should be 7–10 % of daily total energy
intake(7,84).

n-3 PUFA and CD36-mediated cholesterol metabolism

Cholesterol absorption. Dietary cholesterol is absorbed from
micelles with fatty acids and phospholipids in the proximal parts
of the small intestine, re-esterified into cholesteryl esters for the

assembly into lipoproteins, and transported to the lymph and
then to the circulation(66). As shown in Table 3, studies have
shown that n-3 PUFA inhibit cholesterol uptake and transport
by down-regulating the expression levels of NPC1L1 and
ABCA1/G5(66,89,118). Moreover, caveolin 1, as a chaperone com-
plex, regulates cholesterol influx or efflux via plasma membrane
caveolae. A cell culture study reported that cholesterol absorp-
tion might be inhibited by down-regulating caveolin 1 expres-
sion in Caco-2 cells incubated with n-3 PUFA(66). The
combined effects of NPC1L1, ABC transporters, SR-BI and
CD36 may play a critical role in modulating the amount of cho-
lesterol that eventually reaches the lymph from the intestinal
lumen(66,89).

Cholesterol synthesis. It was generally thought that consump-
tion of fish oil (source of n-3 PUFA) might suppress cholesterol
synthesis by inhibiting HMGCR, SREBP2, proprotein convertase
subtilisin/kexin type 9 (PCSK9) and LXR expression and by
up-regulating CD36 expression in the liver(66,67,78,118,119), as sum-
marised in Table 3. As a result of decreasing cholesterol synthe-
sis, it is supposed that liver cholesterol level, especially
cholesteryl ester rather than free cholesterol, decreases(78,120).
In this context, it has been reported that ACAT1 expression is
elevated in parallel with decreased CD36 expression in the
aorta of apo-E knock-out mice fed with a diet high in EPA and
DHA(121). Evaluating the potential mechanisms related to the
effects of n-3 PUFA on CD36-induced cholesterol absorption
and biosynthesis, n-3 PUFA might suppress dietary cholesterol
absorption and cholesterol synthesis- and metabolism-
associated mechanisms.

Cholesterol transport. As shown in Table 3, high dietary
n-3 PUFA intake might decrease atherogenic lipoproteins/
apolipoproteins(72,122,123) and oxidised lipoproteins (i.e. oxLDL,
oxHDL)(124,125), but might increase anti-atherogenic lipopro-
teins/apolipoproteins in the blood(72,123,126). In reverse choles-
terol transport, hepatic HDL-C uptake is one of the important
steps involving enzymes and transporters such as ABCA1/G1,
SR-BI and lecithin cholesterol acyltransferase (LCAT), and an
increased amount of n-3 PUFA intake might accelerate HDL-C
uptake by increasing the expression of these proteins(126,127).
Additionally, CD36 inmacrophagesmight involve reverse choles-
terol transport. In this context, it has been reported that n-3 PUFA
intake up-regulates CD36 expression in addition to ABCA1/G1 in
macrophages and hepatocytes and therefore accelerates reverse
cholesterol transport(128,129). On contrary, it has been shown that
n-3 PUFA do not alter(30,130) or decrease(121) CD36 expression in
macrophages(30,130). Moreover, up-regulation of CD36 expression
might cause the degradation of PCSK9(54), which has a role in
the degradation of the LDLR, and therefore down-regulation of
PCSK9 might result in a decrease in LDLR degradation and
increase circulating LDL-C levels(131). As pointed out in the
indicated studies, roles of CD36 in oxidised lipid uptake as a scav-
enger receptor and in fatty acid uptake as a fatty acid transporter in
reverse cholesterol transport have been intensively studied.
However, the literature is still gathering on the effects of dietary
n-3 PUFA and CD36-mediated cholesterol transport and lipopro-
tein homeostasis.
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Cholesterol excretion. Cholesterol excretion via bile acids
might be induced by high dietary n-3 PUFA by elevating the
expression of CD36, CYP7A1 and CYP27A1 in the liver and
ABCG1/G5/G8 transporters in the liver and intestine
(Table 3)(54,66,120,127,132). In contrast, a study has reported that
the liver expression of CYP7A1 in hamsters fed with high
DHA is reduced. The study suggested that it might depend
on low liver total cholesterol levels due to low HMGCR
expression(118). Yet, there is limited knowledge about the dietary
n-3 PUFA associated with CD36-induced bile acid metabolism.

Considering the proposed mechanisms in the literature, high
dietary n-3 PUFA (in the form of fish oil, EPA or DHA) and/or n-
3:n-6 PUFA ratio (1:3–1:10) might suppress cholesterol absorp-
tion and endogenous synthesis, and accelerate reverse choles-
terol transport, secretion of bile acids and cholesterol
excretion. With these potential mechanisms, CD36 is a substan-
tial factor and more studies are needed to elucidate the mecha-
nisms including n-3 PUFA and CD36-signalling pathways.

n-6 PUFA and CD36-mediated cholesterol metabolism

Cholesterol absorption. The effects of n-6 PUFA on dietary
cholesterol homeostasis still need to be clarified because n-6
PUFA might improve or impair cholesterol homeostasis with dif-
ferent metabolic processes involved in absorption, synthesis,
transport and excretion of cholesterol(133). An in vitro study
reported that Caco-2 cells incubatedwith linoleic acid and arach-
idonic acid did not affect the level of NPC1L1(66,89) and SR-BI(89),
whereas arachidonic acid decreased ABCA1 expression
(Table 4)(66,89). Nevertheless, there is limited knowledge about
the effects of dietary n-6 PUFA on cholesterol absorption in
the intestine.

Cholesterol synthesis. CD36 might induce PPARγ and there-
fore inhibit cholesterol biosynthesis. A decrease in the n-3:n-6
PUFA ratio of the diet (1:10) may increase the expression of
CD36, PPARγ, LXR and ACAT1 in macrophages(134). In literature,

Table 3. Potential effects of n-3 PUFA on CD36-related cholesterol homeostasis

Fat component*

Species Cells/tissues

Total fat/n-3
PUFA

(% energy)

n-3
PUFA
(mM) Main outcomes References

Cholesterol
absorption

C57BL/6 mouse Intestine 47/12 NPC1L1 ↓
ABCG5/G8 =

(132)

Golden hamster Intestine 12·2/1 ABCG8 ↓
ABCG5 =

(118)

Cell line Caco-2 0·5 NPC1L1 and ABCA1 ↓
SR-BI =

(89)

0·5 or 1 NPC1L1, ABCA1 and caveolin 1 ↓
Cholesterol uptake ↓

(66)

Cholesterol
synthesis

Golden hamster Liver 12·2/1 HMGCR, SREBP2 and LXRα ↓ (118)

F1B hamster 24·3/7·4 HMGCR and LDLR ↓ (119)

Sprague–Dawley rat 45/4·5 TC level ↓
HMGCR and PCSK9 ↓
CD36 ↑

(54)

Cholesterol
transport

Sprague–Dawley rat Plasma and liver 45/4·5 Liver TC, plasma TC and LDL-C ↓
HDL-C =
MTTP, apo-B and LDLR ↑

(54)

Serum and liver 45/8·4 Serum TC and HDL-C =
Serum apo-A1 ↑
Liver ABCA1 and apo-A1 ↑

(126)

Golden hamster Plasma and liver 12·2/1 Plasma TC, HDL-C and non-HDL-C ↓
Liver LDLR ↑

(118)

F1B hamster 24·3/7·4 Plasma TC, non-HDL-C and HDL-C ↓
Liver apo-A1 ↓

(119)

Human Plasma 26·4/2·6 TC, LDL-C, HDL-C, total apo-B, apo-A1 ↓
apo-B in LDL-C ↓
Production rate of apo-B100 and apo-B48 in TRLs ↓

(122)

Cholesterol
excretion

C57BL/6 Liver 47/12 ABCG5/G8 ↑
CYP7A1 =

(132)

Sprague–Dawley rat Liver 45/4·5 ABCG1/G5/G8 ↑
CYP7A1 and CYP27A1 ↑

(54)

Golden hamster Liver 12·2/1 CYP7A1 ↓ (118)

45/10 ABCG5/G8 and CYP7A1 ↑ (127)

Cell line Caco-2 line 0·5 or 1 ABCG5/G8 ↑ (66)

↑, Increase; ↓, decrease; =, no change; ABC, ATP binding cassette transporter; CD36, cluster of differentiation 36; CYP7A1, cholesterol 7α hydroxylase; CYP27A1, sterol 27
hydroxylase; HDL-C, HDL-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; LDL-C, LDL-cholesterol; LDLR, LDL receptor; LXR, liver X receptor; MTTP,
microsomal TAG transfer protein; NPC1L1, Niemann–Pick C1-like 1; PCSK9, proprotein convertase subtilisin/kexin type 9; SR-BI, scavenger receptor class B type I; SREBP2,
sterol regulatory element-binding protein 2; TC, total cholesterol; TRLs, TAG-rich lipoproteins.

* The molarity or percentage of the energy for total fat/n-3 PUFA is recorded or calculated from the diets in the reference studies.
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it was concluded that CD36 expression was up-regulated by
dietary sunflower-seed oil in mice and suppressed the endog-
enous synthesis of cholesterol(69). However, high dietary n-6
PUFA might decrease SREBP2 expression(66) and might not have
a significant effect on HMGCR enzyme(119). n-6 PUFA might also
induce cholesterol accumulation in the liver by elevating the
level of ACAT2 and esterification of cholesterol in the hepato-
cytes (Table 4)(119).

Cholesterol transport. As a result of studies investigating the
effects of high dietary n-6 PUFA on the lipoprotein profile,
n-6 PUFA might elevate blood LDL-C, VLDL-C(6,72,135), HDL-C
and apo-A1 levels and might decrease apo-B by accelerating
its catabolism(6,72). An increase in n-6 PUFA in the diet may
increase plasma oxLDL(125), but decrease the formation of
oxLDL and oxHDL compared with a high SFA intake(15).
Furthermore, it has been reported that a dietary n-3:n-6 PUFA
ratio of 1:20 increases the levels of reactive oxygen species
and oxLDL in the blood(125), but that the n-3:n-6 ratio of higher
than 1:5 decreases the total cholesterol content in macrophages
in atherosclerosis (Table 4)(134).

Cholesterol excretion. In cholesterol excretion in the form of
bile acids, it has been pointed out that consumption of high
amounts of soyabean oil elevate the expression of CD36 and
decrease the expression of bile acid synthesis-related enzymes
such as CYP7A1 and CYP27A1 in mouse liver(136). On the other
hand, linoleic acid and arachidonic acid did not affect the expres-
sion of ABCG5 and ABCG8, transporters related to excretion and
reabsorption of cholesterol in the form of bile acids, in the small
intestine (Table 4)(66).

It was been suggested that both n-6 PUFA amount and the n-
3:n-6 ratio of the diet affect CD36 and other endogenous factors

related to cholesterol homeostasis. However, studies on hown-6
PUFA influence CD36-mediated cholesterol homeostasis are lim-
ited in the literature and, therefore, the influences of n-6 PUFA
intake on cholesterol metabolism with underlying mechanisms
should be clarified.

Conclusion

Hypercholesterolaemia and dyslipidaemia, which are CVD risk
factors, are known to be influenced by dietary fat and the fatty
acid pattern determined in the current literature. As part of a
healthy diet, international nutrition committees recommend that
25–35 % of total energy intake should be from fats to prevent
CVD and to regulate cholesterol homeostasis in the body.
Furthermore, lowering the intakes of SFA (5–10 % of the total
energy intake) and TFA (less than 1 % of the total energy intake),
while replacing them with unsaturated fatty acids (MUFA and
PUFA), and additionally reducing industrial trans-fats as much
as possible are recommended. The literature includes mainly
animal and cell culture studies, with a limited number of human
studies. Extrapolation of the dose from the animals, relatively
high doses, to humans needs consideration of body surface area
and metabolic differences.

To combine the dietary recommendations and the novel
nutrient-sensitive biomarkers related to CVD is a global focus.
Thus, the current literature indicates that the type of dietary fatty
acidsmight alter CD36 levels associatedwith cholesterol homeo-
stasis. Additionally, CD36 is also a potential risk factor for
hyperlipidaemia/dyslipidaemia in CD36 deficiency, relatively
frequent in Asian and African populations. Nevertheless, further
studies investigating cholesterol metabolism with the underlying
mechanisms including CD36 and possible effects of dietary fatty
acids are essential. Thus, since the CD36 receptor is suggested to

Table 4. Potential effects of n-6 PUFA on CD36-related cholesterol homeostasis

Fat component*

Species Cells/tissues
Total fat/n-6 PUFA

(% energy)
n-6 PUFA

(mM) Main outcomes References

Cholesterol
absorption

F1B hamster Intestine 26·7/17·9 NPC1L1, ABCA1/G5/G8 = (67)

Cell line Caco-2 1 NPC1L1 and ABCA1 ↓ (66)

0·5 MTTP ↑
ABCA1 ↓
NPC1L1 and SR-BI =

(89)

Cholesterol
synthesis

F1B hamster Liver 26·7/17·9 HMGCR, ACAT2, LDLR, PPARα and
SR-BI ↑

(67,119)

Cell line THP1 cells n-3:n-6 PUFA: 1:10 – CD36, ACAT2, PPARγ and LXRα ↑ (134)

Cholesterol
transport

C57BL/6 mouse Serum and liver 42/11·8 Serum TC and free TC ↑
Liver TC, plasma HDL, oxLDL and oxHDL =

(15)

Sprague–Dawley rat Serum 33·5/10·4 TC, LDL-C, non-HDL-C, HDL-C and oxLDL ↑ (125)

Cell line THP1 n-3:n-6 PUFA: 1:10 – TC and cholesteryl ester ↑ (134)

Cholesterol
excretion

C57BL/6 mouse Liver 40/10 CD36, CYP7A1 and CYP27A1 ↑ (136)

Liver and intestine 42/11·8 Liver ABCG5/G8 ↑
Intestine ABCG5/G8 =

(15)

Golden hamster Liver 26·7/17·9 CYP7A1 = (67)

↑, Increase; ↓, decrease; =, no change; ABC, ATP binding cassette transporter; ACAT, acetyl-CoA acetyltransferase; CD36, cluster of differentiation 36; CYP7A1, cholesterol 7α
hydroxylase; CYP27A1, sterol 27 hydroxylase; HDL-C, HDL-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; LDL-C, LDL-cholesterol; LDLR, LDL receptor; LXR,
liver X receptor; MTTP, microsomal TAG transfer protein; NPC1L1, Niemann–Pick C1-like 1; oxHDL, oxidised HDL; oxLDL, oxidised LDL; SR-BI, scavenger receptor class B type I;
TC, total cholesterol.

* The molarity or percentage of the energy for total fat/n-6 PUFA is recorded or calculated from the diets in the reference studies.

Fatty acids and cholesterol metabolism 73

https://doi.org/10.1017/S0954422420000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422420000128


be a novel nutrient-sensitive biomarker, the role of CD36 and
dietary fatty acids on cholesterol metabolism might be consid-
ered in the future approving the importance in individualised
medical nutrition therapy.
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