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This work is a numerical study of a transitional shock wave boundary layer interaction
(SWBLI). The main goal is to improve our understanding of the well-known low-
frequency SWBLI unsteadiness and especially the suspected role of triadic interactions
in the underlying physical mechanism. To this end, a direct numerical simulation is
performed using a high-order finite-volume scheme equipped with a suitable shock
capturing procedure. The resulting database is then extensively post-processed in order
to extract the main dynamical features of the interaction zone dynamics (involved
characteristic frequencies, characteristics of the vortical structures, etc.). The dynamical
organisation and space–time evolution of the flow at dominant frequencies are then further
characterised by mean of an spectral proper orthogonal decomposition analysis. In order to
study the role of triadic interactions occurring in the interaction region, a bispectral mode
decomposition analysis is applied to the database. It allows us to extract the significant
triadic interactions, their location and the resulting physical spatial modes. Strong triadic
interactions are detected in the downstream part of the separation bubble whose role on
the low-frequency unsteadiness is characterised. All the results of the various analyses are
then discussed and integrated to formulate a possible mechanism fuelling low-frequency
SWBLI unsteadiness.
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1. Introduction
Situations in which a shock wave interacts with a boundary layer are numerous in
the aeronautical and space industries. These interactions can exist on external surfaces
(transonic profiles, junctions of surfaces, etc.) or in internal aerodynamics devices
(supersonic air intakes, cascade of turbine blades, nozzles, etc.). Under certain conditions
(high Mach number, large shock wave angle, etc.), these interactions can generate
a transient separation bubble causing increased drag force, heat fluxes and pressure
fluctuations. It is also known since decades that the separation bubble and reflected
shock wave are subject to low-frequency motion, known as ‘shock wave boundary
layer interaction (SWBLI) unsteadiness’. For turbulent interactions, with a turbulent
incoming boundary layer, the characteristic frequency of these oscillations is two orders
of magnitude lower than the characteristic frequencies of the incoming boundary layer
(Dussauge, Dupont & Debiève 2006). The SWBLI unsteadiness can be detrimental
to engineering system performances and can expose structures to oscillating loads,
potentially damaging the solid structure’s integrity (Dolling 2001; Délery & Dussauge
2009; Babinsky & Harvey 2011; Clemens & Narayanaswamy 2014; Gaitonde 2015).
During the last decades, attention has been focused on numerical and experimental
studies of unswept SWBLIs (where the shock impingement line is orthogonal to the
incident boundary layer), employing various analysis techniques like Fourier analysis of
signals (e.g. pressure or velocity probe signals), modal decomposition (proper orthogonal
decomposition (POD), (Sirovich 1987; Shinde et al. 2019), spectral POD (SPOD) (Towne,
Schmidt & Colonius 2018), dynamic mode decomposition (DMD) (Schmid 2010; Priebe
et al. 2016)) and stability analysis (Theofilis 2003, 2011; Robinet 2007; Sartor et al. 2015;
Guiho, Alizard & Robinet 2016; Song & Hao 2023).

The research community identifies two main mechanisms for SWBLI unsteadiness:
(A) upstream, caused by the advection of large-scale structures of the incoming boundary
layer (Ganapathisubramani et al. 2007, 2009) and (B) downstream, in which the dynamics
of the separation bubble generates disturbances that drive the oscillations of the reflected
shock. As stated in Clemens & Narayanaswamy (2014), following Souverein et al. (2010),
a consensus view emerged in the community that strong interactions, which exhibit large
separation bubbles, are primarily driven by a downstream instability (mechanisms of
type B), whereas weakly separated interactions (also called incipient interactions) can
be strongly influenced by fluctuations in the upstream boundary layer (mechanisms of
type A).

Regarding strong interactions, a large number of studies have been undertaken in the
last decades to document the low-frequency dynamics of the separation bubble and to
identify the exact physical mechanism of type B underlying the SWBLI unsteadiness. It
is now well established that the dynamics of the flow around this mean configuration is
characterised by several unsteady phenomena whose characteristic scales spread over a
large broadband spectrum range. As illustrated in figure 1, the main dynamical features of
the flow can be classified according to three frequency ranges spreading over two decades:
high, medium and low frequencies. For turbulent interactions, the incoming boundary
layer is turbulent with the most energetic fluctuations at high frequencies characterised by a
Strouhal number Stδ = f δ/Ue ∼ 1 (where f , δ and Ue are respectively the main frequency
of the fluctuations, the boundary layer thickness before the interaction and the free-stream
velocity). Various studies carried out to characterise the dynamics of subsonic turbulent
separated and reattached flows have highlighted a now well-documented medium-
frequency dynamics of the separation bubble (Weiss, Mohammed-Taifour & Schwaab
2015; Wu, Meneveau & Mittal 2020). In this range of frequencies the shear layer, bounding
the upper part of the bubble, is subjected to a global flapping motion of the separated
1009 A43-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.236


Journal of Fluid Mechanics

Low frequency:

St = 0.02 ∼ 0.05

St = 0.1 ∼ 0.2

St = 0.3 ∼ 0.8
St > 1

Medium frequency:
Breathing of the separation bubble

Oscillations of the ref lected shock wave

Vortex shedding

Flapping of the separation bubble

High frequency:
St = f L/u∞

Dynamical activity of the incoming
turbulent boundary layer

Numerical Schlieren of a turbulent SWBLI
from (Ben Hassan Saidi PhD 2019)

10–2 10–1 100

Shedding and f lapping over an airfoil
from (Kirk et al. 2017)

Structures in the turbulent boundary layer
from (Buffin-Bélanger et al. 2013)

Low-speed
streak

Lift-up

Ejection

u (y)

U (y)

Bursting

Z = 100

Y = 100

t = 1.25 ms

V2

V2

V3

V3

V3

V3

V2

V2

V2

V2 V1

V1

V1

V1

V1

V1

t = 1.50 ms

t = 1.75 ms

t = 2.00 ms

t = 2.25 ms

t = 2.50 ms

Low-speed
streak

y
x

z

Sweep
Inrush

Re-establishment

Figure 1. Illustration of the documented dynamical features of SWBLIs. The figures are from Ben Hassan
Saidi (2019), Kirk & Yarusevych (2017) and Buffin-Bélanger et al. (2013).

shear layer at a Strouhal number StL = f L/Ue ∼ 0.1–0.2 (where L is the mean separation
length) and a higher medium-frequency instability linked to the shedding of large-scale
vortical structures at StL ∼ 0.3 − 0.8 near the reattachment. The flapping mode consists
of successive enlargement and shrinkage of the recirculation bubble, the shrinkage being
associated with the shedding of a large vortex downstream of the recirculation bubble.
These two medium-frequency unsteadinesses correspond to the modes that have long been
documented for subsonic fixed-separation bubbles (Cherry, Hillier & Latour 1984; Kiya
& Sasaki 1985). For these fixed-separation bubbles, the flapping frequency was reported
as the lowest frequency present in the flow. Nevertheless, in turbulent SWBLIs, a low-
frequency flapping mode was also observed at a Strouhal number of StL = f L/Ue =
0.02–0.05. In the following, we refer to this low-frequency mode as the ‘breathing’ of
the separated zone. This mode is accompanied by the oscillations of the reflected shock
wave, in the same frequency range, which constitute the so-called SWBLI unsteadiness.
Thus, the low-frequency separation bubble oscillations documented for SWBLIs were one
order of magnitude lower than those documented for fixed-separation subsonic separation
bubbles. This led to a series of research projects aimed at explaining the low-frequency
oscillations of SWBLIs as being a specificity of these flows, namely dependent on the
compressible nature of the flow or the presence of the shock wave (Pirozzoli & Grasso
2006; Piponniau et al. 2009; Touber & Sandham 2011; Aubard, Gloerfelt & Robinet 2013;
Priebe et al. 2016; Adler & Gaitonde 2018). This view of the problem has been challenged
in the recent work of Weiss et al. (2015) studying the dynamics of pressure induced
subsonic turbulent separation bubbles on flat test surfaces in which a breathing mode at a
frequency of the same order of magnitude than the breathing of SWBLI induced separation
bubbles have been documented. This result tends to demonstrate that the low-frequency
breathing mode is an intrinsic characteristic of the dynamics of separation bubbles, where
the position of the separation point is not imposed by the geometry, independently of the
compressible nature of the flow.

Another furrow dug for decades to identify the physical mechanism behind the low-
frequency SWBLI unsteadiness is the simulation and analysis of transitional SWBLIs
with forced or non-forced laminar incoming boundary layers in order to remove the
presumed influence of large-scale turbulent structures in the incident boundary layer.
This approach allows us to carefully analyse the dynamics of the separation bubble that
is suspected to be the source of the low-frequency SWBLI unsteadiness (Robinet 2007;
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Sansica, Sandham & Hu 2014; Guiho et al. 2016; Diop, Piponniau & Dupont 2019; Bugeat
et al. 2022; Mauriello, Larcheveque & Dupont 2022; Mahalingesh, Piponniau & Dupont
2023; Song & Hao 2023). Part of these works involved characterising the linear dynamics
of the flow by means of stability analyses. The global (self-sustained dynamics) linear
stability analysis performed by Robinet (2007) on a transitional incident oblique shock
wave SWBLI on a flat plate at M = 2.15 demonstrated that the fixed point of this flow
is stable for two-dimensional (2-D) perturbations. This result has then been confirmed in
Guiho et al. (2016). For three-dimensional (3-D) perturbations, the flow exhibited a global
instability when the shock angle exceeded a certain critical value. This result has then
been confirmed by several studies (Song & Hao 2023). This mode is however stationary
and, therefore, not directly related to the self-sustained low-frequency dynamics. As the
low-frequency unsteadiness could not be directly linked to any global mode around the
fixed point, the receptivity of the flow has been studied by means of resolvent analysis.
In particular, the results obtained by Bugeat et al. (2022) show that the global resolvent
analysis no frequency selectivity at low frequency and, therefore, behaves as a low-pass
filter with respect to external disturbances and no clear evidence of quasi-resonance has
been found. In light of the results of both global stability and resolvent analyses cited
above, potential purely linear mechanisms explaining the low-frequency unsteadiness rely
on the existence of low-frequency external perturbations of the flow. This brings us to the
limits of a purely linear analysis of the low-frequency dynamics of SWBLIs. Indeed, the
low-frequency SWBLI unsteadiness has been documented in flow configurations with a
laminar incoming boundary layer, without any imposed low-frequency forcing (Sansica,
Sandham & Hu 2016; Ben Hassan Saidi 2019; Mauriello et al. 2022; Mahalingesh et al.
2023). The search for nonlinear mechanisms playing a role in the generation of low
frequencies is therefore a promising avenue. This approach is encouraged in particular by
the work of Sansica et al. (2016), who studied a case of transitional interaction forced
upstream by unstable high-frequency modes. In this SWBLI, analysis of the Fourier
spectra of the parietal pressure showed that the low frequencies appear to be generated in
the transition zone towards turbulence (suggesting the nonlinear nature of the mechanism),
close to downstream of the reattachment and be travelling upstream in the separation
bubble. In a more recent study of another upstream forced (with high frequencies)
transitional SWBLI (Mauriello et al. 2022), nonlinear spectral analyses (bispectrum
and bicoherence) have been performed that pointed out quadratic coupling between
frequencies as a possible mechanism involved in the low-frequency dynamics of the
separation bubble. This work highlights the appearance of energy at low frequency near the
reattachment point as a result of quadratic coupling with linear unstable modes developing
within the shear layer. This energy at low frequency is then shown to be convected
upstream through a feedback mechanism. These recent works point out the possible
importance of triadic interactions in the mechanism driving the breathing of the separation
bubble. However, these previous studies were based on local analyses of the signals, which
did not allow us to determine precisely the spatial location of the nonlinear interactions in
the interaction zone. In addition, the methods used did not allow the physical structure of
the modes resulting from these nonlinear interactions to be determined.

The objective of the present work is to go further in the analysis of the triadic
interactions in the separation bubble of SWBLIs and their involvement in the mechanisms
underlying the low-frequency unsteadiness of SWBLIs. To this end, direct numerical
simulation (DNS) of a non-forced transitional oblique shock wave SWBLI is performed.
We study nonlinear coupling between modes at different frequencies using bispectral
mode decomposition (BSMD) (Schmidt 2020), which is a modal decomposition method
specially designed to study triadic interactions in flows. The use of this method is of
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major interest compared with previous studies because it is designed to analyse triadic
interactions in 3-D signals. As a result, this algorithm allows us to highlight quadratic
coupling between modes at different frequencies. This approach allows us to associate a
spatial mode to each frequency resulting from a triadic interaction. Moreover, the location
of the interactions between two frequencies in the flow field can be represented in a so-
called interaction map. These two outputs of this method represent a major advantage
with respect to local methods. The main objective of this analysis is to document the
suspected nonlinear link between the dynamical activity at medium and low frequencies,
given that the presence of medium-frequency modes of the shear layer are already strongly
documented. The underlying objective is to demonstrate that the nonlinear evolution of the
medium-frequency shear layer dynamics create the frequencies characterising the SWBLI
unsteadiness. Spectral POD (Towne et al. 2018) has also been used as a support for the
physical interpretation of the involved modes. Indeed, for each frequency, SPOD performs
a decomposition of the flow in spatio-temporal modes ordered by their energy content,
highlighting the structure of the flow for a given frequency.

In our study we have deliberately chosen a transitional configuration in which the
incident boundary layer is laminar and not forced. In this configuration, the transition
to turbulence is naturally obtained by the imposed shock pressure gradient. In this respect,
the present case study represents a limit case in which the mechanisms at the origin
of the low-frequency dynamics appear to be present at low intensity. Moreover, the
flow dynamics is not disturbed by the natural frequencies of the incident turbulence.
The characteristic frequencies and mechanisms associated with the low and medium
frequencies can therefore be studied independently of the mechanisms and frequencies
specific to the turbulence in the upstream boundary layer. We therefore expect, so to speak,
to find in the flow the main features and mechanisms of the dynamics we are interested
in, but no more. We believe that this characteristic makes the present flow configuration
a good candidate for identifying the mechanisms underlying the low frequency of the
separation bubble by modal analysis; in particular, modal analysis associated with the
search for triadic interactions in the interaction zone. Indeed, a more complex dynamics
induced by the presence of the turbulence or the forcing of the incident dynamics would
imply a spurious triadic interaction, not relevant for present study.

In the following, we first present the numerical simulation and database. The studied
flow configuration is described as well as the governing equations and numerical strategy
used for the simulation. The salient features of the mean flow and its dynamics is
documented and the database used for both SPOD and BSMD analysis are precisely
described. We then present the SPOD analysis. We particularly describe the dominant
modes of the flow at medium and low frequencies. The BSMD analysis follows, in which
the triadic interactions in the interaction region are documented. The physical relevance
of the results regarding the mechanism at the origin of the SWBLI unsteadiness is the
discussed. The paper ends with concluding remarks and perspectives.

2. Numerical simulation and database

2.1. Flow configuration
The flow consists of the interaction between an incident shock wave and a laminar
boundary layer developing on a flat plate. A 2-D sketch of the flow (2-D slice) is shown
in figure 2. The presence of the impinging shock wave (also called the incident shock
wave, noted as (SI )) imposes a sharp adverse pressure gradient to the boundary layer
of thickness δ (99 % thickness) evaluated just upstream of the interaction region. As
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Vortex structures

Leading-edge
shock wave

x–s x–Rxsh
Lint
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Uniform f low
at the inlet

z

x

α

δ

Figure 2. Sketch of a 2-D slice of the flow, where (SI ) is the incident shock wave of angle α, δ is the boundary
layer thickness just upstream of the interaction zone, (SR) is the reflected shock wave, x S is the mean separation
point, x R is the mean reattachment point, xsh is the location of the impingement shock wave (if the flow were
non-viscous) and Lint = xsh − x S is the interaction length.

accurately described by Délery & Dussauge (2009), in the configuration presently studied,
the adverse pressure gradient is strong enough to initiate a separation of the boundary
layer that reattaches further downstream forming a closed separation bubble. The mean
separation and reattachment points are respectively noted as x S and x R . The flow being
subsonic in the wall vicinity, the pressure rise due to the incident shock wave is sensed
upstream to the location, noted as xsh , where the incident shock wave would impact
the wall (if the flow were non-viscous) because of slow acoustic waves, explaining the
location of the separation point, x S , upstream of the location of the incident shock wave
impingement xsh . At the separation point, the deviation of the supersonic flow due to the
separation leads to the formation of the so-called reflected shock wave, noted as (SR). In
fact, the incident shock is reflected at the apex of the separation bubble as expansion waves.
At the reattachment point, the deviation of the supersonic flow due to the presence of the
wall leads to compression waves that can also coalesce to form the so-called reattachment
shock wave. For given Reynolds and Mach numbers, the extent of the separation bubble is
driven by the intensity of the incident shock wave, let us say the pressure ratio from each
side of the shock, prescribed by the shock angle α. In the following, we characterise this
extent by the interaction length Lint = xsh − x S .

The free-stream conditions are similar to the experimental and numerical test case
documented in Degrez, Boccadoro & Wendt (1987), with a free-stream Mach number
M = 2.15 and a free-stream Reynolds number Re = 1600, based on the boundary layer
thickness just upstream of the interaction zone δ = 1.6 × 10−2 m. Compared with the
configuration of Degrez et al. (1987), where the whole flow is steady (fully laminar
interaction), the incident shock wave angle α is increased up to 33.8◦. The interaction is
thus strengthened, the separation bubble is enlarged and the dynamics of the separation
bubble becomes unsteady with transition to turbulence triggered in the bubble (Ben
Hassan Saidi 2019). Table 1 summarises the physical parameters of the simulation.

2.2. Governing equations
To perform the DNS, we consider the dimensionless compressible Navier–Stokes
equations expressed in a Cartesian coordinate system. The length and time scales for
non-dimensionalisation are respectively xsh and U∞/xsh , with U∞ being the free-stream
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Mach number M = 2.15

Reynolds number Re = 105

Prandtl number Pr = 0.71
Shock wave angle α = 33.8
Ratio of specific heats γ = 1.4

Table 1. Flow parameters of the SWBLI.

velocity. All the primitive variables are non-dimensionalised by the corresponding free-
stream quantities except the thermodynamic pressure P∗ and the total energy per unit
volume ρ∗E∗ that are non-dimensionalised by the free-stream dynamic pressure ρ∞U 2∞.
The dimensionless Navier–Stokes system is therefore written as

∂U
∂t

+ ∇ · F(U) − ∇ · Fv(U, ∇U) = 0, (2.1)

where U is the dimensionless vector of conservative variables, F(U) the dimensionless
convective fluxes and Fv(U,∇(U)) the dimensionless diffusive fluxes that write
respectively as

U =
⎡
⎣ ρ

ρu
ρE

⎤
⎦ , F =

⎡
⎣ ρu

ρu ⊗ u + PI

(ρE + P)u

⎤
⎦ and Fv =

⎡
⎣

0
1

Reσ
1

Re u.σ + μ

(γ−1)Re Pr M2 ∇T

⎤
⎦ .

(2.2)

Here I stands for the identity matrix, ρ is the dimensionless density, u = [u, v, w]T is
the dimensionless velocity vector, E is the dimensionless specific total energy, P is the
dimensionless thermodynamic pressure and λ is the dimensionless thermal conductivity;
P relates to the dimensionless conservative variables through the relationship

P = (γ − 1)

(
ρE − 1

2
(ρu) · (ρu)

ρ

)
, (2.3)

and to the dimensionless static temperature T through the following ideal gas
dimensionless equation of state:

T = γ M2 P

ρ
. (2.4)

The dimensionless viscous stress tensor is expressed as

σ = μ(∇u + ∇T u) − 2
3
μ (∇ · u) I . (2.5)

We assume that the dynamic viscosity only depends on the temperature through
Sutherland’s law. Given the Prandtl number, the dimensionless thermal conductivity is
then deduced from the dimensionless dynamic viscosity λ= μCp/ Pr .

2.3. Numerical methods
The DNS of this flow is performed using an in-house finite-volume based DNS and/or
large-eddy simulation solver parallelized using the MPI (message passing interface)
library. The numerical methods employed are presented in detail in Ben Hassan Saïdi et al.
(2020), where the ability of this code to compute high Reynolds compressible (turbulent
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and shocked) flows has already been demonstrated (including the boundary conditions
presented in § 2.4). An one step (OS) procedure is employed that splits the resolution
into the convective part and the viscous part of the problem. The convective fluxes
are discretised by a high-order one step (OS) finite-volume scheme based on the Lax–
Wendroff approach that is a seventh-order accurate coupled time and space approximation.
It is coupled to an original monotonicity-preserving (MP) shock-capturing procedure to
form the OSMP7 scheme (first introduced in Daru & Tenaud 2004). A second-order
centred finite difference scheme is used for the spatial discretisation of the diffusive fluxes.
The temporal discretisation of the diffusive fluxes is obtained by means of a second-order
Runge–Kutta time integration. In Ben Hassan Saïdi et al. (2020) we showed that the use
of a higher-order scheme for computing diffusive fluxes has a negligible effect on the
accuracy of the SWBLI calculation and is therefore unnecessary.

The simulation is performed with a time step of �t � 1.19 × 10−4 × Lint/U∞
corresponding to a maximum Courant–Friedrichs–Lewy number of 0.5 in the
computational domain.

2.4. Computational domain and boundary conditions
The geometry of the 3-D domain is D= [0; 250δ] × [0; 125δ] × [0; 62.5δ]. The domain
is discretised using a Cartesian mesh with non-uniform spacing in the direction normal to
the wall (z). The mesh employs 800 × 400 × 202 grid points in (x × y × z). In the normal-
to-the-wall direction, the mesh is tightened close to the wall using a hyperbolic tangent law
to obtain a minimum grid spacing over the plate of �zmin = 0.0125δ. A grid convergence
study (see Appendix B) has been performed in order to assess that the employed mesh is
fine enough to compute precisely the flow in the interaction region.

A uniform flow is prescribed as the inlet of the domain as prescribed by the guidelines
of the 4th HiOCFD workshop (Wang et al. 2013; HiOCFD 2016) to compute the SWBLI
in the configuration of Degrez et al. (1987), which has been validated in Ben Hassan Saïdi
et al. (2020) against reference experimental and numerical results. The incident shock
wave is created by imposing the Rankine–Hugoniot relationships in the inlet plane at a
height z chosen so that the shock wave impinges the flat plate at the desired abscissa
xsh = 62.5δ. No-slip and adiabatic wall conditions are prescribed at the flat plate location
(z = 0). Outlet time-dependent non-reflecting boundary conditions (Thompson 1987) are
imposed at the top surface and at the downstream outlet boundary of the computational
domain. Periodic conditions are used in the spanwise direction (y).

The numerical strategy has already been validated for this type of simulation. Indeed,
the same numerical schemes and boundary conditions have already been successfully
employed to compute SWBLIs in the flat plate configuration. Please refer to Ben Hassan
Saïdi et al. (2020) for more details.

2.5. Database
After the initial transient, corresponding to the initial propagation of the incident shock
wave in the domain and the creation of the separation bubble and subsequent shock wave
system, 3 × 106 iterations have been simulated with a time step of �t � 1.19 × 10−4 ×
Lint/U∞. A snapshot has been recorded every 1000 time steps so that a total of 3000
snapshots are available for analysis. Each snapshot consists in the state vector of primitive
variables q(xi , tl) = [ρ, u, v, w, T ]T evaluated at each mesh point xi (with 1 ≤ i ≤ M , M
being the number of mesh points considered) in the 3-D domain containing the interaction
region and at each time of snapshot recording tl (with 1 ≤ l ≤ Nt , Nt being the number of
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Signal length Ttot = 562 × Lint/U∞
Time step �t � 0.19 × Lint/U∞
Number of samples 3000

Table 2. Sampling characteristics of time signals.

snapshots recorded). All data are gathered in the snapshot matrix

Q = [q1 . . . q Nt
] =

⎛
⎜⎝

q(x1, t1) · · · q(x1, tNt )
...

...

q(xM , t1) · · · q(xM , tNt )

⎞
⎟⎠ . (2.6)

All the results presented in the rest of this paper are based on the exploitation of the data
contained in this snapshot matrix.

All the power spectral densities (PSDs) of signals presented in § 2.6 have been
computed using the periodogram method implemented in the scipy.signal package of
python (Virtanen et al. 2020) using Hann windowing. For all time signals studied in this
section, the sampling characteristics are given in table 2. The total length of the signal
considered is around 11 events at St = 0.02 and 22 events at St = 0.04.

For both SPOD and BSMD analysis algorithms introduced in §§ 3 and 4, the Welch’s
method (Welch 1967) is used to compute the discrete Fourier transform (DFT) of the state
vector. The matrix of snapshots is split into Nb = 10 with an overlapping of 67 % between
the blocks. With this slicing, the total length of the signal considered for the analysis is
around 30 events at St = 0.02 and 60 events at St = 0.04.

In the following, for both SPOD and BSMD analyses, we consider the centred snapshot
matrix

Q c = [qc
1 . . . qc

Nt
] =

⎛
⎜⎝

qc(x1, t1) · · · qc(x1, tNt )
...

...

qc(xM , t1) · · · qc(xM , tNt )

⎞
⎟⎠ , (2.7)

with qc(xi , tl) = q(xi , tl) − q(xi ), where q(xi ) is the vector of primitive variable
averages in time and spanwise direction.

Note that, for the signal length, for the following SPOD and BSMD analyses, a
convergence study has been performed. Indeed, these analyses have been performed
with different numbers of snapshots (i.e. a different length of the signal and frequency
resolution) leading to the same conclusions to those presented below.

2.6. Mean flow organisation and frequency content
The time mean longitudinal velocity averaged in the spanwise direction u is plotted in
figure 3 in the interaction zone. The velocity is scaled by the free-stream velocity. The red
line shows the isocontour u = 0. It allows us to clearly identify the separation bubble in
which the mean longitudinal velocity is negative. The separation bubble also corresponds
to the region in which the mean skin friction coefficient plotted in figure 4 is negative. The
green line in figure 3 represents the z/δ = 2.5 plane in which we analyse the characteristic
sizes of the flow structures in the transverse direction in figure 6(a). The green dots,
referenced by numbers 1–4, mark the position of the probes placed in the mixing layer to
analyse its characteristic frequencies by calculating the PSD of the velocity signal shown
in figure 7.
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Figure 3. Time mean longitudinal velocity field averaged in the spanwise direction u. The red line shows the
isocontour u = 0. The green line is parallel to the wall at a height of z/δ = 2.5. Coordinates of probes in the
(x, z) basis, from 1–4: (13.44δ, 0.3δ), (43.75, 3.5δ), (68.75δ, 2.5δ), (92.50δ, 0.3δ).

As the incident boundary layer is perfectly laminar, it is particularly prone to separation
when subjected to the adverse pressure gradient imposed by the incident shock wave,
compared with turbulent boundary layers. The resulting mean separation length is
L = x R − x S � 74.68δ, with x S � 13.44δ and x R � 88.12δ respectively the time mean
separation and reattachment points averaged in the spanwise direction. The interaction
length is Lint = xsh − x S = 49.06δ. The time mean height of the bubble, averaged in
the spanwise direction, is h = 3.5δ. Moreover, the mean separation bubble is quasi-
symmetric with respect to the vertical axis passing through the apex of the bubble.
This length and aspect of the mean bubble is consistent with comparable simulations
(Robinet 2007; Song & Hao 2023). For similar Mach and Reynolds numbers, the length
of the separation bubbles for SWBLIs with laminar incident boundary layers is around
one order of magnitude bigger than their counterpart for SWBLIs involving turbulent
incident boundary layers; see, for example, Adler & Gaitonde (2018) where L = 4.0δ or
Ben Hassan Saïdi et al. (2020) where L = 4.92δ. For turbulent SWBLIs, the symmetry of
the separation bubble is also broken, the second part of the bubble being less long than the
first part, which is due to the increased mixing rate in the shear layer. The same symmetry
breaking (less marked) is observed for SWBLIs with a sufficiently strongly forced laminar
incident boundary layer (Sansica 2015; Diop et al. 2019; Mauriello et al. 2022).

The difference of topology of the mean separation bubble of the present flow
configuration with respect to turbulent SWBLIs calls for a comment about the
characteristic length used to build non-dimensionalised frequencies. Indeed, the main
frequencies involved in the interactions have been introduced in the literature for turbulent
interactions as Strouhal numbers based on the separation length StL = f L/Ue. For the
present flow configuration, as the bubble is symmetric, the interaction length Lint is
more suitable to be consistent with the characteristic frequencies highlighted in turbulent
interactions. In the following, the frequencies will therefore be expressed as Strouhal
numbers based on the interaction length StLint = f Lint/Ue.

A snapshot of the flow is shown in figure 5. The discriminant criterion, introduced in
Chong et al. (1998), already used by Pirozzoli & Grasso (2006) in the context of SWBLI
simulations, is used to identify the vortex structures present in the flow. Shock waves are
highlighted by isosurfaces of ‖∇ P‖ coloured in black. The upstream boundary layer not
being artificially forced by modes resulting from a stability problem (Sansica et al. 2014,
2016) or a free-stream turbulence method, the only fluctuations supplied to the flow come
from shock waves (leading edge, separated or the incident shock waves) that disrupt the
flow mainly two-dimensionally, although the natural most unstable normal modes are 3-D.
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Figure 4. Distribution of the spanwise averaged skin friction along the flat plate ( ). Blasius laminar
boundary layer solution ( ). Turbulent correlation from Cousteix (1989) ( ).
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Figure 5. Vortical structures highlighted by isosurfaces of the discriminant criterion coloured by the magnitude
of the longitudinal component of the velocity. Shock waves are highlighted by isosurfaces of ‖∇ P‖. The upper
left insert shows a zoomed view of the vortical structures around the separation bubble. The upper right insert
shows an overhead view of the vortical structures in the separation bubble and in the downstream boundary
layer. On the upper right insert, the vertical black lines indicate, from left to right, the mean separation line
( ), the mean line of incident shock impingement on the apex of the separation bubble ( ), the mean line
of shock impingement on the flat plate ( ) and the mean reattachment line ( ).

Figure 5 shows clearly this characteristic. In what we seek to show, the existence of a
nonlinear interaction between medium-frequency modes generating low-frequency modes,
this has no consequence whether the convective modes exited are 2-D or 3- D. Large
spanwise vortices, corresponding to Kelvin-Helmholtz rolls that progressively develop,
are clearly visible in the shear layer edging the separation bubble between the reflected and
the incident shocks. After the incident shock impingement, the shear layer is populated
by elongated structures in the streamwise direction. Inside the separation bubble, 3-D
structures are visible in the downstream part of the separation zone. For the particular
value of the discriminant criterion shown in figure 5, no coherent structure is visible in the
early part of the interaction. The dynamical activity inside the separation bubble therefore
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Figure 6. Spanwise length scales in the interaction zone. (a) Time averaged spanwise wavenumber of the
longitudinal component of velocity u in a plane parallel to the flat plate at a height of z/δ = 2.5. The vertical
dashed lines indicate the β = 0.25 and β = 2 wavenumbers ( ). The horizontal dashed lines indicate,
from bottom to top, the separation point ( ), the raising shear layer ( ), the descending shear layer
( ) and the reattachment point ( ). (b) Isocontours of the longitudinal component of velocity u = −0.041
coloured by u. Slice (y plane) of the density ρ.

seems to be mainly concentrated in its second part. The dynamic activity of the separation
bubble causes the rapid transition of the boundary layer after the reattachment point. The
turbulent nature of the boundary layer downstream of the interaction zone is confirmed
by the downstream distribution of the mean skin friction coefficient, as visible in
figure 4.

In order to physically characterise the longitudinal structures identified in figure 5, the
spectral content of the velocity signal in the transverse direction is studied. To this end,
the time averaged one-dimensional spatial Fourier transform in the spanwise direction of
the longitudinal component of the velocity (u) was calculated in different planes parallel
to the wall, defined by z = cste (z/δ = 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5). Figure 6(a)
shows the evolution of these spectra as a function of the abscissa along the flat plate in
the z/δ = 2.5 plane marked by the green line in figure 3. The wavenumber is scaled using
the same scaling as in Bugeat et al. (2022) for comparison. The abscissa is normalised
by using the mean interaction length Lint and the mean separation point x S . In this
figure, the cyan and green horizontal dashed lines indicate the intersection between the
plane under consideration and the shear layer bounding the separation bubble. The line
at (x − x S)/Lint = 0.445 indicates the shear layer upstream of the impact of the incident
shock, which we call the ‘rising shear layer’. The line at (x − x S)/Lint = 1.2 indicates the
shear layer downstream of the impact of the incident shock, which we call the ‘descending
shear layer’. The vertical dashed lines indicate the β = 0.25 and β = 2 wavenumbers that
were highlighted as the two maxima of the G(β) curve, where G is the optimal gain of a
low-frequency resolvent analysis, and that were respectively associated with Görtler-type
structures and streaks in Bugeat et al. (2022). Just upstream of the descending shear layer
(i.e. inside the bubble) we can clearly see a peak at β = 0.25. In the descending shear layer,
we see a plateau containing the value β = 2. These same peaks are found in the spectra
of the other planes (not shown here), indicating the presence of Görtler-type structures
inside the bubble and streaks in the descending shear layer. This location of Görtler-type
structures and streaks is in agreement with the results of Bugeat et al. (2022). The optimal
modes of low-frequency resolvent analysis are therefore found in the DNS data of the
present unforced transitional SWBLI. Analysis of the instantaneous 3-D fields highlights
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these longitudinal structures and illustrates their location. For example, figure 6(b) shows
the isocontour of the longitudinal velocity field u = −0.041 next to a 2-D slice coloured
by ρ to locate the separation bubble. The wavelength of the Görtler-type structures and
the streaks clearly manifest themselves in the isocontour of velocity in the zones identified
by the spectral analysis.

We now want to document the frequency content of the dynamics of the interaction
zone. The dynamic structures mainly visible in figure 5 seem to be concentrated in the
shear layer. We therefore begin by examining the frequency content of the mixing layer.
To do this, we examine the PSD of the longitudinal velocity signal measured at different
points in the shear layer. These points are shown in a 2-D plane in figure 3, where their
coordinates in the (x, z) plane are specified. In practice, for these coordinates in the (x, z)
plane, a probe was placed at each mesh point in the y direction to measure the velocity
signal and compute the PSD. The PSDs were then averaged over span.

We can see that in the zone of the separation point (probe 1), the energy level of
the oscillations in the shear layer is very low and localised in the low- and medium-
frequency ranges characterising the breathing and flapping phenomena. There are clear
peaks at frequencies StLint = 0.04, 0.0667 and 0.1. This frequency content is amplified
in the rising mixing layer. Indeed, the signal measured by probe 2 has approximately the
same frequency content as probe 1, but at a higher energy level.

We saw above that the passage through the incident shock is associated with a distortion
of the vortex structures, which are mainly oriented in the spanwise direction upstream of
the shock and preferentially in the streamwise direction downstream of the shock. These
structures are rapidly amplified downstream of the incident shock. Just downstream of
the incident shock (probe 3), the energy of the fluctuations is amplified compared with
the level observed at probe 2. The peaks measured at low and medium frequencies are
still present, but the spectrum is filling out and these frequencies are less predominant. In
addition, higher frequencies appear. This signal is massively amplified in the descending
shear layer. In the attachment zone (probe 4), the energy of the signal is almost quadrupled
compared with probe 3. This amplification is also selective. The frequencies already
highlighted, StLint = 0.04, 0.0667 and 0.1, are particularly peaked in the reattachment
zone. There is also a further filling in of the spectrum at high frequencies concomitant with
the generation of fine structures associated with the transition to turbulence in this region.

These measurements in the shear layer seem to indicate that the mixing layer is forced
from the separation point by the characteristic SWBLI frequencies at low and medium
frequencies. The rising shear layer amplifies these frequencies by a factor of around
10. However, the energy levels in the rising shear layer are low relative to those in the
descending shear layer. The latter shows a massive amplification of fluctuations in the
low- and medium-frequency ranges, and in particular, of the frequencies characteristic of
the SWBLI unsteadiness StLint = 0.04, 0.0667 and 0.1. These observations are consistent
with various previous works, in particular, those of Sansica et al. (2014) and Mauriello
et al. (2022) who have shown that the low-frequency content of the interaction zone is
created by the dynamics of the shear layer and seems to result from the nonlinear evolution
of the latter in the downstream part of the recirculation bubble. These authors also showed
that disturbances at these frequencies then travel upstream inside the recirculation bubble.

In order to study the frequency content of this information feedback in the recirculation
bubble, we plot in figure 8(a) the evolution of the spanwise averaged premultiplied PSD
of the longitudinal velocity signal (u) measured in a plane parallel to the flat plate, in
very close proximity to the wall (z/δ = 0.3). For each abscissa along the flat plate, the
PSD at this abscissa is normalised and premultiplied. This makes it possible to determine
the predominant frequencies for each abscissa, but the relative energy differences between
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Figure 7. Power spectral densities of the spanwise averaged longitudinal velocity u signal recorded on probes
shown in figure 3. (a) Probe 1. (b) Probe 2. (c) Probe 3. (d) Probe 4.

abscissas are erased by this representation. (The relative difference in energy between
abscissa is however shown in figure 8(b), which is commented on below.) In this figure,
the horizontal dashed lines indicate, from bottom to top, the positions of the separation
point, the rising shear layer, the impact of the incident shock on the flat plate and the
reattachment. We can see that the spectral content in the attachment zone is present
throughout the bubble in the near wall, but with a progressive narrowing of the significant
frequency range towards the low- and medium-frequency range as we move upstream
in the bubble. Thus, the disturbances reaching the foot of the rising shear layer have
an exclusively low- and medium-frequency spectral content with a cutoff frequency of
approximately StLint � 0.1. We can therefore see that the rise of the disturbance inside
the bubble selects the low and medium frequencies. This result had already been shown
in Mauriello et al. (2022). In order to determine whether this feedback into the bubble is
damped, we integrate the PSD between the StLint = 0.02 and 0.1 for each abscissa along
the flat plate to obtain the streamwise evolution of the expected power in this frequency
range E(x) = ∫ St=0.1

St=0.02 PSD(u(x))dSt . This power distribution is shown in figure 8(b). This
figure clearly shows a large peak of power in the reattachment region, in agreement with
the analysis of the spectra shown in figure 7. We can clearly see an exponential decrease
in power inside the bubble. The upwelling of disturbances is therefore damped inside the
bubble. The signal reaches the detachment zone with low but finite energy levels. The shear
layer is therefore forced into the separation zone by a signal of finite energy and quasi-
continuous spectrum in the frequency range StLint ∈ [0.02, 0.1]. However, figure 8(a)
shows a high selectivity of the mixing layer. Indeed, the quasi-continuous spectrum
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Figure 8. Power spectral density and power of the longitudinal velocity signal close to the wall inside the
separation bubble. (a) Distribution along the flat plate of the spanwise averaged premultiplied and normalised
PSD of the longitudinal component of velocity u measured in a plane parallel to the flat plate at a height of
z/δ = 0.3. The vertical dashed lines indicate significant frequency peaks in the low- and medium-frequency
range ( ). The horizontal dashed lines indicate, from bottom to top, the reflected shock foot
( ), the separation point ( ), the crossing of the rising shear layer ( ), the incident
shock impingement location ( ) and the reattachment point ( ). (b) Distribution along the flat
plate of the expected power in the range StLint ∈ [0.01, 0.1] of the longitudinal component of velocity u
measured in a plane parallel to the flat plate at a height of z/δ = 0.3. The vertical dashed lines indicate, from
left to right, the separation point ( ), the crossing of the rising shear layer ( ), the incident shock
impingement location ( ), the crossing of the descending shear layer ( ) and the reattachment
point ( ).

becomes strongly peaked in the shear layer at the frequencies already highlighted in
figure 7(a), i.e. StLint = 0.04, 0.0667 and 0.1.

We are also interested in the pressure forces exerted on the wall in the interaction zone.
To this end, we analyse the evolution in the streamwise direction of the premultiplied
PSD normalised to the wall pressure shown in figure 9(a). A similar evolution of the
spectrum can be observed between the points of separation and reattachment in the sense
that we move from the low/medium-frequency range to a wider range, extended to higher
frequencies. However, we can clearly see that in the first part of the separation bubble,
the wall pressure spectrum predominantly highlights the spectral signature of the shear
layer, which is peaked at frequencies StLint = 0.04, 0.0667 and 0.1. In both respects,
the wall pressure spectrum is very similar to the spectra presented in Mauriello et al.
(2022). In this simulation, we therefore record pressure oscillations at the foot of the
reflected shock dominated by the low- and medium-frequency range StLint ∈ [0.02, 0.1]
that characterises the SWBLI unsteadiness. The evolution in the streamwise direction of
the power of the parietal pressure signal in this frequency range is shown in figure 9(b).
As with the near-wall velocity signal, there is a quasi-exponential attenuation of the wall
pressure perturbations as we move upwards from the reattachment point. We then see an
increase in the first quarter of the bubble as we get closer to the separation point and the
shear layer moves closer to the wall. The signal power in the separation zone is an order
of magnitude lower than the power in the reattachment zone.

The complex dynamics described above are also reflected in the breathing and flapping
cycles of enlargement and shrinkage of the separation bubble, which will be described
in § 3 documenting the SPOD analysis we carried out. This low- and medium-frequency
dynamics of the bubble can also be seen by analysing the temporal evolution of the position
of the separation and reattachment points, respectively, xS and xR , shown in figure 10.
It can be seen that the reattachment point is subject to oscillations whose maximum
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Figure 9. Spanwise averaged PSD and power of the wall pressure along the flat plate. (a) Distribution along
the flat plate of the spanwise averaged premultiplied and normalised PSD of the wall pressure. The vertical
dashed lines indicate significant frequency peaks in the low- and medium-frequency range. The horizontal
dashed lines indicate, from bottom to top, the reflected shock foot ( ), the separation point ( ), the
incident shock wave impingement location ( ) and the reattachment point ( ). (b) Distribution along
the flat plate of the expected power in the range StLint ∈ [0.02, 0.1] of the wall pressure. The vertical dashed
lines indicate, from left to right, the separation point ( ), the incident shock impingement location
( ) and the reattachment point ( ).
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Figure 10. History of the spanwise averaged abscissa along the flat plate of (a) the separation point xS and (b)
the reattachment point xR .

extrusions correspond to about 7δ while the separation point is subject to very weak
oscillations with maximum amplitudes of the order of 0.4δ. This order-of-magnitude
difference in the amplitudes of the oscillations of xS and xR is consistent with the order-
of-magnitude difference observed in the power of the oscillations of the parietal pressure
and velocity signals in these two regions. Similarly, in agreement with the wall pressure
and velocity signals in these regions of the flow, the spectral content of xS(t) oscillations
is mainly located in the low- and medium-frequency range with significant peaks at
frequencies StLint = 0.04, 0.0667 and 0.1, while the oscillations of xR(t) present a wider
band spectrum with peaks also localised at these frequencies, as shown in figure 11.

In the present flow configuration, the low energy level of perturbations coming from
the reattachment point reaching the separation point explains the low amplitude of
the separation point and associated reflected shock foot (not shown here) oscillations.
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Figure 11. Spanwise averaged PSDs of (a) the separation xS and (b) the reattachment point locations xR .

This point is a salient feature of the flow studied here, which makes it different from
configurations with a forced laminar or fully turbulent boundary layer. As already stated in
the introduction of this paper, in this respect, the present case study represents a limit case
in which the mechanisms at the origin of the low-frequency dynamics appear to be present
at low intensity and are not disturbed by the natural frequencies of the incident turbulence
that, we believe, makes it a good candidate for identifying the intrinsic underlying
mechanisms of this dynamics. In the cases of forced or turbulent incoming boundary
layers, the more intense dynamics of the mixing layer (due to upstream forcing) has two
consequences: (i) the energy of the perturbations at reattachment, and therefore, the energy
of the signal emitted from reattachment is much higher; (ii) the separation length, i.e.
the distance between the zone of signal emission and the separation point, is smaller.
The combination of these two characteristics means that the disturbances received at the
separation point are more energetic than in the case studied in this paper. In the forced
and turbulent cases, disturbances are then more likely (for a given strength of interaction)
sufficiently energetic to induce higher amplitude oscillations at the separation point.

3. Spectral proper orthogonal decomposition analysis
In order to get more insight in the low/medium-frequency dynamics of the flow, we
perform a modal decomposition of the database formed by the centred snapshot matrix
introduced in the previous section. In particular, we use SPOD, introduced in Towne
et al. (2018) and Schmidt & Colonius (2020) (to which we refer to for more details
about the methodology), to highlight the physical structure of the flow at each frequency.
Indeed, SPOD can be schematically described as a POD applied in the frequency domain
frequency by frequency. The first step of the algorithm is the computation of the DFT of
the state vector. To this end, the matrix of snapshots (2.7) is split into Nb segments of
N f snapshots with an overlapping of No snapshots; thus, Nb snapshot matrices Q c(n) =
[qc(n)

1 . . . qc(n)
N f

] are obtained, with 1 ≤ n ≤ Nb. The DFT is applied to each snapshot

matrix to build Nb snapshot matrices in the frequency domain Q̂
c(n) = [q̂c(n)

1 . . . q̂c(n)
Nw

],
with Nw = N f /2 + 1 the number of resolved frequencies. As a second step of the

algorithm, the snapshot matrices in the spectral domain Q̂
(n)

are sorted by frequency
to extract the matrices of realisations by frequency Q̂

c
k = [q̂c(1)

k . . . q̂c(Nb)
k ]/√Nb, with

1 ≤ k ≤ Nw. As already stated in § 2.5, in our case, Nb = 10 and the overlapping between
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blocks is 67 %. The third step consists in performing a POD to each matrix of realisations
Q̂k . In our implementation, we use the snapshot POD. In the frequency domain, it consists
in solving the eigenvalue problem

CkΘ
H
k = Θ H

k Λk, (3.1)

where Ck = Q̂
cH
k WQ c

k is the matrix of spectral densities, Θk ∈C
Nb×Nb is the projection

matrix in which each column contains the projection coefficients of one realisation over
the spatial modes, (.)H is the conjugate transpose and Λk ∈R

Nb×Nb is the diagonal matrix
containing the eigenvalue associated with each spatial mode with λ1 � λ2 � · · ·� λNb �
0. In our implementation, the inner product is weighted using the diagonal matrix of spatial
quadrature weights W introduced by Chu (1965). The matrix of spatial modes is then
obtained by projection

Ψk = Q̂
c
kΘ

H
k . (3.2)

Each column of Ψk contains the mth spatial mode ψm( fk) associated with λm .
As a result, each spectral realisation q̂c(n)

k at frequency fk is decomposed into a linear
combination of Nb spatial modes ψm as

q̂c(n)
(xi , fk) =

Nb∑
m=1

a(n)
m ( fk)ψm(xi , fk), (3.3)

where the a(n)
m coefficients are the components of the projection coefficients at each

frequency.
The spatial modes correlate space and time and they are ordered by their probability of

existence in the flow quantified by their associated eigenvalue.
The knowledge of the mth spatial mode at frequency fk , ψm(xi , fk), allows the

construction of the associated mth spatio-temporal mode by inverse Fourier transform

Φm(xi , t) =ψm(xi , fk)e
2iπ fk t . (3.4)

The spatio-temporal modes represent structures that evolve coherently in space and time
and are ordered according to the most likely dynamics for a given frequency (mode 1 being
the most probable one, then mode 2, etc.).

3.1. Results
The SPOD spectrum of eigenvalues λm is shown in figure 12. We can see that the SPOD
spectrum describes a marked dynamic in the low- and medium-frequency range, with a
clear drop-off beyond that. We can clearly see that the energy decreases with the number
of the mode, so that the first mode contains about twice as much energy as the third. In the
low- and medium-frequency range, almost 60 % of the flow energy is contained in the first
two modes. Interestingly, the three main frequencies for mode 1 are the frequencies found
in local DNS measurements (see figure 7): StLint = 0.04, 0.0667 and 0.1. In particular, we
have already shown that these three frequencies, which are present throughout the shear
layer, are largely dominant in the rising shear layer. We can also see that mode 2 signs
the frequency StLint = 0.04 and its first subharmonic StLint = 0.02 as well as the sum
of the two (StLint = 0.06) and another frequency at StLint = 0.073. The three frequencies
highlighted by the second mode (i.e. StLint � 0.02, 0.06 and 0.073) are well present in the
spectra of the DNS signals measured locally in the shear layer shown in figure 7. However,
unlike the frequencies highlighted by the first mode, these frequencies reach energy levels
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Figure 12. The SPOD spectrum of the state vector q̂ for each mode (m j , j = 1, . . . , 10) expressed as a
relative energy given in percent.

comparable to the former in the descending shear layer, downstream of the impact of the
incident shock, and are comparatively less energetic in the upstream part of the separation
bubble. The first mode therefore seems to bring out the dominant frequencies in the whole
of the interaction zone, while the second mode brings out frequencies that are mainly
present in the downstream part of the interaction zone.

We are now interested in the shape of the dominant modes in the entire bubble.
As an illustration, figure 13 shows the modulus of the first mode at frequency
St = 0.04 (characteristic frequency of the separation bubble breathing) for the three
velocity components u, v and w. For the longitudinal component u, we can see that the
activity of the mode is mainly localised in the shear layer. In particular, large amplitudes of
the mode are observed in the rising shear layer. In the descending shear layer, the amplitude
increases the closer we get to the abscissa of the reattachment point. In the attachment
zone, strong amplitudes are also observed close to the wall and amplify downstream of
the interaction. We also observe activity in the longitudinal velocity mode localised on the
reflected shock as well as the reattachment shock, materialising the oscillations of these
shocks at this low frequency, characteristic of SWBLI unsteadiness. These oscillations of
the reflected and reattachment shocks are even more visible in the shape of the vertical
velocity mode w, whose activity is localised in these zones as well as in the shear layer,
with less intensification than for the longitudinal velocity in the reattachment zone. The
activity of the mode for the spanwise velocity component v is completely localised inside
the separation bubble.

The spatial modes at frequencies StLint = 0.0667 and 0.0934 are qualitatively almost
identical to those at frequency StLint = 0.04. For the sake of brevity, they are shown in
Appendix A, in figures 29 and 32 respectively for StLint = 0.0667 and StLint = 0.0934.

1009 A43-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.236


I. Ben Hassan Saïdi, S. Wang, G. Fournier, C. Tenaud and J.-C. Robinet

35

30

25

20

15

10

5

0
20 40 60 80 100 120

0.0030
0.0028
0.0026
0.0024
0.0022
0.0020
0.0018
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

0.000200
0.000185
0.000170
0.000155
0.000140
0.000125
0.000110
9.5 × 10–05

8 × 10–05
6.5 × 10–05

5 × 10–05
3.5 × 10–05

0.00060
0.00054
0.00048
0.00042
0.00036
0.00030
0.00024
0.00018
0.00012
6 × 10–05

z/δ

35

30

25

20

15

10

5

0

z/δ

35

30

25

20

15

10

5

0

z/δ

x/δ

20 40 60 80 100 120
x/δ

20 40 60 80 100 120
x/δ

(a)

(b)

(c)

Figure 13. First spatial SPOD mode (m1) averaged in the spanwise direction at St = 0.04. The mean flow is
indicated by isolines of the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical
velocity w.

In figure 14 we plot the real part of the first spatio-temporal mode Φ1(xi , t) of the three
velocity components for the Strouhal number St = 0.04, characteristic of the breathing of
the recirculating bubble. We plot regularly spaced snapshots in a period T = 1/St . For
each speed component, a supplementary movie of the animation of the spatio-temporal
evolution of the associated mode is available at https://doi.org/.

In the longitudinal velocity mode u, we can clearly see that the oscillations of the
reflected shock in the longitudinal direction are in phase with the oscillations of the shear
layer in this direction, and therefore, in phase with the oscillations of the separation point.
We can also see that the breathing cycles follow the following sequence: the value of the
mode changes in the downstream part of the bubble before being propagated upstream in
the first part of the bubble, eventually contaminating the entire shear layer. The upstream
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Figure 14. Visualisation of Φ1(x, t) velocity u at St = 0.04, averaged in the spanwise direction. (a) Velocity
component u. (b) Velocity component v. (c) Velocity component w.
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Figure 15. Representation of Φ1(x, z = cste, t) for z/δ = 1.48. (a) Velocity component u. (b) Velocity
component v. The vertical black lines indicate, from left to right, the separation point, the crossing of the
rising shear layer, the crossing of the incident shock wave, the crossing of the descending shear layer and the
reattachment point.

propagation of information in the bubble is shown in figure 15, where we plot versus time
(for a single breathing period) the value of Φu

1 along the flat plate measured at a constant
height above it z/δ = 1.48. In the first part of the bubble, we clearly distinguish regions
of the same sign oriented with a negative slope in the (x, t) frame, denoting an upstream
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propagation of this sign. This behaviour is qualitatively observed at all altitudes in the
separation bubble. The upstream propagation from the latter part of the separation bubble
is also visible in the spanwise velocity mode as shown in figures 14(b) and 15(b). This
result seems to confirm that the downstream part of the separation plays a decisive role in
the breathing dynamics of the separation bubble. More precisely, it confirms the analysis
of § 2.6: the low-frequency oscillations of the separation bubble are driven by oscillations
at this frequency in its latter part (materialised by the change in sign of the mode in the
reattachment zone) propagated upstream in the separation bubble.

A similar qualitative behaviour is observed in the results obtained for the frequencies
StLint = 0.0667 and StLint = 0.0934, the latter being characteristic of the flapping of the
separation bubble. The figures spatial evolution of the first mode at these frequencies can
be found in Appendix A, in figures 30, 31 and 33, 34 respectively for StLint = 0.0667 and
StLint = 0.0934. The similarity of the spatio-temporal modes for breathing and flapping
may suggest a link to be determined between these two oscillation modes.

4. Bispectral mode decomposition analysis
In order to study possible nonlinear links between modes at different frequencies, the
BSMD algorithm has been applied to highlight possible triadic interactions taking place
in the interaction zone. Triadic interactions result from the quadratic nonlinearities of the
Navier–Stokes equations. They are the fundamental mechanism of energy transfer in fluid
flows, and manifest themselves in the frequency domain as triplets of three frequencies
( f1, f2, f3), the combination of which is zero, i.e. f1 ± f2 ± f3 = 0. Such interactions can
be identified from triple correlations of frequency components, i.e. from the bispectrum,
which is a measure of the quadratic nonlinearities at the bifrequency ( f1, f2). For a scalar
signal q, it is defined by

Sqqq( f1, f2) = lim
T →∞

1
T

E[q̂( f1)
∗q̂( f2)

∗q̂( f1 + f2)], (4.1)

where (.)∗ denotes the complex conjugate and E the expectation operator.

4.1. The BSMD methodology
The BSMD algorithm is a modal decomposition that reveals the presence of triadic
nonlinear interactions from multidimensional data. To this end, an integral measure of
the pointwise bispectral density between frequency components of the vector of primitive
variables is introduced as

b( fk, fl) = E

[∫
Ω

q̂∗
k ◦ q̂∗

l ◦ q̂k+l dx
]

= E
[
q̂ H

k◦lWq̂k+l

]
= E

[〈q̂(k◦l), q̂(k+l)〉
]
, (4.2)

where q̂(k◦l) = q̂(x, fk) ◦ q̂(x, fl) (with ◦ is the Hadamard product), q̂(k+l) = q̂(x, fk+l)

and (.)H is the conjugate transpose;W is the diagonal matrix of spatial quadrature weights
and Ω is the spatial domain over which the flow is defined.

Using the Welch’s slicing of the snapshot matrix, two modal projections are constructed:
the cross-frequency fields

Φ
[i]
k◦l(x, fk, fl) =

Nb∑
j=1

a[ j]
i ( fk+l)q̂

[ j]
(k◦l) (4.3)
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and the bispectral modes

Φ
[i]
k+l(x, fk+l) =

Nb∑
j=1

a[ j]
i ( fk+l)q̂

[ j]
(k+l), (4.4)

which share a common set of expansion coefficients a[ j]
i with 1 � j � Nb.

The goal of BSMD is to compute modes that optimally represent the data in terms
of the integral bispectral density defined in (4.2). That is, we seek the set of expansion
coefficients a1 that maximises the absolute value of b( fk, fl) as defined in (4.2) with q̂(k◦l)
and q̂(k+l) replaced by their modal expansion. We therefore target the set of expansion
coefficients that verifies

a1 = arg max‖a1‖=1
| E

[
Φ

[1]
k◦lWΦ

[i]
k+l

]
|, (4.5)

where the coefficient vector is required to be a unit vector in order to guarantee
boundedness of the expansion.

More details about the BSMD methodology can be found in Schmidt (2020), especially
about the construction and solving of this optimisation problem.

As a result of the BSMD analysis, we obtain optimal cross-frequency fields and
bispectral modes, respectively Φ

[1]
k◦l and Φ

[1]
k+l , as well as the mode bispectrum

λ1( fk, fl) = E
[
Φ

[1]H
k◦l WΦ

[1]
k+l

]
∈C. (4.6)

The bispectrum mode is the fundamental result of the BSMD analysis. Indeed,
significant triadic interactions are indicated by local maxima of the modulus of this
quantity, also called bispectrum mode amplitude. Bispectral modes Φ

[1]
k+l are linear

combinations of Fourier modes and can be interpreted as observable physical structures
resulting from quadratic interactions between frequencies fk and fl . The multiplicative
cross-frequency fields Φ

[1]
k◦l , on the contrary, are maps of phase alignment between

two frequency components that may not directly be observed. Once significant triadic
interactions are identified in the map of bispectrum mode amplitude, interaction maps can
be computed as

Ψk,l(x, fk, fl) = |Φ[1]
k◦l ◦ Φ

[1]
k+l |. (4.7)

This field indicates the location of the triadic interaction involving the triad ( fk, fl , fk+l)

in the flow field, as it quantifies the average local bicorrelation between the frequencies in
the domain.

To sum up, the BSMD analysis process involves calculating the map of mode
bispectrum amplitude ‖λ1( fk, fl)‖ to identify significant quadratic interactions. These are
the interactions that contribute most to the flow dynamics. Once these interactions have
been identified, the associated interaction map Ψk,l(x, fk, fl) is studied. This allows us to
identify the regions of the flow where this triadic interaction occurs. Finally, the associated
bispectral mode Φ

[1]
k+l , which is the physical mode resulting from this interaction, is

visualised and interpreted.
In the following we present the BSMD analysis of the database introduced in § 2.5. The

interpretation of the results will be performed following the process that has just been
outlined above, focusing on the low/medium-frequency dynamics of the interaction. In
particular, we will be interested in identifying and documenting nonlinear links between
medium frequencies and low frequencies.
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4.2. Mode bispectrum amplitude
The modulus of the mode bispectrum ‖λ1(Stk, Stl)‖ obtained when applying BSMD
to the snapshot matrix (2.7) is shown in figure 16. Only the region of non-redundant
information, as demonstrated by Schmidt (2020), is shown. Moreover, the interactions
between under-resolved frequencies for which two or less periods are resolved through
the Welch Fourier transform estimation have been greyed out on the graph. The region
above the horizontal axis of the graph represents sum interactions St1 + St2 = St3, the
region below the horizontal axis represents difference interactions St1 − St2 = St3. The
interactions located on the horizontal axis correspond to interactions for which St2 = 0
resulting in St3 = St1 and, therefore, correspond to the linear evolution of the flow
around its mean. In our analysis, we do not consider local maxima located on the line
St1 = −St2 as they result in modes of frequency St3 = 0 corresponding to the mean flow
distortion.

We can clearly identify strong quadratic couplings (highlighted by the high value of
‖λ1(Stk, Stl)‖) for (St1, St2) ∈ [0, 0.20]2, namely in the low- and medium-frequency
ranges. The intensity of interactions decreases sharply at higher frequencies. In the
low- and medium-frequency range, the following three types of interesting couplings
(highlighted by the high value of ‖λ1(Stk, Stl)‖) can be identified, which will be analysed
in more details in the following paragraphs.

(i) The interactions in the difference interaction region correspond to a cascade of
interactions generating low frequencies from medium frequencies. This cascade is
indicated by the solid black arrow.

(ii) The interactions in the sum interaction region correspond to a cascade of sum
interactions generating medium frequencies from low frequencies. This cascade is
indicated by the dashed arrow.

(iii) The interactions circled correspond to interactions associated with the linear evolution
of the flow around the mean flow that contribute significantly to the dynamics of the
flow.

In the following, in order to further interpret the physical role of the triadic interactions
that we have highlighted, for each type of interaction, we analyse in more detail the
involved frequencies, as well as their characteristic interaction maps and the shape of the
associated bispectral modes.

4.3. Cascade of interactions generating low frequencies from medium frequencies (type I)
In order to get more insight in the low- and medium-frequency range, the map of mode
bispectrum amplitude is reproduced in figure 17 by zooming in these ranges.

In the region of the map below the horizontal axis (difference interaction region), there
is a large continuous zone of interaction of significant amplitude defined by (St1, St2) ∈
]0, 0.18]×]0, −0.18]. These interactions are difference interactions, each interaction
therefore results in the creation of a lower frequency St3 from two interacting frequencies
St1 and St2. As this zone is continuous, a multitude of cascades of successive interactions
exist, creating low frequencies from interactions in the mid-frequency range characteristic
of the well-documented flapping of the shear layer St ∈ [0.1, 0.18].

As an illustration, an example of such a cascade is shown in figure 18. Each interaction
is given a number (between brackets) that is reported on the mode bispectrum amplitude
map (figure 17). We would stress that the cascade considered here is just one example
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Figure 16. Modulus of the complex mode bispectrum of the centred state vector qc in the (St1, St2) plane.
Relevant types of interactions are circled or indicated by arrows: interactions between medium frequencies
creating low frequencies (arrow); interactions between low frequencies creating medium frequencies (dashed
arrow); interactions reflecting the linear evolution of the flow around its mean. Interactions between unresolved
frequencies are greyed.

of a multitude of other possible paths. The first column (interaction of numbers (1),
(2), (3) and (4)) contains interactions between medium frequencies present in the flow
(typical frequencies of the well-documented flapping mode) that are written in red. The
presence of these medium frequencies in the flow is sufficient to initiate a cascade
of interactions that eventually creates low frequencies. Indeed the interactions of the
first column generate lower frequencies. In column two, we report interactions of these
generated lower frequencies with medium frequencies (interaction of numbers (5), (6) and
(7)). These interactions generate low frequencies typical of the breathing mode, written
in orange. We show in the third column that interactions between frequencies generated
from interactions of the first and second columns also contribute to the generation of low
frequencies characteristic of the breathing (interaction of numbers (8), (9), (10) and (11)).

This example of cascade shows how the presence in the flow of the well-documented
medium frequencies characteristic of the flapping generates low frequencies through a
multitude of cascades of difference interactions.

The interaction map of an emblematic triadic interaction of type I is shown in figure 19
for the three components of velocity. Other interactions of type I are not shown here for
the sake of brevity, but they exhibit the same qualitative behaviour. We clearly identify that
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Figure 17. Modulus of the complex mode bispectrum of the centred state vector qc in the (St1, St2) plane:
zoom on medium/low frequencies. Sequences of interactions of each type are highlighted and numbered.
Interactions between unresolved frequencies are greyed.

0.16 – 0.1 = 0.06
0.16 – 0.0934 = 0.0667
0.1734 – 0.1 = 0.0734
0.1734 – 0.0934 = 0.08

0.12 – 0.0734 = 0.0467  :(6)

0.12 – 0.0667 = 0.0534  :(5) 0.08 – 0.0467 = 0.0333   :(8)
0.0667 – 0.0467 = 0.02   :(9)
0.06 – 0.0333 = 0.0267   :(10)

0.12 – 0.08 = 0.04          :(7) 0.0734 – 0.0333 = 0.04   :(11)

:(1)
:(2)
:(3)
:(4)

Figure 18. Example of triadic interactions sequence between medium frequencies eventually creating low
frequencies. The frequencies are expressed as Stint . Medium frequencies at the origin of the sequence are
written in red. The resulting low frequencies are written in orange. Each interaction has a number between
parentheses reported in figure 17.

the nonlinear interactions constituting the cascade creating energy at low frequencies from
medium frequencies are mainly localised in the second part of the separation bubble and
especially in the region of reattachment. This point is consistent with the analyses and in-
terpretations exposed in previous sections, namely the direct analysis of the DNS database
(§ 2.5) and the SPOD analysis (§ 3), in which the low-frequency breathing dynamics of the
separation bubble has been shown to be driven by dynamical activity taking place in the
downstream part of the separation bubble. Moreover, this result confirms and refines the
results of Sansica et al. (2014) and Mauriello et al. (2022). Indeed, both works suspected a
role of nonlinear interactions in generating low frequencies in the downstream part of the
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Figure 19. Spanwise averaged interaction maps for a triadic interaction (interaction (7) in figures 17 and 18)
illustrating the sequence of interactions creating low frequencies from medium frequencies (interactions of
type I. Frequencies involved: St1 = 0.12, St2 = −0.08, St3 = 0.04. The mean flow is indicated by isolines of
the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

interaction zone, although the precise determination of the location of significant triadic
interactions was difficult due to the local nature of the methods employed.

The low-frequency bispectral mode resulting from the triadic interactions of type I
evoked in figure 19 is shown in figure 20 for the three components of velocity. For all
components of velocity, we clearly see that the bispectral mode is very similar to the
first SPOD mode at the same frequency (St = 0.04, characteristic of the breathing) shown
in figure 13. This result strongly suggests that the low-frequency breathing dynamics is
fuelled by interactions between medium-frequency modes characteristic of flapping.
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Figure 20. Spanwise averaged bispectral mode for a triadic interaction (interaction (7) in figures 17 and 18)
illustrating the sequence of interactions creating low frequencies from medium frequencies (interactions of
type I. Frequencies involved: St1 = 0.12, St2 = −0.08, St3 = 0.04. The mean flow is indicated by isolines of
the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

4.4. Cascade of interactions creating medium-frequency modes from low frequencies
(type II)

By analysing figure 17, we identify a region of high amplitudes of the mode bispectrum
above the horizontal axis (sum interactions), defined by (St1, St2) ∈ [0, 0.15]×]0, 0.1].
This region is symmetrical to the region of type I interactions analysed in the previous
paragraph. It has an analog effect on flow dynamics. However, as it is populated by sum
interactions, it consists of a multitude of cascades of interactions generating medium
frequencies from interactions between low frequencies instead of the opposite.

In the same way as for interactions of type I, we show in figure 21 a particular path
for a cascade of such interactions. Each interaction is given a number (between brackets)
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0.04 + 0.0267 = 0.0667 0.0667 + 0.0667 = 0.1334
0.08 + 0.08 = 0.160.04 + 0.04 = 0.08

0.02 + 0.02 = 0.04

0.0267 + 0.0267 = 0.0534

0.0267 + 0.02 = 0.0467 0.0467 + 0.0467 = 0.0934

0.0534 + 0.02 = 0.0734
0.0534 + 0.04 = 0.0934
0.0534 + 0.0534 = 0.107

0.0734 + 0.04 = 0.1134
0.0734 + 0.0734 = 0.1467

0.04 + 0.02 = 0.06 0.06 + 0.06 = 0.12

:(12)

:(13)

:(14)

:(15)
:(16)
:(17)

:(18)

:(19)
:(20)
:(21)

:(22)
:(23)

:(24)
:(25)

:(26)

Figure 21. Example of a cascade of triadic interactions creating medium frequencies from low frequencies. The
frequencies are expressed as Stint . Low frequencies at the origin of the cascade are written in red. The resulting
medium frequencies are written in orange. Each interaction has a number between parentheses reported in
figure 17.

that is reported on the mode bispectrum amplitude map (figure 17). To form this cascade,
we only assume the existence of two low frequencies marked in red, i.e. here St = 0.02
and St = 0.0267. The first stage of the cascade consists of the self-interactions of these
frequencies and the interactions of these frequencies with each other, creating higher
frequencies. We then unfold a cascade of interactions between the frequencies created
and show how medium frequencies (marked in orange) can be created in one or two
stages. Again, as the region of high amplitude sum interactions is continuous, a multitude
of cascades exist that has the same effect on the flow: creating medium frequencies,
characteristic of the flapping, from low frequencies, characteristic of the breathing of the
separation bubble.

The interaction map of an emblematic triadic interaction of type II is shown in figure 22
for the three components of velocity. Other interactions of type II are not shown here for the
sake of brevity, but they exhibit the same qualitative behaviour. Again, these interaction
maps clearly shows that the cascade of interactions creating medium-frequency modes
from low frequencies mainly take place in the second part of the separation bubble and
especially in the region of reattachment. This result is consistent with the SPOD analysis of
the dominant dynamics at medium frequency (mode 1 at St = 0.0934) that shows a driving
role of the reattachment region’s dynamics in the flapping’s dynamics. The direct analysis
of the DNS database also revealed a strong intensification of the medium-frequency
dynamics in the second part of the separation bubble.

The medium-frequency bispectral mode resulting from the triadic interactions of type II
evoked in figure 22 is shown in figure 23 for the three components of velocity. The
medium-frequency bispectral modes resulting from the cascade of interactions of type II
are very similar to the medium-frequency flapping modes highlighted by the SPOD
analysis and shown in Appendix A. This result suggests a feedback loop between the
medium and low frequencies. Indeed, the analysis of the triadic interactions of type I
(undertaken in § 4.3) suggest that low-frequency modes (breathing) are fuelled by triadic
interactions between medium frequencies characteristic of flapping. In turn, the current
analysis of interactions of type II suggest that the medium-frequency flapping dynamics is
fuelled by a cascade of triadic interactions between low-frequency modes characteristic of
the breathing of the separation bubble.

4.5. Modes arising from the linear evolution of the flow (type III)
We clearly see a range of high amplitudes along the horizontal axis of the map of the mode
bispectrum amplitude. These points, circled in figure 16, correspond to interactions for
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Figure 22. Spanwise averaged interaction map for a triadic interaction (interaction (18) in figures 17 and 21)
illustrating the cascade of interactions creating medium-frequency modes from low frequencies (interactions
of type II. Frequencies involved: St1 = 0.04667, St2 = 0.04667, St3 = 0.0933. The mean flow is indicated by
isolines of the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

which St1 ∈ [0.02, 0.18] and St2 = 0. Hence, St3 = St1 and the corresponding bispectral
modes can be interpreted as the linear evolution of the flow around its mean, according to
Schmidt (2020). Interestingly, the range of frequencies of these modes corresponds to the
range of low and medium frequencies characteristic of the SWBLI unsteadiness, including
breathing dynamics and flapping dynamics. The flow therefore shows a strong linear
tendency of the flow to oscillate around it’s mean field at medium and low frequencies
characterising respectively the flapping and the breathing of the bubble. In particular, we
observe high intensities at the frequencies identified by the direct analysis of the DNS
data and the SPOD analysis (peak frequencies of the first mode), namely St1 = 0.04,
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Figure 23. Spanwise averaged bispectral mode for a triadic interaction (interaction (18) in figures 17 and 21)
illustrating the cascade of interactions creating medium-frequency modes from low frequencies (interactions
of type II. Frequencies involved: St1 = 0.04667, St2 = 0.04667, St3 = 0.0933. The mean flow is indicated by
isolines of the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

St1 = 0.0667 and St1 = 0.0934. These three modes are reported in figure 17 as numbers
(27), (28) and (29).

We show below the bispectral modes for the modes oscillating at St1 = 0.04 and St1 =
0.0934 in figures 24 and 26, respectively. These modes are qualitatively very similar to
the low-frequency breathing and medium-frequency flapping modes obtained by SPOD
analysis. It shows that these linear modes are contributing to the breathing and flapping
modes of the separation bubble.

The interaction maps corresponding to these modes are shown in figures 25 and 27.
The amplitude of these maps are mainly significant in the second part of the separation
bubble and especially in the reattachment region. It clearly shows that these medium- and
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Figure 24. Spanwise averaged bispectral mode for a triadic interaction (interaction (28) in figure 17) illustrating
the interactions expressing the linear evolution of the flow around its mean field (interactions of type III.
Frequencies involved: St1 = 0.04, St2 = 0, St3 = 0.04. The mean flow is indicated by isolines of the mean
density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

low-frequency modes highlighted are driven by the dynamical activity in the downstream
part of the interaction, similarly to the modes resulting from interactions of type I and II.

5. Discussion
At this point, it is important to remember that the medium-frequency dynamics of
separation bubbles is a well-documented phenomenon on which there is a consensus.
The motivation of the preceding analyses was the documentation of the lower-frequency
breathing-type dynamics that is associated with reflected shock oscillations in the case of
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Figure 25. Spanwise averaged interaction map for a triadic interaction (interaction (28) in figure 17) illustrating
the interactions expressing the linear evolution of the flow around its mean field (interactions of type III.
Frequencies involved: St1 = 0.04, St2 = 0, St3 = 0.04. The mean flow is indicated by isolines of the mean
density field. (a) Longitudinal velocity u. (b) Longitudinal velocity v. (c) Longitudinal velocity w.

SWBLIs, and whose mechanisms are still under debate. In this respect we are particularly
interested in highlighting the nonlinear link between these two ranges of frequencies.

The analyses conducted in the preceding sections lead to the following factual
conclusions.

(a) The dominant dynamics of this flow are in the low- and medium-frequency range,
with breathing and flapping modes associated with reflected shock oscillations at
these frequencies.

(b) The dynamics of these modes are qualitatively similar. The associated frequencies
develop in the mixing layer to reach maximum amplitudes in the downstream zone of
the separation bubble close to the reattachment.
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Figure 26. Spanwise averaged bispectral mode for a triadic interaction (interaction (28) in figure 17) illustrating
the interactions expressing the linear evolution of the flow around its mean field (interactions of type III.
Frequencies involved: St1 = 0.0934, St2 = 0, St3 = 0.0934. The mean flow is indicated by isolines of the mean
density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical velocity w.

(c) In addition, for both modes, there is an upstream propagation of information inside
the bubble that forces the separation zone.

(d) The downstream zone of the separation bubble is the site of significant triadic interac-
tion cascades providing energy to the breathing dynamics from interactions between
existing frequencies of the shear layer flapping. In return, these low-frequency modes
interact nonlinearly, also in the downstream part of the bubble, and form cascades of
triadic interactions feeding energy into the flapping modes of the shear layer.

In light of these elements, we can propose a mechanism underlying the SWBLI
unsteadiness. This mechanism is illustrated in figure 28.
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Figure 27. Spanwise averaged interaction map for a triadic interaction (interaction (28) in figure 17) illustrating
the interactions expressing the linear evolution of the flow around its mean field (interactions of type III.
Frequencies involved: St1 = 0.0934, St2 = 0, St3 = 0.0934. The mean flow is indicated by isolines of the mean
density field. (a) Longitudinal velocity u. (b) Longitudinal velocity v. (c) Longitudinal velocity w.

For the description, the flow is divided into three zones: zone 1, before the interaction;
zone 2, the interaction zone itself and zone 3, downstream of the interaction. The first
zone consists of the boundary layer upstream of the interaction zone that amplifies free-
stream perturbations. The flow then enters zone 2 by passing through the reflected shock
wave. For given Mach and Reynolds numbers of the free-stream flow, the reflected shock
strength does not depend on the incident shock wave strength as predicted by the free
interaction theory. Through the shock, the disturbances are slightly amplified. At this stage,
for sufficiently small free-stream upstream disturbances, it is reasonable to assume that
the disturbances are still in the linear regime. These perturbations act as a forcing of the
shear layer bounding the separation bubble in the separation region. These perturbations
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Figure 28. Diagram explaining the suspected mechanism underlying the low-frequency unsteadiness of the
transitional SWBLI.

are then amplified in the shear layer in which convective instabilities also develop. If the
interaction is strong enough, the separation bubble is large enough and the shear layer is
long enough so that the linear shear layer modes saturate and exhibit a nonlinear dynamics
with cascades of triadic interactions generating the low-frequency activity. In the present
case, after the reattachment, the flow enters into zone 3 (downstream of reattachment),
where the vortical structures created in the interaction zone are propagated and finally
lead the boundary layer to transition to turbulence, which is not the subject of the present
study. Back in zone 2, there is an upstream transport of a part of the dynamical activity
at medium and low frequency from the reattachment zone until the separation zone.
This upstream propagation has been shown to be damped and selective, as it damps
high frequencies and selects low and medium frequencies. These upstream transported
perturbations act as finite amplitude perturbations in the receptivity process of the shear
layer, along with the upstream boundary layer perturbations. The shear layer is therefore
forced by perturbations at low and medium frequencies characteristic of the breathing and
flapping.

The mechanism thus described is a feedback loop whose key elements are the generation
of low frequencies by the nonlinear dynamics of the shear layer and the upstream
propagation of these disturbances within the mixing layer.

6. Conclusions and perspectives

6.1. Conclusions
The aim of this paper was to improve our physical understanding of the low-frequency
dynamics of SWBLIs, and more specifically, the phenomenon of SWBLI unsteadiness.
Pursuing this objective, we turned our attention to the case of strong interactions, creating
large separation bubbles, for which the consensus is that the low-frequency dynamics of
the interaction is an intrinsic feature of the recirculation bubble. The specific interest of our
study was to document the possible role of triadic interactions in the mechanism behind
low-frequency instationnarities.
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A DNS of a strong impinging shock wave SWBLI at M = 2.15 on a flat plate have
therefore been performed and analysed. In order to avoid the possible influence of the
upstream boundary layer dynamics on the interaction dynamics, we have chosen to
simulate an interaction with a laminar incident boundary layer, without forcing.

First, the DNS database was analysed to determine the average flow topology, its
characteristic frequencies and the nature of the vortex structures within the interaction.
This analysis showed that the flow exhibited a large, quasi-symmetric mean separation
bubble with respect to the vertical axis passing through the apex of the bubble.
Instantaneous field analysis showed that the vortical activity is mainly concentrated
in the shear layer and in the downstream part of the separation bubble. Görtler-
types structures have been identified inside the separation bubble downstream of its
apex, whereas the downstream part of the shear layer (after the incident impingement)
have been shown to be populated by longitudinal streaks. This dynamical activity of
the late part of the interaction leads to transition after the reattachment point. The
analysis of the frequency content across the interaction zone showed that the dominant
dynamical activity of this flow is in the low- and medium-frequency ranges characterising
respectively the breathing of the separation bubble and the flapping of the shear layer.
The associated frequencies develop in the mixing layer to reach maximum amplitudes
in the downstream zone of the separation bubble close to the reattachment. Part of
this signal is emitted from the downstream part of the separation bubble and travels
upstream until eventually forcing the shear layer in the separation region. This uspstream
propagation has also been shown to be damped and selective, as it selects low and medium
frequencies.

To get more insight in the physical structure of the flow at these frequencies, a SPOD
analysis has been performed. Interestingly, the peak frequencies of the dominant mode
have been found to match the frequencies highlighted by the direct analysis of the
DNS database. The corresponding spatial modes consist in separation bubble oscillations
typical of the breathing and flapping modes accompanied by oscillations of the reflected
shock. Moreover, the SPOD modes at these frequencies were found to be piloted by
the downstream part of the interaction and the upstream propagation of perturbations
originating from this zone inside the separation has been highlighted in the space–time
evolution of these dominant modes eventually reaching the separation point.

A BSMD analysis has then been performed in order to characterise the triadic
interactions at play in the interaction, especially in the downstream part of the shear layer,
and to which such existent interactions could play a role in the onset of the breathing
dynamics, given that the flapping dynamics of the shear layer is now well documented
and is a consensus. This analysis has shown that the strong dynamical activity in the
downstream part of the interaction is largely fuelled by strong triadic interactions in this
zone. Indeed, this region is the seat of strong triadic interactions between frequencies
characterising the flapping, contributing to the breathing activity. In turn, in the same
region of the flow, triadic interactions between frequencies in the range characterising the
breathing contribute to the flapping activity.

All these results strongly suggest a mechanism underlying the breathing motion of the
separation bubble involving the nonlinear saturation of the convective instabilities of the
shear layer, creating energy at low and medium frequencies in the downstream part of the
separation bubble. These perturbations are then transported upstream inside the bubble
and force the shear layer in the upstream part of the separation bubble. Such a feedback
loop could participate in the onset of the low-frequency breathing of the bubble and,
therefore, the low-frequency unsteadiness of the SWBLI.
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6.2. Perspectives
Another important feature of the flow, highlighted by the BSMD analysis, is the existence
of linear modes oscillating around the mean flow in the low- and medium-frequency range
characterising breathing and flapping (type III interactions). This suggests other possible
contributions to the low-frequency unsteadiness that were not further investigated as it was
out of the scope of the present paper that was focused on the role of triadic interactions.
Indeed, these results indicate the possibility of the existence of unstable or slightly stable
global modes around the mean flow field in the low- and medium-frequency range. In the
case of slightly stable modes, the perturbations arising from the nonlinear dynamics of
the downstream part of the bubble could then act as a finite amplitude forcing of these
modes at the appropriate frequency, thus sustaining their oscillations. Such a scenario
is not inconsistent with the fact that globally unstable modes are not documented in the
literature for stability analyses around the fixed point. Indeed, these analyses around the
fixed point neglect to take into account at least part (the distortion) of the nonlinear effects
linked to the convective dynamics responsible for the transition. A stability analysis around
the mean field, on the other hand, takes partial account of the effect of nonlinearities,
which play a major role in the described scenario. Such a stability study could be carried
out in future work to confirm the presumptions based on the results of the present BSMD
analysis. It should be noted, however, that such a neutral mode has been highlighted by a
linear stability analysis around the mean flow of an axisymmetrical compression ramp in
Lugrin et al. (2022). Moreover, in a recent work (Cura et al. 2024) the authors performed
a global stability analysis around the mean flow of an incompressible separation bubble
(with a non-fixed-separation point), whose results suggest that the breathing motion is
driven by such a forced modal mechanism. This result lends further credence to our
hypothesis that calls for a future work in which the global stability analysis of the flow
around its mean field should be undertaken.

Finally, in this work we considered an idealised flow in which the upstream boundary
layer is a laminar unforced boundary layer. This case is a limit case of more realistic
flows in which the incoming boundary layer is forced by environmental disturbances and
has been chosen to serve as a reference. As perspectives of this work, we will perform
analog analyses for the interaction with a forced incident laminar boundary layer in order
to characterise the effect of this forcing on the low-frequency dynamics of transitional
SWBLIs. Future studies should also be undertaken involving turbulent incident boundary
layers to study the fate of the mechanisms highlighted in transitional interactions when
submitted to an intense turbulent forcing.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.236.
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Appendix A. SPOD spatial modes
We reproduce here the first SPOD modes for each velocity components at St = 0.0667
(figure 29) and St = 0.0934 (figure 32) in order to support the assertion in § 3 that these
modes are qualitatively identical to the first mode at St = 0.04. The similarity of the
predominant dynamics at frequencies St = 0.04, St = 0.0667 and St = 0.093 can also be
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Figure 29. First spatial SPOD mode (m1) averaged in the spanwise direction at St = 0.0667. The mean flow is
indicated by isolines of the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical
velocity w.

seen in the time evolution of these modes (shown below for frequencies St = 0.0667 and
St = 0.0934 in figures 30, 31, 33 and 34). In particular, the upstream propagation of infor-
mation from the reattachment zone inside the bubble is highlighted in figures 31 and 34 .

Appendix B. Mesh convergence
Three meshes have been considered to assess the quality of the mesh employed in this
paper:
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Figure 30. Visualisation of Φ1(x, t) velocity u at St = 0.0667, averaged in the spanwise direction.
(a) Velocity component u. (b) Velocity component v. (c) Velocity component w.
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Figure 31. Representation ofΦ1(x, z = cste, t) at St = 0.0667 for z/δ = 1.48. The vertical black lines indicate,
from left to right, the separation point, the crossing of the rising shear layer, the crossing of the incident shock
wave, the crossing of the descending shear layer and the reattachment point. (a) Velocity component u. (b)
Velocity component v.

a. mesh used in the present paper: 800 × 400 × 202 grid points in (x × y × z) and the
minimum grid spacing over the plate is �zmin = 0.0125δ in the normal-to-the-wall
direction;

b. coarse mesh: 400 x 200 x 102 grid points in (x × y × z) with the same minimum grid
spacing over the plate in the normal-to-the-wall direction;
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Figure 32. First spatial SPOD mode (m1) averaged in the spanwise direction at St = 0.0934. The mean flow is
indicated by isolines of the mean density field. (a) Longitudinal velocity u. (b) Spanwise velocity v. (c) Vertical
velocity w.

c. finer mesh: 1600 × 800 × 202 grid points in (x × y × z) with the same minimum grid
spacing over the plate in the normal-to-the-wall direction.

The grid spacing evolution along the wall is shown in figure 35, in wall units, for
each coordinate direction for the mesh used in this study and the finer mesh. The two
meshes share the same grid spacing at the wall in the normal-to-the-wall direction.
The distribution of �z+ obtained with the two meshes is therefore similar throughout
the whole flat plate and remains less than 1 everywhere (and even less than 0.5 in
the interaction zone), indicating a sufficient resolution of the mesh in the normal-to-
the-wall direction. For the mesh used in this paper, in the longitudinal and transverse
directions, �x+ and �y+ remain at low values throughout the entire interaction region
(less than 10 before the reattachment point x R � 88.12δ). After the reattachment, where
the boundary layer becomes turbulent, the value of �x+ and �y+ increase until a larger
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Figure 33. Visualisation of Φ1(x, t) velocity u at St = 0.0934, averaged in the spanwise direction. (a)
Velocity component u. (b) Velocity component v. (c) Velocity component w.
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Figure 34. Representation of Φ1(x, z = cste, t) at St = 0.0934 for z/δ = 1.48. The vertical black lines
indicate, from left to right, the separation point, the crossing of the rising shear layer, the crossing of the incident
shock wave, the crossing of the descending shear layer and the reattachment point. (a) Velocity component u.
(b) Velocity component v.

value, which remains however under 20. Notably, the value of 15 is reached around
x = 100δ, i.e. more than 10 boundary layer thicknesses downstream of the reattachment
point. The finer mesh has been designed to lower the distribution of �x+ and �y+ and
see if it influences significantly the accuracy of the result. To this end, the finer mesh
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Figure 35. Distribution along the flat plate of the grid spacing at the wall in each direction. Results are shown
for (a) �y+, (b) �x+ and (c) �z+. Refined mesh ( ) and mesh of the present paper ( ).
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Figure 36. Time mean longitudinal velocity field averaged in the spanwise direction u. The coloured flood
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Figure 37. Distribution of the spanwise averaged wall pressure along the flat plate: refined mesh ( ), mesh
of the present paper ( ), coarse mesh ( ).

has been obtained by doubling the number of points in the streamwise and spanwise
directions.

The influence of the mesh refinement on the solution can be evaluated in figures 37 and
38 that show the distribution of the spanwise averaged wall pressure and the distribution
of the spanwise averaged skin friction along the flat plate for the three considered meshes,
respectively.

We clearly see in figure 37 that the pressure distribution at the wall is not affected by the
mesh refinement.

In figure 38 we see that the coarser mesh in not fine enough to catch precisely the
distribution of C f in the downstream part of the separation bubble. Moreover, we clearly
see that the finer mesh solution and the paper’s mesh solution agree completely until
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120 140 1600
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0
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Figure 38. Distribution of the spanwise averaged skin friction along the flat plate: refined mesh ( ), mesh
of the present paper ( ), coarse mesh ( ). Blasius laminar boundary layer solution ( ). Turbulent
solution ( ).

x � 110δ (more than 20 boundary layer thicknesses downstream of the reattachment point).
The two solutions show some small discrepancies downstream this abscissa but both
follow the turbulent solution. The turbulent skin friction correlation plotted in this figure
is taken from Cousteix (1989):

C f = 0.0172

Re1/5
θ

f 6/5. (B1)

Here the compressibility function is

f =
(

μ∗

μe

)1/6 (
Te

T ∗

)5/6

, (B2)

where subscript e refers to the free-stream value (outside the boundary layer) and the
superscript ∗ refers to the reference state given by

T ∗ = Te + 0.7(Tw − Te) (B3)

for an adiabatic boundary layer.
In order to have a comparison of the fields obtained in the whole domain with the mesh

used in this paper and the finer mesh, we show in figure 35 the comparison of the time
mean longitudinal velocity field averaged in the spanwise direction obtained with the mesh
of the present paper and the finer mesh. It shows good agreement between the two obtained
mean flow fields throughout the entire domain.

These comparisons between the results obtained with the mesh employed in this paper
and the finer mesh show that a mesh refinement, multiplying the computation cost by 4
(we multiply the number of points by 2 in the streamwise and spanwise direction), has only
an influence on the skin friction distribution starting from 20 boundary layer thicknesses
downstream of the reattachment point, which is a part of the flow field not investigated
in our study. Moreover, it shows that the mesh used in this paper already shows a fairly
good agreement with the turbulent boundary layer solution after the transition. For these
reasons, the mesh employed in this paper has been selected as a good compromise between
accuracy and simulation cost.
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