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Abstract

Aerosol-cloud interactions constitute the largest source of uncertainty in assessments of anthropogenic climate
change. This uncertainty arises in part from the difficulty in measuring the vertical distributions of aerosols, and only
sporadic vertically resolved observations are available. We often have to settle for less informative vertically
aggregated proxies such as aerosol optical depth (AOD). In this work, we develop a framework for the vertical
disaggregation of AOD into extinction profiles, that is, the measure of light extinction throughout an atmospheric
column, using readily available vertically resolved meteorological predictors such as temperature, pressure, or
relative humidity. Using Bayesian nonparametric modeling, we devise a simple Gaussian process prior over aerosol
vertical profiles and update it with AOD observations to infer a distribution over vertical extinction profiles. To
validate our approach, we use ECHAM-HAM aerosol-climate model data which offers self-consistent simulations of
meteorological covariates, AOD, and extinction profiles. Our results show that, while very simple, our model is able
to reconstruct realistic extinction profiles with well-calibrated uncertainty, outperforming by an order of magnitude
the idealized baseline which is typically used in satellite AOD retrieval algorithms. In particular, the model
demonstrates a faithful reconstruction of extinction patterns arising from aerosol water uptake in the boundary layer.
Observations however suggest that other extinction patterns, due to aerosol mass concentration, particle size, and
radiative properties, might be more challenging to capture and require additional vertically resolved predictors.

Impact Statement

Aerosol-cloud interactions (ACIs) represent the largest uncertainty in assessments of global warming, with
uncertainty bounds that could offset global warming or double its effects. This uncertainty arises in part from the
inability to observe aerosol amounts at an appropriate resolution. Instead aerosol optical depth (AOD)—
observed globally through satellite products—is commonly used as a two-dimensional proxy for aerosols.
Yet, obtaining a global estimate of aerosol vertical distribution in the atmosphere would be more informative and
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help better constrain ACIs uncertainty. Here, we show that using AOD and readily available vertically resolved
meteorological predictors (temperature, pressure, relative humidity, updraft), a simple probabilistic model can
already yield realistic vertical extinction profiles together with appropriate uncertainty quantification. This
highlights that such simple modeling can benefit satellite products, leading to more accurate priors over aerosol
vertical profiles.

1. Introduction

Aerosols are microscopic particles ( < 5μm) suspended in the atmosphere. They can come from natural
sources (e.g., dust, sea salt) or be emitted by human activity (e.g., black carbon).

They influence the Earth’s energy budget with a negative radiative forcing that counteracts global
warming from anthropogenic greenhouse gases emissions. A fraction of this negative forcing stems from
aerosols’ direct scattering of incoming solar radiation (McCormick and Ludwig, 1967): this is the direct
effect.A larger fraction of this forcing is due to theirmodulation of the radiative properties of clouds: this is
the indirect effect. By acting as cloud condensation nuclei (CCN), additional aerosols can drive up the
cloud droplet number while driving down the mean cloud droplet size. The resulting clouds are brighter,
larger, and last longer (Twomey, 1977; Albrecht, 1989). They hence reflect more solar radiation and cool
the Earth.

Unlike the direct effect which can, in principle, be well constrained (Watson-Parris et al., 2020), the
magnitude of the forcing induced by the indirect effect is difficult to estimate. There are two reasons for
this: (i) the physical processes underpinning aerosol-cloud interactions (ACIs) are not yet fully
understood, which hinders the estimation of present-day forcing; (ii) the present-day forcing must be
compared to the forcing at pre-industrial state, which is also particularly challenging to quantify
(Carslaw et al., 2013). In fact, observational and model-based studies of ACIs still disagree on the
magnitude of this forcing. As a result, ACIs contribute the largest uncertainty in present-day global
warming (Masson-Delmotte et al., 2021).

To better estimate present-day forcing we require accurate, global measurements of CCN concentra-
tions to assess radiative properties of clouds (Twomey, 1977; Albrecht, 1989). Unfortunately, measuring
CCN concentrations can only be achieved in situ, and while field campaigns have already been
undertaken to collect detailed CCN observations, these measurements are spatio-temporally sparse and
provide insufficient constraints on the global distribution of aerosols (Andreae, 2009; Spracklen et al.,
2011).

For lack of better observations, the aerosol optical depth (AOD) has been widely adopted as a first-
order proxy of CCN concentration in an atmospheric column (Nakajima et al., 2001; Andreae, 2009;
Clarke and Kapustin, 2010). The AOD is a measure of the extinction of solar radiation through an
atmospheric column. It is denoted by τ and defined at a given wavelength, time, latitude, and longitude by

τ¼
Z H

0
bext hð Þdh, (1)

where bext is the extinction coefficient1 and the integral is taken over the height H of an atmospheric
column. The AOD is appealing because it is routinely observed on a global scale by satellite products
(Remer et al., 2005) which, unlike in situ observations, offer long-term global records.

However, the AOD is a column-integrated quantity and does not provide information on the vertical
distribution of aerosols. This is limiting as their vertical distribution strongly influences both the
magnitude and even the sign of the forcing induced by the indirect effect. For example, both modeling
(Stier, 2016) and observational studies (Painemal et al., 2020) find AOD inadequate for assessing ACIs
over vast subtropical ocean areas, which play a key role in determining the radiation balance of the Earth.
Yet, in both studies, the vertically resolved aerosol extinction coefficient bext shows a significantly higher

1 The sum of contribution from particle-light scattering plus the absorption of light by particles.
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correlation with CCN concentrations. Stier (2016) also highlights the importance of determining aerosol
vertical distributions to provide stronger constraints on CCN at specific altitudes. In particular, the AOD
fails to describe near-surface properties such as the concentration of aerosols in the boundary layer.

In this work, we propose to probe whether AOD observations can be used to constrain a global prior
over aerosol vertical distributions. Formally, given an AOD observation τ, we want to reconstruct the
corresponding extinction coefficient profile bext. This amounts to the task of reconstructing three-
dimensional (3D) profiles using height-integrated two-dimensional (2D) observations and quantities that
are easier to obtain in 3D, such as temperature and relative humidity.

Motivated by the study of cloud vertical structures, this task has been framed in the past as fully
supervised learning (Leinonen et al., 2019), that is, assuming observations of groundtruth vertical profiles
were available. Collecting vertically resolved observations of aerosols optical properties is also possible,
using lidar-based remote sensing instruments (Winker et al., 2013) or ground-based sun-photometers
(Holben et al., 1998).While valuable, these observations are however limited by their low spatiotemporal
coverage and prone to corruption (e.g., low signal-to-noise ratio, clear-sky requirement). Compiling high-
quality observational data of aerosol vertical profiles at a large scale is thus challenging, making fully
supervised learning approaches inadequate.

Instead, we propose to draw from spatial disaggregation methodologies that only require observations
at the aggregated level. Spatial disaggregation is the task of inferring subgrid details given coarse
resolution spatial observations. Postulating an underlying fine-grained spatial field that aggregates into
coarse observations, this problem can be framed as weakly supervised learning (Zhou, 2017) with
aggregated targets. While existing works (Law et al., 2018; Tanaka et al., 2019; Yousefi et al., 2019;
Tanskanen and Longi, 2020; Zhang et al., 2020) have only considered aggregation processes happening
on a 2D field, this rationale can be extended to disaggregate quantities along a third dimension—height.
Since τ corresponds to the vertical integration of bext, we propose to frame the reconstruction of aerosol
vertical profiles as the vertical disaggregation of AOD observations.

Using Gaussian processes (GPs) (Rasmussen and Williams, 2005), we design a Bayesian model that
maps vertically resolved meteorological variables (e.g., pressure, relative humidity) to a probabilistic
estimate of the extinction coefficient that integrates into the AOD. The model formulation is simple and
makes assumptions explicit, hence granting control and interpretability over predictions while offering
built-in uncertainty quantification.

In order to be able to fully validate the proposed methodology, we use ECHAM-HAM global aerosol-
climate model simulation data (Stier et al., 2005, 2007; Zhang et al., 2012).While our primemotivation is
to reconstruct bext from satellite observations of AOD, the intricacies of combining measurements from
different instruments make it challenging to validate any proposed methodology. On the other hand,
ECHAM-HAM is a self-consistent climate model that offers readily available aerosol vertical profiles,
and is better suited for model development. We demonstrate our model is able to reconstruct natural
patterns that arise in aerosol vertical distribution, in particular in the boundary layer. We show that very
simple and readily availablemeteorological predictors suffice to obtain a good estimation of the extinction
coefficient.

The aims of this study are as follows:

• Formulate a probabilistic vertical disaggregation methodology for the task of reconstructing aerosol
vertical profiles using readily available vertically resolved covariates.

• Validate the proposed methodology using climate model data—where access to groundtruth
extinction coefficient profiles enables quantitative evaluation.

Section 2 outlines the design of the vertical disaggregationmodel and describes the inference procedure as
well as the hyperparameter selection. Section 3 describes the dataset and experimental setup used to
validate the model. Section 4 presents the experimental results and Section 5 discusses, while introducing
avenues of future research.
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2. Model design

In this section, we first outline the design of the prior distribution we place on the extinction coefficient
profile using GPs. We then describe the observation model that connects our prior to the observations of
the AOD. Finally, we present how the posterior inference over the extinction profiles is conducted.

2.1. Design of the prior

2.1.1. An idealized vertical prior
In passive satellite sensors, AOD retrieval algorithms are used to produce an estimate of the AOD from
measurements of top-of-atmosphere reflectance. They are typically based on a forward model of top-of-
atmosphere reflectance (Wu et al., 2017). The parameters required to run this forward model are obtained
using a look-up-table algorithm, which admits as indices aerosol properties such as the aerosol type, the
AOD, and the form of the vertical profile. When the satellite sensor captures a measure of reflectance, the
look-up-table can be used to solve the corresponding inverse problem and estimate theAOD, provided the
aerosol properties have been predetermined. Consequently, to address the inverse problem, AOD retrieval
algorithms need to assume a form for aerosol vertical profile.

The form of the vertical profile is typically idealized, using either a Gaussian profile, or in the simplest
case an exponential profile (Wu et al., 2017; Li et al., 2020). The exponential profile takes the form
bext hð Þ∝e�h=L, where L is a fixed height scale parameter that is typically taken as the top altitude of the
boundary layer (2km)—although different algorithms may adopt varying values.

Whilst idealized, these profiles capture a key element of aerosol vertical distribution: most CCN lies at
low altitude in the boundary layer. This constitutes a form of domain knowledge, which we argue is
important to encode within the design of a prior over aerosol vertical profiles. Thus, we propose to use an
idealized exponential profile as a structural component of the prior placed over the extinction profile.

2.1.2. Weighting the ideal profile
Clouds’ local meteorology influences clouds properties, and hence the sign andmagnitude of the effective
radiative forcing due to ACIs (Ackerman et al., 2004; Small et al., 2009; Chen et al., 2014; Douglas and
L’Ecuyer, 2020)—this source of heterogeneity is at the heart of the uncertainty over how clouds impact
climate.

The impact of local meteorology on ACIs can be characterized by the following set of environmental
confounders (Köhler, 1936; Twomey, 1974): temperature T , pressure P, relative humidity RH, and
vertical velocity or updraft ω. Standing as a proxy for aerosols, the AOD is also impacted by its
surrounding meteorology (Christensen et al., 2017; Jesson et al., 2022). These meteorological variables
should thus also modulate the extinction coefficient.

A great advantage of these simple meteorological variables is that they (or their proxies) are readily
available on multiple pressure levels in reanalysis data. Reanalysis data, such as ERA5 (Muñoz-Sabater
et al., 2021), combines observations and model simulations through physical laws to provide the most
accurate representation of past and present climate andmeteorology. Hence, T ,P, RH, andω can be reliably
used as vertically resolved predictors. Finally, note that bext is also a spatiotemporal field which exhibits
smoothness across spatial and temporal dimensions. Such regularity should be included in the modeling.

Let x∣h denote a d-dimensional vector resulting from the concatenation of spatiotemporal and
meteorological variables for a given altitude h. For example, one can consider

x¼ t, lat, lon,T ,P,RH,ωð Þ, (2)

where lat and lon respectively denote latitude and longitude. In the remainder of this paper, wewill denote
X ⊆ℝd the space in which x takes values.

We propose to model the extinction coefficient bext by weighting an idealized exponential vertical
profile with a positive weight function w :X ! 0, +∞ð Þ. Namely, the chosen prior for the extinction
coefficient profile is denoted φ and takes the simple form
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φ xjhð Þ¼w xjhð Þe�h=L: (3)

This weight function is meant to capture finer details of variability in the extinction profile, putting more
mass in regions where meteorological predictors suggest aerosol loading is likely to be higher.

2.1.3. Probabilistic modeling of the weighting function
Whilst the extinction coefficient should indeed bemodulated by x∣h, we expect this relationship to be non-
trivial and highly non-linear (Jesson et al., 2022). For this reason, we propose to learn the weighting
functionw using non-linear (e.g., kernel-based) statistical machine-learningmethodologies. Furthermore,
we want the prior to reflect our lack of knowledge about the relationship between x∣h and bext hð Þ. To
account for this epistemic uncertainty, we propose a Bayesian formulation of the weighting function.

GPs (Rasmussen and Williams, 2005) are a ubiquitous class of expressive Bayesian priors over real-
valued functions. They have been widely used in various nonlinear and nonparametric regression
problems in geosciences (Camps-Valls et al., 2016). A GP is fully determined by its mean function
and its covariance function. The covariance function—called kernel—is typically user-specified as a
positive definite bivariate function on the input data.

We place a GP prior over the weight function. To ensure the weights are strictly positive, we further
warp the GP with a positive transform ψ :ℝ! 0, +∞ð Þ. Formally, letm :X !ℝ be a mean function and
k :X ×X !ℝ denote a positive definite kernel, we model the weighting function as

w xjhð Þ¼ψ f xjhð Þð Þ where f �GP m,kð Þ: (4)

TheBayesian prior defined by f represents a latent variable thatmaps through the positive link function
ψ onto the weight function. A simple choice for ψ is the exponential function, which as we will see in
Section 3 is a mathematically convenient choice.

Whilst ψ ∘f describes an expressive probability distribution over nonlinear positive functions, it
remains interpretable. The choice of kernel specifies how covariance is encoded, that is,
Cov f xð Þ, f x0ð Þð Þ¼ k x,x0ð Þ and controls the functional class the GP belongs to. For example, the Matérn
class of covariance functions offers control over the functional smoothness of the GP (Stein, 1999;
Rasmussen and Williams, 2005).

2.2. Design of the observation models

In this section, we establish a connection between the extinction coefficient prior φ xjhð Þ (constructed in
Section 2.1) and the observed values of extinction coefficient and AOD. To simplify notations, we focus
on a single air columnwith a height ofH, where we have observations of the extinction coefficient bext hð Þ
and the AOD τ.

Ideally, we would like to achieve a perfect match between bext hð Þ and φ xjhð Þ, as well as between τ andRH
0 φ xjhð Þ. Unfortunately, this is unrealistic because observations are prone to measurement error, which
must critically be accounted for. To address this, we formulate probabilistic observation models for bext
and τ in what follows.

2.2.1. Relevance of the log-normal distribution
The log-normal distribution has been reported to provide a good fit to the AOD in studies focusing on
locations in North America and Europe (O’Neill et al., 2000). This distribution is particularly suitable
because the AOD is strictly positive and exhibits a right-skewed distribution concentrated around small
values (≈ 0.14).

The log-normal distribution is a right-skewed continuous probability distribution with support
0, +∞ð Þ. It is specified by two parameters: a location parameter μ∈ℝ, and a scale parameter σ > 0. In
particular, if Z�N 0,1ð Þ is a standard normal random variable, then eμ+ σZ follows a log-normal
distribution with location μ and scale σ, which we denote LN μ,σð Þ.
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It is often preferable to express the log-normal distribution as a function of its mean rather than its
location, as it is more interpretable and offers a convenient parametrization for including higher-order
model parameters. Formally, let η¼E LN μ,σð Þ½ � denote the expectation of the distribution and suppose
the scale σ is known. The η can be expressed using μ and σ as η¼ eμ+ σ

2=2 ⇔ μ¼ logη� σ2

2 , which yields
the mean-reparametrized formulation of the log-normal distribution

LN μ,σð Þ¼LN logη�σ2

2
,σ

� �
: (5)

We collect AERONET sun-photometers AOD measurements from 1315 stations between 1993 and
2021 (Holben et al., 1998), and shown in Figure 1 that the empirical marginal distribution of AERONET
observations can indeed be appropriately fitted using a log-normal density.Whilst Figure 1 only depicts a
marginal distribution for the AOD, we draw motivation from this to formulate a log-normal observation
model for bext and τ conditional on φ xjhð Þ.

2.2.2. An observation model for bext
Whilst we do not usually observe bext hð Þ it is still useful to specify an observationmodel for the extinction
coefficient. Indeed, at inference stage, φ xjhð Þ might fail to capture observational noise which will
inevitably hinder variance calibration for the predicted extinction coefficient profile distribution. Using
an observation model over bext introduces an additional degree of freedom that will help calibrate the
variance of observations.

We propose a simple log-normal observation model with mean φ xjhð Þ for the extinction coefficient,

bext hð Þ∣φ xjhð Þ�LN logφ xjhð Þ�σ2ext
2
,σext

� �
, (6)

where σext > 0 is a scale parameter. This observationmodel conserves the mean2 from our prior φ xjhð Þ and
simply includes observational noise through the scale parameter σext. When extinction coefficient
observations are available, σext can be calibrated following the procedure described in Section 3.3.3.

Weemphasize that tuning σext requires only a small number of extinction coefficient observations. This
is in contrast to the AOD observations, which constitute the principal source of data we observe in the
context of this work.

Figure 1. Left: Log-normal density (red) fitted with maximum likelihood estimates to the empirical
distribution of AERONET AOD at 500 nm (τ500) from 1315 stations between 1993 and 2021 (green).
Right: logspace plot of the left panel. It demonstrates a sound fit for the normal distribution in the
logspace, albeit with a slight right skew; bμ¼�2:06, bσ¼ 0:96.

2E bext hð Þ½ � ¼E E bext hð Þ½ jφ xð jhÞ�½ � ¼E exp logφ xjhð Þ� σ2ext
2 + σ2ext

2

� �h i
¼E φ xjhð Þ½ �:
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2.2.3. An observation model for τ
AODobservations constitute the primary source of information on aerosols optical properties in the context
of this work since it is collected routinely at a global scale by satellite products. Satellite retrievals are
however prone to distortion, that may arise from observational noise (Remer et al., 2005) or assumptions
made in the AOD retrieval algorithm (Mielonen et al., 2011; Wu et al., 2016). Therefore, as for the
extinction coefficient, we propose to model these distortions using a log-normal observation model for the
AOD conditional on φ xjhð Þ.

Formally, let η¼ RH
0 φ xjhð Þdh be the column integration of our prior, then we propose a mean-

parametrized observation model for the AOD conditional on η, given by

τ∣η�LN logη�σ2

2
,σ

� �
, (7)

η¼
Z H

0
φ xjhð Þdh, (8)

with a scale parameter σ > 0 which can be tuned against AOD observations jointly with other model
parameters following the procedure described in Section 2.3.

When working with multiple AOD observations τ1,…,τn, the scale parameter σ will be assumed
shared among atmospheric columns. The mean parameter η (or location parameter μ for the canonical
parametrization) will however be column-specific.

2.3. Tuning and posterior inference

2.3.1. Finite-sample problem formulation
We now make things concrete and assume we observe the AOD for n columns, which we stack into the

vector τ¼ τ1 … τn½ �⊤ ∈ℝn. For the ith column, we also observe mi vertically resolved meteorological

covariates x 1ð Þ
i ,…,x mið Þ

i and their respective altitudes h 1ð Þ
i <…< h mið Þ

i , such that x jð Þ
i � p xjh jð Þ

i

� �
.

We concatenate these observations into a dataset D¼ x jð Þ
i ,h jð Þ

i

� �mi

j¼1
,τi

� �n

i¼1

and denote M¼Pn
i¼1mi

the total number of vertically resolved samples. Themodel description for the ith column is summarized in
Figure 2.

Our objective is to useD to learn themapping φ xjhð Þ.Within the Bayesian framework, this objective is
twofold:

(A) Update the prior placed on φ with the observations from D. This corresponds to computing the
posterior distribution of φ given τ.

(B) Tune the model hyperparameters by maximizing the marginal log-likelihood logp τð Þ. The
hyperparameters include the log-normal scale parameter σ and any parameter from the GP mean
m and kernel k.

Regarding point (A), since φ results from a transformation of GP f, we will rather focus on the posterior
distribution of the GP directly for convenience. If f ∈ℝ denotes a realization of f at any input x∣h, the
posterior distribution of f xjhð Þ given observations is denoted p f jτð Þ. Having access to the posterior p f jτð Þ
allows computation of the predictive mean and variance of φ xjhð Þ following

E φ xjhð Þjτ½ � ¼
Z
ℝ
ψ fð Þe�h=Lp f jτð Þdf , (9)
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Var φ xjhð Þjτð Þ¼E φ xjhð Þ2jτ
h i

�E φ xjhð Þjτ½ �2: (10)

The above can be estimated with Monte Carlo by drawing samples from the posterior p f jτð Þ. In
Section 3.3.1, we will obtain a simpler closed-form solution for the particular choice ψ¼ exp.

Regarding point (B), the marginal log-likelihood logp τð Þ is unfortunately intractable. Indeed, let x¼
x 1ð Þ
1 … x mnð Þ

n

h i⊤
∈XM denote the concatenation of all input entries from the dataset and let f ∈ℝM

denote a realization of f xð Þ. Assuming independence of AOD observations τ1,…,τn conditionally on the
GP realization over atmospheric columns f , the marginal likelihood p τð Þ is expressed in terms of the
observation model and prior distributions following

Figure 2.Observation models and prior formulation for the ith atmospheric column. The model follows a
hierarchical Bayesian structure represented by the arrows. We first specify the prior, and then express the
observation models conditionally on the prior.
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p τð Þ¼
Z
ℝM

p τjfð Þp fð Þdf with p τjfð Þ¼
Yn
i¼1

p τijf ið Þ, (11)

where f i ¼ f 1ð Þ
i … f mið Þ

i

h i⊤
∈ℝmi corresponds to the GP realization over the ith column only. Because

the observationmodel is log-normal, this integral is however intractable. To circumvent this intractability,
we propose to tackle objective (B) by maximizing a proxy of the marginal log-likelihood presented in
Section 2.3.3.

2.3.2. A sparse variational approximation of the posterior
We start by addressing objective (A). The predictive posterior distribution of interest is given by

p f jτð Þ¼ p τjfð Þp fð ÞZ
ℝ
p τjfð Þp fð Þdf

: (12)

The integral denominator is not available in closed form, making the posterior intractable. We propose
to use a variational approximation scheme (Titsias, 2009; Matthews et al., 2016; Leibfried et al., 2020) to
substitute this intractable inference problem with a tractable optimization problem. In addition, we make
the variational approximation sparse (Titsias, 2009) such that themodel can scale to large amounts of data.

Let z¼ z1 … zp½ �⊤ ∈X p be a set of p≪M inducing locations over the space of inputs. Their
evaluation by the GP follows a multivariate normal distribution f zð Þ�N 0,Kzzð Þ, where Kzz ¼ k z,zð Þ.
We denote u¼ f zð Þ∈ℝp and refer to this vector as inducing variables.

A p-dimensional parametric distribution is set over these inducing variables. We choose this distri-
bution as a multivariate normal defined by q uð Þ≔N ujμz,Σzð Þ. μz ∈ℝp,Σz ∈ℝp× p are called the
variational parameters and need to be tuned such that q uð Þ best approximates the true posterior p ujτð Þ.

Once this is achieved, we take as an approximation to p f jτð Þ the variational posterior defined by
q fð Þ≔ R

ℝpp f juð Þp uð Þdu, which is given in closed form by

q fð Þ¼N f jμx∣h,Σx∣h
� 	

, (13)

μx∣h ¼ k xjh,wð ÞK�1
zz μz, (14)

Σx∣h ¼ k xjh,xjhð Þ� k xjh,zð Þ K�1
zz �K�1

zz ΣzK
�1
zz

� 	
k z,xjhð Þ: (15)

Naturally, (13) can be extended to describe a variational posterior over multiple GP entries. Namely, let
x∗ ∈XD denote a vector of input entries. If f∗ ∈ℝD denotes a realization of f x∗ð Þ, then the associated
variational posterior is given by

q f∗ð Þ¼N f∗jμx∗ ,Σx∗
� 	

, (16)

μx∗ ¼ k x∗,wð ÞK�1
zz μz ∈ℝD, (17)

Σx∗ ¼ k x∗,x∗ð Þ� k x∗,zð Þ K�1
zz �K�1

zz ΣzK
�1
zz

� 	
k z,x∗ð Þ∈ℝD×D: (18)

The sparse nature of this approach becomes apparent in (17) and (18). Indeed, regardless of the number
of samples we wish to evaluate the variational posterior over, we only need to invert a p× p matrix,
incurring a O p3ð Þ computational cost.

2.3.3. Learning the variational parameters μz,Σz

As mentioned above, the variational parameters μz,Σz need to be tuned such that q uð Þ best approximates
the posterior p ujτð Þ, which is intractable. This problem is casted as themaximization of an objective called
the evidence lower-bound (ELBO), given by
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ELBO qð Þ¼Eq fð Þ logp τjfð Þ½ ��KL q uð Þkp uð Þð Þ: (19)

The ELBO is a lower-bound to the marginal log-likelihood logp τð Þ≥ELBO qð Þ. It can thus be used as
a proxy of logp τð Þ to also tune the model hyperparameters and fulfill objective (B).

The second term in (19) is the Kullback–Leibler divergence between two multivariate normal
distributions. It admits a closed-form expression and can be computed. The first term, on the other hand,
is an expected log-likelihood under the variational posterior which cannot be analytically computed. It can
be decomposed into column-wise terms

Eq fð Þ logp τjfð Þ½ � ¼
Xn
i¼1

Eq f ið Þ logLN τi logηi�
σ2

2
,σ






� �� �

: (20)

To estimate (20), we must first evaluate the mean parameter ηi ¼
RH
0 ψ f xijhð Þð Þe�h=Ldh with the finite

number of GP evaluations f i we have access to. We propose to use the trapezoidal integration scheme
given by

bηi ¼Xmi�1

j¼1

ψ f j + 1ð Þ
i

� �
e�h j + 1ð Þ

i =L�ψ f jð Þ
i

� �
e�h jð Þ

i =L

2
h j + 1ð Þ
i �h jð Þ

i

� �
: (21)

While we choose the trapezoidal rule for simplicity, we note that alternative finite-sample integration
schemes can be chosen here in accordance with the needs.

Second, because of the log-normal observationmodel, the expected log-likelihood remains intractable.
To estimate it, while allowing backpropagation through the variational parameters, we use a reparame-

trization trick (Kingma et al., 2015). Namely, we sample ϵi �N 0,Imið Þ and compute f i ¼μi +Σ
1=2
i ϵi,

where μi,Σi are the variational posterior parameters for the ith column and are obtained by application of
(17) and (18) over the predictors of the ith column. The resulting GP sample f i is then used to estimate the
mean parameter bηi following (21) and we can approximate the expected log-likelihood with its one-
sample estimate

Eq f ið Þ logLN τi logηi�
σ2

2
,σ






� �� �

≈ logLN τi logbηi�σ2

2
,σ






� �

: (22)

This method allows estimation of the ELBO objective, which in turn can be maximized with respect
to the variational parameters μz,Σz using a stochastic gradient approach for example. As mentioned
above, the model hyperparameters can also be tuned jointly with this objective, hence fulfilling
objective (B). These include the log-normal scale σ or the kernel k hyperparameters (e.g., variances
and lengthscales), with an option to parametrize these kernels using feature maps given by deep neural
networks (Law et al., 2019). As it is standard in sparse variational GPs (Titsias, 2009), we also learn the
inducing locations z.

3. Experimental setup

Our motivating application is to reconstruct aerosol vertical profiles from remote-sensing AOD obser-
vations. However, to validate the proposed methodology, we also need to observe extinction coefficient
profiles. While the latter can be collected from vertically resolved remote sensing instruments (Holben
et al., 1998;Winker et al., 2013), the collocation ofmeasurements from different devices raises non-trivial
questions regarding the self-consistency of the collocated dataset—and thus the validation procedure. In
contrast, climate models are self-consistent and offer readily available simulations of gridded AOD and
extinction coefficient profiles. We hence propose to evaluate our model using observations from a global
climate model, the ECHAM-HAM global aerosol-climate model simulation (Stier et al., 2005, 2007;
Zhang et al., 2012).
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The objective of this experiment is to apply our model to the vertical disaggregation of the AOD
simulated with ECHAM-HAM, and compare our prediction to the extinction coefficient simulated with
ECHAM-HAM. In this section, we first describe the ECHAM-HAM dataset used in the experiments. We
then outline the model setup and the inference procedure. Finally, we present the evaluation metrics used
to quantify the quality of the reconstructed vertical profiles.

3.1. Dataset

3.1.1. The ECHAM-HAM dataset
The aerosol-climate model ECHAM-HAM is a self-consistent global climate model of aerosol radiative
properties and CCN which demonstrates excellent agreement with AOD measurements from ground-
based sun-photometers and satellite retrievals (Stier et al., 2005). It computes the evolution of log-normal
aerosol mass and number modes—for species sulfates, black carbon, organic carbon, sea salt, andmineral
dust—by taking into account physical and chemical particle processes. The simulation used includes
aerosol optical properties, aerosol tracers, and meteorological variables at a 1.8° × 1.8° horizontal
resolution on aGaussian grid and over 31 levels of vertical resolution and for 8 regularly spaced time steps
over a day (06/06/2008). The resulting dataset counts 147,456 atmospheric columns used as training
points. Table 1 provides its detailed dimensions.

The dataset captures two important aspects of aerosol properties variability: (i) because the dataset is
global, it captures the spatial variability of aerosols, which is arguably the greatest contribution to the
overall variability of aerosol properties. Indeed, the distribution of particles in the troposphere is highly
heterogeneous due to the combination of spatially diverse sources and the relatively short lifetime of
particles and gases (Carslaw and Pringle, 2022); (ii) the dataset covers a full day, which provides a good
coverage of the diurnal cycle of aerosols.

However, a single day of data may fail to account for the seasonal variations of aerosol properties. The
seasonal variability of aerosols is strongly regionally dependent, where variations in aerosol concentration
can exceed a factor of 10 in regions prone to episodic emissions (e.g., wildfires, human activity), but vary
only by 10% over a year in regions with persistent atmospheric circulation such as the Pacific subtropics
(Carslaw and Pringle, 2022). Therefore, we expect that the demonstrated predictive performance of our
model over this dataset should carry over to more stable regions for different seasons, but it remains
uncertain from experiments on this dataset whether the model may generalize to the regional temporal
variability induced by episodic events.

3.1.2. Choice of variables
ECHAM-HAM offers simulations of aerosol properties at particular wavelengths that match the wave-
lengths at which operate specific instruments for evaluation. We use the ECHAM-HAMAOD at 550 nm
as the response variable to vertically disaggregate and the ECHAM-HAMextinction coefficient at 533 nm

Table 1. Gridded variables from ECHAM-HAM simulation data

Name Notation Dimensions

Predictors Temperature T (t, lat, lon, lev)
Pressure P (t, lat, lon, lev)
Relative humidity RH (t, lat, lon, lev)
Vertical velocity ω (t, lat, lon, lev)

Response AOD 550 nm τ (t, lat, lon)
Groundtruth Extinction coefficient 533 nm bext (t, lat, lon, lev)

Note. The grid includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon), and 31 vertical pressure levels (lev)—which is a proxy for h. Our
objective is to vertically disaggregate the response τ using the vertically resolved predictors (T ,P,RH,ω) and spatiotemporal columns locations (t, lat, lon).
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as the groundtruth variable to evaluate our predictions against. The AOD and the extinction coefficients
are simulated in ECHAM-HAM at slightly different wavelengths in order to match the wavelength at
which operate the respective sensors (550 nm for the MODIS AOD product; Remer et al., 2005 and
532 nm for the CALIOP extinction; Winker et al., 2013).

In order to make the model easily applicable to any satellite AOD retrieval, we select vertically
resolved predictors among standard meteorological variables, that could in practice be easily obtained
from reanalysis data: T , P, RH, and ω. By limiting ourselves to these variables, which are comprehen-
sively covered by reanalysis products, we favor a global applicability of the model to AOD observations
from most times and locations.

In what follows, the input variable writes x¼ t, lat, lon,T ,P,RH,ωð Þ. We standardize meteorological
predictors and transform them using a rank-based inverse normal mapping to achieve approximately
normal distributions.

3.2. Model setup and tuning

3.2.1. Choice of idealized profile height scale L
A simple choice for the idealized profile height scale is the boundary layer upper altitude, typically taken at
2km. This is the value assumed byMISR,VIIRS, andMODISC6_DTAOD retrieval algorithms (Levy et al.,
2007; Kahn and Gaitley, 2015; Laszlo and Liu, 2016). In our experiment, we also choose to set L¼ 2km.

3.2.2. Choice of mean and covariance structure
We set the GP with a zero mean function m¼ 0 and kernel taken as the sum of a spatiotemporal and a
meteorological contribution to the covariance

k xjh,x0jh0ð Þ ¼ γ1kST t, lat, lonf g, t0f , lat0, lon0gð Þ+ γ2kmeteo T ,P,ω,RHf gjh, T 0f ,P0,ω0,RH0gjh0ð Þ, (23)

with respective variances γ1 and γ2.We propose to parametrize the kernels using theMatérn family, which
has been widely used to work with spatiotemporal data (Stein, 1999). We denote Cν the Matérn-ν
covariance function with automatic relevance determination (that is independent lenghtscales for each
entry). This choice of Matérn order ν guarantees a desired level of regularity for the resulting GP. Details
on the Matérn covariance functions are provided in Appendix A.

The spatiotemporal kernel is taken as the product kernel

kST t, lat, lonf g, t0, lat0, lon0f gð Þ¼C3=2 jt� t0jð ÞC3=2 Hav
lat

lon

� �
,

lat0

lon0

� �� �� �
, (24)

where Hav denotes the Haversine distance—or great-circle distance—that determines the distance
between two points on a sphere given their latitudes and longitudes. Each Matérn covariance admits a
length scale, respectively denoted ℓt and ℓlat,lon. Note that C3=2 may not be positive definite over Hav for
certain lengthscales (Feragen andHauberg, 2016; Borovitskiy et al., 2020), thus we set an upper bound on
ℓlat,lon to ensure positive-definiteness. The Matérn order ν¼ 3=2 ensures the GP is continuously
differentiable with respect to time and space.

The spatiotemporal kernel (24)makes the predicted extinction smooth across time and space. Its product
structure ensures that for distant times (t, t0) or distance locations ((lat, lon), (lat0, lon0)), the spatiotemporal
covariance vanishes to zero. Hence, theGP covariance of predictions distant in space or timewill disregard
spatiotemporal predictors. This prevents overfitting over spatiotemporal predictors.

The meteorological kernel is taken as an automatic relevance determination covariance

kmeteo T ,P,ω,RHf gjh, T 0,P0,ω0,RH0f gjh0ð Þ ¼C1=2

∣T�T 0∣
∣P�P0∣

∣RH�RH0∣
∣ω�ω0∣

2
6664

3
7775

0
BBB@

1
CCCA, (25)
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where each dimension admits its own length scale parameter, respectively denoted ℓT ,ℓP,ℓRH, and ℓω

(we permit ourselves to drop the conditioning on h and h0 for conciseness). The Matérn order ν¼ 1=2
ensures that the GP is continuous with respect to meteorological predictors.

The kernel on meteorological predictors (25) allows to GP to learn how meteorological predictors
should modulate extinction. It introduces covariance between predicted extinctions if meteorological
predictors are close, even if the spatiotemporal covariance is zero (because of the additive structure in
(23)). In practice, we find that setting a unit variance for this kernel γ2 ¼ 1 helps prevent vanishing kernel
signal when tuning the hyperparameters.

We include in Appendix B a comparison of this choice of covariance structure with a more
conventional tensor form covariance and evaluates their respective predictive performance.

3.2.3. Sparse variational GP setup and tuning
We use p¼ 200 inducing locations z as an arbitrary choice (fewer or more inducing locations can be used
following needs). They are initialized by randomly drawing samples at boundary layer altitude from x.
The variational distribution q uð Þ¼N ujμz,Σzð Þ is initialized with μz ¼ 0 and Σz ¼ Ip. We denote Θ¼
μz,Σz,z,σ,γ1,γ2,ℓt,ℓlat,lon,ℓT ,ℓP,ℓRH,ℓωf g the joint set of variational and model hyperparameters. We

maximize the ELBO objective (19) with respect to Θ using the Adam optimizer (Kingma and Ba, 2015).
Since the dataset includes 8× 96× 192¼ 147,456 atmospheric columns, evaluating the ELBO for all

columns at each optimization step is computationally prohibitive. Instead, we use a stochastic gradient
approach and sample random mini-batches of columns over which we compute an unbiased noisy
estimate of the ELBO gradient. Whilst compromising statistical efficiency, the high variance estimates
of gradients have regularizing properties that mitigate overfitting, and this approach is guaranteed to
converge to a local optima forΘ (Hoffman et al., 2013). To meet memory limitations, we set a mini-batch
size of 64, and therefore choose a small learning rates of 0:01 to avoid taking large steps based on a few
samples.When possible, a larger mini-batch size couple with a larger learning rate should allow to reach a
better local optimum faster (Hoffman et al., 2013).

3.3. Inference procedure

3.3.1. Exponential link
We choose an exponential link function ψ¼ exp to warp the GP. This particular choice is mathematically
convenient as it makes the prior φ xjhð Þ a log-normal random variable given by

φ xjhð Þ¼ ef xjhð Þ�h=L �LN m xjhð Þ�h=L,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k xjh,xjhð Þ

p� �
: (26)

A direct consequence is that we know the analytical expressions of its moments and quantiles, which
alleviates the need for estimation procedures. This becomes of particular interest whenmaking prediction,
since the variational posterior that approximates φ xjhð Þ∣τ is also a log-normal distribution given by

LN μx∣h�h=L,Σ
1=2
x∣h

� �
following notations from Section 2.3.2.

Therefore, we obtain approximations of the posterior mean, variance, and quantiles in closed-form
following

E φ xjhð Þjτ½ �≈ exp μx∣h�
h
L
+
1
2
Σx∣h

� �
, (27)

Var φ xjhð Þjτð Þ≈ eΣx∣h �1
� �

exp 2μx∣h�
2h
L

+Σx∣h

� �
, (28)
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Qα φ xjhð Þjτð Þ≈ exp μx∣h�
h
L
+

ffiffiffiffiffiffiffiffiffiffi
2Σx∣h

q
erf�1 2α�1ð Þ

� �
, (29)

where Qα denotes the α-quantile function and erf denotes the error function. This allows for an efficient
computation of the predicted mean extinction profile and confidence regions.

3.3.2. Rescaling the predicted profiles
The posterior distribution p f jτð Þ updates the GP with the information that the mapping φ should
(in expectation) vertically integrate to the observed AOD τ. While instructive, this is a weak constraint
on the prior and does not guarantee that the prediction will effectively integrate to the AOD of the
atmospheric column.

To get stronger enforcement of column-integrated values and ensure predictions effectively integrate
to the AOD in expectation, we propose to rescale the model against observed AOD. Because observations
τ1,…,τn are corrupted with high-frequency observational noise, we introduce a spatially smoothed
version of the AOD observations that filters out this noise. By applying a spatial Gaussian smoothing
filter to the ECHAM-HAM AOD, we obtain spatially smoothed versions of the observations which we
denote sτ1,…, sτn. A comparison of the fields is displayed in Figure 3.

At inference time, we then substitute the predicted posterior of extinction with its rescaled version
given by

sφ xijhð Þ∣τ¼
sτiZ H

0
E φ xijhð Þjτ½ �dh

φ xijhð Þ∣τ, (30)

for the ith column. This ensures that, in expectation, sφ xijhð Þ∣τ effectively integrates along height to
sτ. When choosing ψ¼ exp , performing this rescale is equivalent to shifting the location of the posterior
in (26) by log sτi� log

RH
0 E φ xijhð Þjτ½ �dh. The integral is approximated with a trapezoidal scheme.

3.3.3. From sφ xjhð Þ∣τ to bext hð Þ∣τ
The final stage of inference is to estimate the posterior distribution of bext following the observationmodel
(6). Because the chosen observation model conserves the mean, the posterior mean of bext hð Þ is the same
as the posterior mean of sφ xjhð Þ. Higher-order moments however cannot be obtained analytically and will
require estimation by sampling from bext hð Þ∣τ. This can be achieved by sampling from sφ xjhð Þ∣τ and then
plugging the samples in the observation model (6) to sample from bext hð Þjsφ xjhð Þ.

The observation model scale parameter σext needs to be calibrated against observational noise. We set
σext to the value that minimizes the integrated calibration index (ICI) given by

ICI¼
Z 1

0
∣Nσext αð Þ� 1�αð Þ∣dα, (31)

Figure 3. Left: ECHAM-HAM 550 nm AOD. Right: Spatially smoothed ECHAM-HAM 550 nm AOD.
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whereNσext αð Þ is the percentage of ECHAM-HAM extinction coefficient observations that fall within the
1�αð Þ credible interval of the distribution of bext∣τ. The ICI is evaluated against ncalib ¼ 200 random
atmospheric columns from the dataset. These columns form a separate calibration set which is solely used
to calibrate σext. This separate calibration set is negligible in size in comparison with the 147,456
atmospheric columns available in the simulation.

3.4. Evaluation procedure

We compare the predicted extinction coefficient profile bext∣τ to the extinction coefficient from ECHAM-
HAMsimulations. For clarity, we refer to our proposedmethodology asVAExtGP (forVariational Aerosol
Extinction GP) in the presentation of experimental results.

3.4.1. Baseline models
We use as a comparative baseline an idealized exponential profile, similar to the vertical profiles
postulated in AOD retrieval algorithms. For a fair comparison, we rescale the baseline profiles such that
their integrated values match the AOD, following the procedure described in Section 3.3.2. We
complement this baseline with a log-normal observation model for the extinction coefficient and calibrate
its scale parameter against a separate calibration following the procedure outlined in Section 3.3.3. This
enables probabilistic evaluation of the extinction coefficient profiles predictedwith the idealized baseline.

In addition, to examine the contribution to predictions of our modeling choices, we consider the
following ablated versions of VAExtGP:

• GPonly: we remove the idealized exponential vertical contribution to the prior. The prior is specified
as the exponential of a GP only, that is, φ xjhð Þ¼ exp f xjhð Þð Þ with f �GP m,kð Þ.

• ST only: we only use spatiotemporal covariates as input variables for the model, that is,
x¼ t, lat, lonð Þ. The kernel is set to k¼ kST.

• Meteo only: we only use meteorological covariates as input variables for the model, that is,
x¼ T ,P,RH,ωð Þ. The kernel is set to k¼ kmeteo.

3.4.2. Evaluation metrics
We use two categories of metrics to quantify the quality of the predicted vertical profiles: deterministic
metrics, which compare only the posterior mean prediction to the groundtruth ECHAM-HAM extinction
coefficient profiles, and probabilistic metrics which evaluate the entire posterior probability distribution
against the extinction coefficients from ECHAM-HAM simulation and thus also assess the quality of the
uncertainty quantification in the posteriors. The metrics used are detailed in Table 2.

Table 2. Evaluation metrics

Metric Description Best when

Deterministic RMSE Root mean square error Close to 0
MAE Mean absolute error Close to 0
Corr Pearson correlation Close to 1
Bias Mean bias Close to 0
Bias98 Bias in the 98th percentile Close to 0

Probabilistic ELBO Evidence lower–bound of groundtruth bext Higher
Calib95 95% calibration score, that is, Nσext α¼ 0:05ð Þ Close to 95%
ICI Integrated calibration index—see (31) Close to 0

Note.Deterministic metrics compare the predicted posterior mean E bextjτ½ � to the ECHAM-HAM extinction coefficient; Probabilistic metrics evaluate
the complete predicted posterior probability distribution of bext∣τ against ECHAM-HAM extinction coefficient.
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For each metric, we compute scores for pixels along the entire atmospheric columns and for pixels
lying within the boundary layer only ( < 2km). Scores are averaged across all pixels.

4. Results

4.1. Comparison to an idealized exponential baseline

Table 3 shows that the posterior mean profile predicted with the proposed method outperforms the
idealized exponential baseline across deterministic metrics. We note that evaluating over the entire
column consistently yields better scores compared to evaluating only over the boundary layer. This is
to be expected as the extinction coefficient outside the boundary layer tends to vanish to zero and most of
the variability occurs within the boundary layer.

The improvement in RMSE and MAE against the idealized baseline is slightly more significant when
computed within the boundary layer rather than over the entire column. This supports the idea that
VAExtGP improves upon an idealized exponential profile at predicting extinction since the boundary layer
concentrates most extinction variability. The improvement is greatest in Bias and Bias98, where the
proposedmodel consistently improves over the idealized baseline by one ormultiple orders ofmagnitude.
In particular, the improvement in Bias98 suggests that VAExtGP better captures extreme extinction
values.

When considering the evaluation over the entire column, the ELBO and ICI scores are comparable for
both methods. However, within the boundary layer, VAExtGP outperforms the baseline, by a substantial
margin in terms of ICI. This indicates that, within the boundary layer, the predicted posterior probability
distribution of VAExtGP better captures the ECHAM-HAM extinction variability. The 95% calibration
scores are similar for both methods, with a slight advantage for the idealized baseline.

4.2. Reconstructed vertical profiles

Figure 4 displays slices for a fixed latitude of the vertically resolved predictors used, the ECHAM-HAM
extinction coefficient, and the predicted extinction coefficient with VAExtGP. For comparison, the
prediction at the same latitude with the idealized exponential baseline and additional predictions with
VAExtGP for different latitudes are provided in Appendix C.

We observe that our predicted mean profile is able to reconstruct extinction patterns that are visually
very similar to the groundtruth extinction coefficient. In comparison with the profiled predicted with the
idealized exponential baseline in Figure C1, the extinction profiles predicted with our method look much
more realistic. This is encouraging considering that the only aerosol optical property used is the AOD.We
also observe that extreme extinction coefficient values appear to be well captured within the 95%
confidence region of the predicted posterior distribution.

Since aerosol water uptake is related to relative humidity, we observe a good capacity to recover
patterns corresponding to extinction due to aerosol swelling at low altitudes in the boundary layer. This

Table 3. Scores of the idealized exponential baseline and VAExtGP for the task of predicting ECHAM-
HAM extinction profiles

Region Method RMSE (10�5) MAE (10�6) Corr Bias (10�6) Bias98 (10�5) ELBOa Calib95 (%) ICI (10�2)

Entire Idealized 4.10 6.65 0.51 �2.40 �4.08 13.1 96.0 5.05
column VAExtGP 3.21 ± 0.04 5.29 ± 0.06 0.73 ± 0.01 �0.005 ± 0.161 �0.482 ± 0.212 13.0 ± 0.1 93.5 ± 0.1 6.60 ± 0.45
Boundary Idealized 7.55 16.8 0.54 �12.9 �11.7 10.2 93.5 19.1
layer VAExtGP 5.91 ± 0.07 15.3 ± 0.1 0.72 ± 0.06 �0.404 ± 0.71 �4.53 ± 0.44 10.7 ± 0.1 98.7 ± 0.1 6.26 ± 0.34

Note. “Entire column” means scores are computed for every altitude level; “Boundary layer” means scores are computed for altitude levels of the
boundary level only ( < 2km); the best scores for each metric and region are highlighted in bold; we report 1 standard deviation.
aFor Idealized, we report the marginal log-likelihood of ECHAM-HAM extinction under the predicted profiles instead of the ELBO. This is an upper
bound to the ELBO, which could possibly be lower.
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Figure 4. Vertical slices at latitude 51.29° of meteorological predictors (T ,P,RH,ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of the
predicted extinction coefficient posterior distribution.
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is particularly visible over the Pacific (longitudes 144∘�228∘) and the Atlantic (longitudes
305∘�350∘), where the predicted patterns of extinction tend to best reproduce the ECHAM-HAM
extinction patterns.

However, the predicted mean profile faces greater difficulties to accurately reproduce the extinction
patterns for longitudes 0∘�100∘. This is particularly noticeable in Figure 4 around longitude 71:4∘

nearby Astana in Kazakhstan, and around longitude 17:3∘ in the Silesia region in Poland. The
geographical locations suggest these are extinction patterns induced by human activity, which cannot
be captured solely by meteorological variables. We conjecture these patterns are imputable to aerosols
mass concentration, particles size, and radiative properties. These properties, unlike extinction due to
swelling, are more complex and cannot be fully characterized by relative humidity, temperature,
pressure, and updraft. It is worth highlighting that, whilst difficult to predict, these extinctions pattern
appear nonetheless to be well captured within the 95% confidence region of the predicted posterior
distribution.

In general, the posterior mean predictions tend to be smoother than the groundtruth extinction
coefficient. The smoothing effect is a regularizing property of the GP prior, resulting in an overestimation
of the extinction coefficient in certain regions with low extinction. For example, around longitude 200∘ in
the Pacific, the ECHAM-HAM extinction in Figure 4 displays an extinction pocket with a sharp limit
around altitude 1km, above which extinction is virtually absent. In contrast, our predicted posterior mean
is more diffuse and tends to spread out lightly above 1km.

The density plots in Figure 5 support this observation, as a large mass of extinction coefficient around
10�7m�1 tends to be overestimated by an order of magnitude. However, this trend is significantly reduced
when focusing on the boundary layer, wheremost of themass lies around the axis y¼ x. This suggests that
most of the overestimation occurs above the boundary layer for low extinction ( < 10�6m�1). Within the
boundary layer, however, the mean predictions are reasonably aligned with the groundtruth for high
extinction coefficient values ( > 10�5m�1). Although low extinction coefficient values are less dominant
in the boundary layer, they also tend to be overestimated. We attribute this to the smoothing effect of the
GP prior, which is prone to overestimation between extinction pockets.

Figure 5. Density plots of groundtruth extinction coefficient values against predicted posterior mean
extinction coefficient; Left: plotted for the entire column; Right: plotted for the boundary layer only;
density plots are computed on a random subset on a random subset of 1000 samples drawn for the entire
column (left) and in the boundary layer (right).
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4.3. Ablation study

We examine the contribution to predictions of our modeling choices by comparing the scores obtained
with VAExtGP to the scores obtained with the three ablated models described in Section 3.4.1. Figure 6
shows the relative changes in scores with the ablated models, defined as

%Relative change¼ ScoreVAExtGP�Score ablated model

ScoreVAExtGP
× 100, (32)

where a positive value (blue) corresponds to an improvement for the ablated model, and a negative value
(red) corresponds to a decrease in performance for the ablated model. Transformations of Corr, Bias,
Bias98, ELBO, and Calib95 are taken such that smaller values correspond to better performance, and are
detailed in Appendix C.

Overall, we find that excluding a component from the model leads to a decrease in performance across
most metrics. Specifically, when using only a GP without the idealized exponential term in the prior (GP
only), only spatiotemporal covariates (ST only), or only meteorological covariates (Meteo only), the
model’s performance is adversely affected.

For deterministic metrics, the ablation of meteorological covariates (ST only) has a particularly
pronounced impact, with drastic drop in Bias and Bias98. This highlights the key role of learning the
mapping from meteorological variables to extinction profiles. For probabilistic metrics, we observe that
the ablation of spatiotemporal covariates (Meteo only) leads to the largest decrease in scores, indicating
that incorporating spatiotemporal information plays a significant role in calibrating the predicted posterior
distribution. Furthermore, we note that whilst the performance of theGP onlymodel is generally inferior
to that of VAExt, emphasizing the importance of encoding prior knowledge about aerosol vertical
distribution through the idealized exponential profile, it is also the ablated model that least degrades
performance. This highlights the remarkable adaptivity of GPs, and supports their use to learn non-trivial
relationship in data.

In conclusion, these results demonstrate the significance of incorporating both spatiotemporal and
meteorological covariates, as well as the idealized exponential profile, in our proposed model.

Figure 6. Relative changes in scores with respect to VAExtGP for the 3 ablated models: “GP only”
(no idealized exponential term e�h=L in the prior), “STonly” (only spatiotemporal covariates in the input
variable) and “Meteo only” (only meteorological covariates in the input variable). Red/Blue indicates
that the performance is on average worse/better for the ablated model. We report 1 standard deviation.
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4.4. Feature importance analysis

In this section, we investigate the role predictors in VAExtGP play in the prediction of the extinction
profiles. We begin by examining the model hyperparameters to gain an understanding of how do
predictors overall contribute to the covariance structure. We then ask the following questions:

• How do meteorological predictors modulate the predicted extinction?
• Do temperature and pressure provide valuable meteorological information for prediction or are they
just proxies for height?

To address these questions, we propose a more detailed feature importance analysis that elucidates the
contribution of predictors to individual predictions: Shapley values (SVs) (Shapley, 1953). Originally
introduced as a game-theoretic concept, SVs have been widely adopted in machine learning to design
local feature importance explanation models (Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017;
Lundberg et al., 2018; Ghorbani and Zou, 2019). With SVs, we can estimate for each individual
prediction, how much each predictor contributed, and hence explain predictions. In our study, we use
the KernelSHAP SV-based explanation model (Lundberg and Lee, 2017).

4.4.1. Global analysis with model hyperparameters
Table 4 reports the hyperparameters values after tuning them to maximize the ELBO objective as
described in Section 2.3.3. These values provide a global description of the importance of predictors
contribution to the covariance structure. γ1 and γ2 respectively correspond to the variances of the
spatiotemporal and meteorological kernels from (23). A larger variance hyperparameter indicates a
greater contribution to the covariance. The lengthscales ℓlat,lon,ℓT ,ℓP,ℓRH, and ℓω correspond to the
lengthscales of each standardized predictor in the spatiotemporal kernel (24) and (25). A smaller length
scale parameter means that the covariance is more sensitive to small variations in the predictors.

The value of γ1 indicates thatmeteorological predictors globally contribute more to the covariance than
spatiotemporal predictors. The large value of the temporal length scale ℓt (greater than 5) suggests a
minimal sensitivity of the model to time. This is certainly because the dataset covers a single day and
therefore exhibits limited temporal variability. In contrast, the small value of the spatial length scale ℓlat,lon

indicates a high sensitivity to spatial location and suggests that spatial correlation occurs within a
restricted spatial range. This likely arises from the spatial heterogeneity of aerosol concentration, resulting
in localized, short-range spatial patterns.

Regarding meteorological predictors, the length scales indicate that—in general—predictions are
more sensitive to variations in temperatures and less sensitive to variations in updraft. In fact, the large
value of the updraft length scale ℓω indicates, in general, a minimal correlation decay over the range of
inputs.

4.4.2. How do meteorological predictors modulate the predicted extinction?
To gain a refined understanding of how meteorological predictors affect predictions, we conduct a SV
analysis of their contribution to individual predictions. Since the meteorological predictors onlymodulate

Table 4. Hyperparameter values for VAExtGP tuned for standardized input variables following the
procedure described in Section 2.3.3

γ1 γ2 ℓt ℓlat,lon ℓT ℓP ℓRH ℓω

0.26 ± 0.02 1.0† 7.6 ± 0.2 0.85 ± 0.06 2.5 ± 0.1 3.4 ± 0.1 3.4 ± 0.1 6.6 ± 0.1

Note. Length scale is unitless and apply to standardized predictors; hyperparameters are tuned using 10 different initialization seeds; we report 1
standard deviation; † indicates the value is fixed in the model and not tuned against data.
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predictions through the weighting function, we only study the impact meteorological predictors have on
the weight w xjhð Þ predicted for the posterior mean response. We also focus on samples within the
boundary layer since this is wheremost of the variability happens. Figure 7 displays themean absolute SV
obtained for eachmeteorological predictor and the contribution each predictor has on a randomly selected
set of individual predictions.

We observe that in absolute mean, temperature is the factor that most influences predictions of the
weighting function in the boundary layer. This is sensible as temperature is a smooth spatial field that
gradually decreases with altitude, making T characteristic of the altitude level. Since the altitude
typically correlates with extinction values, T becomes an informative proxy of extinction. This is
corroborated by the plot of contributions to individual predictions: greater temperature (red)—lower
altitudes—contribute to a greater weight w xjhð Þ and hence greater extinction prediction while lower
temperature (blue)—higher altitudes—yield lower impact on the weight and hence lower extinction
prediction. It is interesting to notice that while pressure is also a proxy of altitude just like temperature,
its mean absolute contribution is lower and the individual contribution plot does not display a clear
identifiable trend. This suggests that the information conveyed by pressure might be redundant with the
information conveyed by temperature, and could possibly be discarded from the model without loss of
predictive performance.

Whilst the mean absolute contribution of relative humidity seems marginal compared to tempera-
ture, we notice in individual contributions that when RH contributes to a greater weight w xjhð Þ (points
lying on the right), it consistently corresponds to locations with high RH. This supports the observation
that our model captures extinction due to aerosol water uptake. Similarly, the mean absolute contri-
bution of ω is relatively small, but a clear trend appears in the individual contributions: a positive
updraft consistently corresponds to a positive contribution of ω to the weight function, whereas a
negative updraft corresponds to a negative contribution to the weight function. This is consistent with
intuition as strong updrafts lead to the humidification of aerosols, and an increase in water content in
aerosols increases in turn the extinction due to aerosol water uptake. Conversely, a negative updraft
should lead to lower humidification of aerosols, and therefore a decrease in extinction due to aerosols
water uptake.

4.4.3. Temperature and pressure: proxies for height?
Temperature and pressure carry significant information about height, and may therefore inform VAExtGP
primarily as a proxy for height. Indeed, the vertical slices of T and P in Figure 4 exhibit an approximately

Figure 7. Left: Mean absolute Shapley values of meteorological predictors in the boundary layer; Right:
Beeswarm plot of Shapley values of individual predictions in the boundary layer for each meteorological
predictor; red/blue dots indicate a sample where the predictor value lies on the upper/lower end of its
distribution; Shapley values are computed on a random subset of 2000 samples in the boundary layer.
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linear behavior with height. However, for a fixed height, temperature and pressure also exhibit variations
along longitude, and may therefore provide additional information about meteorological conditions,
beyond serving as a proxy for height. To investigate this, we conduct a SVanalysis of the contribution of
height, temperature, and pressure to the predicted logarithm of the posterior mean logE φ xjhð Þjτ½ �.
Figure 8 shows the reported SVs for the same vertical slice as Figure 4.

The contribution of h to predicted extinction is clearly visible, where greater altitude contributes to a
lower predicted extinction and lower altitude contributes to a greater extinction. This corresponds to the
domain knowledge we encode within the prior by using an idealized exponential component. The
contribution of T displays a similar mode, in agreement with the analysis from Section 4.4.2: at high
altitude, lower temperatures contribute to lower predicted extinction, whereas at low altitudes, higher
temperatures contribute to greater predicted extinction. The contribution of P is in general marginal in
comparison, which aligns with the conjecture that P carries redundant information and may be a
confounding feature which can be discarded.

In the stratosphere (altitude > 10km), the contribution of T becomes marginal in comparison with the
contribution of h. This suggests that the contribution of the exponential profile dominates at high altitudes.
In the troposphere (altitude < 10km), the contribution of T dominates, indicating that temperature plays a
key role in predictions at lower altitudes. This is particularly visible in the boundary layer (altitude
< 2�3km). Importantly, the temperature SVs display spatial heterogeneity within the boundary layer,
where the contribution at a fixed altitude varies across longitude. This is different from the height SVs, and
suggests that T informs the model with valuable meteorological information, beyond being a proxy for
height.

To evaluate the contribution of T and P to prediction performance, we conduct ablation experiments
where we train and evaluate VAExtGP by (i) removing P and (ii) removing both T ,P from the input
meteorological predictors. Table 5 shows the percentages of relative change in score in comparisonwith

Figure 8.Vertical slices at latitude 51.29° (same asFigure 4) of the Shapley values for height h, temperature
T, and pressure P; the Shapley values are computed for predicting the logarithm of the posterior mean, that
is, logE φ xjhð Þjτ½ �; green/pink indicates a sample where the predictor has contributed to a lower/higher
predicted extinction.
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the entire VAExtGP model. We follow the same conventions than in Section 4.3 and take transform-
ations of Corr, Bias, Bias98, ELBO, and Calib95 such that smaller values correspond to better
performance.

We find that: (i) predictive performance is overall improved by removing P. This supports the
conjecture that P is a confounding factor, which carries redundant information for the prediction of
extinction, and thereby is a source of noise in predictions. (ii) Removing both T and P overall harms
predictive performance. This supports the observation that, whilst strongly correlated with height,
temperature and pressure provide additional predictive utility.

5. Conclusion and outlooks

In this work, we introduce a GP-based methodology to vertically disaggregate the AOD using simple
vertically resolved meteorological predictors such as temperature, pressure, or relative humidity.
Our approach emphasizes uncertainty quantification using a Bayesian formalism. A successful
application of our methodology to the vertical disaggregation of ECHAM-HAM simulated AOD
is demonstrated. Our model outperforms an idealized baseline and displays capacity to recover
realistic extinction patterns, in particular for extinction patterns arising from aerosol swelling in the
boundary layer.

The simplicity of the explicit modeling assumptions grants better control and interpretability over the
model and makes the choice of analysis strategy less subjective. While such simplicity can never account
for the complex phenomena underpinning ACIs, this is balanced by a particular emphasis on the
quantification of epistemic uncertainty through a principled Bayesian formalism.

Naturally, the modeling assumptions can be adapted to reflect different modeling choices. For
example, where more relevant vertically resolved quantities can be obtained, they can seamlessly be
incorporated into the predictors. The idealized exponential component of the prior can be replaced by an
idealized Gaussian profile to reflect the assumptions made by different AOD retrieval algorithms
(Wu et al., 2017; Li et al., 2020). The kernel design is also flexible and allows the user to specify a
covariance structure that best accounts for pairwise dependencies of the predictors. Similarly, the
positive link function, integration scheme, or number of inducing locations can be modified to fit
specific needs.

Experiments demonstrate the proposed model is able to realistically reproduce vertical structures of
extinction. In particular—for the chosen set of meteorological predictors—we are able to reliably predict
extinction due to water vapor in the boundary layer. Because of the smoothness bestowed by the GP prior,
the model tends to overestimate low extinction above the boundary layer and between extinction packets
in the boundary layer. It is conjectured that the remaining unexplained extinctions patterns can be
attributed to aerosols mass concentration, particles size, and radiative properties, which are more
challenging to model and would require additional vertically resolved covariates. This constitutes an
important area for future work.

Regarding methodology, several extensions remain to be explored. For example, while we only
consider aerosol extinction at a single wavelength, the AOD is in general retrieved for multiple
wavelengths ranging from 470nm to 870nm (Remer et al., 2005). By making the GP a function of the

Table 5. Percentages of relative change in scores in with respect to VAExtGP when removing P and
T ,Pð Þ from the input meteorological predictors

Remove RMSE MAE �1 ×Corr ∣Bias∣ ∣Bias98∣ �1 ×ELBO ∣Calib95–95%∣ ICI

P +2.7 ± 1.1 �0.77 ± 1.4 +1.5 ± 0.93 �52 ± 1.8 � 102 +64 ± 27 +0.39 ± 0.13 +46 ± 18 +18 ± 7.7
T ,P �25 ± 2 �22 ± 1.6 �23 ± 0.02 �2.7 . 103 ± 2.4 � 103 �8.9 . 102 ± 4.2 . 102 +8.0 . 10–2 ± 1.6 . 10–1 �23 ± 42 �7.9 ± 1.4 . 101

Note. Red/Blue indicates that the performance is worse/better for the ablated model with statistical significance at p< 0:05 level. We report 1 standard
deviation.
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wavelength f λ,xjhð Þ, it should be possible to leverage multiple AOD observations by introducing a
notion of functional smoothness across the electromagnetic spectrum. Another exciting direction
would be to allow the use of AOD observations which are not matched with vertically resolved
predictors. This can be achieved by adapting the work of Chau et al. (2021) to our model, using a
globally observed 2D field that would mediate the learning between unmatched AOD and vertically
resolved predictors. Such addition would be particularly welcome as it would allow prediction of
aerosol vertical profiles even at locations where AOD is not observed but vertically resolved
predictors are.

The proposed method can also be useful to diagnose the extinction profiles produced by Earth system
models (ESMs). For example, by training and validating our model on ESMs, one can produce a
predictive model that learns ESM extinction characteristics. Predictions from this model can then be
evaluated against real extinction observations, and thereby provide a quantitative indicator of whether
ESM extinction characteristics match the characteristics of observed extinction.

Finally, a different exciting use case of the proposed methodology can be considered. If working with
climate model data only, then one can choose to use any vertically resolved aerosol tracers as predictors.
These include mass and number concentrations which are simulated for several aerosol modes
(nucleation, aitken, coarse, and accumulation) and species (dust, sea salt, sulfate, black, and organic
carbon). Leveraging the interpretability of the GP covariance function, the kernel hyperparameters can
then indicate which mode/specie did contribute to predictions, hence providing a tool to better understand
factors that modulate the optical properties of aerosols.

In future work, we intend to apply our model to AOD arising from satellite observations and meteoro-
logical predictors from reanalysis data. Since observations of groundtruth extinction coefficients are not
available in 2D satellite products, we intend to collocate observations from MODIS 2D AOD products
(Remer et al., 2005) with CALIOP vertical lidar measurements (Winker et al., 2013) to validate the model.
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Nomenclature
Acronyms

ACIs aerosol-cloud interactions
AOD aerosol optical depth
CALIOP Cloud-Aerosol LIdar with Orthogonal Polarization
CCN cloud condensation nuclei
ECHAM-HAM ECMWF Hamburg-Hamburg Aerosol Model
ECMWF European Centre for Medium-Range Weather Forecasts
ELBO evidence lower-bound
GP Gaussian process
ICI integrated calibration index

e16-24 Shahine Bouabid et al.

https://doi.org/10.1017/eds.2024.15 Published online by Cambridge University Press

https://doi.org/10.5281/zenodo.11028725
https://doi.org/10.5281/zenodo.11028725
https://doi.org/10.1017/eds.2024.15


MISR multi-angle imaging spectroradiometer
MODIS moderate resolution imaging spectroradiometer
SV Shapley value
VIIRS visible infrared imaging radiometer suite

Greek letters

α truncated credible interval size
γ1 spatiotemporal kernel variance hyperparameter
γ2 meteorological predictors kernel variance hyperparameter
η generic notation for the mean parameter of a log-normal distribution
ηi mean parameter of the log-normal observation model for the ith columnbηi approximated mean parameter of the log-normal observation model for the ith column
λ generic notation for wavelength
μ generic notation for the location parameter of a log-normal distribution
μz mean vector of the variational distribution
μ �ð Þ mean vector of the posterior variational distribution evaluated at �ð Þ
ν Matérn covariance function order
σ scale parameter of the AOD log-normal observation model
σext scale parameter of the extinction coefficient log-normal observation model
Σz covariance matrix of the variational distribution
Σ �ð Þ covariance of the posterior variational distribution evaluated at �ð Þ
τ generic notation for the observed AOD
τi observed AOD for the ith column
sτi spatially smoothed AOD observation for the ith column
τ vector of observed AOD for the n columns
φ prior over extinction coefficient profile
sφ rescaled prior over extinction coefficient profile
ψ positive link function warping the GP

Latin letters

bext extinction coefficient
d dimensionality of the vertically resolved covariates vector
D dataset
f Gaussian process
f generic notation for a realization of the GP at vertically resolved covariates x∣h
f realization of the GP overall vertically resolved inputs in the dataset
f i realization of the GP overall vertically resolved inputs from the ith column
h generic notation for height
h jð Þ
i altitude of the jth vertically resolved covariates vector for the ith column

H generic notation for the total height of an atmospheric column
Ip identity matrix of size p
k GP covariance function or kernel
Kzz covariance matrix evaluated at inducing locations
ℓ �ð Þ kernel length scale hyperparameter for variable �ð Þ
L idealized exponential profile length scale
lat generic notation for latitude
lon generic notation for longitude
m GP mean function
mi number of observed altitude levels for the ith column
M total number of vertically resolved observations across the dataset
n number of columns observed in the dataset
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Nσext αð Þ percentage of groundtruth observation falling within the 1�α credible interval
p number of inducing locations
P generic notation for pressure
q variational distribution
S generic notation for supersaturation
t generic notation for time
T generic notation for temperature
u inducing variables of the variational distribution
w weighting function for the idealized exponential profile
z inducing locations of the variational distribution
x generic notation for the vertically resolved covariates vector

x jð Þ
i observed vertically resolved covariates at altitude h jð Þ

i for the ith column
x vector of all vertically resolved covariates from the dataset
X space in which the vertically resolved covariates vector take values
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A. Appendix A: Matérn covariance
TheMatérn covariances are a class of stationary covariance functions widely used in spatial statistics. TheMatérn-ν covariance with
unit variance between two points x,x0 ∈ℝ is given by

Cν jx� x0jð Þ ¼ 21�ν

Γ νð Þ
ffiffiffiffiffi
2ν

p ∣x� x0∣
ℓ

� �ν

Kν

ffiffiffiffiffi
2ν

p ∣x� x0∣
ℓ

� �
, (A-1)

where Γ is the gamma function, Kν is the modified Bessel function, and ℓ> 0 is a length scale hyperparameter.

The covariance function expression considerably simplifies for ν¼ p+ 1=2 where p∈ℕ. For example, for ν¼ 1=2 (p¼ 0) and
ν¼ 3=2 (p¼ 1) we have

C1=2 jx� x0jð Þ¼ exp � ∣x� x0∣
ℓ

� �
, (A-2)
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3
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When x,x0 ∈ℝd , the distance ∣x� x0∣ can be substituted by the norm ∥x� x0∥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 xi� xi0ð Þ2
q

. The covariance is called an
automatic relevance determination (ARD) kernel when each dimension has its own independent length scale parameter ℓi > 0. For
example, the Matérn-1=2 and Matérn-3=2 ARD kernel write

∥x� x0∥ℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
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When a Matérn-p+ 1=2 covariance function is used as a kernel for a GP, draws from the GP are p times continuously
differentiable (with convention that 0 times means simply continuous).

B. Appendix B: Comparison with tensor product covariance structure
A standard choice in the design of covariance structures is to assume a tensor product form of the covariance with an independent
correlation over each input dimension, that is, k x,x0ð Þ ¼Q

ik xi,xið Þ. We compare our choice of covariance structure from
Section 3.2.2 to the product covariance function given by

k xjh,x0jh0ð Þ ¼ γ2C3=2 jt� t0jð ÞC3=2 Hav
lat

lon

� �
,

lat0

lon0

� �� �� �
(B-1)

×C1=2 T�T 0j jð ÞC1=2 P�P0j jð ÞC1=2 RH�RH0j jð ÞC1=2 ω�ω0j jð Þ, (B-2)

where we maintain the same Matérn covariances for the sake of comparison. This product structure introduces a global variance
parameter γ2 and independent length scale parameters ℓt ,ℓlat,lon,ℓT ,ℓP,ℓRH,ℓω for each input variable, resulting in seven
hyperparameters that need to be tuned.

In contrast, the covariance structure we propose in Section 3.2.2 introduces two variance parameters γ1,γ2 and an equal number
of length scale parameters for each input variable (through the ARDMatérn kernel on meteorological predictors), resulting in eight
hyperparameters that need to be tuned. However, because we fix γ2 ¼ 1 in our model, the number of hyperparameters that effectively
require tuning is 7.

Table B1 reports the hyperparameters values for both the product covariance and our covariance, after tuning them to maximize
the ELBO objective as described in Section 2.3.3. We find that the product covariance structure leads to larger length scale
parameters for the meteorological predictors. This means that, in general, predictions with the product covariance structure should
have less sensitivity to changes in meteorological predictors.

Using the tuned models, we then perform inference and predict the ECHAM-HAM extinction coefficients over the dataset with
both models following the procedure outlined in Section 2.3. Table B2 reports the ECHAM-HAM extinction prediction scores for
the product covariance and our covariance. It shows the proposed covariance provides substantial improvement in deterministic
metrics compared to the tensor product covariance. Regarding probabilistic scores, the ELBO and Calib95 are less sensitive to the
choice of covariance structure. We find that the ICI is improved over the entire column with a product covariance structure, but

Table B1. Hyperparameter values for our choice of covariance and a tensor product covariance
structure

Covariance γ1 γ2 ℓt ℓlat,lon ℓT ℓP ℓRH ℓω

Ours 0.26 ± 0.02 1.0† 7.6 ± 0.2 0.85 ± 0.06 2.5 ± 0.1 3.4 ± 0.1 3.4 ± 0.1 6.6 ± 0.1
Product – 0.92 ± 0.1 8.8 ± 0.1 1.2 ± 0.1 5.6 ± 0.1 6.2 ± 0.1 5.8 ± 0.1 8.3 ± 0.1

Note.Models are tuned for standardized input variables following the procedure described in Section 2.3.3; hyperparameters are tuned using 10 different
initialization seeds; we report 1 standard deviation; † indicates the value of the parameter is fixed in the model and not tuned against data.

Table B2. Scores of the VAExtGP with our choice of covariance and a product covariance structure
for the task of predicting ECHAM-HAM extinction profiles

Region Covariance RMSE (10�5) MAE (10�6) Corr Bias (10�6) Bias98 (10�5)

Entire column Product 3.65 ± 0.03 5.92 ± 0.09 0.61 ± 0.01 �0.54 ± 0.01 �1.15 ± 0.01
Ours 3.21 ± 0.04 5.29 ± 0.06 0.73 ± 0.01 �0.005 ± 0.161 �0.482 ± 0.212

Boundary layer Product 6.73 ± 0.05 16.5 ± 0.1 0.59 ± 0.01 �3.46 ± 0.22 �5.64 ± 0.28
Ours 5.91 ± 0.07 15.3 ± 0.1 0.72 ± 0.06 �0.404 ± 0.71 �4.53 ± 0.44

Region Covariance ELBO Calib95 (%) ICI (10�2)

Entire column Product 13.0 ± 0.1 93.9 ± 0.1 4.45 ± 0.15
Ours 13.0 ± 0.1 93.5 ± 0.1 6.60 ± 0.45

Boundary layer Product 10.6 ± 0.1 98.3 ± 0.1 7.16 ± 0.20
Ours 10.7 ± 0.1 98.7 ± 0.1 6.26 ± 0.34

Note. “Entire column”means scores are computed and averaged for every altitude level; “Boundary layer”means scores are computed and averaged for
altitude levels of the boundary level only ( < 2km); the best scores for each metric and region are highlighted in bold; we report 1 standard deviation.
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degraded within the boundary layer. These results suggest that separating the contribution of spatiotemporal and meteorological
predictors in the covariance benefits extinction predictive performance.

C. Appendix C: Additional experimental details

C.1. Ablation study: details on relative change computation
To evaluate the relative change in scores of the ablated model against VAExtGP, we compute

%Relative change¼ScoreVAExtGP�Score ablated model

ScoreVAExtGP
× 100, (C-1)

where a positive percentage indicates improvement with respect to VAExtGP and a negative percentage indicates deterioration with
respect to VAExtGP.However, this is only a useful indicator of change in performance across scores if all scores are improved when
smaller. This is true for RMSE, MAE, and ICI, but not for the other metrics used. Therefore, we take the following transformations
reported in Table C1 to ensure that smaller values correspond to an improvement in score.

Table C1. Evaluation metrics and transformed evaluation metrics are used to compute the relative
change in scores for ablation experiments

Metric Best when Transformed metric Best when

RMSE Lower RMSE Lower
MAE Lower MAE Lower
Corr Higher �1 ×Corr Lower
Bias Close to 0 ∣Bias∣ Lower
Bias98 Close to 0 ∣Bias98∣ Lower
ELBO Higher �1 ×ELBO Lower
Calib95 Close to 95% ∣Calib95–95%∣ Lower
ICI Lower ICI Lower
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C.2. Additional sliced plots

Cite this article: Bouabid S, Watson-Parris D, Stefanović S, Nenes A and Sejdinovic D (2024). Aerosol optical depth
disaggregation: toward global aerosol vertical profiles. Environmental Data Science, 3: e16. doi:10.1017/eds.2024.15

Figure C1. Vertical slices at latitude 51.29° of groundtruth extinction coefficient, idealized exponential
extinction coefficient, 2.5% and 97.5% quantiles of the idealized exponential extinction coefficient
distribution.
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Figure C2. Vertical slices at latitude �0.93° of meteorological predictors (T ,P,RH ,ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of the
predicted extinction coefficient posterior distribution.
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Figure C3. Vertical slices at latitude �38.2° of meteorological predictors (T ,P,RH ,ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of the
predicted extinction coefficient posterior distribution.
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