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NEVANLINNA-TYPE CHARACTERIZATIONS FOR THE
BLOCH SPACE AND RELATED SPACES

by KAREL STROETHOFF
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We give a characterisation of the Bloch space in terms of an area version of the Nevanlinna characteristic,
analogous to Baernstein's description of the space BMOA in terms of the usual Nevanlinna characteristic. We
prove analogous results for the little Bloch space and the space VMOA, and give value distribution
characterizations for all these spaces. Finally we give valence conditions on a Bloch or little Bloch function for
containment in BMOA or VMOA.
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0. Introduction

Our starting point is Baernstein's [3] result that an analytic function on the unit disk
belongs to the space of analytic functions of bounded mean oscillation, BMOA, if and
only if its Mobius-transforms form a bounded family in the Nevanlinna class. In this
paper we give similar characterizations for related spaces of analytic functions such as
VMOA, the Bloch space and the little Bloch space; these spaces are defined in Section 1.
In Section 2 we give a description of VMOA in terms of the Nevanlinna characteristic.
A description of VMOA cannot be obtained by simply replacing Baernstein's bounded-
ness condition by the corresponding vanishing condition (as is usually the case). In
Section 3 we describe the Bloch space and little Bloch space in terms of the pseudo-
hyperbolic metric on the unit disk. We then formulate and prove characterizations for
these spaces in terms of an area version of the Nevanlinna characteristic in Section 4. In
Sections 5 and 6 we give value distribution characterizations for VMOA and the Bloch
spaces. In the final section, Section 7, we prove necessary conditions for a function in
the Bloch space or the little Bloch space to belong to BMOA or VMOA. The results in
this paper give further support to the idea that the Bloch space and the little Bloch
space can be considered as area versions of the spaces BMOA and VMOA, respectively.

1. Definitions and notation

Let D = {zeC:|z|< 1} denote the open unit disk in the complex plane. Let 3B =
{zeC:|z| = 1} denote the unit circle, and let m denote the normalized Lebesgue measure
on 3D. Recall the definition of the Hardy spaces: for an analytic function / on D and
0<p<oo, define ||/||WP = (sup0<r<1 faD|/(r{)|Mm(C))1/p. The Hardy space H" is
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124 K. STROETHOFF

defined to be the set of all analytic functions / on the disk D for which ||/||HI><OO. If
f EHP, for 0<p<oo, then the radial limit /*(() = limr_1— f(rQ exists for [/n]-a.e.
CedB, and the function / * belongs to L?(dB,m) ([4, Theorem 2.2]).

Suppose gel}(dD, m). For an arc / in 3D let gt denote the average of g over /:
g, = m(l) y\,gdm; put
in l!(3D, m) for which

= sup{w(/) ll,\g—g,\dm:I an arc in 3D}. A function g
BMO < oo is said to be of bounded mean oscillation. The set of

all functions in Z}(3D, m) that are of bounded mean oscillation is denoted by BMO. The
class BMO was first introduced by John and Nirenberg in [7] (in the context of
functions defined on cubes in W). Define BM0A = {f eHl:f*eBM0}, and for
feBMOA set | | / | |BMO / 4 = | |/*||BMO- Equipped with the norm ||/ | |BM<M + | / (0 ) | , BMOA is
a Banach space.

For AeD let the Mobius function <pA:B-»D be defined by

D (1.1)

For an analytic function / on D and a point leB, we will call the function / <><px—f(X)
a Mobius transform of function /

Two quantities Af and Bf, both depending on an analytic function / on D, are said
to be equivalent, written as AfxBf, if there exists a finite positive constant C not
depending on / such that for every analytic function / on D we have: C~lBf^Af^
CBf. If the quantities As and Bf are equivalent, then in particular Af<co if and only if
Bf<co.

The space BMOA is invariant under Mobius transforms, i.e., if feBMOA and AeD,
then /°(px—f {A.) e BMOA. In fact, for 0<p<oo it can be shown (see, for example, [13])
that for every analytic function / on D:

. (1.2)

In [12] Sarason introduced the space VMO of functions of vanishing mean oscillation
defined by VM0 = {geL1{dB,m):m(I)-1 $,\g-g,\dm-*0 as m(/)->0}. Define VM0A =
{feHi:f*eVM0}. Since clearly VMO is contained in BMO, we have that VM0A is
contained in BMOA. It can be shown (see, for example, [13]) that analogous to
equivalence (1.2), if 0<p<oo, then for every analytic function / on D:

/ eVM0Aol\\f <xp,-f(X)\\HP-*0 asW-»l-]. (1.3)

Another Mobius-invariant Banach space is the Bloch space. For an analytic function
/ .on D we set | | / |U = sup{(l -|z|2)|/ '(z)|:zeB}. The Bloch space Si is the set of all
analytic functions / on D for which | | / | | a<oo. Even though ||-||a is not a norm, we will
refer to ||/||a» as the Bloch norm of function / The quantity |/(0)| + | | / | | a defines a
norm on the linear space Si which, equipped with this norm, is a Banach space (see, for
example, [1]). That the Bloch space is invariant under Mobius transforms follows
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immediately from the definition of the Bloch norm: for an analytic function / on D and
/ e B it is easy to verify that ||/||s) = ||/o<P<ilU- In [11] Rubel and Timoney showed that
the Bloch space 8$ is in some sense maximal among all Mobius-invariant Banach spaces
of analytic functions on B.

Contained in the Bloch space is the little Bloch space SS0, which is by definition the
z|2)/'(z)->0 as |z|->l

for every analytic function /
set of all analytic functions / on B for which (1 -

Using Taylor series it is easy to see that |/'(0) |
on B. It follows that for an analytic function / on B and a point l e B:

. (1.4)

Thus we have the inclusions BMOActfS and VMOAc@)o.
Let A denote the usual Lebesgue area measure on the complex plane C. For an

analytic function / on B and 0 < p < o o we define ||/||z.s = (Jo|/|p^'4M)1/' '- The Bergman
space L£ is defined to be the set of all analytic functions / o n D for which | | / | | tp<oo.
The subscript a stands for "analytic". In analogy to (1.2), for 0 < p < o o it can be shown
(see [2]) that for every analytic function / on B:

. (1.5)

The analogue of (1.3) is that for 0 < p < o o for every analytic function / on B:

/ e a o H I / o P i - Z W l k f - O as |A| — 1 " . (1.6)

For / on analytic B the Nevanlinna characteristic T( / ) is defined by

T(f)= sup ±2j \og+\f(rew)\de.
Ogr< 1 ̂ n 0

2. The space VMOA in terms of the Nevanlinna characteristic

In this section we describe the space VMOA in terms of the Nevanlinna characteris-
tic. Our starting point in Baernstein's characterization for the space BMOA; he proved
that an analytic function on the unit disk belongs to the space BMOA if and only if the
Mobius transforms of the function form a bounded family in the Nevanlinna class. We
give a similar description of the space VMOA. This description cannot be obtained by
simply replacing Baernstein's boundedness condition by the corresponding vanishing
condition (as is usually the case).

Let 0 < p < c o , then it follows from the inequality plog+ x^xp that

p i - if log+ \f(reia)\d0^)n\f(reie)\"de, (2.1)
ill 'H
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hence

||/||& for 0<p<oo. (2.2)

Using equivalence (1.2) it follows from (2.2) that for feBMOA,
supXEDT(f ocpx—f(A))<co, i.e., the family {f°q>x—f(k):keD} is bounded in the
Nevanlinna class N = {f:f analytic on D and T(/)<oo}. In [3] Baernstein proved that
the converse is also true. Before stating his result we need to introduce more notation.
Fix 0<a<7i/2. For ewedD let rx(e

w) denote the Stolz region based at ew, i.e., Fa(e
ie) is

the interior of the convex hull of the circle |z| = sin<x and the point e'B. The
non-tangential maximal function jVJif) of a complex function / defined on D is defined
by

Note that {J^x(f))(e
ie)^\f*(eie)\ if / has a non-tangential limit f*{ei0) at eie. In [3]

Baernstein proved the following "John-Nirenberg type" of theorem:

Theorem 2.1 (Baernstein [3]). There exists an absolute constant K such that for each
0 < a < n/2 and f analytic on D the following statements are equivalent:

(A) {f°q>x — f(k):keD} is bounded in the Nevanlinna class N;

(B) There exists a constant /? = /?(<*,/) for which

m({ew:J^x(f o <pk-f(k))(tP) > t})<Ke'»\ (2.3)

for all k 6 D, and for all 0 < t < oo.

As Baernstein indicated ([3, Corollary 5.2]), Theorem 2.1 has as an immediate
consequence:

Theorem 2.2 (Baernstein [3]). For an analytic function f on D the following
statements are equivalent:

(A) feBMOA;

(B) sup T(f°cpx-f(k))<co.

What about the space VM0A1 One may be tempted to replace the above big-O
condition (B) in Theorem 2.2 by the corresponding little-o condition, and ask whether

feVMOAoT(fo(px-f(k))^0 as U|->1~? (2.4)
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The answer is negative: the condition at the right of (2.4) is certainly necessary for /
to be in VMOA (this follows from (1.3) and (2.2)), but not sufficient. That the condition
is not sufficient follows from the observation that it is trivially satisfied when H/H^^l/2
(because this implies that T(f°q>k—/(A)) = 0 for all AeO), but not every analytic
function / on D for which H/H^^l/2 is contained in VMOA.

Let us return to BMOA and rewrite the condition in Theorem 2.2. If p>0 and
feBMOA, then also f/peBMOA, so that supXeOT({f o<p/t-/(A))/p)<oo. It follows that
for / analytic on O:

feBMOAo] Vp>0:supT((/o<p>l-/(A))/p)<oo . (2.5)> V p > O : s u p
L AeD

Having replaced the big-O condition in Theorem 2.2 by a collection of big-O conditions
in (2.5), going to the corresponding little-o conditions yields the following:

Theorem 2.3. For an analytic function f on D the following statements are equivalent:

(a) feVMOA;

{b) for every p>0 we have that T((/o<pA —/(A))/p)-»0 as |A|-*l~.

Before the proof we need to relate the Nevanlinna characteristic and the //2-norm of
an analytic function. We'll do this not just for the H2-norm, but for any W-norm:

Lemma 2.4. Let 0<p<oo. For an analytic function f on D:

\\ ] (2.6)

Proof. Let 0<p<oo. For 0^x<oo we have: Jg3 p"~l log+(x/p)dp = xp/p2. Thus, for
an analytic function / on D and 0 < r < 1 an application of Fubini's theorem gives:

-Tlog+ \f(reie)/p\de)dp=\±-2f \f(reie)\"d6. (2.7)
0 / P •"! 0

Taking the limit as r-*\~, and using the Monotone Convergence Theorem we
get (2.6). •

Now we are ready for the proof of Theorem 2.3.

Proof of Theorem 2.3. Let / be an analytic function on D. We have already seen
that condition (b) in Theorem 2.3 is necessary.

To prove the sufficiency, suppose that / satisfies condition (b). Our first step is in
showing that feBMOA. Choose an re(0,1) such that T(/o<pi-/(A))< 1 whenever
r < U | < l . Note that geNogo(pxeN (this follows easily from the fact that each
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function in the Nevanlinna class N is the quotient of two //"-functions). Pick w such
that r < | w | < l . Then T(focpw—/(w))< 1, so that fo(pweN, and therefore feN. Thus
l o g + | / | has a harmonic majorant, call it h. Then for AeO, h°(px is a harmonic
majorant of log+|/°(/)A|, whence T(fo(px)£(ho(px)(0) = h(X). Using the inequality
log+(x + y)glog+x + log+;y + log2, it follows that for \A\£r:T(fo(px-f(X))£h(k) +
log+|/(A)| + log2. Hence the family {/°<pA-/(A):AeD>} is bounded in N, and by
Theorem 2.2 we have feBMOA.

Since feBMOA we can apply Theorem 2.1. Let /? be such that (2.3) holds. Then for
AeO and t>0: m({eie:\f*((px(e

w))-f(X)\>t})<Ke~p'. Using this inequality as well as
the distribution function for the log+, it follows that for every p>0:

T((f o<pk-f{k))lp)Z±- j"log+(\f*(<p,(eie))-m\lp)dO
In 0

= ]l-m({eie:\r(cpx(e
iS))-f(X)\>t})dt

Pp

Now let e>0 be given. Choose R>0 such that Ke~pR<(e2p2)/S. Then integrating the
above inequality we get

]pT((focpx-f(X)yP)dp<e2/S. (2.8)
R

By the Lebesgue Dominated Convergence Theorem we can choose £e(0,1) such that

J pT((f o<px-f(X))/p) dp<E2/8, (2.9)
o

whenever 1 — <5<|A|< 1. Using the formula of Lemma 2.4, it follows from (2.8) and (2.9)
that

hence \\f°q>x-f(A))\\H2<e, whenever 1-<5<|A|<1. Therefore feVMOA, and the
theorem is proved. •

The classical Nevanlinna characteristic T is defined in terms of log+, which only
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measures the values of the function that are of modulus bigger than 1. Instead we could
define

r( /)= sup i - j" log(l+ \f(reie)\)de,

for an analytic function / on D, and we obtain a characteristic equivalent to T. In fact,
it is easy to show that for every analytic function / on D, T(f) g T'(f) g T(f) + log 2.
The characteristic T also measures values of the function that are of modulus less than
1. The following theorem is an easy consequence of Theorem 2.3. We omit the proof.

Theorem 2.5. For an analytic function f on D the following statements are equivalent:

(a) feVMOA;

(b) T'(/o<^-/(x)H0 as |A| —1".

3. The Bloch spaces and the pseudo-hyperbolic metric

In this section we will give characterizations of the Bloch space and the little Bloch
space in terms of the pseudo-hyberbolic metric on the unit disk. In the next section
these results will be used to obtain analogues of the characterizations of BMOA and
VMOA discussed in the previous section.

For points X, z in the disk D the pseudo-hyperbolic distance d(k, z) between X and z is
defined by d(X, z) = \<px{z)\. It it can be shown that d is a metric on D (see, for example,
[5, p. 4]). In this section we see that the Bloch space consists of those analytic functions
on the disk that are uniformly continuous with respect to the pseudo-hyperbolic metric.
We will give a similar description for the little Bloch space.

For each point AeD and 0 < r < l , the pseudo-hyperbolic disk D(X,r) with pseudo-
hyperbolic centre A and pseudo-hyperbolic radius r is defined by D(X, r) = {zeO:d(A, z)<
r} = {ze B:|(pA(z)|<r}. Note that D(0,r) is equal to the euclidean disk {zeD>: z|<r}.
Now, if w = <px(z), then, as is easily checked, z = <px(w) and so D(k,r) = {(px(w):\w <r} =
(px(D(0, r)). Consequently, the pseudo-hyperbolic disk D(X, r) is also a euclidean disk: it
can be shown that its euclidean centre and euclidean radius are (1 — r2)A/(l—r2|A|2) and
(1 -|A|2)r/(l -r2\X\2), respectively (see [5]).

First we will show that for an analytic function on the disk the Bloch norm and the
supremum of the oscillations of the function over pseudo-hyperbolic disks of a fixed
radius are equivalent quantities.

Theorem 3.1. Let 0 < r < 1. For f analytic on O the following quantities are equivalent:

(A)

(B) sup sup |/(z)-/(A)| .
AeD zeD(X.r)
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Proof. Fix 0 < r < 1, and let / be analytic on D. It follows from the identity

'(0)=4 J
r D(0,r)

that

£ - sup |
r zeD(O.r)

Replacing / by f°<Px—f(fy, we get the inequality

'(A)|g- sup \f(z)-f(X)\, (3.1)
r zeD(X.r)

and it follows that

2
p sup \f(z)-f(X)\.

r XeB zeD(X.r)

On the other hand for \w\ <r we have

Replacing / by f o<px—f(k) yields

whenever | w | <r. Hence

sup sup |/(z)-/W|^log(j±^)||/|U (3.2)

and the theorem is proved. •

Remark. As a corollary of the proof of the above theorem we see that the Bloch
space consists of those analytic functions on the unit disk that are uniformly continuous
with respect to the pseudo-hyperbolic metric.

As usual, the equivalences of the previous theorem carry over to the little Bloch
space. This is expressed in the following theorem.
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Theorem 3.2. Let 0 < r < l . For an analytic function f on D the following statements
are equivalent:

(a) fe®0;

(b) sup | / (z)- / (A)hO as |A|->1-.

Proof. That (b) implies (a) follows immediately from (3.1).
For the converse, suppose that fe3S0. For te(0,1) the dilate /, is defined by

/,(z)=/(tz) for zeD. By (3.2) we have for re(0,1) and AeO

sup ^
"

Using the triangle inequality it follows that for te(0,1) and Ae

sup | / ( z ) - / ( A ) | ^ l o g ( ^ W - / , | | a , + sup |/,(z)-/,(A)|. (3.3)
zeD(X.r) \l~rJ zeD(X.r)

For te(0,1) fixed, the dilate / , is analytic in a neighbourhood of the disk, so that clearly
sup{|/,(z)-/,(A)|:zeD(A,r)}->0 as |A|-»l". Since / G ^ 0 » we have | | / - / , | |a->0 as t-*l~
(see [1, Theorem 2.1]). Hence (b) follows easily from (3.3). •

4. Nevanlinna-type characterizations for the Bloch spaces

In this section we formulate and prove characterizations for the Bloch space and the
little Bloch space in terms of an area version of the Nevanlinna characteristic.

For / analytic on D the area version of the Nevanlinna characteristic, Ta(f), is
defined by

Ta(f) = \\og+\f\dA/n.
a

The area-Nevanlinna class is the set Na = {feH(Oi):Ta{f)<co}. Let 0<p<oo. Integrat-
ing both sides of inequality (2.1) gives, in analogy to (2.2):

Ta(f)Z-\\f\\lt, for 0<p<oo. (4.1)

So the area-Nevanlinna class contains all Bergman spaces. Analogous to Baernstein's
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characterization for the space BMOA given in Theorem 2.2 we have the following result
for the Bloch space:

Theorem 4.1. For an analytic function f on D the following statements are equivalent:

(A) fe®;

(B) supTa(/o<p,-/(A))<oo.

Proof. That (A) implies (B) follows from (4.1) and (1.5).
For the converse, let / be an analytic function on D and suppose that (B) holds. Fix

0 < r < l , and let z.AeD with d(z,X)<r. Put u = <px(z), then |«|<r and z = cpx(u). Using
that the function \og+\f o<px—f(X)\ is subharmonic on D we have

log+ |/(z)-/(A)| = log+ | ( /

; J log+\(fo<px){w)-f(X)\dA(w)/n
| w - u | < 1 - r

where M is the quantity in (B). Since x^exp(log+x) for x^O, we have |/(z)—
exp(M/(l — r)2), and it follows from Theorem 3.1 that fs0S, as was to be shown. •

A description of the little Bloch space in terms of the area-Nevanlinna characteristic
is contained in the following theorem which is analogous to the description of the space
VMOA given in Theorem 2.3.

Theorem 4.2. For an analytic function f on D the following statements are equivalent:

(a) fe@0;

(b) For every p>0 we have that Ta{(fo(px—f(X))/p)-+0 as\X\-*l~.

Proof. That (b) is implied by (a) follows easily from (4.1) and (1.6).
For the converse, suppose that / is an analytic function on D for which (b) holds. Fix

0 < r < 1. Let z, X e D such that d(z, A) < r. Then, as in the proof of Theorem 4.1:

|/(z)-/(A)|/pgexp{(l-r)-2Tfl((/o(P/l-/(A))/p)}. (4.2)

Given e>0, choose 0<p<e/2. Since (b) holds we can choose a Se(0,1) for which
Ta(.{f°(px-f(l))lp)<(\-r)2\og2 whenever 0<l-|A|<<5. Combining this with (4.2) we
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see that for 0<l- |A|<<5, | / ( z ) - / (A) |g2p<e . Thus sup{ | / (z | - / (A)- / (z) | :
zeD(k,r)}-»0 as |A|-> 1", so that by Theorem 3.4, / e ^ 0 > a n d w e a r e done. D

5. A value distribution characterization for the space VMOA

In this section we will give a different proof of Baernstein's value distribution
characterization for BMOA ([3, Theorem 3]) and then formulate and prove the
corresponding description for the space VMOA.

The Green's function for the unit disk D is given by G(z, A) = log(l/|<pA(z)|), for
z, A € D. For a nonconstant analytic function / on D let (zn(/)} denote the zeros of / in
D, listed in increasing moduli and repeated according to multiplicities. Following
Baernstein we define N(w, k, / ) , the "counting function for value w started at k", by

Note that G(z, 0) = log(l/|z|), so that

the usual counting function. It is clear from the definition of the counting function that

JV(w,A,/) = oo if /(A) = w; (5.1a)

N(w, A, / ) = 0 if / omits the value w. (5.1 b)

The following properties of the counting function, which are easily verified, are useful:
For weC, <xeC\{0}, AeD and / analytic on D we have:

(5.2a)

,k,f) = N(zw,k,af) (5.2b)

. (5.2c)

The following theorem is due to Baernstein ([3, Theorem 3]). We will give a simpler
proof of his theorem.

Theorem 5.1 (Baernstein [3]). For a nonconstant analytic function f on D the
following statements are equivalent:

(A) feBMOA;

(B) sup{/V(w,A,/):weC,A£D and

https://doi.org/10.1017/S0013091500028947 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028947


134 K. STROETHOFF

Just as in Baernstein's proof we will need to relate the Nevanlinna characteristic of an
analytic function with its counting function. This is done in the following classical result.

Cartan's Formula. For a nonconstant analytic function f on D:

T(f)=±- 7 N(e">, 0, f) dO + log+1/(0)|. (5.3)
zn o

A proof of Cartan's Formula can be found in [6, pp. 214-215], for the case that / is
analytic on a neighbourhood of D. The general case follows easily by looking at the
dilates /, of / Using the Monotone Convergence Theorem we see that T(/() increases to
T(f) and for each 0 in (0,27:) we have that N(eie,0,ft) increases to N(eie,0,f) as we take
the limit t-*l~. For these dilates /, we know that (5.3) holds, so that another
application of the Monotone Convergence Theorem gives that (5.3) holds for /.

Proof of Theorem 5.1. Let / be a nonconstant analytic function on D. By Jensen's
Formula we have:

^ flog\f{reu)\d6 =

Thus

2it

0 n:|rn(/)|<r

i - jf log+ \f(re")\dO^ I logj-f-j+log|/(0)|,
l n 0 n:\zM)\<r \Zn(J ) \

which after taking the limit r-»l~, gives us the inequality

T(/)£JV(0,0,/) + Iog|/(0)|. (5.4)

Replacing / by fo<px — w, and making use of (5.2c) the above inequality yields
N(w,A,f)^T(fo(px — w)-log\f(k) — w\. Using the inequality log+(x+y)glog+ x +
log+y + log2, we get N(w,X,f)^T(f °<px-f(l)) + \og+ | / a ) -w | - l og | / (A) -w | + log2.
So if |/(A)-w|;>l, then we have N(w, A, f)^T(fo<px-f(X)) + \og2. This inequality and
Theorem 2.2 show that (A) implies (B).

To prove the converse suppose that M = sup{N(w, k, f):weC, XeD and
| . By Cartan's Formula

q>x-/(A)) = ̂  J N(eie,0,/°cpxzn

Now, using (5.2a) and (5.2c), for every 0^9^2n we have N(ew,0,fo(px-f(X)) =
N(eie+f{X),l,f)^M, so it follows that T{foq>k-f(k))^M, for all AeB, and hence, by
Theorem 2.2, feBMOA.
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D

Before going to VMOA let us rewrite the condition in Theorem 5.1 for inclusion in
BMOA. Suppose that feBMOA, and let S>0. Since f/deBMOA, it satisfies condition
(B) of Theorem 5.1. By (5.2b), N(w,X,f) = N(w/d,X,f/S). Therefore we must have that
for an analytic function / on D:

/eBMCMo[V(5>0:sup{Ar(w,/l,/):weC,/leD and |/(A)-w|^<5}<oo]. (5.5)

We will show that the little-o condition corresponding to the big-O condition in (5.5)
will give a necessary and sufficient condition for inclusion in the space VMOA. This will
be made precise in Theorem 5.3.

In the proof of Theorem 5.3 we will need to relate the counting function N of an
analytic function to the #2-norm of the function. As is shown in the following lemma,
this can be done not just for the //2-norm but for any Hp-norm of an analytic function.

Lemma 5.2. Let 0 < p < oo. For an analytic function f on D with /(0) = 0:

Proof. Fix 0<p<oo, and let / be an analytic function on D with /(0) = 0. By
Cartan's Formula and (5.2b), for every p>0:

T(flp)=^ f N(ei0,0, f/p) dO=~l N(peie, 0, / ) d8.
In o iHo

Multiply by pp~i and integrate with respect to p over the interval (0, oo). By formula
(2.6) of Lemma 2.4 we get

2n

&p=P2 I Pp~l(f ? N(pe">, 0,/) dd)dp
o x/71 o /

= £$\w\>-2N(W,0,f)dA(w),
In c

and the lemma is proved. •

Theorem 5.3. For a nonconstant analytic function f on D the following statements are
equivalent:

(a) feVMOA;

(b) for every 3 > 0 we have:
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vv|̂ <5}->0 as |A|-»r.

Proof. Let / be a nonconstant analytic function on D. Let <5>0. As in the proof of
Theorem 5.1, using Cartan's Formula and the equations (5.2) we see

T((f ° q>x -f{X))l8) = 7 - T N(dew + m), A, f) d9
In o

so that, by Theorem 2.3, (b) implies (a).
To prove the other implication we make use of Lemma 5.2. In this lemma take p = 2,

and replace / by f °<px—/(^)> w e get t n e formula

. (5.6)

We will also need Lehto's Theorem [8], which states that for a function g, analytic on a
neighbourhood of D, the function wi->N(w, 0,g) is subharmonic on C\{g(0)}. Let g be
an analytic function on D for which g(0)=0. Let 0 < r < l . Applying Lehto's theorem to
the dilate gr of g we get that for 5>0 and for |w|̂ <5

N(u,0,gr)^-^ J N(v,0,gr)dA(v). (5.7)
no \u-v\<s

Taking the limit where r-*\~, we get

N(u,0,g)^-^ J N{v,O,g)dA(v).
n o |u-v|<<5

Apply the inequality to g=f°q>x—f(ty- Using equations (5.2) we get

AT(U + / ( A U , / ) ^ 4 T J N{v+f{X),X,f)dA(v).
n o |u-v|<i5

Replacing u+f(l) by w yields the formula

,X,f)^~ j N{z,X,f)dA(z). (5.8)
n o |H.-Z|<<5

Combining (5.6) and (5.8) gives us that sup{N(w,X,f):weC and \ \
| | | | « 2 » from which it follows that (a) implies (b). •
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6. Value distribution characterizations for the Bloch and little Bloch space

Now we will turn to the Bloch space and the little Bloch space. Defining an area
version of the counting function used in the value distribution characterizations for
BMOA and VMOA, we obtain analogous results for the Bloch space and the little
Bloch space.

Define an area version Na of the counting function N as follows: given an analytic
function / on D we first define Na(0,0, / ) by

and, mimicking (5.2c), for weC and AeD define Na(w,X,f) by

Observe that Na(w, X, f) = 0 if/ omits the value w, but that (5.1a) is not necessarily true
for counting function Na. It follows immediately from the definition that properties (5.2)
do hold for counting function Na: for weC, <xeC\{0}, AeD and / analytic on D we
have:

Na(w,X,f) = Na(w + «,X,f + *) (6.1a)

^(w,A, / ) = Wa(aw,A,a/) (6.1b)

Na(w,X,f) = Na(0,0,fo(px-w). (6.1c)

Analogous to Baernstein's value distribution characterization for BMOA (Theorem
5.1) we have the following result for the Bloch space.

Theorem 6.1. For a nonconstant analytic function f on D the following statements are
equivalent:

(A) fe@;

(B) sup{Afa(w,A,/):weC,AeD and | / (A) -w |^ 1}<OO.

Proof. Let / be a nonconstant analytic function on D, and let 0 < r < l . By
inequality (5.4) we have: N(0,0, / r )^T(/ , )- log| /(0) | . Multiply this inequality by 2r and
integrate with respect to r over the interval (0,1) to get:

(6.2)

Just as in the proof of Theorem 5.1 it follows that if |/(A) —w|^l, then Na(w,
2. Theorem 4.1 and this inequality show that (A) implies (B).
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Note that integrating Cartan's Formula gives us the formula

m 0

To prove the converse we use this formula and proceed as in the proof of
Theorem 5.1. •

The value distribution characterization for the Bloch space carries over to the little
Bloch space in the same way as going from BMOA to VMOA.

Theorem 6.2. For a nonconstant analytic function f on D the following statements are
equivalent:

(a)

(b) for every 8 > 0 we have:

sup{Na(w,k,f):weC and |/(A)-w|^5}-+0 as

Proof. Let / be a nonconstant analytic function on D. Let £>0. Making use of (6.3)
and the equations (6.1), as in the proof of Theorem 5.3, we have for every (5>0
Ta((fo(px-f(X))/S)^sup{Na(w,l,f):weC and \f{X)-w\*6}, so that, by Theorem 4.2,
(b) implies (a).

To prove the other implication we need an area-version of Lemma 5.2. If 0<p<oo,
the function / is analytic on D, and /(0) = 0, then applying Lemma 5.2 to the dilates fr

of / and subsequently integrating with respect to r over the interval (0,1) yields the
formula

In the above formula take p = 2 and for AeB replace / by f°<Px—f{k); analogous to
(5.6) we get:

= -fAfB(w + /(A),A,/)dyl(w). (6.4)
"c

Integrating (5.7) with respect to r over the interval (0,1) gives that for an analytic
function g o n D for which g(0) = 0 and for |u|^(5>0 we have

Na(u,0,g)^~ f Na(V,0,g)dA(v).
no |
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As in the proof of Theorem 5.3 it follows that whenever |/(A) — w\^6 we must have

Nfl(vU,/)^4l J Na(z,XJ)dA(z). (6.5)

C o m b i n i n g ( 6 . 4 ) a n d ( 6 . 5 ) w e g e t s u p { J V a ( w , A , / ) : w e C a n d | | }
(\/2S2)\\f o<px-f(X)\\l2, f r o m w h i c h i t f o l l o w s t h a t ( a ) i m p l i e s ( b ) . •

7. Valence conditions for containment in BMOA or VMOA

For a nonconstant analytic function / on D and 0 < r < 1 let n{f r) denote the
number of zeros of / in the disk D(0, r), counted according to multiplicities. Then
n(/) = limr^1-n(/,r) denotes the number of times (counting multiplicities) that /
assumes the value 0. In [9] Pommerenke showed that a Bloch function / which satisfies
the valence condition

sup | n{f-w)dA(w)< oo, (7.1)
ueC | w - u | < 1

must belong to BMOA. If / is univalent (or finitely-valent), then it is trivial that the
above condition is satisfied, thus univalent (or finitely-valent) Bloch functions belong to
BMOA. The following theorem gives a necessary and sufficient condition on a Bloch
function for inclusion in the space BMOA.

Theorem 7.1. For a function feSS the following statements are equivalent:

(A) feBMOA;

(B) sup^j tn(f o(px — w, t)dt:XeU, weC and /(A)-w ^1 ><oo.
U J

Remark. Note that n(fo(pk—w, t) is the number of zeros of / —w in the pseudo-
hyperbolic disk £)(A, t), counted according to multiplicities. Thus the above condition (B)
is trivially satisfied if / is univalent (or finitely-valent).

Proof. It is elementary to show that for an analytic function F on D for which

Thus it follows that

JVa(0,0, F) = } (2r } ^ ^ dt) dr = \(l--t) n(F, t) dt.
o\ o t ) 0\t J
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Hence

1

Nfl(0,0, F) + J tn(F, t) dt = N(0,0, F).

Take AeO and weC, such that | / (A)-w|^l . The analytic function F=fo(px-w
satisfies F(0)#0, so that the above formula yields

i

NJL w, A, f) + J tn(f o<px-w, t) dt = N(w, A, / ) . (7.2)
o

which (in view of Theorems 5.1 and 6.1) immediately gives the result. •

It is not immediately clear that condition (7.1) implies statement (B) in Theorem 7.1.
It is however not difficult to see that (7.2), (5.8) and (6.4) imply that the supremum in
statement (B) of Theorem 7.1 is less than or equal ( l ^ s u p ^ ^ / o ^ —/(A)||£2 +
(l/7t)supu6C J|w-U|<i n(/—w)dA(w), so that Pommerenke's result follows from Theorem
7.1.

Using Theorems 5.2 and 6.2 we see from (7.2):

Theorem 7.2. For a function f s3S0 the following statements are equivalent:

(a) feVMOA;

(b) for every 8 > 0:

supU tn(f°<px-w,t)dt:XeB,weC and \f(X)-w\^d\-*0 as |A|-»l~.
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