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The present work aims at showing that the identification problems (here meant as both issues of
empirical indistinguishability and unidentifiability) of some item response theory models are related to
the notion of identifiability in knowledge space theory. Specifically, that the identification problems of the
3- and 4-parameter models are related to the more general issues of forward- and backward-gradedness
in all items of the power set, which is the knowledge structure associated with IRT models under the
assumption of local independence. As a consequence, the identifiability problem of a 4-parameter model
is split into two parts: a first one, which is the result of a trade-off between the left-side added parameters
and the remainder of the Item Response Function, e.g., a 2-parameter model, and a second one, which is
the already well-known identifiability issue of the 2-parameter model itself. Application of the results to
the logistic case appears to provide both a confirmation and a generalization of the current findings in the
literature for both fixed- and random-effects IRT logistic models.

Key words: knowledge space theory, item response theory, identifiability, empirical indistinguishability,
rasch models, 3PL, 4PL.

1. Introduction

A statistical model is identifiable if no two different sets of parameters values are observation-
ally equivalent, i.e., they yield the same likelihood of the observed outcomes (see, e.g., Bamber
and Van Santen, 2000; McCullagh, 2002, for a detailed introduction to the topic). If identifiability
cannot be established, the parameters of the model can neither be interpreted in a meaningful
way nor be consistently estimated unless additional restrictions are imposed. Unidentifiability
that occurs within (outside) the neighborhood of a given point in the parameter space is said to be
local (global). While local unidentifiability implies an infinity of equivalent reparameterizations
and bears strong theoretical relevance but can always be solved by setting additional restrictions,
global unidentifiability has amore practical relevance as it is associated with global indeterminacy
issues and might require ad hoc methods to be handled. The present manuscript focuses on issues
of local identifiability in item response theory (IRT) and knowledge space theory (KST), but it
does so within a more general form of the identification problem. Indeed, identification issues
in latent variable models might occur not only in relation to an observationally equivalent set
of parameters but also in the presence of specification problems that concern the mathematical
forms of both the distribution of the latent variables and/or the relationships between observed and
latent variables (Koopmans and Reiersøl, 1950). Following the terminology used by Ip (2010), we
consider the situation in which different models are observationally equivalent, i.e., they possess
different mathematical forms of the distribution of the latent variables and/or of the relationships
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between observed and latent variables but yield the same likelihood of the observed outcomes, an
issue of ‘empirical indistinguishability’ rather than unidentifiability. In spite of their relevance,
identification problems in IRT models are still a topic under investigation. In the present work,
our aim is to fit another piece to the puzzle by showing that the identification problems of some
IRT models can be grounded in the notion of identifiability in KST.

Although by construction, the KST framework does not account for latent traits, it can be
extended to a full IRT approach (Noventa et al., 2019). The resulting KST-IRT framework encom-
passes most IRT models and, under the necessary condition that the knowledge structure taken
under consideration is the power set of the items so that local independence is captured, it estab-
lishes the equivalence of guessing and slipping parameters in 4-parameter IRT models with,
respectively, lucky guesses and careless error parameters in the KST Basic Local Independence
Model (BLIM; e.g., Doignon and Falmagne, 1999; Falmagne and Doignon, 1998). Following
the terminology of Thissen and Steinberg (1986), we refer to these error parameters as left-side
added parameters. By relying on a KST-IRT approach, in the present work, it is shown that the
identification issues of the 3- and 4-parameter IRT models are related to a more general issue of
identifiability arising in knowledge structures in presence of forward- or backward- gradedness
w.r.t. an item (i.e., by, respectively, adding or removing an item from a knowledge state of a
knowledge structure one still obtains a state of the structure). As the knowledge structure associ-
ated with the requirement of local stochastic independence in IRT is the power set, such structure
is both forward- and backward-graded in all of the items, and as a result, one has a trade-off
between the left-side added parameters and the knowledge state probabilities for all items. The
KST identifiability problem translates, in the KST-IRT case, into an issue of both identifiability
and empirical indistinguishability involving a trade-off between the left-sided added parameters
and the parameters within the remainder of an Item Response Function (IRF), e.g., the Rasch
model or the 2-Parameter Logistic model. This splits the identification problem into two parts:
first, the identification issue following from the trade-off between the left-sided added parameters
and the IRF to which such parameters are added; second, the identifiability issue concerning
the latter IRF. The issue is one of both identifiability and empirical indistinguishability in the
following sense: If the KST transformations are applied to the IRT case, they provide alterna-
tive IRFs that are observationally equivalent to the initial ones. This is an issue of empirical
indistinguishability as different models yield the same distribution of the outcomes. If the KST
transformations are instead applied to the IRT case while also assuming that the mathematical
form of the IRFs must be held constant, then they provide alternative reparameterizations of the
IRFs (local identifiability issue of the IRFs) that, however, require different distributions of the
latent variables (empirical indistinguishability issue) and thus actually correspond to different
statistical models, with possibly different substantive assumptions and inferences. After a brief
introduction of the identifiability issue in IRT, KST notions are introduced, and then, the link
between the two approaches is established. General transformations for 3- and 4-parameter IRT
models are provided in light of the general frameworks. Their specific application to the logistic
function is then discussed as a sub-case.

2. Identifiability in IRT

2.1. General Notions

The Rasch model (RM), also known as 1-Parameter Logistic (1PL) model, is nested within
the 2-Parameter Logistic (2PL) model, which is in turn nested within the 3-Parameter Logistic
(3PL) and 4-Parameter Logistic (4PL) models. The form of the latter is here given by:
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P(Xi = 1|θ, �4
i ) = ci + (1 − di − ci )

eai (θ−bi )

1 + eai (θ−bi )
= (1 − di )eai θ + ci eai bi

eai θ + eai bi
(1)

where �4
i = {bi , ai , ci , di } contains the difficulty parameter bi of the RM, the discrimination

parameter ai of the 2PL, the guessing parameter ci of the 3PL (Birnbaum, 1968), and the slipping
parameter di of the 4PL (Barton and Lord, 1981). A common formulation of the IRF (1) replaces
1 − di with di so that di captures the upper asymptote of the IRF. In the present work, since we
are interested in relating KST and IRT left-side added parameters, the notation of Equation (1) is
more convenient.

Equation (1) is written using a random-effects notation, in which the ability is treated as a
latent variable. If instead a fixed-effects notation is considered, abilities are incidental parameters
θ j for j ∈ {1, . . . , N }, with N the number of persons. The IRF (1) can be given notation P(X ji =
1|θ j , �

n
i ) with X ji the response of the j-th individual to the i-th item. Random- and fixed-

effects perspectives are, respectively, grounded within a ‘random sampling’ view and a ‘stochastic
subject’ view of the IRT process (see, e.g., Holland, 1990). In the former, an IRF like (1) represents
the proportion of individuals with a level of ability θ that provides a correct answer to the i-th item.
In the latter, the IRF represents the probability of the j-th individual to answer correctly the i-th
item. Typical estimation methods for the fixed-effects case are joint maximum likelihood (JML)
and conditional maximum likelihood (CML). CML is, however, restricted to the Rasch-family of
models, while JML is well known to provide inconsistent estimates of bi due to the incidental
parameters problem (see, e.g., Haberman, 1977;Andersen, 1980;Ghosh, 1995). For these reasons,
the fixed-effects perspective is often used for didactic purposes, while a random-effect perspective
is preferred in practice. With a random-effect specification, ability can be integrated out when
using marginal maximum likelihood (MML). A final remark on the �n

i notation, in which n is the
number of item parameters. The RM or 1PL model is associated with �1

i = {bi }, the 2PL model
to �2

i = {bi , ai }, the 3PL model to �3
i = {bi , ai , ci }, and the 4PL model to �4

i = {bi , ai , ci , di }.
�
1,3
i = {bi , ci } is used for the 1-Parameter model plus Guessing (1PL-G), �1,4

i = {bi , di } is used
for the 1-Parameter model plus Slipping (1PL-S), and �−2

i = {bi , ci , di } is used for the 4PL
without discrimination, which is labeled as 1PL-GS.

2.2. Unidentifiability of IRT Models

It is well known that the parameters of the RM are not unique since a uniform translation of
both ability θ and difficulty bi for the same constant yields the same response probability. This
is the only form of local unidentifiability for the RM/1PL. Additionally, in the 2PL model, one
can dilate person and difficulty parameters by the same constant while dilating the discrimination
parameter ai by the reciprocal. As to the guessing parameter ci , it has been a source of debate in
the literature. Some problematic features pertaining the global unidentifiability of the 3PL model
had already been discussed by Samejima (1973), i.e., the nonuniqueness of the maximum for the
likelihood w.r.t. the latent trait θ (see also Yen et al., 1991). Instability of the estimates has also
been long known in the literature. Thissen and Wainer (1982) highlighted that estimation of the
c-parameters can “wreak havoc” with the estimation of the b-parameters since easy items have
few observations low enough to provide enough information. A similar problem can occur for
very difficult items (see, e.g., Drasgow and Parsons, 1983; Hulin et al., 1982). Instability also
does not concern only the difficulty parameters; van Der Linden and Hambleton (1997) stated
that small changes in the guessing parameter can be compensated by small changes in the slope
of the curve. More in general, Mislevy (1986) highlighted that the instability of the ML estimates
in the 3PL model stems from the fact that different triples �3

i “can trace similar IRFs in the region
of the ability scale where the sample of examinees is to be found” often resulting in nearly flat
likelihood surfaces. Trade-offs seem to occur between c and all the other parameters. Lack of
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stability of the estimates of the 3PL model has also been discussed by Patz and Junker (1999),
DeMars (2001), and Pelton (2002). As a consequence of the difficulty in estimating the lower
asymptote of the 3PL, the 4PL model is often considered even more problematic to estimate (see,
e.g., Embretson and Reise, 2000; Baker and Kim, 2004). Nonetheless, it is worth mentioning that
there has recently been a renewed interest in 4-Parameter models (see, e.g., Hessen, 2005; Loken
and Rulison, 2010; Ogasawara, 2012; Culpepper, 2016).

Local identifiability of IRT models is typically assessed by establishing an injective mapping
between the parameters of interest of the model and the identified parametrization associated with
the experimental outcomes. The choice of both parameters of interest and identified parametriza-
tion depends on whether the model is given a fixed-effects, a random-effects, or a semi-parametric
specification (see, e.g., San Martín et al., 2009; San Martín and Rolin, 2013; San Martín, 2016).
Interpretation of the parameters based on the identification analysis was provided by Fariña et
al. (2019). In the fixed-effects case, the parameters of interest consist of the item parameters in
�n
i and the latent abilities θ j for j ∈ {1, . . . , N }, while the identified parametrization is given by

the parameters of mutually independent Bernoulli distributions. In the random-effects case, the
parameters of interest are the item parameters in �n

i and the scale σ and location μ parameters
of some distribution f (θ;μ, σ) of the individual’s ability, while the identified parametrization
is given by the parameters of a Multinomial distribution associated with the response patterns.
Finally, the semi-parametric case follows the same reasoning as the random-effects case, but the
distribution of the ability itself is treated as a parameter. In what follows, we are interested in the
results for fixed- and random-effects models.

Although the 3PL model was initially believed to be always identifiable (see, e.g., Lord,
1980), Maris (2002) and Maris and Bechger (2009) showed that trade-offs can occur between
the parameters of the 1PL-G model in a non-trivial way. Indeed, the model of Eq. (1), in the
case di = 0 and when all discrimination parameters are equal (i.e., 1PL-G model, ai = 1), is
unidentifiable since the transformations

⎧
⎪⎨

⎪⎩

c∗
i = ci ebi −�

ebi −�

eθ∗ = eθ + �

eb
∗
i = ebi − �

(2)

yield equivalent response probabilities

P(Xi = 1|θ∗, �1,3∗
i ) = eθ∗ + c∗

i e
b∗
i

eθ∗ + eb
∗
i

= eθ + � + ci ebi − �

eθ + l + ebi − �
= eθ + ci ebi

eθ + ebi
= P(Xi = 1|θ, �

1,3
i ).

Notice that by transformations (2) it follows that � ∈ [−emin θ , emini bi ). If a fixed-effects
interpretation of θ is considered, there is a minimal value θm = min j θ j such that emin θ =
eθm . If instead a random-effects interpretation is considered, one has that lim

θ→−∞ emin θ = 0 so

that � ∈ [0, emini bi ). It should be stressed that transformations (2) provide an unidentifiability
result in the fixed-effects case, but in the random-effects case they are an example of empirically
indistinguishable statistical models. Indeed, in spite of the fact that the mathematical forms of the
IRFs stay the same, the mathematical form of the distribution of the latent variable changes under
the transformations. As a matter of fact, the second part of the work of Maris and Bechger (2009)
provides an example of empirically indistinguishable alternative models.

As the results ofMaris and Bechger (2009) cast doubts on the identifiability of the 3PLmodel,
or of at least some degenerate case of it, several authors investigated the local identifiability of
both fixed- and random-effects IRT models. A general discussion about identifiability conditions
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for 1PL, 2PL, and 1PL-G models for both fixed- and random-effects models can be found in San
Martín (2016). Results for the random-effects 1PL, 2PL, and 1PL-G models have been discussed
by San Martín and Rolin (2013), San Martín et al. (2013). Specifically, the parameters bi , ci , μ,
and σ of the random-effects 1PL-Gmodel are identified if (1) at least three items are available, (2)
the guessing parameter c1 is set to zero, and (3) the traditional linear restrictions (e.g., b1 = 0 or∑

i bi = 0 ) are imposed to remove the unidentifiability of the 1PL model. Up to our knowledge,
there are no results for the random-effects 3PL and 4PL models.

More results are instead available for the fixed-effects models. van der Linden and Barrett
(2016) showed that identifiability issues arise also in the degenerate case in which all individuals
have the same ability values. It has been shown that the fixed-effects 1PL-Gmodel is identifiable if
difficulty and guessing parameters of one item are set to known constants, as in the random-effects
case, and at least two persons with different abilities are available (San Martín et al., 2013). An
alternative set of restrictions (two items with equal guessing but distinct difficulties) was later
provided by Ogasawara (2020). San Martín et al. (2015) argued that the 3PL is unidentified,
but this latter result was rectified by Wu (2016), which showed that as long as four persons
with distinct abilities and two items with distinct discrimination parameters are available, the
fixed-effects 3PL model is identifiable up to the usual permissible transformations of the 2PL
model. These sufficient conditions were also shown to be necessary by Ogasawara (2017; 2020).
Hence, in the case of the fixed-effects 3PL model, the belief of the locally identified 3PL model
as found in Lord (1980) is still generally correct in that both the cases considered in Maris
and Bechger (2009) and van der Linden and Barrett (2016) are special degenerate cases of the
3PL model with added restrictions to their parameters. As Wu (2016) pointed out, although it
is not unusual for the parameter space of an identified model to contain sub-spaces in which
the model is unidentified, these situations are still relevant since they might impact procedures
like likelihood-ratio testing. Cases of identifiability and unidentifiability for the fixed-effects 3PL
(and 4PL) were also recently summarized, discussed, and extended by Ogasawara (2017; 2020).
More in detail, Ogasawara (2017) systematized the previous results and provided a wider set of
unidentified models, extended the analysis to non-logistic fixed-effects 3-parameter models by
briefly discussing the probit model, and by exploring the unidentifiability of the general family
of IRFs of the form

P(Xi = 1|θ, �
1,3
i ) = ci + (1 − ci )

G(θ)

G(θ) + H(bi )
(3)

for arbitrary strictly increasing functions G and H . Ogasawara (2017, Proposition 2) showed
that the 4PL is identified under the same conditions of Wu (2016) plus either the ci ’s or the di ’s
are given and that in the 1PL-GS model there exist further trade-offs of parameters in addition
to those highlighted by transformations (2). Specifically, the following transformations of the
left-side added parameters

⎧
⎨

⎩

(1 − d∗
i ) = (1 − di ) + k∗

c∗
i = ci − k∗P(Xi, j=1|θ j ,�1

i )

1−P(Xi=1|θ,�1
i )

= ci − k∗eθ j−bi
, (4)

for k∗ ∈ (−(1 − ci − di )(1 − P(Xi = 1|θ, �1
i )),mini, j (di , ci eθ j−bi )] leave the IRF of both the

1PL-GS and the 1PL models unchanged (Ogasawara, 2017, Theorem 5). Transformations (2) can
also be further extended to the 1PL-GS model by considering an additional condition

(1 − d∗
i ) = (1 − di )eθ + �

eθ + �
(5)
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which actually transforms the slipping parameter d∗
i into a function d∗

i (θ) of the ability (Oga-
sawara, 2017). Equation (5) might be of interest if the slipping parameter di is assumed to be
person-dependent, i.e., of the form d j . Transformations (4) and (5) are, in the present context,
not considered unidentifiability results but rather empirically indistinguishable alternative models
since, in both cases, some left-side added parameters have become ability-dependent and are not
constant anymore. Finally, it is worth mentioning that Ogasawara (2020) discussed additional
identifiability restrictions for the 1PL-G model based on the minimization of the absolute value
of the skewness of the θ∗ abilities. More in general, Ogasawara (2021) discussed the maximiza-
tion of Fisher information, total score information, and total quasi-information to impose optimal
restrictions that allow to resolve the identifiability of the 1PL-G model and of the general family
of models given by Equation (3). As it will be shown in Sect. 4, the transformations (2) introduced
by Maris and Bechger (2009), as well as the general case (3) and the special cases (4) and (5)
introduced by Ogasawara (2017), or the other results on unidentifiability provided by Wu (2016),
van der Linden and Barrett (2016), and San Martín (2016) can be derived from the general trans-
formations describing the trade-off between the parameters ci , di , and the entire P(Xi = 1|θ, �2

i )

as a consequence of the forward- and backward-gradedness of the power set describing the local
stochastic independence assumption in IRT between the different items. In order to show this, we
first need to introduce KST.

3. Identifiability in KST

3.1. A Brief Introduction to KST

KST is a combinatorial and set-theoretical approach that classifies individuals by means of
the collections of items that they can master in a given domain of knowledge (see, e.g., Falmagne
and Doignon, 2011). Let Q be a nonempty set of items q, then a knowledge state K ⊆ Q is a
collection of problems q ∈ Q that an individual is capable of mastering. A knowledge structure
is a pair (Q,K) where K is a family of subsets of Q that always includes the full domain Q and
the empty set ∅. As an example, for the domain Q = {q1, q2, q3}, a possible knowledge structure
is defined by the collection

K = {∅, {q1}, {q2}, {q1, q2}, {q1, q3}, Q}. (6)

and represents a situation in which item q1 and q2 can be mastered independently of each other,
while item q3 requires item q1 to be mastered before it can be mastered. Knowledge structures
are graphically displayed by Hasse diagrams as shown in Fig. 1, where each node is a different
knowledge state.

Different properties of and relations between the knowledge states characterize different
families of structures. For instance, if the structure is closed under union (i.e., K , L ∈ K implies
K ∪ L ∈ K), the knowledge structure is called a knowledge space. Such a property is a natural
requirement for substantive applications in learning as it implies that any item can be mastered at
any time (provided, of course, that the prerequisite conditions for learning it are fulfilled). Another
characteristic which is deemed a necessary requirement to learning is that items can be learned
one at a time, that is, the structure is well-graded (for every state K ∈ K \ Q there is an item
q ∈ Q \ K such that K ∪ {q} ∈ K). If the structure is closed under union and well-graded, it is
called a learning space. The knowledge structure shown in Fig. 1 can be easily verified to satisfy
the requirements for a learning space (moreover, it is also closed under intersection).

Deterministic structures like (6) are made probabilistic by considering a probabilistic knowl-
edge structure (PKS), i.e., a triple (Q,K, π) in which π : K → [0, 1] is a probability distribution
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∅

{q1}

{q2}

{q1, q2}

{q1, q3}

Q

Figure 1.
Example of a knowledge structure for a set of five items Q = {q1, q2, q3}.

over the knowledge states K ∈ K. Although usually in KST, the response pattern is denoted by
R ∈ 2Q , we will use here the notation X ∈ 2Q to uniform the notation with the IRT one. The
probability of a given response pattern X ∈ 2Q in the data (i.e., solved and non-solved items) is
given by:

P(X) =
∑

K∈K
P(X |K )π(K ), (7)

where one only needs to set the conditional probabilities P(X |K ). The most widely used model
is the Basic Local Independence Model (BLIM), in which the conditional probabilities P(X |K )

are written as

P(X |K ) =
∏

q∈X
φq,K

∏

q ′∈Q\X
(1 − φq ′,K ), (8)

in which

φq,K =
{
1 − βq if q ∈ K

ηq if q /∈ K .
(9)

where lucky guesses η = {ηq} model correct observed responses even though an item is not in
the knowledge state of an individual, whereas careless errors β = {βq} model incorrect observed
responses even though an item is in the knowledge state of an individual.
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3.2. Unidentifiability of the BLIM

Given an arbitrary knowledge structure K, some of the parameters in the set �K = {π, β, η}
used in the BLIM (8) can turn out to be unidentified as a consequence of a specific nature of
the knowledge structure K. For more detailed discussions, the reader is referred, for instance, to
Spoto, Stefanutti, and Vidotto (2012; 2013), Heller (2017), Stefanutti, Spoto and Vidotto (2018),
and Stefanutti and Spoto (2020). For the purpose of the present manuscript, it is sufficient to
introduce the notions of forward- and backward-graded knowledge structure. In more details, a
knowledge structure (Q,K) is said to be forward-graded (FG) in an item q if K ∪ {q} ∈ K for
every K ∈ K. Conversely, a knowledge structure (Q,K) is said to be backward-graded (BG) in
an item q if K\{q} ∈ K for every K ∈ K. In the FG (BG) case, joining (removing) an item q to
(from) any state of the structure always yields another state of the structure. For instance, consider
the structure given in example (6). It is FG in q1, but not BG in that item (e.g., {q1, q3}\{q1} = {q3}
is not a state). The structure is also both FG and BG in q2. It is BG in q3, but it is not FG in this
item (∅ ∪ {q3} = {q3} is not a state). Finally, notice that the power set K = 2Q is both FG and
BG in all items q ∈ Q since any item can be both added to or removed from any state.

In order to describe the relation between FG and BG structures and identifiability, it is
convenient to introduce the following collections of states:

Kq = {K ∈ K| q ∈ K } (10)

Kq = {K ∈ K| q 
∈ K } (11)

K−
q = {K \ {q}| K ∈ Kq} (12)

K+
q = {K ∪ {q}| K ∈ Kq} (13)

Collection (10) is the collection of all states that contain a given item. Collection (11) is
the complement in K of the former collection. Collection (12) is the collection resulting from
removing the item q from all states in Kq . Collection (13) is the collection resulting from adding
the item q to all states in the complement of Kq . Let m be the dimension of the parameter
space of �K = {η, β, π}, in the KST literature (see, e.g., Stefanutti and Spoto, 2020) it has
been established that, if the structure is FG in an item q, then for every t ∈ R there exists a
transformation f tq : Rm → R

m that yields a new set of parameter values �t
K = {η′, β ′, π ′} given

by �t
K = f tq (�K), that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ′
p = βp for all p ∈ Q

η′
p = ηp for all p ∈ Q, p 
= q

η′
q = ηq + (1 − ηq − βq)(1 − et )

π ′(K ) =

⎧
⎪⎨

⎪⎩

π(K ) + (1 − e−t )π(K \ {q}) for all K ∈ K+
q

e−tπ(K ) for all K ∈ Kq

π(K ) for all K ∈ K \ (Kq ∪ K+
q )

(14)

such that both sets of parameters �K and �t
K result in the same P(X) as given by Equation (7),

that is P(X) = P(X |�t
K) = P(X | f tq (�K)) = P(X |�K). If instead the structure is BG in an

item q, then for every t ∈ R there exists a transformation btq : Rm → R
m that yields a new set of
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parameter values �t
K = {η′, β ′, π ′} given by �t

K = btq(�K), that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η′
p = ηp for all p ∈ Q

β ′
p = βp for all p ∈ Q, p 
= q

β ′
q = βq + (1 − ηq − βq)(1 − et )

π ′(K ) =

⎧
⎪⎨

⎪⎩

π(K ) + (1 − e−t )π(K ∪ {q}) for all K ∈ K−
q

e−tπ(K ) for all K ∈ Kq

π(K ) for all K ∈ K \ (Kq ∪ K−
q )

(15)

such that both sets of parameters �K and �t
K result in the same P(X) as given by Equation

(7), that is P(X) = P(X |�t
K) = P(X |btq(�K)) = P(X |�K). As it will be shown in what

follows, the set of transformations (14) and (15) allow to derive the IRT transformations (2) and
as such they allow to describe the unidentifiability of 3PL and 4PL models (or more, in general,
any IRF to which guessing and slipping parameters are left-side added) as a consequence of the
forward- and backward- gradedness of the power set structure in all its items. In order to do
so, one needs to first better detail the relation between the IRT and the KST frameworks. It is
important to stress that forward- and backward-gradednessmight, however, not be the only sources
of unidentifiability in KST models. Trade-offs among η and β parameters can indeed also occur
both in the presence and absence of forward- and backward-gradedness (see, e.g., Heller, 2017).
A complete description of the unidentifiability problem in KST for an arbitrary structure has yet
to be achieved. Nonetheless, as it will be discussed in the next subsection, the KST structure
underlying IRT models is the power set, and such a structure is both FG and BG in all items. As it
will be shown, the IRT results on unidentifiability can be fully traced back to these transformations
even when a trade-off between the left-side added parameters occurs, without affecting the IRF,
as in Equation (4). Finally, it is worthy to remark that the transformations (14) and (15) have
been given for arbitrary values of a parameter t ∈ R. In what follows, in order to distinguish FG
and BG transformations, we will denote their parameters as tF and tB , respectively. Although
these parameters are defined over the entire R, their actual domains are restricted by the domain
of the parameters. When transformations (14) and (15) are restricted in such a way, they are
called inner transformations, and their domains have been given by Stefanutti, Spoto and Vidotto
(2018). For the backward case, it must hold β ′

q ∈ (0, 1 − ηq) and π ′(K ) ∈ (0, 1), which implies

tB ∈ (max [log π(K∪{q})
π(K )+π(K∪{q}) ], log 1−ηq

1−βq−ηq
). For the forward case, it must hold η′

q ∈ (0, 1−βq)

and π ′(K ) ∈ (0, 1), which implies tF ∈ (max [log π(K\{q})
π(K )+π(K\{q}) ], log 1−βq

1−βq−ηq
).

3.3. The Simple Learning Model and the IRT-KST Relation

The present subsection summarizes results reported in Noventa et al. (2019). The interested
reader is referred to the original source for a more comprehensive treatise. Large domains of items
imply large numbers of parameters in the set �K = {π, β, η}. A possible approach for reducing
the number of parameters involves constraining the distribution of knowledge-state probabilities
π . An example of such an approach is provided by the Simple Learning Model (SLM, see, e.g.,
Falmagne and Doignon, 2011, p. 199) for learning spaces, that is

π(K ) =
∏

q∈K
gq

∏

q ′∈KO
(1 − gq ′) (16)
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where gq ∈ (0, 1) is the probability of mastering item q and where KO is the outer fringe of the
knowledge state K , which is given by

KO := {q ∈ Q \ K : K ∪ {q} ∈ K}. (17)

Intuitively, the outer fringe is the set of items that can be learned next when moving from the
knowledge state K . Hence, the SLM factorizes the probability of each state into the product of the
probabilities of the items that have already been learned (i.e., those in K ) and the complementary
probabilities of the items that can be learned next (i.e., items in KO). Generalized versions of
the SLM have been explored by Noventa, Heller and Stefanutti (2021). The relevance of the
SLM (16) for the present manuscript is that it provides a generalized version of local stochastic
independence in IRT so that, when the power set K = 2Q is considered, the combination of
SLM and BLIM (8) yields exactly the likelihood of a 4-parameter IRT model in the presence of
local independence. As formally shown by Noventa et al. (2019), both the state probability π(K )

and the item probability gq can be extended to encompass some latent variable θ ∈ R (e.g., the
ability of individuals), thus yielding, respectively, some functions π(K |θ) and gq(θ). While the
latter is the probability of a correct response to a given item, conditional to the value of a latent
variable, and as such, it captures an IRF, the former provides a state probability conditional to the
value of a latent variable, and it is called a state response function (SRF). It is worth mentioning
that both IRFs and SRFs can be given both a fixed-effects or a random-effects interpretation. In
the former case, the latent variable θ is replaced with an incidental parameter θ j as discussed in
Sect. 2, and the SRF π(K |θ j ) can be interpreted compatibly with a stochastic subject view, as the
probability of an individual with a certain ability θ j to be in the knowledge state K ∈ K. If instead
a random-effects interpretation is chosen, the SRF π(K |θ) can be interpreted compatibly with a
random sampling view, as the proportion of individuals with ability θ that are in the knowledge
state K ∈ K. In the random-effects interpretation, the state probability π(K ) can then be obtained
by marginalizing out the ability in the SRF, that is π(K ) = ∫

dθπ(K |θ).
Given then the previously defined IRFs and SRFs, one can reformulate the SLM (16) as a

generalization of the IRT notion of (strong) local stochastic independence, that is,

π(K |θ) =
∏

q∈K
gq(θ)

∏

q ′∈KO
(1 − gq ′(θ)). (18)

Intuitively, (18) generalizes local independence in that it allows for the presence of items that
cannot be mastered from a given state because their prerequisites are not satisfied (i.e., they are
not in the outer fringe). The traditional formulation of local independence is retrieved only if the
knowledge structure is a power set, K = 2Q . Indeed, in such case, one can master or fail any
of the items in KO = Q \ K as required by local independence. Let Xq = χK (q) the indicator
function that takes value one if q ∈ K and zero if q /∈ K , then one has

π(K |θ) =
∏

q∈K
gq(θ)

∏

q ′∈Q\K
(1 − gq ′(θ)) =

∏

q∈Q
gq(θ)Xq (1 − gq(θ))1−Xq (19)

which for gq(θ) = P(Xq = 1|θ) yields the traditional IRT definition of (strong) local stochastic
independence. As a further consequence, the combination of SLM plus BLIM in the KST-IRT
framework yields the likelihood of the 4-parameter IRT model. Indeed, let �K = {η, β, g} be the
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KST set of parameters, then Equation (7) can be rewritten, by substitution of Equations (8) and
(16), as

P(X |θ, �K) =
∑

K∈2Q
P(X |K )π(K |θ)

=
∑

K∈2Q

∏

q∈X
φq,K

∏

q ′∈Q\X
(1 − φq ′,K )

∏

q∈K
gq(θ)

∏

q ′∈Q\K
(1 − gq ′(θ))

which can be shown (see, Noventa et al., 2019, Theorem 3 for a proof of the result) to be equivalent
to

P(X |θ, �K) =
∏

Xq

P(Xq = 1|θ, �K)Xq (1 − P(Xq = 1|θ, �K))1−Xq (20)

where

P(Xq = 1|θ, �K) = ηq + (1 − βq − ηq)gq(θ) (21)

which is clearly equivalent to the likelihood of a 4-parameter IRTmodel, e.g., the 4PL in Equation
(1), as soon as one identifies ηq := ci ,βq := di , and gq(θ) := P(Xi = 1|θ, �2

i ) so that�K := �4
i .

It is important to remark that, as a consequence of the results summarized in the present section,
traditional IRT models, which assume local stochastic independence, are, therefore, the power set
case of a KST-IRT approach. Assuming any other structure except the power set amounts to not
assume local stochastic independence, and it has been suggested to provide an alternative way of
modeling local dependence between items (see, e.g., Noventa et al., 2019; Ye et al., 2023). Since
the present work aims to recover traditional IRT unidentifiability results, the only knowledge
structure considered is the power set, as it is the only structure equivalent to the traditional IRT
models that assume local independence. Further considerations on the use of other structures are
briefly given in the discussion section.

4. Main Results

Since the knowledge structure naturally associated with the traditional IRT models is the
power set 2Q , the study of unidentifiability for IRT models must be carried out within such a
structure to provide comparable results to those in the literature. Section 4.1 derives the KST
transformations associated with the SLM in the power set case, i.e., the transformations of the
parameter gq which are implied by the FG and BG transformations of the parameter π . Section
4.2 applies the transformations derived in Sect. 4.1 (more precisely, their inverse) to an IRF
gq(θ) and shows that these capture a trade-off between the left-side added parameters and the
2-parameter IRFs. Finally, in Sect. 4.3, a logistic function is considered to recover the IRT results
on unidentifiability summarized in Sect. 2. A couple of remarks are in order. Since KST uses q as
a subscript to denote an arbitrary item, while IRT uses a subscript i to denote the item, and since
clearly qi stands for the i-th item, we switch between notations q, qi , and i based on need, as
their meaning is understood from the context. In addition, in order to distinguish between an IRF
like P(Xi = 1|θ, �4

i ) in Equation (1), which contains left-side added parameters, and an IRF like
P(Xi = 1|θ, �2

i ), which does not contain left-side parameters and is nested within the former,
we explicitly refer to the former as a 4-parameter IRF and to the latter as a 2-parameter IRF.
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4.1. Unidentifiability of the SLM Model in the Power Set Case

Since the power set is FG and BG in any item q, the following transformations of the param-
eters �K = {η, β, g} of the SLM can be obtained

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β ′
q = βq + (1 − ηq − βq)(1 − etB )

η′
q = ηq + (1 − ηq − βq)(1 − etF )

g′
q = gq+etF −1

etF +etB−1

g′
p = gp, η′

p = ηp, β ′
p = βp for all p 
= q,

(22)

where tB ∈ (log gq , log
1−ηq

1−βq−ηq
) and tF ∈ (log (1 − gq), log

1−βq
1−βq−ηq

) with the additional con-

dition that etF + etB > 1. A proof of system (22) and the associated ranges for tF and tB are given
in Appendix A. Since all items follow Equations (22) there are as many trade-off parameters tB
and tF as there are items. Hence, it is convenient to denote them as tqF and tqB to highlight such a
dependence. It is shown in the next subsection that the proliferation of trade-off parameters can
be reduced in IRT if the mathematical forms of the 2- and 4-parameter IRFs are preserved. Before
moving to the IRT case, further considerations on the KST case are provided. For the purposes of
what follows, it is convenient to redefine the trade-off parameters as rqT = 1−et

q
T for T ∈ {B, F}.

In such a way, the transformations (22) can be rewritten as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β ′
q = βq + (1 − ηq − βq)r

q
B (23a)

η′
q = ηq + (1 − ηq − βq)r

q
F (23b)

g′
q = gq − rqF

1 − rqF − rqB
(23c)

g′
p = gp, η′

p = ηp, β ′
p = βp for all p 
= q, (23d)

where rqB ∈ (− βq
1−βq−ηq

, 1 − gq) and rqF ∈ (− ηq
1−βq−ηq

, gq) with the additional condition that

rqF + rqB < 1. Equations (23a) and (23b) state that forward and backward gradedness respectively
affect the lucky guess ηq and the careless error βq by means of the trade-off parameters, rqF and
rqB . By considering the differences�ηq = η′

q −ηq and�βq = β ′
q −βq , these trade-off parameters

can be interpreted as re-scaled differences of left-side added parameters, that is rqF = �ηq
1−ηq−βq

and

rqB = �βq
1−ηq−βq

. Equation (23c) states that both forward- and backward-gradedness affect the item
probability gq in the SLM by means of the same trade-off parameters. In particular, the difference
�gq = g′

q − gq can be rewritten as:

�gq = rqBgq − rqF (1 − gq)

1 − rqB − rqF
, (24)

which highlights how the change in the item probability parameter is an exchange between the
probability of failing and that of succeeding, mediated by the trade-off parameters capturing the
associated changes in the left-side added parameters. Hence, the KST transformations highlight
a trade-off between the left-side added parameters and the g-parameters, which in the IRT case
transfers into a trade-off between the left-side added parameters and the 2-parameter IRF. Equa-
tions (23d) state that all the parameters associated with any item p 
= q are not affected by the
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forward- and backward-gradedness of the structure in q. In order to better understand the impli-
cations of transformations (22) for the IRT models, it is convenient to stress that they provide the
solution to the following equation

η′
q + (1 − η′

q − β ′
q)g

′
q = ηq + (1 − ηq − βq)gq , (25)

which is clearly (minus the dependence on θ ) the unidentifiability condition of a 4-parameter
model as in Sect. 2. By considering the differences �ηq , �βq , and �gq , Equation (25) can be
re-written as:

(1 − gq)�ηq − gq�βq + (1 − ηq − βq)�gq − (�ηq + �βq)�gq = 0 (26)

and it is straightforward to verify that, by substitution of Equations (23a) and (23b), Equation (26)
becomes Equation (24), which is indeed a consequence of Equation (23c). Although such a result
is expected as transformations (23) are the solutions to Equation (25), this rewriting highlights that
other solutions,which have been identified in the literature, are sub-cases of System (23).Although
there are several potential sub-cases, up to our knowledge, only two have been considered in the
IRT literature:

1. If�gq = 0, then the g-parameter is constant under transformations (23), and one obtains

(1 − gq)�ηq − gq�βq = 0 ⇔ �ηq = gq
1 − gq

�βq ⇔ rqF = gq
1 − gq

rqB (27)

that represents an exclusive trade-off between the conditional error parameters in KST,
which was described by Heller (2017). There, the trade-off was obtained by assuming
that π(K ) = π(K ∪{q}), which corresponds to assume 1− gq = gq in the SLM. In the

KST context, Equation (27) can be generalized to �ηq = π(K∪{q})
π(K )

�βq for all K ∈ Kq

and is therefore a sub-case of a structure which is both BG and FG in an item. This
case is shown in Sect. 4.3 to correspond to the IRT case described by Ogasawara (2017,
Theorem 5), and given in Sect. 2 by System (4).

2. Sub-cases of transformations (23) can be obtained by splitting Equation (26) into a
system of more equations. For instance, one might consider the following split with
associated solutions

{
(1 − gq − �gq)�ηq + (1 − ηq)�gq = 0

(gq + �gq)�β + βq�gq = 0
⇔

{
�ηq = −(1 − ηq)

�gq
(1−gq−�gq )

�βq = −βq
�gq

gq+�gq

,

(28)
which will be shown to correspond to the sub-case given in Sect. 2 by Equation (5).

4.2. Application of the KST Transformations to the KST-IRT Case

According to theKST transformations (23), the 2-parameter IRF gq(θ) is expected to trade-off
with the left-side added parameters. However, such a trade-off can occur in two distinct situations:
the first one, in which only the KST transformations (23) are applied; and the second one, in which
additional assumptions are imposed such that the mathematical form of the 2-parameter IRFs
and/or the 4-parameter IRFs is preserved. The former case yields empirically indistinguishable
models, in which different values of the left-side added parameters are associated with different
2-parameter IRFs, but the parameters within the 2-parameter IRFs gq(θ) are unaffected. The
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latter case yields instead a more nuanced situation in which the parameters θ and �2
i within the 2-

parameter IRFs gq(θ) are affected by the transformations, and both empirical indistinguishability
and unidentifiability can manifest themselves, depending on whether or not the transformations
also preserve the mathematical form of the 4-parameter IRF.

4.2.1. Empirically Indistinguishable IRFs Application of transformations (23) to a 4-parameter
IRF yields the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β ′
q = βq + (1 − ηq − βq)r

q
B (29a)

η′
q = ηq + (1 − ηq − βq)r

q
F (29b)

g′
q(θ) = gq(θ) − rqF

1 − rqF − rqB
(29c)

g′
p(θ) = gp(θ), η′

p = ηp, β ′
p = βp for all p 
= q (29d)

in which a new set of 4-parameter IRFs is provided that yields the same probability of the
responses. System (29) is a case of empirical indistinguishability as the mathematical forms of
the 2-parameter IRFs gq(θ) and g′

q(θ) are different. In order to discuss the IRT case, it is convenient
to rewrite System (29) in a notation that is more consistent with the IRT notation used in Sect. 2
and to invert it to match the mathematical form of the results that can be found in the IRT literature
on unidentifiability. Given then the previous system, it is convenient to invert Equations (29a) and
(29b) to obtain the transformations

⎧
⎨

⎩

ηq = 1
1−rqB−rqF

[(1 − rqB)η′
q − (1 − β ′

q)r
q
F ]

βq = 1
1−rqB−rqF

[(1 − rqF )β ′
q − (1 − η′

q)r
q
B]

so that, once set ci := η′
qi , c

∗
i := ηqi , di := β ′

qi , d
∗
i := βqi , r

i
B := rqiB , r iF := rqiF , and once

identified the IRFs P∗(Xi = 1|θ, �2
i ) := gqi (θ) and P(Xi = 1|θ, �2

i ) := g′
qi (θ) we can then set

the general transformations for empirical indistinguishability in the IRT 4-parameter case as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1 − r iB − r iF
[(1 − r iB)ci − (1 − di )r

i
F ] (30a)

d∗
i = 1

1 − r iB − r iF
[(1 − r iF )di − (1 − ci )r

i
B] (30b)

P∗(Xi = 1|θ, �2
i ) = r iF + [1 − r iB − r iF ]P(Xi = 1|θ, �2

i ) (30c)

P∗(Xi ′ = 1|θ, �2
i ′) = P(Xi ′ = 1|θ, �2

i ′), c∗
i ′ = ci ′ , d∗

i ′ = di ′ for all i ′ 
= i (30d)

and where P∗(Xi = 1|θ, �2
i ) and P(Xi = 1|θ, �2

i ) depend on the same set of parameters θ and
�2
i but have different mathematical form. Let �4∗

i = {ai , bi , c∗
i , d

∗
i }, the KST transformations

yield the 4-parameter IRFs P∗(Xi = 1|θ, �4∗
i ) that are empirically indistinguishable from the

4-parameter IRFs P(Xi = 1|θ, �4
i ), that is P(Xi = 1|θ, �4

i ) = P∗(Xi = 1|θ, �4∗
i ). Like in the

KST case, there are as many trade-off parameters r iF and r iB as there are items. In passing, one
might read the newly obtained P∗(Xi = 1|θ, �2

i ) in Equation (30c) themselves as 4-parameter
IRFs in which the trade-off parameters act similarly to left-side added parameters but can attain
negative values. System (30) holds in both fixed- and random-effects cases. In the fixed-effects
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case, the empirical indistinguishability concerns the 4-parameter IRFs P∗(X ji = 1|θ j , �
4∗
i ). In

the random-effects case, the empirical indistinguishability can be interpreted in terms of either
the likelihood of a response pattern X or of the marginal probability of a correct response to a
given item. In the former case, it indeed holds that

P(X |�4
i ) =

∫

f (θ;μ, σ)

|Q|∏

i=1

P(Xi |θ, �4
i )dθ

=
∫

f (θ;μ, σ)

|Q|∏

i=1

P∗(Xi |θ, �4∗
i )dθ = P∗(X |�4∗

i )

so that both sets of IRFs return the same likelihood of a pattern of responses. In the latter case,
by local independence, the marginal probability P(Xi = 1|�4

i ) = ∑
X∈2Q ,Xi=1 P(X |�4

i ) of a
correct response to the i-th item coincides with the marginalization of the 4-parameter IRFs, that
is

P(Xi = 1|�4
i ) = ci + (1 − ci − di )

∫

f (θ;μ, σ)P(Xi |θ, �2
i )dθ

= c∗
i + (1 − c∗

i − d∗
i )

∫

f (θ;μ, σ)P∗(Xi |θ, �2
i )dθ = P∗(Xi = 1|�4∗

i ),

and one can interpret Equation (30c) as a transformation of the marginal probability P(Xi =
1|�2

i ), that is

P∗(Xi = 1|�2
i ) =

∫

f (θ;μ, σ)P∗(Xi = 1|θ, �2
i )dθ = r iF + [1 − r iB − r iF ]P(Xi = 1|�2

i ).

Finally, it is worth mentioning that in the random-effects case, the distribution of the latent trait
f (θ;μ, σ) is unaffected by the transformations (30), so the empirical indistinguishability only
concerns the IRFs.

4.2.2. Preserving the Mathematical Form of the IRFs The IRT results summarized in Sect. 2
can be obtained if System (30) is supplemented with the assumption that the mathematical forms
of the IRFs must be preserved. Let us assume that only the mathematical form of the 2-parameter
IRFs is preserved. The transformation (30c) must then imply changes in the parameters of the
2-parameter IRF. Namely, there exist θ∗ ∈ R and �2∗

i = {b∗
i , a

∗
i } such that one can replace

P∗(Xi = 1|θ, �2
i ) with P(Xi = 1|θ∗, �2∗

i ) in Equation (30c), thus yielding the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c∗
i = 1

1 − r iB − r iF
[(1 − r iB)ci − (1 − di )r

i
F ] (31a)

d∗
i = 1

1 − r iB − r iF
[(1 − r iF )di − (1 − ci )r

i
B] (31b)

P(Xi = 1|θ∗, �2∗
i ) = r iF + [1 − r iB − r iF ]P(Xi = 1|θ, �2

i ) (31c)

such that P(Xi = 1|θ, �4
i ) = P(Xi = 1|θ∗, �4∗

i ). Equation (30d) has been removed since
changes propagate to all IRFs via the θ parameter. It follows that the trade-off between the left-side
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added parameters and the 2-parameter IRF, which was occurring in the system of transformations
(30) for each item independently, is not anymore independent. That is, the trade-off parameters r iF
and r iB must lose some if not all, their independence. In order to explore these implications, it is
convenient to rewrite the 2-parameter IRF gqi (θ) as gqi (θ, �2

i ) to underline the item parameters.
Therefore, Equation (31c) can be rewritten as

gqi (θ
∗, �2∗

i ) = r iF + [1 − r iB − r iF ]gqi (θ, �2
i ), (32)

which establishes the general relation that the sets of parameters (θ∗, �2∗
i ) and (θ, �2

i ) must obey
in order for the mathematical form of the 2-parameter IRFs to be preserved. Any transforma-
tion of the parameters that satisfy Equation (32) provides either empirically indistinguishable or
unidentifiable transformations for the 4-parameter IRFs in System (31). However, not all possible
transformations that satisfy (32) are also meaningful in IRT. For instance, one might want to
restrict the set of all possible transformations to those in which the ability parameter θ∗ is inde-
pendent of the difficulty parameter bi (same for b∗

i and θ ). For this parameter independence to
hold, one needs to transform the trade-off parameters r iF and r iB into trade-off functions r iF (θ, �2

i )

and r iB(θ, �2
i ) that cancel out the dependence on the undesired parameters. However, the func-

tional forms of r iF (θ, �2
i ) and r

i
B(θ, �2

i )must be set on a case-by-case basis as they depend on the
specific choice of the 2-parameter IRF gqi (θ, �2

i ). As an example, let us consider the 1-parameter

IRF gqi (θ, bi ) = G(θ)
G(θ)+H(bi )

of Equation (3), which was suggested by Ogasawara (2017) to gen-
eralize the 1PL-G model (for which H = G = exp). By substitution of the IRF (3), Equation
(32) becomes

G(θ∗)
G(θ∗) + H(b∗

i )
= r iF + [1 − r iB − r iF ] G(θ)

G(θ) + H(bi )
= r iF H(bi ) + (1 − r iB)G(θ)

G(θ) + H(bi )
(33)

that, after a little algebra, can be rewritten as

G(θ∗)
H(b∗

i )
= r iF H(bi ) + (1 − r iB)G(θ)

r iBG(θ) + (1 − r iF )H(bi )
= G(θ) + r iF H(bi ) − r iBG(θ)

H(bi ) − (r iF H(bi ) − r iBG(θ))
. (34)

Any solution to Equation (34) satisfies system (31). However, if one wants the transformations
of θ and bi to be independent on the other parameter, as is the case in IRT, one needs to consider
the solution

{
G(θ∗) = kG(θ) + k(r iF H(bi ) − r iBG(θ))

H(b∗
i ) = kH(bi ) − k(r iF H(bi ) − r iBG(θ))

(35)

for some k ∈ R, and require that the term � := r iF H(bi ) − r iBG(θ) be a constant � ∈ R. This
requires the trade-off parameters r iF and r iB to become the trade-off functions

⎧
⎪⎨

⎪⎩

r iF (bi ) = �iF H(bi )−1

r iB(θ) = −�iBG(θ)−1

� = �iF + �iB

(36)
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for some newly defined trade-off parameters �iF , �iB ∈ R. The trade-off functions r iF (bi ) and
r iB(θ) remove the dependence of θ∗ and b∗

i on, respectively, bi and θ , thus yielding the system

{
θ∗ = G−1(kG(θ) + k�)

b∗
i = H−1(kH(bi ) − k�)

(37)

that provides the transformations discussed by Ogasawara (2017; 2020) for the IRF (3). By
combining together systems (31), (36), and (37), and by setting k = 1 for practical purposes,
one obtains for the 1-parameter model P(Xi = 1|θ, bi ) = G(θ)

G(θ)+H(bi )
with guessing and slipping

parameters, the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1−r iB (θ)−r iF (bi )
[(1 − r iB(θ))ci − (1 − di )r iF (bi )]

d∗
i = 1

1−r iB (θ)−r iF (bi )
[(1 − r iF (bi ))di − (1 − ci )r iB(θ)]

P(Xi = 1|θ∗, b∗
i ) = r iF (bi ) + [1 − r iB(θ) − r iF (bi )]P(Xi = 1|θ, bi )

G(θ∗) = G(θ) + �, H(b∗
i ) = H(bi ) − �

r iF (bi ) = �iF H(bi )−1, r iB(θ) = −�iBG(θ)−1, � = �iF + �iB

(38)

such that P(Xi = 1|θ, �
1,3
i ) = P(Xi = 1|θ∗, �1,3∗

i ). Before moving to the logistic case, which
yields the traditional IRT results, several general remarks are in order.

1. The trade-off parameters �iB and �iF are item-dependent: This is evident in the � = 0
case, in which for each item a trade-off occurs exclusively between the left-side added
parameters without involving the 2-parameter IRF. Indeed, for � = 0 it holds θ∗ = θ

and b∗
i = bi so that gqi (θ

∗, b∗
i ) = gqi (θ, bi ), but one can still have �iB + �iF = 0, that is

r iF (bi )H(bi ) = r iB(θ)G(θ). This corresponds to the KST case in which �gq = 0 and
�ηq = gq

1−gq
�βq considered in Equation (27) of Sect. 4.1 and in the present case yields

the trade-off�ci = G(θ)
H(bi )

�di . Further details are given in Sect. 4.3 for the logistic case.
2. Alternative sets of transformations: The mathematical form of the trade-off functions

does not only depend on the mathematical form of the IRF but also on how the IRF is
written. For instance, in System (38), the dependence on θ and bi of the trade-off func-

tions can be reversed by rewriting the 1-parameter IRF as gqi (θ, bi ) = H(bi )−1

G(θ)−1+H(bi )−1

and adapting the derivation accordingly to obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1−r iB (bi )−r iF (θ)
[(1 − r iB(bi ))ci − (1 − di )r iF (θ)]

d∗
i = 1

1−r iB (bi )−r iF (θ)
[(1 − r iF (θ))di − (1 − ci )r iB(bi )]

P(Xi = 1|θ∗, b∗
i ) = r iF (θ) + [1 − r iB(bi ) − r iF (θ)]P(Xi = 1|θ, bi )

G(θ∗)−1 = G(θ)−1 − �, H(b∗
i )

−1 = H(bi )−1 + �

r iF (θ) = �iFG(θ), r iB(bi ) = −�iB H(bi ), � = �iF + �iB

(39)

that provides an alternative version of transformations (38) based on the same trade-
off parameters �iF and �iB but with different trade-off functions and transformations.
Identifiability conditions need to constrain these alternative sets of transformations.
Although in line of principle, there might be many ways of rewriting an IRF, in practice,
there are but a few of them if parameter independence is required as in System (35). For
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instance, the form gqi (θ, bi ) = G(θ)H(bi )−1

1+G(θ)H(bi )−1 would defy such an independence. Most
of all, there are no alternative versions of the IRF that allow the trade-off functions to
be both ability-independent; hence, the transformed left-side added parameters are not
constants (see Remark 3 below). The only exception occurs if all individuals have the
same value of ability (see Remark 4).

3. Empirical indistinguishability vs. unidentifiability:As long as any of the trade-off func-
tions is ability-dependent, the transformations (38) and (39) yield empirically indistin-
guishable 4-parameter IRFs with ability-dependent left-side added parameters c∗

i (θ, bi )
and d∗

i (θ, bi ). The only exception occurs if all individuals have the same value of ability
so that c∗

i and d∗
i can be treated as constants. Let us assume that this is not the case

(see Remark 4) and that there are at least two individuals with different abilities (the
random-effects case is implicitly considered to have infinite values for the ability). If
one assumes that not only the mathematical form of the 2-parameter IRF but also the
mathematical form of the 4-parameter IRF must be preserved, then c∗

i and d∗
i must be

constant values and the trade-off parameters �iT with T ∈ {B, F} associated with the
ability-dependent trade-off functions r iT (θ) must be equal to zero. In the case of System

(38), this yields a restriction �iB = 0, which implies d∗
i = di and c∗

i = ci−(1−di )r iF (bi )

1−r iF (bi )
,

for all items. In otherwords, according to transformations (38), either d∗
i = di or the left-

side added parameters depend on the ability. The empirical indistinguishability is thus
removed, and one is left with the unidentifiability of the guessing parameters. In addi-
tion, if �iB = 0 then �iF = � for all items. The trade-off functions r iF (bi ) = �H−1(bi )
still differ from item to item but have a common parameter � that needs to be constrained
to solve unidentifiability (e.g., set c1 = c∗

1 = 0 in a reference item). A similar reasoning
holds for System (39). It thus appears that the identification issue of the 4-parameter
models is one of empirical indistinguishability. Once the left-side added parameters are
required to be constant in the presence of at least two individuals with different abilities,
one is left with the unidentifiability issue of one of these parameters. Section 4.3 shows
how these results relate to those already discussed in the literature for the logistic family
of models.

4. The equal abilities case: This sub-case was first highlighted by van der Linden and
Barrett (2016) in the context of the 3PL, but is of general relevance.When all individuals
in a fixed-effects 4-parameter model have exactly the same value of ability, any set of
transformations like (38) or (39) provides a constant reparameterization of the left-side
added parameters. Similarly, the exclusive trade-off discussed in Remark 1 between
the left-side added parameters becomes a constant trade-off. In the equal abilities case,
the identification problem can thus be considered one of unidentifiability and not one
of empirical indistinguishability. Hence, to enforce a restriction like �iT = 0 for T ∈
{B, F}, it is not sufficient to require the left-side added parameters to always be constant
values, as discussed in Remark 3 above, and one needs at least two individuals with
different abilities to be available.

5. There are two independent sources of non-identification: The first source of non-
identification is the well-known unidentifiability of the 2-parameter IRF gqi (θ, �2

i ).
The second source is the trade-off between the left-side added parameters and the 2-
parameter IRF gqi (θ, �2

i ), which occurs independently of the mathematical form of
the latter and is captured by System (31). As an example, let us consider the generic
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1-parameter IRF gqi (θ, bi ) = G(θ)
G(θ)+H(bi )

and let us rewrite Equation (33) as

gqi (θ
∗, b∗

i ) = gqi (θ, bi ) + r iF (bi )H(bi ) − r iB(θ)G(θ)

H(bi ) + G(θ)
= gqi (θ, bi ) + �

H(bi ) + G(θ)
(40)

where the term �
H(bi )+G(θ)

captures the change �gq as it was discussed in Equation
(24) for the KST case in Sect. 4.1. The first source of non-identification is that one can
multiply both numerator and denominator of the generic 1-parameter IRF gqi (θ, bi ) =

G(θ)
G(θ)+H(bi )

by the same constant k without affecting the IRF (if H = G = exp this
is the unidentifiability of the 1PL model). The second source of non-identification is
the trade-off between the 1-parameter IRF and the left-side added parameters, which
captures the change in the whole IRF and depends on �, H(bi ), and G(θ). The second
source is independent of the first one since multiplying both numerator and denominator
by the same constant k on both sides of Equation (40) leaves all terms unaffected as �

scales to k� as in System (37).
6. Fixed- and random-effects: The previous results hold for both fixed- and random-effects

specifications. In the fixed-effects case, the incidental parameter θ j replaces θ , and
System (31) provides a general result for the non-identification of the 4-parameter
IRFs. In the random-effects case, the statistical model consists of both the IRF and
the distribution of the ability, and as such, the identification problem is always one
of empirical indistinguishability. Indeed, although both the mathematical forms of the
2- and 4-parameter IRFs can be constrained, thus removing, as discussed above, the
problem of empirical indistinguishability and leaving only a problem of unidentifiability
for the 4-parameter IRFs, the distribution f ∗(θ∗) of the transformed values θ∗ in general
does not coincide with f (θ;μ, σ). Rather, as long as the IRF gqi is differentiable, the
change of variables formula yields the distribution

f ∗(θ∗) = f

(

g−1
qi

(
gqi (θ

∗) − r iF
1 − r iF − r iB

)

; σ,μ

)
d

dθ∗ g
−1
qi

(
gqi (θ

∗) − r iF
1 − r iF − r iB

)

, (41)

such that the different statistical models are observationally equivalent, that is

P(X |�4
i ) =

∫

f (θ;μ, σ)

|Q|∏

i=1

P(Xi |θ, �4
i )dθ

=
∫

f ∗(θ∗)
|Q|∏

i=1

P(Xi |θ∗, γ 4∗
i )dθ∗ = P(X |�4∗

i ).

Hence, in the random-effects case, even if the identification problem of the 4-parameter
IRFs is reduced to one of unidentifiability, the statistical models are empirically indistin-
guishable. However, resolving the unidentifiability of the 4-parameter IRFs also resolves
the empirical indistinguishability.

7. Sufficient and necessary conditions: For all items, the condition �iB = �iF = 0 occurs
if and only if it holds that c∗

i = ci and d∗
i = di . Hence the condition is both neces-

sary and sufficient to eliminate the trade-off between the left-side added parameters
and the 2-parameter IRF for both fixed- and random-effects specifications. Alternative
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versions of System (31), based on alternative versions of the same IRF, are solved by
the same condition. Therefore, any identifiability constraint that sets �iB = �iF = 0 for
all alternative systems erases this source of non-identification. However, full resolution
of the unidentifiability of an IRT model requires to also provide a) the identifiability
conditions for the 2-parameter IRF and b) the conditions on the minimal numbers of
individuals and/or items that are required to provide enough equations to identify the
parameter values. These latter depend on the identified parametrization associated with
the observed outcomes. Let N be the number of individuals, |Q| the number of items,
I the number of constraints imposed to reduce unidentifiability, and n the number of
parameters per item. In the fixed-effects case, the identified parametrization consists of
mutually independent Bernoulli distributions capturing the N |Q| response probabilities;
hence, one needs to satisfy the condition N |Q| ≥ n|Q| + N − I . In the random-effects
case, the identified parametrization consists of a Multinomial distribution capturing the
2|Q| − 1 independent patterns of responses, hence one needs to satisfy the condition
2|Q| −1 ≥ n|Q|+2− I , where the additional term 2 comes from the location and scale
parameters of the distribution f (θ;μ, σ) of the abilities.

4.3. The IRT logistic case

The IRT logistic case assumes the IRF gqi (θ, �2
i ) = eai (θ−bi )

1+eai (θ−bi )
so that System (30) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1 − r iB − r iF
[(1 − r iB)ci − (1 − di )r

i
F ] (42a)

d∗
i = 1

1 − r iB − r iF
[(1 − r iF )di − (1 − ci )r

i
B] (42b)

P∗(Xi = 1|θ, �2
i ) = r iF + [1 − r iB − r iF ] eai (θ−bi )

1 + eai (θ−bi )
(42c)

P∗(Xi ′ = 1|θ, �2
i ′) = P(Xi ′ = 1|θ, �2

i ′), c∗
i ′ = ci ′ , d∗

i ′ = di ′ for all i ′ 
= i (42d)

such that P(Xi = 1|θ, γ 4
i ) = P∗(Xi = 1|θ, γ 4∗

i ) and in which the trade-offs due to the BG and
FG in an item neither affects the IRFs of the other items nor the parameters within the 2-parameter
IRFs. These are empirically indistinguishable IRFs. If one assumes that the mathematical form
of the 2-parameter IRFs must also be preserved, then system (42) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1 − rB − rF
[(1 − r iB)ci − (1 − di )r

i
F ] (43a)

d∗
i = 1

1 − rB − rF
[(1 − r iF )di − (1 − ci )r

i
B] (43b)

ea
∗
i (θ∗−b∗

i )

1 + ea
∗
i (θ∗−b∗

i )
= r iF + [1 − r iB − r iF ] eai (θ−bi )

1 + eai (θ−bi )
(43c)

such that P(Xi = 1|θ, �4
i ) = P(Xi = 1|θ∗, �4∗

i ). Equation (43c) replaces Equation (42c),
and is indeed a special case of Equation (32) establishing the relation between the different sets
of parameters (θ, �2

i ) and (θ∗, �2∗
i ). Following the same rationale applied in Sect. 4.2, Equation

(42d) has been removed since changes from θ to θ∗ affect all IRFs simultaneously. Equation (43c)
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can be rewritten as

ea
∗
i θ∗

ea
∗
i b

∗
i

= r iFe
ai bi + (1 − r iB)eai θ

r iBe
ai θ + (1 − r iF )eai bi

= eai θ + (r iFe
ai bi − r iBe

ai θ )

eai bi − (r iFe
ai bi − r iBe

ai θ )
, (44)

which is indeed Equation (34) in which one sets H = G = exp, and the discrimination parameters
are not set to one. The IRT transformations are the inverse of the KST ones, with the difference
that the difficulty, discrimination, and ability parameters are absorbed directly within the trade-off
parameters r iT with T ∈ {B, F} that become general trade-off functions r iT (θ, �2

i ). Traditional IRT
results for unidentifiability, like the transformations associated with a logistic IRF and discussed
by Maris and Bechger (2009), are then sub-cases of the solution of Equation (44) given by setting
� = r iFe

ai bi −r iBe
ai θ , which yields amore general set of transformations that captures the empirical

indistinguishability of the 4PL, that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1−r iB (θ,ai )−r iF (�2
i )

[(1 − r iB(θ, ai ))ci − r iF (�2
i )(1 − di )]

d∗
i = 1

1−r iB (θ,ai )−r iF (�2
i )

[(1 − r iF (�2
i ))di − r iB(θ, ai )(1 − ci )]

P(Xi = 1|θ∗, �2∗
i ) = r iF (�2

i ) + [1 − r iB(θ, ai ) − r iF (�2
i )]P(Xi = 1|θ, �2

i )

ea
∗
i θ∗ = eai θ + �, ea

∗
i b

∗
i = eai bi − �

r iB(θ, ai ) = −�iBe
−ai θ , r iF (�2

i ) = �iF e
−ai bi , � = �iB + �iF

(45)

where �iB, �iF ∈ R are such that � ∈ [−emini, j (ai θ j ), emini (ai bi )) for a fixed-effects model or
� ∈ [0, emini (ai bi )) for a random-effects model. System (45) allows to recover and generalize
the unidentifiability results discussed in Sect. 2. Results hold for both fixed- and random-effects
specifications as they provide both sufficient and necessary conditions to remove the trade-off
between the left-side added parameters and the 2PL. The identifiability conditions of the 2PL are
well known (e.g.,b1 = 0 anda1 = 1). Further conditions on theminimal number of individuals and
items are also addressed. In the random-effects case, the problem of empirical indistinguishability
involves also the transformed distribution (41) of the ability, which in the logistic case corresponds
to a 3-parameter log-normal distribution if f (θ; σ,μ) is a normal distribution.

4.3.1. Unidentifiability of the 1PL-G and of the 1PL-S Models The unidentifiability trans-
formations (2) given by Maris and Bechger (2009) for the 1PL-G model P(Xi = 1|θ, �

1,3
i ) are

obtained by setting in System (45) that di = 0, that all discrimination parameters are equal ai = a
(a = 1 without loss of generality), and that �iB = 0 for all items. This yields the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c∗
i = ci−r iF (bi )

1−r iF (bi )

P(Xi = 1|θ∗, b∗
i ) = r iF (bi ) + (1 − r iF (bi ))P(Xi = 1|θ, bi )

eθ∗ = eθ + �, eb
∗
i = ebi − �

r iF (bi ) = �e−bi

(46)

such that P(Xi = 1|θ, �
1,3
i ) = P(Xi = 1|θ∗, �1,3∗

i ). By means of the trade-off functions r iF (bi ),
different items can have different trade-offs between the guessing parameter and the 1-parameter
IRF. However, since the trade-off parameter �iF = � is common to all items, the identifiability of
the 1PL-G model is ensured as soon as any condition that sets � = 0 is imposed. A traditional
condition that holds for both fixed- and random-effects models (see, e.g., San Martín, 2016) is
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to fix the guessing parameter of a reference item to a given value, which is typically zero (e.g.,
c1 = c∗

1 = 0). Additional identifiability conditions have been discussed and summarized, for
instance, in San Martín (2016), and are those associated to the unidentifiability of the 1PL model
(e.g., fixing the difficulty of the reference item to b1 = 0), and to the required minimal numbers of
persons and/or items, which is N ≥ 2 and |Q| ≥ 2 for the fixed-effects 1PL-Gmodel and |Q| ≥ 3
for the random-effects 1PL-G model. Notice that rewriting the 1PL model in the alternative form

gqi (θ, bi ) = e−bi

e−bi +e−θ
yields an alternative set of transformations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c∗
i = ci−r iF (θ)

1−r iF (θ)

P(Xi = 1|θ∗, b∗
i ) = r iF (θ) + (1 − r iF (θ))P(Xi = 1|θ, bi )

e−θ∗ = e−θ − �, e−b∗
i = e−bi + �

r iF (θ) = �eθ

(47)

such that P(Xi = 1|θ, �
1,3
i ) = P(Xi = 1|θ∗, �1,3∗

i ) and it is empirically indistinguishable
from the 1PL-G model but has ability-dependent guessing parameters. This identification issue
is resolved by assuming that the mathematical form of the 1PL-G model is preserved. If c∗

i is
assumed to be a constant, and there are at least two individuals with different abilities, then it
must hold � = 0 in System (47), which implies c∗

i = ci . Besides, having at least two individuals
with different abilities also solves the equal abilities sub-case. Finally, the same reasoning can be
followed for the 1PL-S model P(Xi = 1|θ, �

1,4
i ), which is obtained by setting in System (45)

that ci = 0, that all discrimination parameters are equal ai = a (a = 1 without loss of generality),
and that �iF = 0 for all items, thus yielding the system of transformations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∗
i = di−r iB (θ)

1−r iB (θ)

P(Xi = 1|θ∗, b∗
i ) = [1 − r iB(θ)]P(Xi = 1|θ, bi )

eθ∗ = eθ + �, eb
∗
i = ebi − �

r iB(θ) = −�e−θ

(48)

such that P(Xi = 1|θ, �
1,4
i ) = P(Xi = 1|θ∗, �1,4∗

i ). As in the System (47), an identifiability
condition is given by assuming that the mathematical form of the 1PL-S model is preserved while
having two individuals with different abilities. By rewriting the 1PL model in the alternative form

gqi (θ, bi ) = e−bi

e−bi +e−θ
, one obtains the alternative version

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∗
i = di−r iB (bi )

1−r iB (bi )

P(Xi = 1|θ∗, b∗
i ) = [1 − r iB(bi )]P(Xi = 1|θ, bi )

e−θ∗ = e−θ − �, e−b∗
i = e−bi + �

r iB(bi ) = −�ebi

(49)

in which one needs to assume, for instance, d1 = d∗
1 = 0 to eliminate the trade-off between the

slipping parameter and the 1-parameter IRF. These results are consistent with the extant literature.
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4.3.2. Unidentifiability of the 3PL Model The 3PL model differs from the 1PL-G model only
in the fact that the discrimination parameters are not constrained to be equal. The transformations
for the 3PL model are thus obtained from System (45) by assuming that di = 0, and that �iB = 0
for all items, so that one obtains the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c∗
i = ci−r iF (�2

i )

1−r iF (�2
i )

P(Xi = 1|θ∗, �2∗
i ) = r iF (�2

i ) + [1 − r iF (�2
i )]P(Xi = 1|θ, �2

i )

ea
∗
i θ∗ = eai θ + �, ea

∗
i b

∗
i = eai bi − �

r iF (�2
i ) = �e−ai bi

(50)

such that P(Xi = 1|θ, �3
i ) = P(Xi = 1|θ∗, �3∗

i ). By setting �iB = 0, one has �iF = � for all items,
and therefore, only one parameter captures the trade-off between the guessing parameter and the
2PL model. However, contrary to the 1PL-G model, the dependence on ai in the transformation
of θ in System (50) implies that, if there are at least two items with different discrimination
parameters, that is ai 
= ai ′ , then the trade-off parameter � must be equal to zero. Indeed, only if
all discrimination parameters are equal to each other can they be absorbed within a unit re-scaling
of θ∗, which belongs to the unidentifiability of the 2PL itself, otherwise, they would imply that
the transformation of θ is item-dependent, which is not acceptable. In the alternative, one can
notice that the ratio of the transformed discrimination parameters

a∗
i

a∗
i ′

= log (eai θ + �)

log (eai ′θ + �)

is constant for all values of θ if and only if � = 0. This coincides with the results obtained by Wu
(2016) that consider a necessary condition for the fixed-effects 3PL to have at least two items with
different discrimination parameters. This condition eliminates the trade-off between the guessing
parameter and the 2PL in both fixed- and random-effects models. Notice, however, that if one

assumes that all individuals have the same value of the ability, then the ratio
a∗
i

a∗
i ′
is always constant

independently on � so unidentifiability is restored, which is exactly the sub-case discussed by van
der Linden and Barrett (2016). Hence, at least two individuals with different values of ability are
also needed in the fixed-effects case. This is also consistent with the results obtained byWu (2016),
which consider a necessary condition for the 3-PL to have at least four individuals with different
abilities. Two of these individuals are needed to solve the unidentifiability due to the trade-off
between the guessing parameter and the 2PL, while the other two are due to the minimum number
of individuals required to have identifiability. Given indeed |Q| = 2 and considering I = 2
identification constraints for the unidentifiability of the 2PL (e.g., b1 = 0 and a1 = 1 for the
reference item), the condition N |Q| ≥ n|Q| + N − I yields 2N ≥ 6 + N − 2 that is N ≥ 4 as
given byWu (2016). Finally, the identifiability constraints can also be given for the random-effects
3PL, which appears to require a) the identification constraints for the unidentifiability of the 2PL,
and b) at least two items with different discrimination parameters out of a total of |Q| ≥ 4 items
available. The last value follows from the condition 2|Q| −1 ≥ 3|Q|+2− I that for I = 2 yields
2|Q| ≥ 3|Q| + 1 that is |Q| ≥ 4. It thus appears that, contrary to the 1PL-G model, the fixed- and
random-effects 3PL models do not require to set any guessing parameter to a reference value to
be identified as long as there are at least two items with different discrimination parameters and,
in the fixed-effects case, at least two individuals with different abilities.
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4.3.3. Unidentifiability of the 4PL Model The transformations associated with the 4PL are
given by System (45). If one rewrites the 2PL as gqi (θ, �2

i ) = e−ai bi

e−ai bi +e−ai θ
, an alternative set of

transformations can be obtained, which is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1

1−r iB (�2
i )−r iF (θ,ai )

[(1 − r iB(�2
i ))ci − r iF (θ, ai )(1 − di )]

d∗
i = 1

1−r iB (�2
i )−r iF (θ,ai )

[(1 − r iF (θ, ai ))di − r iB(�2
i )(1 − ci )]

P(Xi = 1|θ∗, �2∗
i ) = r iF (θ, ai ) + [1 − r iB(�2

i ) − r iF (θ, ai )]P(Xi = 1|θ, �2
i )

e−a∗
i θ∗ = e−ai θ − �, e−a∗

i b
∗
i = e−ai bi + �

r iB(�2
i ) = −�iBe

ai bi , r iF (θ, ai ) = �iF e
ai θ , � = �iB + �iF

(51)

and that reverses the dependence on the ability parameter in the trade-off functions. It can be
shown that for both Systems (45) and (51), almost the same constraints of the 3PL model are
needed. Indeed, like in the 3PL model case, given at least two items with different discrimination
parameters and two individuals with different abilities, then it follows that � = 0. As it was
previously discussed, the fact that � = 0 does not generally resolve empirical indistinguishability
in the 4PL model. Let us consider System (45) without loss of generality. Given � = 0 it might
still hold �iF = −�iB , that is r

i
Fe

ai bi = r ibe
ai θ . This corresponds to the KST case in which�gq = 0

and �ηq = gq
1−gq

�βq considered in Equation (27) of Sect. 4.1. Specifically, in the IRT case, one
has the trade-off

c∗
i − ci = (d∗

i − di )
P(Xi = 1|θ, �2

i )

1 − P∗(Xi = 1|θ, �2
i )

= (d∗
i − di )e

ai (θ−bi ), (52)

and if one sets d∗
i = di − k∗ so that (1 − d∗

i ) = (1 − di ) + k∗ for some k∗ ∈ R, it follows
c∗
i = ci − keai (θ−bi ), which is indeed the sub-case discussed by Ogasawara (2017, Theorem 5)
and given by Equation (4) in Sect. 2. The transformations in Equation (52) are ability-dependent,
and as such are automatically excluded if at least two individuals with different abilities are
available and the mathematical form of the 4PLmodel is preserved. For the same rationale it must
follow that all the �iB = 0 in System (45). As also � = 0, then it follows that also all the �iF = 0 in
System (45). Similar considerations can be done for System (51). Hence, under the assumption
that the mathematical form of the 4PL model is preserved (i.e., the left-side added parameters
must be constants), the trade-off between the 2PL and the left-side added parameters is solved in
the 4PL by the same conditions of the 3PL model (i.e., two individuals with different abilities and
two items with different discrimination). Since the identifiability conditions of the 2PL model are
also the same, the only difference w.r.t. the 3PL model is in the minimal numbers of individuals
and/or items required. In the fixed-effects 4PL model, the condition N |Q| ≥ n|Q| + N − I for
|Q| = 2, n = 4, and I = 2 yields 2N ≥ 8 + N − 2, that is N ≥ 6, while in the random-effects
4PL model the condition 2|Q| − 1 ≥ n|Q| + 2 − I for n = 4 and I = 2 yields 2|Q| ≥ 4|Q| + 1,
that is |Q| ≥ 5.

This situation is not equivalent to the results of Ogasawara (2017, Proposition 2), which states
that in addition to the conditions expressed byWu (2016), either c∗ = ci or d∗

i = di must be set to
identify the fixed-effects 4PL. Considering these conditions in the present perspective it appears
that, although fixing either the ci or the di parameters is sufficient to respectively set �iB = 0
in System (45) and �iF = 0 in System (51), these conditions are not necessary since preserving
the form of the 4-parameter IRFs given at least two individuals with different abilities is a less
demanding constraint that erases all empirically indistinguishable solutions, like the exclusive
trade-off between the left-side added parameters captured by Equation (52). Nonetheless, if one

Downloaded from https://www.cambridge.org/core. 05 Jan 2025 at 20:40:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


510 PSYCHOMETRIKA

takes into account the additional constraints imposed by Ogasawara (2017), which amounts to
assume I = 2 + |Q| (i.e, 2 conditions for the 2PL model and |Q| left-side added parameters
fixed) into the condition N |Q| ≥ n|Q| + N − I , one obtains for |Q| = 2 exactly N ≥ 4.

Two final remarks are in order for the 4PL case. The first one is that, similarly to the sub-case
of Equation (52), the other sub-case introduced by Ogasawara (2017), and given by Equation (5)
in Sect. 4.1, can be obtained from system (45). Let us first consider that, by system (45), it holds
that

gqi (θ
∗) = ea

∗
i θ∗

ea
∗
i b

∗
i + ea

∗
i θ∗ = eai θ + �

eai bi + eai θ
= gqi (θ) + �

eai bi + eai θ
.

Let us then consider the solutions (28) obtained in Sect. 4.1 as a split of Equation (28). By replacing
the KST quantities in the solutions (28) with the associated IRT quantities, one obtains the system

⎧
⎨

⎩

ci − c∗
i = −(1 − c∗

i )
gqi (θ)−gqi (θ

∗)
1−gqi (θ)

= (1 − c∗
i )

�

eai bi

di − d∗
i = −d∗

i
gqi (θ)−gqi (θ

∗)
gqi (θ)

= d∗
i

�

eai θ

⇔
{
c∗
i = ceai bi −�

eai bi −�

d∗
i = di eai θ

eai θ+�

(53)

where Equation (5) follows from the latter system.
The second remark is that the identifiability conditions for the 1PL-GS P(Xi = 1|θ, �−2

i )

can be obtained by assuming ai = 1 in transformations (45) and (51). Since now all discrimination
parameters are equal, the rationale discussed for the 3PL and the 4PL cannot be applied anymore
to set � = 0. However, assuming at least two individuals with different abilities still constraints
all empirically indistinguishable solutions, so that it must hold �iB = 0 for all items. It follows
that �iF = � for all items so that the same condition of the 1PL-G can be used to identify the
system, that is c1 = c∗

1 = 0. Similarly, the reversed system requires d1 = d∗
1 = 0. The condition

b1 = 0 sets the unidentifiability of the 1PL. Finally, the condition on the minimal numbers of
individuals and/or items is given, in the fixed-effects 1PL-GS model, by the general condition
N |Q| ≥ n|Q|+ N − I that for |Q| = 2, n = 3, and I = 3 yields 2N ≥ 6+ N −3, that is N ≥ 3,
while in the random-effects 1PL-GS model is given by the condition 2|Q| − 1 ≥ n|Q| + 2 − I
for n = 3 and I = 3 yields 2|Q| ≥ 3|Q|, that is |Q| ≥ 4.

5. Discussion

In the present paper, it was suggested that the identification problems of IRT models for
dichotomous items in the presence of left-side added parameters are related to the general issue of
identifiability arising in knowledge structures in the presence of forward- or backward-gradedness
w.r.t. an item. As the knowledge structure associated to the requirement of local stochastic inde-
pendence in IRT is the power set, such structure is both BG and FG in all of the items, and as
a result, every 4-parameter model presents a trade-off between the left-side added parameters
and the remainder of the item response function (typically a 2-parameter model). This result has
several consequences. First, this type of unidentifiability manifests itself as a trade-off between
the left-side added parameters and the 2-parameter item response function and is therefore inde-
pendent of the specific functional shape of the 2-parameter model, which could be a logistic
as well as a normal ogive function or any other ogive model. Hence, application of the KST
transformations to the IRT case allows to separate and distinguish between two different sources
of unidentifiability: The first one concerns the trade-off between the left-side added parameters
and the 2-parameter model, and the second one concerns the specific functional shape of the
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2-parameter model. Sufficient and necessary conditions based on the KST transformations can be
given to identify the former, while conditions are already known for the latter. As a consequence,
IRT models appear to be identified when conditions for both sources have been given together
with the needed minimal requirements on the number of individuals and/or items. As a result,
conditions for the fixed effects 1PL-G and 3PL were recovered that match those already present
in the literature, and conditions for the fixed effects 4PL were discussed. Similarly, conditions for
the associated random-effects 1PL-G, 3PL, and 4PLmodels were discussed and appear to overlap
those in the fixed-effects case while differing only w.r.t. the minimal conditions on the numbers
of items. Most of all, it appears that the general beliefs on the identifiability of all these models
are supported by the present work, although identifiability conditions need to be imposed to solve
unidentified degenerate cases that arise from either equality in the discrimination parameters or
in the abilities.

A second important consequence is that the KST transformations, once applied to the IRT
context, can yield both empirically indistinguishable or unidentified solutions depending on how
they are applied. Specifically, if they are applied ‘as they are,’ they yield empirically indistin-
guishable sets of IRFs that capture the trade-off described above without affecting the parameters
within the 2-parameter IRF. If, instead, they are supplemented with an additional assumption
that the mathematical forms of the 4- and/or 2-parameter must be preserved, then they present
both empirically indistinguishable and unidentifiable solutions depending on which model is con-
sidered and on whether a fixed- or random-effects specification is considered. Generally, fixed-
effects 4-parameter models are associated to empirical indistinguishability, while fixed-effects
3-parameter models are associated to unidentifiability. Random-effects models are always associ-
ated with empirical indistinguishability of the statistical model, even when the problem of the IRF
is only one of unidentifiability, since the associated distribution of the ability is transformed. Most
of all, the parameters within the 2-parameter IRFs become involved in the transformations. As
a consequence, this might contribute to the occurrences in the literature of parameter instability
that sometimes manifest themselves with different combinations of parameters as discussed in
Sect. 2. Indeed, specific values of some parameters might bring the models close enough to some
degenerate forms of them that are unidentifiable, thus creating instability in the parameter values.
Thismight add up to the global identifiability issues of thesemodels and to other estimation issues,
like those occurring for items that are too easy or too hard, which are usually underrepresented
in the outcomes.

Finally, since the IRT identifiability problem appears to be connected to the FG and BG
nature of the power set structure, the results obtained might be beneficial for both KST and IRT
models. Indeed, on the one hand, the fact that IRT models appear to be identifiable under suitable
conditions, in spite of the fact that they are applied in the power set case, suggests that a KST-
IRT perspective might provide a way to reduce the unidentifiability of knowledge structures. On
the other hand, the use of structures that are known to be identified and are neither forward-
nor backward-graded w.r.t. the items of interests might provide a substitute to the identifiability
constraints that one needs to impose to solve the trade-off between the left-side added parameters
and the IRFs. It is, however, important to stress that such an approach would imply abandoning
the assumption of local stochastic independence in favor of applications of some generalized form
of it, as suggested by Noventa et al. (2019), Noventa, Heller and Stefanutti (2021), and Ye, Kelava
and Noventa (2023), or to work with SRFs in place of IRFs.
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A. Proof of KST Transformations (22)

In order to derive the transformations (22), we first derive the FG transformations (14), then the
BG transformations (15), and then we combine them into the final result. Let us consider the
transformations (14) for a FG structure. We are interested in the power set 2Q , which is FG in any
q, and for which it holds for all items q that Kq = K+

q so that 2Q = K+
q ∪ Kq . Transformations

(14) take then the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ′
q = βq

η′
q = ηq + (1 − ηq − βq)(1 − etF )

π ′(K ) =
{

π(K ) + (1 − e−tF )π(K \ {q}) for all K ∈ Kq

e−tFπ(K ) for all K ∈ Kq

(54)

The last equation can be used to infer the shape for the transformations for the single item
probabilities gq in the SLM. Indeed, we can obtain g′

q as the marginal probability over all the
states that contain q, namely

g′
q =

∑

K∈Kq

π ′(K ) =
∑

K∈Kq

[π(K ) + (1 − e−tF )π(K \ {q})]

=
∑

K∈Kq

π(K ) + (1 − e−tF )
∑

K∈Kq

π(K ) = gq + (1 − e−tF )(1 − gq)

where the second passage follows from the fact that in the power set

∑

K∈Kq

π(K \ {q}) =
∑

K∈Kq

π(K ).
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For any other item p 
= q, one has instead that by construction, all states that contain an item p
can be partitioned by the item q as Kp = (Kp ∩ Kq) ∪ (Kp ∩ Kq), which leads to

g′
p =

∑

K∈Kp

π ′(K ) =
∑

K∈Kp∩Kq

π ′(K ) +
∑

K∈Kp∩Kq

π ′(K )

=
∑

K∈Kp∩Kq

[π(K ) + (1 − e−tF )π(K \ {q})] +
∑

K∈Kp∩Kq

e−tFπ(K )

=
∑

K∈Kp∩Kq

π(K ) + (1 − e−tF )
∑

K∈Kp∩Kq

π(K ) +
∑

K∈Kp∩Kq

e−tFπ(K )

=
∑

K∈Kp∩Kq

π(K ) +
∑

K∈Kp∩Kq

π(K ) =
∑

K∈Kp

π(K ) = gp

The resulting transformations w.r.t. item q for the set of parameters �K = {β, η, g} are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ′
p = βp for all p ∈ Q

η′
p = ηp, g′

p = gp for all p 
= q

η′
q = ηq + (1 − βq − ηq)(1 − etF )

g′
q = e−tF gq + (1 − e−tF )

(55)

Let us consider the transformations (15) for a BG structure. As before, we are interested in the
power set structure 2Q , which is BG in any q, and for which it holds for all items q thatK−

q = Kq

so that 2Q = K−
q ∪ Kq . Transformations (15) take then the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η′
q = ηq

β ′
q = βq + (1 − ηq − βq)(1 − etB )

π ′(K ) =
{

π(K ) + (1 − e−tB )π(K ∪ {q}) for all K ∈ Kq

e−tBπ(K ) for all K ∈ Kq

(56)

As in the FG case, the last equation can be used to infer the shape for the transformations for the
single item probabilities gq . Indeed, g′

q is the marginal probability over all the states that contain
q that is

g′
q =

∑

K∈Kq

π ′(K ) =
∑

K∈Kq

e−tBπ(K ) = e−tB gq .
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For any other p 
= q instead, one has that, as in the FG case, all states that contain an item p can
be partitioned by the item q as Kp = (Kp ∩ Kq) ∪ (Kp ∩ Kq), which leads to

g′
p =

∑

K∈Kp

π ′(K ) =
∑

K∈Kp∩Kq

π ′(K ) +
∑

K∈Kp∩Kq

π ′(K )

=
∑

K∈Kp∩Kq

e−tBπ(K ) +
∑

K∈Kp∩Kq

[π(K ) + (1 − e−tB )π(K ∪ {q})]

=
∑

K∈Kp∩Kq

e−tBπ(K ) +
∑

K∈Kp∩Kq

π(K ) +
∑

K∈Kp∩Kq

(1 − e−tB )π(K )

=
∑

K∈Kp∩Kq

π(K ) +
∑

K∈Kp∩Kq

π(K ) = gp

where the central passage follows from the fact that in the power set

∑

K∈Kq

π(K ∪ {q}) =
∑

K∈Kq

π(K ).

The resulting transformations w.r.t. item q for the set of parameters �K = {β, η, g} are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η′
p = ηp for all p ∈ Q

β ′
p = βp, g′

p = gp for all p 
= q

β ′
q = βq + (1 − βq − ηq)(1 − etB )

g′
q = e−tB gq

(57)

The previously analyzed BG and FG cases are the main ingredients to build the full transforma-
tions. Indeed, the power set by nature is both BG and FG in all items of the domain, but as shown
above, FG and BG affect only the parameters associated to a given item. As a last step, we can
then derive the transformation associated to the gq parameters by imposing unidentifiability as a
requirement, that is

ηq + (1 − ηq − βq)gq = η′
q + (1 − η′

q − β ′
q)g

′
q

ηq + (1 − ηq − βq)gq = ηq + (1 − βq − ηq)(1 − etF )

+ [1 − (βq + (1 − βq − ηq)(1 − etB )) − (ηq + (1 − βq − ηq)(1 − etF ))]g′
q

(1 − ηq − βq)gq = (1 − βq − ηq)(1 − etF ) + (1 − βq − ηq)[1 − (1 − etB ) − (1 − etF )]g′
q

gq = (1 − etF ) + [1 − (1 − etB ) − (1 − etF )]g′
q ,

which yields the final result for the KST coefficient gq

g′
q = gq − (1 − etF )

1 − (1 − etB ) − (1 − etF )
= gq + etF − 1

etB + etF − 1
,

and it is straightforward to verify that for rB = 0 or rF = 0 one retrieves exactly the transforma-
tions for the FG and BG cases. Finally, as to the ranges of tB and tF , the condition η′

q + β ′
q < 1
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implies etF + etB > 1 since it holds that (1 − ηq − βq)(2 − etF − etB ) < 1 − ηq − βq , that is

1 − etF − etB < 0. The conditions η′
q , β

′
q > 0 respectively imply that tF < log

1−βq
1−ηq−βq

and

tB < log
1−ηq

1−ηq−βq
. The condition g′

q ∈ (0, 1) implies that 1 − etF < g < etB which can be split
into the two conditions tB > log gq and tF > log (1 − gq), which complete the results.
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