DIRECT THEOREMS ON METHODS OF SUMMABILITY II

G. G. LORENTZ

1. Introduction

1.1. This paper is a continuation of the papers of the author [14], [15]. We begin by recapitulating the main definitions. If $\left\{n_{\nu}\right\}$ is an increasing sequence of positive integers, the value of the characteristic or the counting function $\omega(n)$ of $\left\{n_{\nu}\right\}$ is, for any $n \geqslant 0$, the number of n, satisfying the inequality $n, \leqslant n$. Suppose that A is a linear method of summation corresponding to the transformation

$$
\begin{equation*}
\sigma_{m}=\sum_{n=0}^{\infty} a_{m n} s_{n} \quad(m=0,1, \ldots) \tag{1}
\end{equation*}
$$

In what follows, $\Omega(n)$ is always a non-decreasing positive function defined for all real $n \geqslant 0$ and tending to $+\infty$ with n. A function $\Omega(n)$ is a summability function of the first kind of a method A if all real bounded sequences s_{n} such that $s_{n}=0$ except for a sequence $\left\{n_{\nu}\right\}$ of values of n whose counting function $\omega(n) \leqslant \Omega(n), n \geqslant 0$, are A-summable. $\Omega(n)$ is a summability function of the second kind of a method A if $S_{n}=s_{0}+s_{1}+\ldots+s_{n}=O(\Omega(n))$ implies that s_{n} is A-summable.

In [15] we have given necessary and sufficient conditions for summability functions of an arbitrary method A and have found all summability functions of some special methods. Here in $\S 2$ and $\S 3$ we solve the last problem for the Riesz and Abel methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa>0$ and $\mathrm{A}\left(\lambda_{n}\right)$ (for the properties of these methods compare Hardy and Riesz [6], Hardy [5]). We have had to make some hypotheses on the regularity of the sequence λ_{n} (which are in most cases very modest). In $\S 4$ we discuss summability functions for absolute summability. Theorem 6 gives necessary and sufficient conditions for absolute summability functions, Theorem 7 describes methods which possess such functions. We also determine all absolute summability functions for some special methods. Thus for the Cesàro methods $\mathrm{C}_{a}, a>0$ they are given by the condition $\sum n^{-1-\beta} \Omega(n)<+\infty(\beta=a$ for $a \leqslant 1, \beta=1$ for $a \geqslant 1)$ in contrast to the condition $\Omega(n)=o(n)$ which describes ordinary summability functions of C_{a}. Finally, in $\S 5$ we give applications of theorems of this and the previous papers. Of these we note Theorem 10, whose application is a good way to show that certain Tauberian conditions are the best possible of their kind.

Received February 13, 1950.

2. Summability functions of Riesz and Abel methods. Case when $\Delta \lambda_{n}$ is increasing

2.1. Let $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots, \lambda_{n} \rightarrow \infty$ be a given sequence and $\kappa>0$. A series $\sum u_{n}$, or the sequence s_{n} of its partial sums, is $\mathrm{R}\left(\lambda_{n}, k\right)$ summable to s if

$$
\begin{equation*}
v^{-\kappa} \sum_{\lambda_{n} \leqslant v}\left(v-\lambda_{n}\right)^{\mathrm{k}} u_{n} \tag{1}
\end{equation*}
$$

converges to s for $v \rightarrow \infty$. And $\sum u_{n}$ is $\mathrm{A}\left(\lambda_{n}\right)$-summable to s, if

$$
\begin{equation*}
\sigma(x)=\sum_{n=0}^{\infty} e^{-\lambda_{n} x} u_{n} \rightarrow s, \quad x \rightarrow 0+ \tag{2}
\end{equation*}
$$

We shall find it convenient to extend the definition of λ_{n} also to non-integral values of n and to consider a monotone continuous function $\lambda(\omega), \omega \geqslant 0$ such that $\lambda(n)=\lambda_{n}$. Then we can write $2.1(1)$ in the form

$$
\begin{align*}
& \sigma(\omega)=\lambda(\omega)^{-\kappa} \sum_{n \leqslant \omega}\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa} u_{n} \tag{3}\\
& \quad=\lambda(\omega)^{-\kappa} \sum_{n \leqslant n_{0}-1}^{n}\left\{\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}-\left(\lambda(\omega)-\lambda_{n+1}\right)^{\star}\right\} s_{n}+\lambda(\omega)^{-\kappa}\left(\lambda(\omega)-\lambda_{n_{0}}\right)^{\kappa} s_{n_{0}}
\end{align*}
$$

where $n_{0}=[\omega]$. On the other hand, the expression $2.1(2)$ is equivalent to

$$
\begin{equation*}
\sigma(x)=\sum_{n=0}^{\infty}\left(e^{-\lambda_{n} x}-e^{-\lambda_{n+1} x}\right) s_{n} \tag{4}
\end{equation*}
$$

for any $\mathrm{A}\left(\lambda_{n}\right)$-summable sequence s_{n} (see for instance [13, Theorem 10]).
In the sequel we seek to find all summability functions of the methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \mathrm{A}\left(\lambda_{n}\right)$ in a simpler form than that given by general theorems [15, §2]. We first make the following remark. Any of the methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa>0$, $\mathrm{A}\left(\lambda_{n}\right)$ possesses summability functions if and only if
2.1(5)

$$
\Delta \lambda_{n} / \lambda_{n} \rightarrow 0 \text { or } \lambda_{n+1} / \lambda_{n} \rightarrow 1
$$

$$
\left(\Delta \lambda_{n}=\lambda_{n+1}-\lambda_{n}\right)
$$

In fact, if the method $R\left(\lambda_{n}, \kappa\right)$ has summability functions, the coefficients of the transformation 2.1(3) must converge uniformly to zero for $\omega \rightarrow \infty$ by [14, Theorem $\left.8^{*}\right]$. In particular the last coefficient converges to zero, and this gives 2.1(5). And if $2.1(5)$ is true, the coefficients in 2.1(4) converge uniformly to 0 :

$$
e^{-\lambda_{n} x}\left(1-e^{-\Delta \lambda_{n} x}\right) \leqslant C_{1} e^{-\lambda_{n} x} \Delta \lambda_{n} x \leqslant C_{2} \Delta \lambda_{n} / \lambda_{n} \rightarrow 0,
$$

since $e^{-u} u$ is bounded for $u \geqslant 0$. Since $\mathrm{R}\left(\lambda_{n}, \kappa\right) \subset \mathrm{A}\left(\lambda_{n}\right)$ for $\kappa>0[6, \mathrm{p} .39]$, the proof is complete.
2.2. To obtain further results we suppose some regularity of the sequence λ_{n}. In this section we shall suppose that $\Delta \lambda_{n}$ is increasing. A first consequence of this hypothesis together with $2.1(5)$ is that $\lambda_{n} / \Delta \lambda_{n}=O(n)$. For

$$
\Delta\left(\frac{\lambda_{n}}{\Delta \lambda_{n}}-n\right)=\left(\frac{\Delta \lambda_{n}}{\Delta \lambda_{n+1}}-1\right)-\frac{\lambda_{n} \Delta^{2} \lambda_{n}}{\Delta \lambda_{n} \Delta \lambda_{n+1}} \leqslant 0
$$

and thus $\lambda_{n} / \Delta \lambda_{n}-n$ is decreasing. Therefore, $\lambda_{n} / \Delta \lambda_{n} \leqslant n+C$ for some constant C. Theorems 1 and 2 below give full information about the summability functions of the first and the second kind. In Theorem 1 we suppose that $\Delta \lambda_{n} / \lambda_{n} \rightarrow 0$ (which is no restriction because of $2.1(5)$), in Theorem 2 slightly more, namely that $\Delta \lambda_{n} / \lambda_{n}$ decreases to 0 .

Theorem 1. If $\Delta \lambda_{n} / \lambda_{n}$ converges to zero and $\Delta \lambda_{n}$ increases, all summability functions (of the first kind) of the methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa>0$ and $\mathrm{A}\left(\lambda_{n}\right)$, and only these functions, are given by

$$
\begin{equation*}
\Omega(n)=o\left(\lambda_{n} / \Delta \lambda_{n}\right) . \tag{1}
\end{equation*}
$$

Proof. (a) Every function $\Omega(n)$ satisfying $2.2(1)$ is a summability function of the method $\mathrm{R}\left(\lambda_{n}, \kappa\right), 0<\kappa \leqslant 1$. We have to show that $2.2(1)$ implies that $A(\omega, \Omega) \rightarrow 0$ for $\omega \rightarrow \infty[15,2.3]$. We recall that for a method of summation defined by $s=\lim _{\omega \rightarrow \infty} \sum_{n=1}^{\infty} a_{n}(\omega) s_{n}$ and a function $\Omega(n), A(\omega, \Omega)$ is the least upper bound of $\sum_{\nu=1}^{\infty}\left|a_{n,}(\omega)\right|$ for all sequences n, with the counting function $\leqslant \Omega(n)$. Because of $2.1(5)$ we may disregard the last coefficient in 2.1(3). For $n \leqslant n_{0}-1$ the coefficient

$$
a_{n}(\omega)=-\lambda(\omega)^{-n} \Delta\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}=\kappa \lambda(\omega)^{-\kappa}\left(\lambda(\omega)-\lambda_{n}^{\prime}\right)^{\kappa-1} \Delta \lambda_{n}
$$

($\lambda^{\prime}{ }_{n}$ is between λ_{n} and λ_{n+1}) is increasing with n. Therefore,

$$
\begin{aligned}
A(\omega, \Omega) & \leqslant \sum_{n_{0}-\Omega(\omega) \leqslant n \leqslant n_{0}-1} a_{n}(\omega) \leqslant \lambda(\omega)^{-\kappa}\left[\lambda(\omega)-\lambda\left(n_{0}-\Omega(\omega)\right)\right]^{k} \\
& \leqslant C\left[\frac{\Delta \lambda_{n_{0}+1}}{\lambda_{n_{0}+1}}(\Omega(\omega)+2)\right]^{\kappa} \rightarrow 0
\end{aligned}
$$

by $2.1(5)$ and $2.2(1)$. This proves (a).
(b) Any summability function of the method $\mathrm{A}\left(\lambda_{n}\right)$ satisfies 2.2(1). Suppose that $2.2(1)$ does not hold, then for some $\delta>0$ and an infinity of n, $\Omega(n) \geqslant \delta \lambda_{n} / \Delta \lambda_{n}$. For these n define the integer n_{1} by

$$
\begin{equation*}
\lambda_{n_{1}} \leqslant(1+\delta) \lambda_{n}<\lambda_{n_{1}+1} . \tag{2}
\end{equation*}
$$

For a fixed n of the above kind, we denote by $\Omega_{1}(\nu)$ the counting function of the set of integers ν defined by $n \leqslant \nu<n_{1}$. We have

$$
n_{1}-n \leqslant\left(\lambda_{n_{1}}-\lambda_{n}\right) / \Delta \lambda_{n} \leqslant \delta \lambda_{n} / \Delta \lambda_{n}
$$

and therefore $\Omega_{1}\left(n_{1}\right) \leqslant \Omega(n)$. Thus $\Omega_{1}(u) \leqslant \Omega(u)$ in $n \leqslant u<n_{1}$, and since Ω_{1} is constant outside of this interval, the same inequality holds for all u. Therefore for the function $A(x, \Omega)$ of the method $\mathrm{A}\left(\lambda_{n}\right)$ we have

$$
\begin{aligned}
A(x, \Omega) & \geqslant \sum_{n \leqslant \nu<n_{1}}\left(e^{-\lambda_{2} x}-e^{-\lambda_{\nu}+1^{x} x}\right)=e^{-\lambda_{n} x}-e^{-\lambda_{n_{1}} x} \\
& =e^{-\lambda_{n} x} x\left(\lambda_{n_{1}}-\lambda_{n}\right)
\end{aligned}
$$

for some $\lambda^{\prime}{ }_{n}$ between λ_{n} and $\lambda_{n_{1}}$. Here

$$
\lambda_{n_{1}}-\lambda_{n}=\lambda_{n_{1}+1}-\lambda_{n}+o\left(\lambda_{n}\right) \geqslant \delta \lambda_{n}+o(1) \geqslant \frac{1}{2} \delta \lambda_{n}
$$

for large n. Choosing $x_{n}=\lambda_{n}{ }^{-1}$, we obtain $\lambda^{\prime}{ }_{n} x_{n} \leqslant 1+\delta$ and therefore

$$
A\left(x_{n}, \Omega\right) \geqslant \frac{1}{2} \delta e^{-(1+\delta)}=\text { const. }>0,
$$

so that $A(x, \Omega)$ does not tend to zero for $x \rightarrow \infty$, which proves (b) by [15, 2.3].
From (a) and (b) the theorem follows in virtue of the inclusions $\mathrm{R}\left(\lambda_{n}, \kappa\right) \subset \mathrm{R}\left(\lambda_{n}, \kappa^{\prime}\right) \subset \mathrm{A}\left(\lambda_{n}\right), 0<\kappa<\kappa^{\prime}$.
2.3. We now treat summability functions of the second kind.

Theorem 2. If $\Delta \lambda_{n} / \lambda_{n}$ decreases to 0 and $\Delta \lambda_{n}$ increases, (i) all summability functions of the second kind of the methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa \geqslant 1$ and $\mathrm{A}\left(\lambda_{n}\right)$ and only these are given by
2.3(1)

$$
\Omega(n)=o\left(\lambda_{n} / \Delta \lambda_{n}\right)
$$

(ii) For $\mathrm{R}\left(\lambda_{n}, \kappa\right), 0<\kappa<1$ the condition is

$$
\begin{equation*}
\Omega(n)=o\left(\lambda_{n} / \Delta \lambda_{n}\right)^{x} \tag{2}
\end{equation*}
$$

Proof. (a) If 2.3(1) holds, then $\Omega(n)$ is a summability function of the second kind of $\mathrm{R}\left(\lambda_{n}, 1\right)$. From this (i) will follow by Theorem 1. By [15, 2.3] we have to show that if $2.3(1)$ holds, and $a_{n}(\omega)$ is the coefficient of s_{n} in the transformation 2.1(3) for $\kappa=1$, then

$$
\begin{equation*}
\Delta(\omega, \Omega)=\sum_{\nu=0}^{\infty} \Omega(\nu)\left|\Delta a_{\nu}(\omega)\right| \rightarrow 0 \tag{3}
\end{equation*}
$$

We have $a_{\nu}(\omega)=\Delta \lambda_{\nu} / \lambda(\omega)$ for $\nu \leqslant n_{0}-1, a_{n_{0}}(\omega)=\left(\lambda(\omega)-\lambda_{n_{0}}\right) / \lambda(\omega)$ and $a_{\nu}(\omega)=0$ for $\nu>n_{0}$. The last non-vanishing term of the sum 2.3(3) with $\nu=n_{0}$ converges to 0 because $\Delta \lambda_{n} / \lambda_{n} \rightarrow 0$. Therefore, 2.3(3) is equivalent to

$$
\begin{equation*}
\lambda(n)^{-1} \sum_{\nu=0}^{n} \Omega(\nu) \Delta^{2} \lambda_{\nu} \rightarrow 0 \tag{4}
\end{equation*}
$$

for $n \rightarrow \infty$.
With $\Delta \lambda_{\nu} / \lambda_{\nu}$ also $\lambda_{\nu+1} / \lambda_{\nu}$ is decreasing, and so $\lambda_{\nu} \lambda_{\nu+2} \leqslant \lambda_{\nu+1}{ }^{2}$ and
2.3(5)

$$
\begin{gathered}
\lambda, \Delta^{2} \lambda_{\nu}=\lambda_{\nu} \lambda_{\nu+2}-2 \lambda_{\nu} \lambda_{\nu+1}+\lambda_{\nu}^{2} \leqslant\left(\lambda_{\nu+1}-\lambda_{\nu}\right)^{2}=\left(\Delta \lambda_{\nu}\right)^{2} \\
\lambda_{n}^{-1} \sum_{\nu=0}^{n} \lambda_{\nu} \Delta^{2} \lambda_{\nu} / \Delta \lambda_{\nu} \leqslant \lambda_{n}^{-1} \sum_{\nu=0}^{n} \Delta \lambda_{\nu}=1 .
\end{gathered}
$$

By a variant of the theorem of Silverman-Toeplitz we now see that

$$
\lambda_{n}^{-1} \sum_{0}^{n} \Omega(\nu) \Delta^{2} \lambda_{\nu}=\lambda_{n}^{-1} \sum_{\nu=0}^{n} \frac{\lambda_{\nu} \Delta^{2} \lambda_{\nu}}{\Delta \lambda \nu} \Omega(\nu) \frac{\Delta \lambda_{\nu}}{\lambda_{\nu}} \rightarrow 0,
$$

if $\Omega(\nu) \Delta \lambda_{\nu} / \lambda_{\nu} \rightarrow 0$.
(b) We prove (ii). For $0<\kappa<1$ the necessary and sufficient condition is again 2.3(3), where $a_{\nu}(\omega)$ is defined by the transformation 2.1(3). Con-
sidering the last non-vanishing term we see that $\Omega(n)\left(\Delta \lambda_{n} / \lambda_{n}\right)^{\kappa} \rightarrow 0$, that is $2.3(2)$ is necessary. Let $2.3(2)$ be true. Then $2.3(3)$ is equivalent to

$$
\begin{equation*}
S=\lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}} \Omega(n)\left|\Delta^{2}\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}\right| \rightarrow 0 \tag{4}
\end{equation*}
$$

where ω_{1} is some integer of the form $\omega_{1}=\omega-p$, and p is constant. It will be sufficient to take $p \geqslant 5$.

We have, if $0 \leqslant c<b<a$ and $a-2 b+c \leqslant 0$,

$$
\begin{aligned}
a^{\kappa}-2 b^{\kappa}+c^{\kappa} & =c^{\kappa}-(2 b-a)^{\kappa}+a^{\kappa}-2 b^{\kappa}+(2 b-a)^{\kappa} \\
& =\kappa(a-2 b+c) \xi^{\kappa-1}+\kappa(\kappa-1)(b-a)^{2} \eta^{\kappa-2}
\end{aligned}
$$

where $c<\xi<2 b-a<b, c<\eta<a$. Applying this to S, we obtain
2.3(6)

$$
\begin{gathered}
S \leqslant C_{1} S_{1}+C_{2} S_{2} \\
\left\{\begin{array}{l}
S_{1}=\lambda(\omega)^{-k} \sum_{n=0}^{\omega_{1}} \Omega(n) \Delta^{2} \lambda_{n}\left|\lambda(\omega)-\lambda_{n}^{\prime}\right|^{\kappa-1} \\
S_{2}=\lambda(\omega)^{-k} \sum_{n=0}^{\omega_{1}} \Omega(n)\left(\Delta \lambda_{n}\right)^{2}\left|\lambda(\omega)-\lambda^{\prime \prime}{ }_{n}\right|^{\kappa-2}
\end{array}\right.
\end{gathered}
$$

where $\lambda^{\prime}{ }_{n}$ and $\lambda^{\prime \prime}{ }_{n}$ are between λ_{n} and λ_{n+2}. If μ_{n} is such that $-\Delta\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}=\kappa\left(\lambda(\omega)-\mu_{n}\right)^{\kappa-1} \Delta \lambda_{n}, \lambda_{n}<\mu_{n}<\lambda_{n+1}$, we have

$$
\frac{\lambda(\omega)-\lambda_{n}^{\prime}}{\lambda(\omega)-\mu_{n}}=1-\frac{\lambda_{n}^{\prime}-\mu_{n}}{\lambda(\omega)-\mu_{n}} \geqslant 1-\frac{\lambda_{n+2}-\lambda_{n}}{\lambda_{n+5}-\lambda_{n+1}} \geqslant \frac{1}{2}
$$

and therefore, using again 2.3(5),

$$
\begin{aligned}
S_{1} & \leqslant C_{3} \lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}} \Omega(n) \frac{\Delta^{2} \lambda_{n}}{\Delta \lambda_{n}}\left[\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}-\left(\lambda(\omega)-\lambda_{n+1}\right)^{\kappa}\right] \\
& \leqslant C_{3} \lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}} \Omega(n) \frac{\Delta \lambda_{n}}{\lambda_{n}}\left[\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa}-\left(\lambda(\omega)-\lambda_{n+1}\right)^{\kappa}\right] .
\end{aligned}
$$

We may, regard this as a transformation of the sequence $\Omega(n) \Delta \lambda_{n} / \lambda_{n}$ and obtain as before $S_{1} \rightarrow 0$ for $\omega \rightarrow \infty$.

To deal with $S_{2}, 2.3(1)$ will not be enough and we need $2.3(2)$ in full. We have

$$
\begin{aligned}
S_{2} & =o(1) \lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}} \lambda_{n}{ }^{*}\left(\Delta \lambda_{n}\right)^{1-\kappa}\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa-2} \Delta \lambda_{n} \\
& \leqslant o(1)\left(\Delta \lambda_{n_{0}}\right)^{1-\kappa} \sum_{n=0}^{\omega_{1}}\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa-2} \Delta \lambda_{n} .
\end{aligned}
$$

As before, it is easy to see that $\left(\lambda(\omega)-\lambda_{n}\right)^{-2} \Delta \lambda_{n}=O\left(\Delta\left(\lambda(\omega)-\lambda_{n}\right)^{-1}\right)$, and therefore

$$
S_{2}=o(1)\left(\Delta \lambda_{n_{0}}\right)^{1-\alpha}\left[\left(\lambda(\omega)-\lambda\left(\omega_{1}+1\right)\right)^{-1}-\lambda(\omega)^{\kappa-1}\right] .
$$

Since $\Delta \lambda_{n} / \lambda_{n}$ is decreasing, $1 \leqslant \Delta \lambda_{n+1} / \Delta \lambda_{n} \leqslant \lambda_{n+1} / \lambda_{n} \rightarrow 1$ and so $\Delta \lambda_{n+1} / \Delta \lambda_{n} \rightarrow 1$ for $n \rightarrow \infty$. But this implies $\left[\lambda(\omega)-\lambda\left(\omega_{1}+1\right)\right] / \Delta \lambda_{n_{0}}=O(1)$ and $S_{2}=o(1)$. Therefore $S \rightarrow 0$ and the proof of the theorem is complete.

3. Riesz and Abel methods. Case when $\Delta \lambda_{n}$ is decreasing

3.1. If $\Delta \lambda_{n}$ is decreasing, the condition $2.1(5)$ is automatically fulfilled. By the argument used in $\S 2.2$ it is seen that we even have $\lambda_{n} / \Delta \lambda_{n} \geqslant C n$ for some constant $C>0$.

Theorem 3. If $\Delta \lambda_{n}$ is decreasing, all functions $\Omega(n)=o(n)$ are summability functions of the methods $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa>0$ and $\mathrm{A}\left(\lambda_{n}\right)$.

Proof. It is"sufficient to consider $R\left(\lambda_{n}, \kappa\right)$ for $0<\kappa \leqslant 1$. We prove that $A(\omega, \Omega) \rightarrow 0$, if $\Omega(n)=o(n)$. Choose an $\epsilon>0$ and break the matrix $A=$ $\left(a_{n}(\omega)\right)$ of $\mathrm{R}\left(\lambda_{n}, \mathrm{~K}\right)$ into the parts $A^{\prime}=\left(a_{n}^{\prime}(\omega)\right), A^{\prime \prime}=\left(a^{\prime \prime}{ }_{n}(\omega)\right)$, where

$$
\begin{aligned}
& a_{n}^{\prime}(\omega)= \begin{cases}a_{n}(\omega) & \text { for } 0 \leqslant n \leqslant \omega_{1}-1 \\
0 & \text { for } n>\omega_{1}-1\end{cases} \\
& a_{n}^{\prime \prime}(\omega)= \begin{cases}0 & \text { for } 0 \leqslant n \leqslant \omega_{1}-1 \\
a_{n}(\omega) & \text { for } n>\omega_{1}-1\end{cases}
\end{aligned}
$$

and ω_{1} is defined by $\lambda\left(\omega_{1}\right)=(1-\epsilon) \lambda(\omega)$. Clearly,

$$
A(\omega, \Omega) \leqslant A^{\prime}(\omega, \Omega)+A^{\prime \prime}(\omega, \Omega)
$$

For $n \leqslant \omega_{1}-1$ we have, with some λ_{n}^{\prime} between λ_{n} and λ_{n+1}

$$
\begin{aligned}
a_{n}^{\prime}(\omega) & =\kappa \lambda(\omega)^{-\kappa}\left(\lambda(\omega)-\lambda_{n}^{\prime}\right)^{\kappa-1} \Delta \lambda_{n} \\
& =\kappa\left(\frac{\lambda(\omega)}{\lambda(\omega)-\lambda_{n}^{\prime}}\right)^{1-\kappa} \frac{\Delta \lambda_{n}}{\lambda(\omega)} \leqslant \frac{\kappa}{\epsilon^{1-\kappa}} \frac{\Delta \lambda_{n}}{\lambda(\omega)}=a_{n}(\omega),
\end{aligned}
$$

say. We put $a_{n}(\omega)=0$ for $n>\omega_{1}-1$. These $a_{n}(\omega)$ are positive, decreasing and have uniformly bounded sums $\sum_{n} a_{n}(\omega)$. Therefore, $A^{\prime}(\omega, \Omega) \rightarrow 0$, by [15, Theorem 7]. On the other hand,

$$
\begin{aligned}
A^{\prime \prime}(\omega, \Omega) & \leqslant \sum_{k=0}^{\infty} a_{n}^{\prime \prime}(\omega) \leqslant \lambda(\omega)^{-\kappa}\left(\lambda(\omega)-\lambda\left(\omega_{1}-1\right)\right)^{\star} \\
& =(1-(1-\epsilon)+o(1))^{\star}=(\epsilon+o(1))^{\star}
\end{aligned}
$$

Therefore $\widetilde{\lim }_{\omega \rightarrow \infty} A(\omega, \Omega) \leqslant \epsilon^{\kappa}$; and since $\epsilon>0$ was arbitrary, $\lim A(\omega, \Omega)$ $=0$, q.e.d.

Theorem 4. If $\Delta \lambda_{n}$ decreases, all functions $\Omega(n)=o(n)$ are summability functions of the second kind of the methods $\mathrm{A}\left(\lambda_{n}\right)$ and $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa \geqslant 1$.

Proof. It is sufficient to consider $\mathrm{R}\left(\lambda_{n}, 1\right)$. The assertion is then $R\left(\lambda_{n}, 1\right) \supset C_{1}$, and this is a theorem of Cesàro [5, p. 58].

Theorems 3 and 4 give only sufficient conditions, but it is clear that they
may not be improved, since $\Omega(n)=n$ is not a summability function for any regular method. On the other hand, summability functions which do not satisfy $\Omega(n)=o(n)$ may exist. For instance the method $\mathrm{R}(\log n, 1)$, which is equivalent to the method of logarithmic means, possesses summability functions $\Omega(n)$ such that $\Omega(n) \neq o(\varphi(n))$ provided $\varphi(n)$ has the property $\varphi(n)=$ $o(n \log n)$.
3.2. Now we shall show that in case $0<\kappa<1$ the condition for a summability function $\Omega(n)$ of the second kind is again 2.3(2). But for this result we require a much greater amount of regularity of $\lambda(n)$ than up to now. However, any function $\lambda(n)$ which is a product of powers of n and iterated logarithms satisfies our conditions.

Theorem 5. If for all large real \boldsymbol{n}
(a) $\lambda(n+h)-\lambda(n)$ is decreasing for any fixed $h>0$,
(β) $\lambda(\log n) / \lambda(n)$ is decreasing,
(γ) $\Delta \lambda_{n} / \Delta \lambda_{2 n} \leqslant M$,
then the general form of a summability function $\Omega(n)$ of the second kind of the method $\mathrm{R}\left(\lambda_{n}, \kappa\right), 0<\kappa<1$ is 2.3(2).

For instance, if $\lambda_{n}=\log \log n$, the conditions are satisfied and we obtain $\Omega(n)=o(n \log n \log \log n)^{\kappa}$.

Proof. We first observe that (γ) implies

$$
\begin{equation*}
1 \leqslant \Delta \lambda_{n} / \Delta \lambda_{n+1} \leqslant M \tag{1}
\end{equation*}
$$

As in Theorem 2(b) we see that the condition 2.3(2) is necessary, further that to prove it sufficient it is enough to derive from it that the sums S_{1} and S_{2} in 2.3(6) converge to 0 as $\omega \rightarrow \infty$. We shall first deduce $S_{2} \rightarrow 0$ from $S_{1} \rightarrow 0$. Using the inequality $\Delta\left(a_{n} b_{n}\right) \geqslant b_{n+1} \Delta a_{n}$ if $a_{n} \geqslant 0, b_{n}$ increases, we see that with the $\lambda^{\prime \prime}{ }_{n}$ of $2.3(6)$,

$$
\begin{aligned}
& \Delta\left[\left(\lambda(\omega)-\lambda_{n+2}\right)^{\kappa-1} \Omega(n)\right] \geqslant \Omega(n+1) \Delta\left(\lambda(\omega)-\lambda_{n+2}\right)^{\kappa-1} \\
& \geqslant(1-\kappa) \Omega(n)\left(\lambda(\omega)-\lambda_{n+2}\right)^{\kappa-2} \Delta \lambda_{n+2} \\
& \geqslant C \Omega(n)\left(\lambda(\omega)-\lambda^{\prime \prime}{ }_{n}\right)^{\kappa-2} \Delta \lambda_{n} .
\end{aligned}
$$

Therefore, using the formula of partial summation, 2.3(2) and 3.2(1),

$$
\begin{aligned}
S_{2} \leqslant & C_{1} \lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}} \Delta \lambda_{n+3} \Delta\left[\left(\lambda(\omega)-\lambda_{n+2}\right)^{\kappa-1} \Omega(n)\right] \\
= & C_{1} \lambda(\omega)^{-\kappa}\left\{-\Delta \lambda_{3}\left(\lambda(\omega)-\lambda_{2}\right)^{\kappa-1} \Omega(0)+\Delta \lambda_{\alpha_{1}+3}\left(\lambda(\omega)-\lambda_{\omega_{1}+3}\right)^{\kappa-1} \Omega\left(\omega_{1}+1\right)\right. \\
& \left.\quad-\sum_{n=1}^{\omega_{1}}\left(\lambda(\omega)-\lambda_{n+2}\right)^{\kappa-1} \Omega(n) \Delta^{2} \lambda_{n+2}\right\} \\
\leqslant & o(1)+C_{1} \lambda(\omega)^{-\kappa} \sum_{n=0}^{\omega_{1}+2}\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa-1} \Omega(n)\left|\Delta^{2} \lambda_{n}\right| .
\end{aligned}
$$

But the second term is $-S_{1}$ with ω_{1} replaced by $\omega_{1}+2$. Thus we have only to show that $S_{1} \rightarrow 0$ if $\omega_{1}<\omega-1$ or that

$$
S^{\prime}=\sum_{n \leqslant \omega-1}\left(\Delta \lambda_{n}\right)^{-x}\left|\Delta^{2} \lambda_{n}\right|\left(\lambda(\omega)-\lambda_{n}\right)^{\kappa-1}
$$

is bounded. We break up S^{\prime} into three parts $\sum_{1}, \sum_{2}, \sum_{3}$ according to the inequalities $n \leqslant \log \omega, \log \omega<n \leqslant \frac{1}{2} \omega, \frac{1}{2} \omega<n \leqslant \omega-1$. For \sum_{1} we have $\lambda(\omega)-\lambda_{n} \geqslant \lambda(\omega)-\lambda(\log \omega) \rightarrow+\infty$ by (β), and therefore

$$
\begin{aligned}
\sum_{1} & =o(1) \sum_{n \leqslant \log \omega}\left(\Delta \lambda_{n}\right)^{-\kappa}\left|\Delta^{2} \lambda_{n}\right|=o(1)\left|\sum_{n=0}^{\infty} \Delta\left(\Delta \lambda_{n}\right)^{1-\kappa}\right| \\
& =o(1)\left(\Delta \lambda_{0}\right)^{1-\kappa}=o(1) .
\end{aligned}
$$

On the other hand, since $\Delta(\lambda(\log n) / \lambda(n)) \leqslant 0$,
3.2(2)

$$
\frac{\lambda(\log (n+1))-\lambda(\log n)}{\Delta \lambda_{n}} \leqslant \frac{\lambda(\log n)}{\lambda(n)} \leqslant 1
$$

Using (a), 3.2(2) and (β) we see that

$$
\begin{aligned}
\Delta \lambda(\log n) & =\lambda(\log n+1)-\lambda(\log n) \\
& \leqslant[\lambda(\log 4 n)-\lambda(\log (4 n-1))]+\ldots+[\lambda(\log (n+1))-\lambda(\log n)] \\
& \leqslant 3 n[\lambda(\log (n+1))-\lambda(\log n)] \leqslant C_{2} n \Delta \lambda_{n}
\end{aligned}
$$

and therefore
3.2(3)

$$
\Delta \lambda(\log n) /\left(n \Delta \lambda_{n}\right) \leqslant C_{2}
$$

for some constant C_{2}. We have further

$$
\lambda(\omega)-\lambda_{n} \geqslant(\omega-n) \Delta \lambda(\omega) \geqslant(\omega / 2) \Delta \lambda(\omega)
$$

if $0 \leqslant n \leqslant \frac{1}{2} \omega$. Therefore

$$
\begin{aligned}
\sum_{2} & \leqslant C_{3}(\omega \Delta \lambda(\omega))^{n-1} \sum_{\log } \sum_{\omega \leqslant n \leqslant \omega}\left(\Delta \lambda_{n}\right)^{-x}\left|\Delta^{2} \lambda_{n}\right| \\
& \leqslant C_{4}\left(\frac{\Delta \lambda(\log \omega)}{\omega \Delta \lambda(\omega)}\right)^{1-\kappa}=O(1)
\end{aligned}
$$

by 3.2(3). Finally,

$$
\sum_{3} \leqslant(\Delta \lambda(\omega))^{\kappa-1} \sum_{\frac{1}{2}<n \leqslant \omega-1}\left(\Delta \lambda_{n}\right)^{-x}\left|\Delta^{2} \lambda_{n}\right| \leqslant C_{5}\left(\frac{\Delta \lambda\left(\frac{1}{2} \omega\right)}{\Delta \lambda(\omega)}\right)^{1-\kappa}=O(1)
$$

by (γ). This completes the proof.

4. Absolute summability functions

4.1. Let $\Omega(n)$ be, as before, a non-decreasing positive function which tends to $+\infty$ with n. In analogy with our former definitions we shall say that $\Omega(n)$ is an absolute summability function of a method of summation A (given by 1.1(1)), if any bounded sequence s_{n} for which $s_{n}=0$ except for a subsequence $\left\{n_{v}\right\}$ with the counting function $\omega(n) \leqslant \Omega(n)$, is absolutely A-summable, that is if $\sum\left|\sigma_{m}-\sigma_{m-1}\right|<+\infty$ for any such sequence.

The following Lemma will be useful. (With another proof, the Lemma has been communicated to the author by Dr. K. Zeller, Tübingen).

Lemma 1. The transformation

$$
\begin{equation*}
v_{m}=\sum_{\nu=0}^{\infty} b_{m \nu} s_{v} \quad(m=0,1, \ldots) \tag{1}
\end{equation*}
$$

maps any bounded sequence $s=\left\{s_{v}\right\}$ into a sequence $v=\left\{v_{m}\right\}$ with $\sum\left|v_{m}\right|<+\infty$ if and only if one of the following three conditions is fulfilled:

$$
\begin{equation*}
\left|\sum_{m \in e 1} \sum_{\nu \in e} b_{m \nu}\right| \leqslant M, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|\sum_{\nu \in e} b_{m \nu}\right| \leqslant M \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|\sum_{\nu \in E} b_{m \nu}\right| \leqslant M \tag{4}
\end{equation*}
$$

Here E is an arbitrary subset and e, e_{1} arbitrary finite subsets of the set of all positive integers, and the M independent of e, e_{1}, E.

Proof. The conditions are equivalent. It is clear, that 4.1(4) implies 4.1(3) and this imples $4.1(2)$, and we leave to the reader the elementary proof that 4.1(2) implies 4.1(4). Further, $\sum_{\nu=0}^{\infty}\left|b_{m \nu}\right|<+\infty, m=0,1, \ldots$ is necessary and is also a consequence of any of our conditions.

Let S and V be Banach spaces of bounded sequences $s=\left\{s_{\nu}\right\}$ and of sequences $v=\left\{v_{m}\right\}$ with $\sum\left|v_{m}\right|<+\infty$, respectively. Suppose that $v=B(s)$, defined by $4.1(1)$, maps S into V. For a fixed $m, \sum_{\nu} b_{m v} s$, is a linear functional in S. Therefore the transformation $v=B_{m}(s)$, defined by $v_{\mu}=\sum_{\nu=0}^{\infty} b_{\mu \nu} s_{\nu}$ for $0 \leqslant \mu \leqslant m, v_{\mu}=0$ for $\mu>m$, is a linear operation mapping S into V. But clearly $B_{m}(s) \rightarrow B(s)$ for $s \in S$ in the norm of the space V. Therefore $v=B(s)$ is also a linear operation and there is an M such that $\|v\| \leqslant M\|s\|$. But this is identical with 4.1(4), if we put $s_{\nu}=1$ for $\nu \in E, s_{\nu}=0$ for $\nu \in E$.

It remains to show that if $4.1(4)$ is true, then $v=B(s)$ maps S into V. The function $F(s)=\sum_{m=0}^{\infty}\left|\sum_{v=0}^{\infty} b_{m v} s_{v}\right| \leqslant+\infty$ is clearly lower semi-continuous in S. If the sequence $s=\left\{s_{\nu}\right\}$ is positive, takes only a finite number of values and if $\|s\| \leqslant 1$, then $s=a^{(1)} s^{(1)}+\ldots+a^{(p)} s^{(p)}$, where the $s^{(i)}$ are sequences of 0 ' s and 1 's, and $a^{(i)} \geqslant 0, \sum a^{(i)} \leqslant 1$. Using 4.1(4) we obtain $F(s) \leqslant \sum a^{(i)} F\left(s^{i}\right)$ $\leqslant M$. Without the condition of positiveness of s we have $F(s) \leqslant 2 M$. But these new s are dense in the unit sphere of S. Therefore $F(s) \leqslant 2 M$ for any s with $\|s\| \leqslant 1$, and $F(s)<+\infty$ everywhere. This completes the proof of the Lemma.

4.2. From Lemma 1 we obtain

Theorem 6. In order that $\Omega(n)$ be an absolute summability function of the method 1.1(1) for which $\sum\left|a_{0 n}\right|<+\infty$, it is necessary and sufficient that for for any finite or infinite sequence $n_{1}<n_{2}<\ldots$ with the counting function $\omega(n) \leqslant \Omega(n)$ there is an M such that

$$
\begin{equation*}
\operatorname{var}_{m} \sum_{\nu=1}^{\infty} a_{m p_{\nu}} \leqslant M \tag{1}
\end{equation*}
$$

for any subsequence p_{ν} of the sequence n_{ν}.
Proof. We apply Lemma 1 to the transformation 4.1(1), where $b_{m \nu}$ is $a_{m n_{\nu}}-a_{m-1}, n_{\nu}$ and $a_{-1}, n=0$. Then 4.2(1) is equivalent to 4.1(4).

There are of course two other forms of the condition which are obtained from $4.1(2)$ or $4.1(3)$. More useful is the following sufficient condition:

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \operatorname{var}_{m} a_{m n_{\nu}}<+\infty \tag{2}
\end{equation*}
$$

for any sequence $n_{1}<n_{2}<\ldots$ whose counting function does not exceed $\Omega(n)$.
Theorem 7. The method of summation A generated by the matrix ($a_{m n}$) for which $\sum\left|a_{0 n}\right|<+\infty$ has absolute summability functions if and only if the variation of the n-th column $V_{n}=\underset{m}{\operatorname{var}} a_{m n}$ converges to 0 for $m \rightarrow \infty$.

Proof. (a) The condition is sufficient. Suppose that $V_{n} \rightarrow 0$ for $n \rightarrow \infty$. Put $W_{n}=\max _{p \leqslant n} V_{p}$, take a sequence n_{ν} such that $\sum W_{n_{\nu}}<+\infty$ and denote by $\Omega(n)$ the counting function of $\left\{n_{\nu}\right\}$. If n_{ν}^{\prime} is an increasing sequence of integers with the counting function $\omega(n) \leqslant \Omega(n)$, then $n^{\prime}{ }_{\nu} \geqslant n_{\nu}$ for all ν [15, 2.1]. But this implies $\sum V_{n}{ }^{\prime}{ }_{\nu}<+\infty$. Applying the sufficient condition 4.2(2) we see that the matrix $\mathrm{A}^{\prime}=\left(a_{m n}{ }_{\nu}{ }_{\nu}\right)$ sums absolutely every bounded sequence, and the matrix A every bounded sequence s_{n} such that $s_{n}=0$ if $n \neq n^{\prime}{ }_{\nu}(\nu=1,2, \ldots)$. Therefore, $\Omega(n)$ is an absolute summability function for A.
(b) The condition is necessary. Suppose that V_{n} does not tend to 0 and that $\Omega(n)$ is an absolute summability function for the method A. We shall show that there is a sequence n_{ν} with the counting function $\omega(n) \leqslant \Omega(n)$ such that

$$
\begin{equation*}
\operatorname{var}_{m} \sum_{\nu=1} a_{m n_{\nu}}=+\infty . \tag{3}
\end{equation*}
$$

This contradiction with Theorem 6 will show that no absolute summability function $\Omega(n)$ can exist.

If the integer p is sufficiently large, the sequence consisting of p alone has certainly the counting function $\leqslant \Omega(n)$; therefore $4.2(1)$ shows that almost all V_{n} are finite. We write $b_{m n}=a_{m n}-a_{m-1},_{n}\left(a_{-1},{ }_{n}=0\right)$. Then for any sequence n_{ν} with the counting function $\leqslant \Omega(n)$ all series $\sum_{\nu=1}^{\infty} b_{m n_{\nu}} s_{n_{p}}$, $m=0,1, \ldots$ must converge for all bounded $s_{n_{\nu}}$. It follows that all series $\sum_{p}\left|b_{m n_{\nu}}\right|$ converge. It is now clear that there is a monotone sequence of integers p_{r} whose counting function is $\leqslant \Omega(n)$, such that all series $\sum_{m}\left|b_{m p_{r}}\right|$ and $\sum_{r}\left|b_{m p_{r}}\right|$ are convergent and that

$$
\begin{equation*}
\sum_{m}\left|b_{m p_{r}}\right| \geqslant \epsilon \quad(r=1,2, \ldots) \tag{4}
\end{equation*}
$$

for some constant $\epsilon>0$. For simplicity we write $c_{m r}$ instead of $b_{m p}$. Inductively we choose two increasing sequences of integers r_{ν}, M_{ν}. If all numbers with indices less than ν are defined, we choose first an $M_{\nu}>M_{\nu-1}$ which satisfies

$$
\begin{equation*}
A,=\sum_{m>M_{\nu}} \sum_{\mu=1}^{\nu-1}\left|c_{m r_{\mu}}\right|<\epsilon / 5 \tag{5}
\end{equation*}
$$

then $r_{v}>r_{\nu-1}$ such that

$$
\begin{equation*}
B_{\nu}=\sum_{m \leqslant M_{\nu}} \sum_{r \geq r_{\nu}}\left|c_{m r}\right|<\epsilon / 5 \tag{6}
\end{equation*}
$$

We have then

$$
\begin{aligned}
& \sum_{M_{\nu}<m \leqslant M_{\nu+1}}\left|\sum_{\mu=1}^{\infty} c_{m r_{\mu}}\right| \geqslant \sum_{M_{\nu}<m \leqslant M_{\nu+1}}\left|c_{m r_{\nu}}\right|-A_{\nu}-B_{\nu+1} \\
& \quad \geqslant \sum_{m=0}^{\infty}\left|c_{m r_{\nu}}\right|-\sum_{m \leqslant M_{\nu}}\left|c_{m r_{\nu}}\right|-\sum_{m>M_{\nu+1}}\left|c_{m r_{\nu}}\right|-2 \epsilon / 5 \\
& \quad \geqslant \epsilon-4 \epsilon / 5=\epsilon / 5
\end{aligned}
$$

by 4.2(5), 4.2(6), and 4.2(4). It follows that $\sum_{m}\left|\sum_{r} c_{n r_{v}}\right|=+\infty$, and this proves $4.2(3)$. The proof is complete.
4.3. As an example of application of Theorem 7 we consider Abel, Riesz and Hausdorff methods.
(i) The method $\mathrm{A}\left(\lambda_{n}\right)$ has absolute summability functions if it has summability functions, that is if and only if $\Delta \lambda_{n} / \lambda_{n} \rightarrow 0$ (compare §2.1).

In fact, the coefficient $a_{n}(x)=e^{-\lambda_{n} x}-e^{-\lambda_{n+1} x}$ of the $\mathrm{A}\left(\lambda_{n}\right)$ transformation 2.1(4) has its maximum for some value x_{n} of x between λ_{n}^{-1} and λ_{n+1}^{-1}, and is monotone in $0 \leqslant x \leqslant x_{n}$ and $x \geqslant x_{n}$. Therefore,

$$
V_{n}=\operatorname{var}_{0 \leqslant x<+\infty} a_{n}(x)=2 a_{n}\left(x_{n}\right) \rightarrow 0, \quad n \rightarrow \infty,
$$

if $\mathrm{A}\left(\lambda_{n}\right)$ has summability functions of the first kind. This proof applies also to $R\left(\lambda_{n}, \kappa\right), \kappa>0$ and gives the same result (in fact, to any regular method A for which $a_{m n}$ has one single maximum in every column).
(ii) A regular Hausdorff method H_{g} with the generating function $g(t)$ of bounded variation has absolute summability functions whenever H_{g} has summability functions, that is if and only if $g(t)$ is continuous at $t=1$ [14, Theorem 13].

For the method H_{g},

$$
a_{m n}=\int_{0}^{1} p_{n m}(t) d g(t), \quad p_{n m}(t)=\binom{m}{n} t^{n}(1-t)^{m-n}, \quad 0 \leqslant n \leqslant m,
$$

and $a_{m n}=0$ for $n>m$. Therefore, if H_{g} has summability functions,

$$
\begin{align*}
V_{n}=\underset{m}{\operatorname{var}} a_{m n} & \leqslant\left|a_{n n}\right|+\int_{0}^{1} \sum_{m=n}^{\infty}\left|p_{n m}(t)-p_{n, m+1}(t)\right||d g(t)| \tag{1}\\
& =o(1)+\int_{0}^{1} P(t)|d g(t)|,
\end{align*}
$$

say. But for fixed n and $t, p_{n m}(t)$ is first increasing with m and then decreasing, the maximal value being $O\left(n^{-\frac{1}{2}}\right)=o(1)$ for $n \rightarrow \infty$ uniformly in any interval $\delta \leqslant t \leqslant 1-\delta, \delta>0$. Moreover $P_{n}(t) \leqslant 2$ for all n and t. Since $g(t)$ is continuous at $t=0$ (by the regularity of H_{g}) and at $t=1,4.3(1)$ implies $V_{n} \rightarrow 0$, which proves our result.
4.4. In this and the next section we use conditions $4.2(1)$ and $4.2(2)$ to find all absolute summability functions of the Cesàro, Euler-Knopp and Borel methods.

Theorem 8. A function $\Omega(n)$ is an absolute summability function of the method C_{e} if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1-a} \Omega(n)<+\infty \tag{1}
\end{equation*}
$$

$$
0<a<1
$$

or
4.4(2)

$$
\sum_{n=1}^{\infty} n^{-2} \Omega(n)<+\infty, \quad a \geqslant 1
$$

We shall need two lemmas.
Lemma 2. For a sequence of integers $0<n_{1}<n_{2}<\ldots$ with the counting function $\omega(n)$ the two following conditions are equivalent $(a>0)$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1-a} \omega(n)<+\infty \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{v=1}^{\infty} n_{v}-a<+\infty \tag{4}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\sum n^{-1-a} \omega(n) & =\sum_{n=1}^{\infty} \sum_{n_{p} \leqslant n} n^{-1-a}=\sum_{\nu=1}^{\infty} \sum_{n \geq n_{\nu}} n^{-1-a} \\
& =\theta \sum_{\nu=1}^{\infty} n_{v}^{-a}
\end{aligned}
$$

where θ is some number, contained in a fixed interval $(a, b), 0<a<b<\infty$.
Lemma 3. Let $\sum n^{-1-a} \Omega(n)=+\infty, a>0$ and let $a>1$ be an integer. Set $p_{r}=a^{p}$. Then

$$
\begin{equation*}
\sum_{v=1}^{\infty} p_{v}^{-a}\left[\Omega\left(p_{v}\right)-\Omega\left(p_{v-1}\right)\right]=+\infty . \tag{5}
\end{equation*}
$$

For we have, with positive constants C_{1}, C_{2},

$$
\begin{aligned}
& \sum_{i=1}^{N} p_{v}^{-a}\left[\Omega\left(p_{p}\right)-\Omega\left(p_{v-1}\right)\right] \\
&=-\Omega\left(p_{0}\right) p_{1}^{-a}+\sum_{p=1}^{N-1} \Omega\left(p_{v}\right)\left(p_{v}^{-a}-p_{v+1}^{-a}\right)+p_{N}^{-a} \Omega\left(p_{N}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant O(1)+C_{1} \sum_{\nu=1}^{N} \Omega\left(p_{\nu}\right) p_{\nu}^{-a} \\
& \geqslant O(1)+C_{2} \sum_{\nu=1}^{N-1} \Omega\left(p_{\nu}\right) \sum_{n=p_{\nu-1}}^{p_{\nu-1}} n^{-1-a} \\
& \geqslant O(1)+C_{2} \sum_{n=1}^{p_{N-1}^{-1}} n^{-1-a} \Omega(n)
\end{aligned}
$$

Proof of Theorem 8. (a) The conditions are sufficient. Suppose that 4.4(1) holds with some $a, 0<a \leqslant 1$, and let $n_{1}<n_{2}<\ldots$ have a counting function $\omega(n) \leqslant \Omega(n)$. Then $\sum n_{\nu}{ }^{-a}<+\infty$, by Lemma 2 . It will be sufficient to show that 4.2(2) holds. But for the method $\mathrm{C}_{a}, a_{m n}=0$ for $m<n$,

$$
\begin{equation*}
a_{m n}=\left(A_{m}^{a}\right)^{-1} A_{m-n}^{a-1} \text { for } m \geqslant n, A_{n}^{a}=\binom{n+a}{n} \cong n^{a} / \Gamma(\alpha+1) \tag{6}
\end{equation*}
$$

and $a_{m n}$ is a decreasing function of m for $m \geqslant n$. Therefore,

$$
\operatorname{var}_{m} a_{m n}=2 a_{n n}=2\left(A_{n}^{a}\right)^{-1} \leqslant C n^{-a}
$$

and 4.2(2) follows. The rest follows from the inclusion $\left|\mathrm{C}_{a}\right| \subset\left|\mathrm{C}_{\beta}\right|$ for $a \leqslant \beta$.
(b) The conditions are necessary. First suppose $0<a<1$. By [15, 5.1] we may assume that $\Omega(n)=o(n)$. Suppose that $\sum n^{-1-a} \Omega(n)=+\infty$. We define $\omega_{1}(n)$ inductively by putting $\omega_{1}(1)=0$ and, if $\omega_{1}(n)$ is known, $\omega_{1}(n+1)$ $=\omega_{1}(n)+1$ if this number is $\leqslant \Omega(n+1)$, and $\omega_{1}(n+1)=\omega_{1}(n)$ in the contrary case. Using $\Omega(n)=o(n)$ one proves easily that $\sum n^{-1-a} \omega_{1}(n)=+\infty$. $\omega_{1}(n)$ is the counting function of some sequence. Omitting, if necessary, some terms of this sequence, we obtain another sequence of integers $n_{1}<n_{2}<\ldots$ such that (i) its counting function $\omega(n) \leqslant \Omega(n)$; (ii) $\sum n_{\nu}{ }^{-a}=+\infty$; (iii) for any $\nu, n_{\nu}+1$ does not belong to the sequence. We now observe that the coefficient $a_{m n}$ given by $4.4(6)$ is decreasing for $m \geqslant n$ and that

$$
\begin{aligned}
a_{n n}-a_{n+1, n} & =\left(A_{n}^{a}\right)^{-1}-\left(A_{n+1}^{a}\right)^{-1} A_{1}^{a-1} \\
& =\left(A_{n}^{a}\right)^{-1} \frac{(1-a) n+1}{n+1+a} \geqslant C n^{-a}
\end{aligned}
$$

with some constant $C>0$. Using (iii) and (ii) we obtain

$$
\begin{aligned}
\operatorname{var} \sum_{\nu=1}^{\infty} a_{m n} & \geqslant \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty}\left(a_{n_{\mu},}-a_{n_{\mu}+1, n_{\nu}}\right) \\
& \geqslant \sum_{\mu=1}^{\infty}\left(a_{n_{\mu} n_{\mu}}-a_{n_{\mu}+1, n_{\mu}}\right) \geqslant C \sum n_{\mu}-a=+\infty,
\end{aligned}
$$

and the result follows by Theorem 6 .
Next consider the case $a \geqslant 1$. We may assume $a>1$. Without restriction of generality we may also suppose that $\Omega(n)=o(n)$ and takes only integral values. We choose $k>e a$ and then an integer $a>k a$. If $4.4(2)$ is not ful-
filled, we must have $\sum_{\nu=1}^{\infty} p_{\nu}{ }^{-1} q_{\nu}=+\infty, q_{\nu}=\Omega\left(p_{\nu}\right)-\Omega\left(p_{\nu-1}\right)$, by Lemma 3 . Consider the sequence consisting of all groups of integers $n, p_{v} \leqslant n$ $<p_{\nu}+q_{\nu}(\nu=1,2, \ldots)$. The counting function of the sequence is $\leqslant \Omega(n)$. Put $f(m)=\sum_{\nu=1}^{\infty} f_{\nu}(m), f_{\nu}(m)=\sum_{p_{\nu} \leqslant n<p_{\nu}+q_{\nu}} a_{m n}$. If we can show that

$$
\begin{equation*}
\operatorname{var}_{m} f(m)=+\infty \tag{7}
\end{equation*}
$$

our result will follow by Theorem 6 . Since

$$
a_{m+1, n} a_{m n}^{-1}-1=\frac{a n-m-1}{(m-n+1)(m+a+1)}, \quad m \geqslant n
$$

the coefficient $a_{m n}$ is surely decreasing as a function of m for $m>a n$. Therefore, $f_{\nu}(m)$ decreases if $m>a\left(p_{\nu}+q_{\nu}\right)$. Let $m^{\prime}{ }_{\nu}=\left[a p_{\nu}\right], m^{\prime \prime}{ }_{\nu}=\left[k a p_{\nu}\right]$. Since $m^{\prime \prime}{ }_{\nu}<p_{\nu+1}, f_{\mu}(m)=0$ for $\mu>\nu, m \leqslant m^{\prime \prime}{ }_{\nu}$. On the other hand, $f_{\mu}(m), \mu<\nu$ are decreasing for $m \geqslant m^{\prime}{ }_{\nu}$. Therefore

$$
\begin{equation*}
f\left(m_{\nu}^{\prime}\right)-f\left(m^{\prime \prime}{ }_{\nu}\right) \geqslant f_{\nu}\left(m_{\nu}^{\prime}\right)-f_{\nu}\left(m^{\prime \prime}{ }_{\nu}\right) . \tag{8}
\end{equation*}
$$

Using 4.4(6) and $q_{v}=o\left(p_{v}\right)$ we have
4.4(9)

$$
\begin{aligned}
f_{\nu}\left(m_{\nu}^{\prime}\right) & =\sum_{p_{\nu} \leqslant n<p_{\nu}+q_{\nu}} a_{m_{\nu}^{\prime} n} \geqslant q_{\nu} a_{m_{\nu}^{\prime}, p_{\nu}+q_{\nu}} \\
& \cong C q_{\nu}\left(a p_{\nu}\right)^{-a}\left((a-1) p_{\nu}\right)^{-1} \geqslant C q_{\nu}\left(e a p_{\nu}\right)^{-1}
\end{aligned}
$$

where C denotes the constant $\Gamma(a+1) / \Gamma(a)$. On the other hand
4.4(10)

$$
\begin{aligned}
f_{\nu}\left(m^{\prime \prime}{ }_{\nu}\right) & \leqslant q_{\nu} a_{m^{\prime \prime}} p_{\nu} \cong C q_{\nu}\left(k a p_{\nu}\right)^{-a}\left((k a-1) p_{\nu}\right)^{a-1} \\
& \leqslant C q_{\nu}\left(k p_{\nu}\right)^{-1} .
\end{aligned}
$$

Since $k>e a$, from 4.4(8), 4.4(9), and 4.4(10) it follows that

$$
f\left(m_{\nu}^{\prime}\right)-f\left(m_{\nu}^{\prime \prime}\right) \geqslant C_{1} q_{v} p_{v}{ }^{-1}, \quad C_{1}>0
$$

and we obtain 4.4(7).
We do not know whether the condition 4.4(2), which is clearly necessary, is also sufficient for the Abel method A. But there is a proof similar to the last case of Theorem 8 if $q_{\nu} p_{\nu}{ }^{-1}$ is sufficiently smooth, if for instance $\Omega(n)$ is a quotient of n by iterated logarithms.
4.5. Theorem 9. A function $\Omega(n)$ is an absolute summability function of the Euler-Knopp method $\mathrm{E}_{t}, 0<t<1$, or of the Borel method B if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-3 / 2} \Omega(n)<+\infty . \tag{1}
\end{equation*}
$$

Proof. In view of the inclusion $\left|\mathrm{E}_{t}\right|<|\mathrm{B}|$ (Knopp-Lorentz [11]) it will be sufficient to show that (i) $4.5(1)$ is sufficient for the method E_{t}; (ii) $4.5(1)$ is necessary for B.

Now the E_{t} transformation is

$$
\sigma_{m}=\sum_{n=0}^{m} p_{n m}(t) s_{n} \quad(m=0,1, \ldots)
$$

For fixed n and $t, p_{n m}(t)$ takes its maximal value at $m=m_{0}$, where m_{0} is the least integer satisfying $m>n t^{-1}-1$. This maximum is $\leqslant C(t) n^{-\frac{1}{2}}$. As $p_{n m}(t)$ is monotone in $n \leqslant m \leqslant m_{0}$ and $m \geqslant m_{0}$,

$$
\begin{equation*}
\operatorname{var}_{m}^{\operatorname{va}} p_{n m}(t) \leqslant 2 C(t) n^{-\frac{1}{2}} . \tag{2}
\end{equation*}
$$

Now if $\left\{n_{\nu}\right\}$ is a sequence with the counting function $\omega(n) \leqslant \Omega(n)$, we have $\sum n_{0}{ }^{-\frac{1}{2}}<+\infty$ by Lemma 2, and from 4.5(2) we see that 4.2(2) holds. This proves (i).
Now suppose the series $4.5(1)$ be divergent. Taking $a=4$ we apply Lemma 3 and obtain $\sum p_{v}{ }^{-\frac{1}{2}} q_{v}=+\infty$ with $q_{v}=\Omega\left(p_{v}\right)-\Omega\left(p_{p-1}\right)$. Again we may assume that $\Omega(n)$ takes only integral values and [$15,5.2$] has the property $\Omega(n)=o\left(n^{\frac{1}{2}}\right)$. Consider the sequence (with counting function $\leqslant \Omega(n)$) which consists of all integers n contained in the intervals $p_{v} \leqslant n<p_{v}+q_{v}$, ($\nu=1,2, \ldots$). Let

$$
f(x)=\sum_{v=1}^{\infty} f_{v}(x), \quad f_{v}(x)=\sum_{p r \leqslant n<p_{p}+q_{v}} e^{-x} x^{n} / n!
$$

To prove (ii) we have, by Theorem 6 (or rather its continuous analogue), to show that
4.5(3)

$$
\operatorname{var}_{0 \leqslant x<+\infty} f(x)=+\infty .
$$

But $a_{n}(x)=e^{-x} x^{n} / n!$ attains its maximum $\cong(2 \pi n)^{-\frac{1}{2}}$ at $x=n$. Moreover, if $0 \leqslant r \leqslant C n^{-\frac{1}{2}}$, then $a_{n+r}(n) \geqslant C_{1} n^{-\frac{1}{2}}$. Since $q_{v}=o\left(p_{p}{ }^{-\frac{1}{2}}\right)$, we obtain

$$
f\left(p_{r}\right) \geqslant f_{r}\left(p_{r}\right) \geqslant C_{1} p_{r}^{-\frac{1}{2}} q_{r}
$$

On the other hand,

$$
f\left(3 p_{v}\right)=\sum_{\mu=1}^{\infty} f_{\mu}\left(3 p_{v}\right) \leqslant \sum_{\left|n-2 p_{p}\right| \geqq p_{p}} a_{n}\left(3 p_{v}\right)=O\left(e^{\left.-\gamma p_{r}\right)}\right.
$$

for some $\gamma>0$ (see for instance [5, p.200]). We see that

$$
\operatorname{var} f(x) \geqslant \sum_{v=1}^{\infty}\left\{f_{v}\left(p_{v}\right)+O\left(e^{-a p_{p}}\right)\right\} \geqslant C_{1} \sum p_{v}{ }^{-\frac{1}{3}} q_{v}+O(1)=+\infty,
$$

which proves 4.5(3).

5. Some further theorems, applications and remarks

5.1. In this section we wish to discuss some applications of the results in [14], [15] and this paper and their relation to known theorems. We begin with the following remark. The definition of a summability function of the second
kind (see $\S 1.1$) may obviously be restated as follows: $\Omega(n)$ is a summability function of the second kind of a regular A if and only if $\sigma_{n}=\left(s_{0}+s_{1}\right.$ $\left.+\ldots+s_{n}\right) /(n+1)=s+O\left(n^{-1} \Omega(n)\right)$ implies the A-summability of s_{n} to s. Thus from [15, 5.2] follows the theorem of Knopp ([10], also [5, p. 213]): $\sigma_{n}=$ $s+o\left(n^{-\frac{1}{2}}\right)$ implies E_{t}-summability of s_{n} together with the result that this is the best possible theorem.
5.2. We observed in $[15,3.1]$ that summability functions may be used to show that Tauberian conditions of a certain kind may not be improved. Thus our results in $\S 2$ and $\S 3$ imply that under certain conditions $u_{n}=O\left(\Delta \lambda_{n} / \lambda_{n}\right)$ is the best possible Tauberian condition for $\mathrm{R}\left(\lambda_{n}, \kappa\right)$ and $\mathrm{A}\left(\lambda_{n}\right)$. This method however fails to give the full truth if $\Delta \lambda_{n} / \lambda_{n}$ is smaller than n^{-1}, since a regular method of summation cannot possess summability functions like $n \log n$. The following theorem, based on the sufficiency part of [14, Theorem 8], gives, as far as we know, a precise result for all practically interesting special methods of summation (compare also [12]).

Theorem 10. (i) Suppose that $\mathrm{A}=\left(a_{m n}\right)$ is a regular method of summation and $n_{1}<n_{2}<\ldots$ sequence of integers for which

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\{\max _{\nu} \sum_{n=n_{\nu}}^{n_{\nu+1}-1}\left|a_{m n}\right|\right\}=0 . \tag{1}
\end{equation*}
$$

Then $u_{n}=0$ for $n \neq n_{\nu}$ is not a Tauberian condition for A .
(ii) If, moreover, $c_{n} \rightarrow 0, c_{n} \geqslant 0$ and

$$
\begin{equation*}
\sum_{n=n_{p}}^{n_{\nu+1}-1} c_{n} \geqslant \delta>0 \quad(\nu=1,2, \ldots) \tag{2}
\end{equation*}
$$

then $u_{n}=O\left(c_{n}\right)$ is not a Tauberian condition for A .
Both statements are true even for bounded sequences $s_{n}=\sum_{p=0}^{n} u_{p}$.
Proof. Let $\mathrm{A}^{\prime}=\left(a_{m \nu}^{\prime}\right)$ and $a^{\prime}{ }_{m \nu}=\sum_{n=n,}^{n_{\nu}+1-1} a_{m n}$. Then max, $a^{\prime}{ }_{m \nu} \rightarrow 0$ for $m \rightarrow \infty$, and by [14, Theorem 8 and $\left.8^{*}\right]$, there is a bounded divergent sequence which is A^{\prime}-summable. This implies (i).

To prove (ii) consider the method $\mathrm{A}^{\prime \prime}=\left(a^{\prime \prime}{ }_{m v}\right)$, where

$$
\begin{equation*}
a^{\prime \prime}{ }_{m \nu}=\sum_{n=n_{\nu}}^{n_{\nu+1}-1}\left|a_{m n}\right| \tag{3}
\end{equation*}
$$

Since $\max a^{\prime \prime}{ }_{m \nu} \rightarrow 0$ and $\sum_{\nu}\left|a^{\prime \prime}{ }_{m \nu}\right|<+\infty$ for any m, by [14, Theorem 8], there is a divergent sequence of 0 's and 1 's $A^{\prime \prime}$-summable to 0 (Theorem 8 is formulated for regular methods, but only the two properties of $\mathrm{A}^{\prime \prime}$ stated above are used in the proof). In other words there is a subsequence $\nu(k)$ of the ν such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{n=n_{\nu}(k)}^{n_{\nu}(k)+1}-1 \quad\left|a_{m n}\right| \rightarrow 0 \quad \text { for } m \rightarrow \infty \tag{4}
\end{equation*}
$$

Using 5.2(2) and $c_{n} \rightarrow 0$ we can choose, for all large k, an $n^{\prime}{ }_{k}$ between $n_{\nu(k)}$ and $n_{\nu(k)+1}$ and u_{n} positive in $n_{\nu(k)} \leqslant n<n^{\prime}{ }_{k}$, negative in $\boldsymbol{n}^{\prime}{ }_{k} \leqslant n<n_{\nu(k)+1}$ such that

$$
u_{n}=O\left(c_{n}\right), \sum_{n_{\nu}(k)}^{n^{\prime} k-1} u_{n}=\delta / 3, \sum_{n_{\nu}(k)}^{n_{\nu}(k)+1}+1 \quad u_{n}=0
$$

We put $u_{n}=0$ for the remaining n. The sequence $s_{n}=\sum_{p=0}^{n} u_{p}$ is bounded, divergent, A -summable to 0 and has the property $u_{n}=O\left(c_{n}\right)$. This proves (ii).

It follows from the proof that Theorem 10 remains true if instead of 5.2(1) we assume only

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\{\max _{r} a^{\prime \prime}{ }_{m \nu_{r}}\right\}=0, \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

for a subsequence ν_{r} of the ν.
5.3. From the possible applications of Theorem 10 we choose those to Riesz and Wiener methods.

Theorem 11. Suppose that $\lambda(n)=\lambda$ is a positive function increasing to $+\infty$ with n.
(i) If n_{ν} is a sequence of integers increasing to $+\infty$ and such that $\lim _{\nu \rightarrow \infty}\left[\lambda\left(n_{\nu+1}\right) / \lambda\left(n_{\nu}\right)\right]=1$, then $u_{n}=0, n \neq n_{\nu}$ is not a Tauberian condition of the method $\mathrm{R}\left(\lambda_{n}, \kappa\right), \kappa>0$.
(ii) If $c_{n}=\varphi(n) \Delta \lambda_{n} / \lambda_{n} \rightarrow 0$, where $\sum c_{n}=+\infty$ and $\varphi(n) \rightarrow+\infty$, then $u_{n}=O\left(c_{n}\right)$ is not a Tauberian condition for $\mathrm{R}\left(\lambda_{n}, \kappa\right)$.

Proof. We may assume $0<\kappa<1$. By 2.1 (3) we have

$$
\begin{align*}
a_{\nu}^{\prime \prime}{ }_{\nu}(\omega) & =\sum_{n_{\nu} \leqslant n<n_{\nu+1}} a_{n}(\omega) \tag{1}\\
& =\left\{\begin{array}{lr}
\lambda(\omega)^{-k}\left\{\left[\lambda(\omega)-\lambda\left(n_{\nu}\right)\right]^{k}-\left[\lambda(\omega)-\lambda\left(n_{\nu+1}\right)\right]^{k}\right\} & \text { if } \omega \geqslant n_{\nu+1} \\
\lambda(\omega)^{-k}\left[\lambda(\omega)-\lambda\left(n_{\nu}\right)\right]^{k} & \text { if } n_{\nu} \leqslant \omega<n_{\nu+1}, \\
0 & \text { if } \omega<n_{\nu}
\end{array}\right.
\end{align*}
$$

Using the inequality $0<\kappa<1$ we see that for fixed $\nu, a^{\prime \prime}{ }_{\nu}(\omega)$ takes its maximum for $\omega=n_{\nu+1}$ which is equal to $\lambda\left(n_{\nu+1}\right)^{-\kappa}\left[\lambda\left(n_{v+1}\right)-\lambda\left(n_{\nu}\right)\right]^{\kappa}$. Since the lower limit of this expression for $\nu \rightarrow \infty$ is 0 , and since $a^{\prime \prime}{ }_{\nu}(\omega) \rightarrow 0$ for fixed ν and $\omega \rightarrow \infty$, there is a subsequence ν_{r} such that $5.2(5)$ holds. Using the remark at the end of 5.2 we obtain (i).

In proving (ii) we may suppose that $c_{n} \leqslant 1$. We take n_{1} arbitrary and define n_{v+1}, if n, is known, to be the first integer $>n_{p}$ such that $\sum_{n_{p} \leqslant n<n_{p+1}} c_{n} \geqslant 1$. Then

$$
2 \geqslant \sum_{n_{\nu} \leqslant n<n_{\nu+1}} c_{n} \geqslant \varphi\left(n_{\nu}\right) \lambda\left(n_{v+1}\right)^{-1}\left[\lambda\left(n_{\nu+1}\right)-\lambda\left(n_{\nu}\right)\right]
$$

and therefore $\lambda\left(n_{\nu+1}\right) / \lambda\left(n_{\nu}\right) \rightarrow 1$. As in the proof of (i) we see that this implies 5.2(1). The proof is completed by applying Theorem 10.

By a different and more difficult method, Theorem 11, (ii) had been proved by Ingham [8]. Instead of our hypothesis $c_{n} \rightarrow 0$ Ingham assumes that $\lambda_{n+1} / \lambda_{n} \rightarrow 1$. This difference is inessential, as in the latter case we may always replace $\varphi(n)$ by a smaller function tending to $+\infty$, for which $c_{n} \rightarrow 0$ holds.

Passing to Wiener's methods, we call a bounded function $f(x), 0 \leqslant x<+\infty$ summable to s by a Wiener method W_{g}, if $\int_{0}^{+\infty}|g(t)| d t<+\infty$ and

$$
\begin{equation*}
\frac{1}{x} \int_{0}^{\infty} g\left(\frac{t}{x}\right) f(t) d t \rightarrow s \int_{0}^{\infty} g(t) d t, \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

The well known Tauberian theorem of Pitt [5, p. 296, Theorem 233] asserts that if $\int_{0}^{\infty} g(t) t^{i x} d t \neq 0$ for real x, then

$$
\begin{equation*}
f(x+\delta)-f(x) \rightarrow 0 \quad \text { for } \delta>0, \delta / x \rightarrow 0, x \rightarrow \infty \tag{3}
\end{equation*}
$$

is a Tauberian condition for the method Wg . In particular, if $f(x)$ is absolutely continuous,
5.3(4)

$$
f^{\prime}(x)=O\left(x^{-1}\right), \quad x \rightarrow \infty
$$

is a Tauberian condition. We use the analogue of Theorem 10 for integrals to show that these conditions cannot be improved.

Theorem 12. The conditions

$$
\begin{equation*}
f(x+\delta)-f(x) \rightarrow 0 \quad \text { for } \delta>0, \delta \varphi(x) / x \rightarrow 0, x \rightarrow \infty \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
f^{\prime}(x)=O\left(x^{-1} \varphi(x)\right), \quad x \rightarrow \infty \tag{6}
\end{equation*}
$$

where $\varphi(x)$ is bounded in any finite interval and $\varphi(x) \rightarrow \infty$ are not Tauberian conditions for any method W_{g}.

Proof. It will be sufficient to consider 5.3(6). We define $t_{\nu},(\nu=1,2, \ldots)$ inductively by $t_{1}=1$,

$$
\begin{equation*}
\int_{t_{v}}^{t_{p+1}} x^{-1} \varphi(x) d x=1 \quad(\nu=1,2, \ldots) \tag{7}
\end{equation*}
$$

Then $t_{p+1} / t_{p} \rightarrow 1$. The expression corresponding to $5.2(3)$ is

$$
a_{\nu}^{\prime \prime}(x)=\frac{1}{x} \int_{t_{\nu}}^{t_{\nu+1}}|g(t / x)| d t=\int_{x-1 t_{v}}^{x-1 t_{\nu+1}}|g(u)| d u .
$$

Taking $A>0$ so large that $\int_{A}^{\infty}|g| d u<\epsilon$, we observe that the maximal length of $\left(x^{-1} t_{\nu}, x^{-1} t_{v+1}\right)$ for all ν with $x^{-1} t_{\nu} \leqslant A$ tends to 0 as $x \rightarrow \infty$. This implies that $a^{\prime \prime}{ }_{\nu}(x)<\epsilon$ for all ν and all sufficiently large x. Thus we obrain 5.2(1) and $5.3(7)$ gives the condition $5.2(2)$ of Theorem 10. The proof is complete.

A theorem on absolute summability corresponding to Theorem 10, (i) may be obtained using Theorem $7, \S 4.2$ instead of [14, Theorem 8]. In this way we obtain that $u_{n}=0, n \neq n_{\nu}(\nu=1,2, \ldots)$ is not a Tauberian condition for absolute summability by the matrix $\mathrm{A}=\left(a_{m n}\right)$ if

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty}\left\{\operatorname{var}_{m} \sum_{n_{\nu} \leqslant n<n_{\nu+1}} a_{m n}\right\}=0 \tag{8}
\end{equation*}
$$

(More precisely, if $5.3(8)$ holds, there are bounded divergent sequences with $u_{n}=0, n \neq n_{\nu}$, which are absolutely A -summable.) As an example we have that the high indices theorem for absolute Abel summability of Zygmund [17] cannot be improved.
5.4. In $[15,6.2]$ it has been shown that $u_{n}=o\left(n^{-1}\right)$ is a Tauberian condition for any regular Hausdorff method H_{g}. We show now that for an unspecified generating function $g(t)$ this condition cannot be improved. There are regular methods H_{g} such that $u_{n}=O\left(n^{-1}\right)$ is not a Tauberian condition, even for bounded sequences.

Set

$$
g(t)= \begin{cases}0 & \text { in }\left[0, \frac{1}{3}\right), \\ \frac{1}{2} & \text { in }\left[\frac{1}{3}, \frac{2}{3}\right), \\ 1 & \text { in }\left[\frac{2}{3}, 1\right]\end{cases}
$$

The corresponding H_{g} transformation is given by

$$
\begin{equation*}
\sigma_{n}=\frac{1}{2} \sum_{\nu=0}^{n}\binom{n}{\nu}\left[t_{1} \nu\left(1-t_{1}\right)^{n-\nu}+t_{2}^{\nu}\left(1-t_{2}\right)^{n-\nu}\right] s_{\nu}, \quad t_{1}=\frac{1}{3}, t_{2}=\frac{2}{3} . \tag{1}
\end{equation*}
$$

Using the well known properties of the Newton probabilities $p_{n v}(t)=$ $\binom{n}{\nu} t^{\nu}(1-t)^{n-\nu}$ it is easy to prove that under the hypotheses $u_{n}=O\left(n^{-1}\right)$, $s_{n}=O(1)$ the method $5.4(1)$ is equivalent to the method defined by

$$
\begin{equation*}
\sigma_{n}=\frac{1}{2}\left(s_{[n / 3]}+s_{[2 n / 3]}\right) \tag{2}
\end{equation*}
$$

Therefore it is sufficient to give a function $s(u)$ of the real argument $u \geqslant 1$ such that $s(u)=O(1), s(u+1)-s(u)=O\left(u^{-1}\right)$ and $s(u)+s(2 u) \rightarrow \mathbf{0}$. But a function of this kind is defined by

$$
s(u)= \begin{cases}(-1)^{v}\left(\log _{2} u-\nu\right) & \text { for } 2^{\prime} \leqslant u<2^{+\frac{1}{2}} \\ (-1)^{v}\left(\nu+1-\log _{2} u\right) & \text { for } 2^{\nu+\frac{1}{2}} \leqslant u<2^{2+1}, \quad(\nu=0,1, \ldots)\end{cases}
$$

Our proof in [15, 6.2] was based on a gap theorem of Agnew [2] for the methods H_{g}. It is perhaps worth while to remark that the following improvement of Agnew's result is true. For any regular method H_{0} there is a constant $\lambda=\lambda_{g}>1$ such that $u_{n}=0$ for $n \neq n_{\nu}(\nu=1,2, \ldots)$ is a Tauberian condition for the method H_{g}, if

$$
\begin{equation*}
n_{\nu+1} / n_{\nu} \geqslant \lambda . \tag{3}
\end{equation*}
$$

(Agnew assumes $n_{\nu+1} / n, \infty$ instead of this.) The proof is obtained by combining Agnew's argument with a well known elementary Mercerian
theorem ([1], also [16]). It is not known whether we may take λ_{g} as near to 1 as we please.
5.5. In this section we make some minor remarks, and corrections to earlier papers.

We first observe, that almost convergence $[14,1]$ may be defined for sequences of elements x_{n} of a Banach space. We call x_{n} almost convergent to x, if
5.5(1) $\left\|x-\frac{x_{n+1}+\ldots+x_{n+\nu}}{\nu}\right\| \rightarrow 0$ for $\nu \rightarrow \infty$ uniformly in n.
(This implies that the $\left\|x_{n}\right\|$ are bounded.) We have, for example, the following theorem. Any weakly convergent sequence of elements of a uniformly convex Banach space contains a strongly almost convergent subsequence (which is therefore strongly C_{a}-summable for any $a>0$). In fact, a modification of the argument used by Kakutani [9] shows that the subsequence x_{n} which he proves to be strongly C_{1}-summable, is even strongly almost convergent.

Dr. R. G. Cooke kindly points out that he has used our condition [15, 2.4(1)] for some other purpose in [3]. He also makes the following remark. The condition $\max _{n}\left|a_{m n}\right| \rightarrow 0$ is equivalent, for any method A with the property $\sum_{n}\left|a_{m n}\right| \leqslant \stackrel{n}{M}$, to the condition
5.5(2)

$$
\sum_{n=0}^{\infty} a_{m n}^{2} \rightarrow 0 \quad m \rightarrow \infty
$$

for

$$
\max _{n}\left|a_{m n}\right|^{2} \leqslant \sum_{n} a_{m n}^{2} \leqslant M \max _{n}\left|a_{m n}\right| .
$$

Now 5.5(2) is given by Hill [7] as a necessary condition for a method A to possess the Borel property. Hence, by [14, Theorem $\left.8^{*}\right]$ if a regular method A has the Borel property, then it possesses summability functions of the first kind.

We note that a theorem by Garabedian, Hille and Wall [4, Theorem 5.2] gives a set of necessary and sufficient conditions in order that all functions $\Omega(n)=o(n)$ be summability functions of the second kind of a Hausdorff method H_{g}.

We use this opportunity to rectify some mistakes in our previous papers.
In the proof of [14, Theorem 10] the sequence $n_{1}<n_{2}<\ldots$ depends upon \boldsymbol{m} (it is erroneously stated there that it is the same for all m in question).

In the formulation of Theorem 5 in Operations in linear metric spaces, Duke Math. J., vol. 15 (1948) 755-761, replace "when" by "if and only if".

In a review of the above paper (Math. Reviews, vol. 10 (1949), 255) it is stated that the proof of the main Theorem 1 of this paper is incomplete. The slips are, however, of minor nature and are rectified as follows:
(a). The (well known) definition of openness of a mapping is incorrectly formulated on p. 757, lines 1-3. To obtain a correct one, replace the first part of line 3 by: "for any $y \in U_{\sigma}\left(y_{0}\right)$ an element $x \in U_{\epsilon}\left(x_{0}\right)$ exists for which $y=S x$ ". Only the correct definition is used in the proof.
(b). Lines $15-16$ on p .757 are not sufficient to insure that the set $B_{a . b}=$ $[a<\Phi(y)<b]$ is analytical. But the argument in the text applies to the set $B_{b}=[\Phi(y)<b]$, and since the $B_{a, b}$ are unions of differences of the B_{b}, they, too, are analytical.

References

[1] R. P. Agnew, On equivalence of methods of evaluation of sequences, Tôhoku Math. J., vol. 35 (1932), 244-252.
[2] Analytic extension of Hausdorff methods, Trans. Amer. Math. Soc., vol. 52 (1942), 217-237.
[3] R. G. Cooke, On mutual consistency and regular T-limits, Proc. London Math. Soc., vol. (2), 41 (1936), 113-125.
[4] H. L. Garabedian, E. Hille and H. S. Wall, Formulations of the Hausdorff inclusion problem, Duke Math. J., vol. 8 (1941), 193-213.
[5] G. H. Hardy, Divergent series, Oxford Univ. Press (1949).
[6] G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, Cambridge (1915).
[7] J. D. Hill, Summability of sequences of 0's and 1's, Ann. of Math., vol. (2) 46 (1945), 556-562.
[8] A. E. Ingham, Note on the converse of Abel's theorem, Proc. London Math. Soc., vol. (2) 23 (1924), 326-336.
[9] Shizo Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J., vol. 45 (1938), 188-193.
[10] K. Knopp, Über das Eulersche Summierungsverfahren, (II), Math. Zeitschr., vol. 18 (1923), 125-156.
[11] K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv der Math., vol. 2 (1949), 10-16.
[12] G. G. Lorentz, Beziehungen zwischen den Umkehrsätzen der Limitierungstheorie, Bericht der Math. Tagung Tübingen, (1946), 97-99.
[13] - Über Limiterungsverfahren, die von einem Stieltjes-Integral abhängen, Acta Math., vol. 79 (1947), 255-272.
[14] - A contribution to the theory of divergent sequences, Acta Math., vol. 80 (1948), 167-190.
[15] —_Direct theorems on methods of summability, Can. J. of Math., vol. 1 (1949), 305-319.
[16] R. Rado, Some elementary Tauberian theorems (I), Quart. J. Math. (Oxford ser.), vol. 9 (1938), 274-282.
[17] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc., vol. 55 (1944), 170-204.
The University of Toronto

