
DIRECT THEOREMS ON METHODS OF SUMMABILITY II 

G. G. LORENTZ 

1. Introduction 

1.1. This paper is a continuation of the papers of the author [14], [15]. 
We begin by recapitulating the main definitions. If {#„} is an increasing 
sequence of positive integers, the value of the characteristic or the counting 
function co(w) of {nv\ is, for any n ^ 0, the number of np satisfying the in­
equality nP ^ n. Suppose that A is a linear method of summation corre­
sponding to the transformation 

00 

1.1(1) Om = L QmnSn (w = 0, 1, . . .). 
n=0 

In what follows, S2(n) is always a non-decreasing positive function defined for 
all real n ^ 0 and tending to +00 with n. A function U(n) is a summability 
function of the first kind of a method A if all real bounded sequences sn such that 
sn = 0 except for a sequence {nv} of values of n whose counting function 
o)(n) ^ Œ(w), n ^ 0, are A-summable. 0(w) is a summability function of the 
second kind of a method A if Sn — s0 + si + . . . + sn = 0(Q(n)) implies that 
sn is A-summable. 

In [15] we have given necessary and sufficient conditions for summability 
functions of an arbitrary method A and have found all summability functions 
of some special methods. Here in §2 and §3 we solve the last problem for the 
Riesz and Abel methods R(Xn,K), K > 0 and A(Xn) (for the properties of these 
methods compare Hardy and Riesz [6], Hardy [5]). We have had to make 
some hypotheses on the regularity of the sequence An (which are in most cases 
very modest). In §4 we discuss summability functions for absolute summa­
bility. Theorem 6 gives necessary and sufficient conditions for absolute 
summability functions, Theorem 7 describes methods which possess such 
functions. We also determine all absolute summability functions for some 
special methods. Thus for the Cesàro methods Ctt, a > 0 they are given by 
the condition X) ri~l~~fiÇl(n) < + 00 (0 = a for a ^ 1, 0 = 1 for a ^ 1) in 
contrast to the condition Q(n) = o(n) which describes ordinary summability 
functions of Ca. Finally, in §5 we give applications of theorems of this and 
the previous papers. Of these we note Theorem 10, whose application is a 
good way to show that certain Tauberian conditions are the best possible of 
their kind. 
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METHODS OF SUM M ABILITY 237 

2. Summability functions of Riesz and Abel methods. 
Case when AXn is increasing 

2.1. Let 0 = Xo < Xi < X2 < . . . , Xn —> °° be a given sequence and K > 0. 
A series £&«, or the sequence sn of its partial sums, is R(An, K) summable to 5 if 

2.1(1) l T « £ ( f > - \n)KUn 

converges to s for v —» « . And £ w n is A(Xn) -summable to 5, if 
00 

2.1(2) <r(x) = E ^ ^ ' w » ->s, * -> 0 + . 
n = 0 

We shall find it convenient to extend the definition of Xn also to non-integral 
values of n and to consider a monotone continuous function A(a>), w ^ 0 such 
that A(n) = Xn. Then we can write 2.1(1) in the form 

2,1(3) r(«) = X(«)-« £ (X(«) - Xn)8»» 

= x(«r«EK«)-x»)B-(x(«)-Xn+i)*}5n+x(ûiMx(«) 
»^w0 —1 

where no = [<w]. On the other hand, the expression 2.1(2) is equivalent to 
oo 

2.1(4) <T(X) = £ (e-*»x-e-*n+i*)Sn 
n = 0 

for any A(Xn) -summable sequence sn (see for instance [13, Theorem 10]). 
In the sequel we seek to find all summability functions of the methods 

R(An, K), A(Xn) in a simpler form than that given by general theorems [15, §2]. 
We first make the following remark. Any of the methods R(Xn, *c)> K > 0, 
A(An) possesses summability functions if and only if 

2.1(5) AXn/X* -> 0 or Xn+1/Xn -> 1 (AXn = X»+i-X«). 

In fact, if the method R(Xn, K) has summability functions, the coefficients of 
the transformation 2.1(3) must converge uniformly to zero for a> —» » by 
[14, jTheorem 8*]. In particular the last coefficient converges to zero, and this 
gives 2.1(5). And if 2.1(5) is true, the coefficients in 2.1(4) converge uniformly 
toO: 

*-x»*(l-e-AX»z) $ Ge-xn*AXnx ^ C2AXn/Xn-*0, 

since e~uu is bounded for u ^ 0. Since R(An,*) C A(An) for K > 0 [6, p. 39], 
the proof is complete. 

2.2. To obtain further results we suppose some regularity of the sequence 
An. In this section we shall suppose that AAn is increasing. A first consequence 
of this hypothesis together with 2.1(5) is that An/AA„ = 0{n). For 

VAX» / VAX„+I / AX„AX„+1 
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and thus Xn/AXn — n is decreasing. Therefore, Xn/AXn ^ n + C for some 
constant C. Theorems 1 and 2 below give full information about the summa-
bility functions of the first and the second kind. In Theorem 1 we suppose 
that AXn/Xn —»0 (which is no restriction because of 2.1(5)), in Theorem 2 
slightly more, namely that AXn/Xn decreases to 0. 

THEOREM 1. If AXn/Xn converges to zero and AXn increases, all summability 
functions (of the first kind) of the methods R(Xn, *), K > 0 and A(Xn), and only 
these functions, are given by 

2.2(1) Q(*) = o(Xn/AXn). 

Proof, (a) Every function Sl(n) satisfying 2.2(1) is a summability function of 
the method R(Xn, K), 0 < K ^ 1. We have to show that 2.2(1) implies that 
A(w, 0) —> 0 for a? —> oo [15, 2.3]. We recall that for a method of summation 
defined by s = l im^oo Z^i#n(w)s n and a function Q(w), ^4(co, Q) is the 
least upper bound of Z ^ i k n , ( w ) | ior all sequences n9 with the counting 
function ^ 0(«). Because of 2.1(5) we may disregard the last coefficient in 
2.1(3). For n ^ n0 — 1 the coefficient 

an(w) = - X(w)-"A(X(w)-Xn)« = fcX(co)-"(X(w)-X,
n)'

r-1AXn 

(X'n is between Xn and Xn+i) is increasing with n. Therefore, 

A(u,Q) ^ v E a«(co) ^ X(a?)-'[X(a>)--X(wQ--a(a>))]' 
«0—n(«) <» <«0— i 

^ cf^^1 (0(«) + 2)T-*0 
L Xn0+1 J 

by 2.1(5) and 2.2(1). This proves (a). 

(b) Any summability function of the method A(Xn) satisfies 2.2(1). Suppose 
that 2.2(1) does not hold, then for some ô > 0 and an infinity of n, 
ù(n) ^ ôXn/AXn. For these n define the integer «i by 

2.2(2) Xni ^ (1 + 6)Xn < Xni+1. 

For a fixed n of the above kind, we denote by Sli(v) the counting function of the 
set of integers v defined by n ^ v < n\. We have 

n\ — n ^ (Xni —Xn)/AXn ^ 5Xn/AX«, 

and therefore &i(«i) ^ 12(w). Thus Oi(w) ^ tl(u) in n ^ u < tti, and since Qi 
is constant outside of this interval, the same inequality holds for all u. There­
fore for the function A(x, 0) of the method A(Xn) we have 

A(x,Q) ^ £ ( e~ x ^~e~ x ^ i* )=6~ x «*-e" x V 
W< V<fl\ 

= e-^'n^(Xn i-X„) 

for some X'„ between X„ and XBl. Here 
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Xn,—Xw = Xn,+1 —Xn + o(\n) ^ 5Xn + o(l) ^ |5X„ 

for large n. Choosing xn = Xn
_1, we obtain \'nxn ^ 1 + 5 and therefore 

A(xn,Q) > |5e- ( l + 5 ) = const. > 0, 

so that A(x,Q) does not tend to zero for x—*°°, which proves (b) by [15, 2.3]. 
From (a) and (b) the theorem follows in virtue of the inclusions 

R(Xn, K) C R(XW, *') C A(Xn), 0 < K < *'. 

2.3. We now treat summability functions of the second kind. 

THEOREM 2. If AXn/Xn decreases to 0 and AXn increases, (i) a// summability 
functions of the second kind of the methods R(Xn, K), <c ^ 1 and A(Xn) and on^y 
/Aese are given by 

2.3(1) 0(n) = o(Xn/AXn). 

(ii) For R(X„, K), 0 < K < 1 the condition is 

2.3(2) 0(») = o(\n/à\ny. 

Proof, (a) Jf 2.3(1) holds, then Q(n) is a summability function of the second 
kind of R(X„, 1). From this (i) will follow by Theorem 1. By [15, 2.3] we 
have to show that if 2.3(1) holds, and a„(w) is the coefficient of sn in the 
transformation 2.1(3) for K = 1, then 

00 

2.3(3) A(a>, 12) = L Q(v)\ Aa„(o>)| ->0 . 

We have aF(o>) = AX,/X(w) for v ^ n0 — 1, ano(co) = (X(w)— Xno)/X(co) and 
a,(w) = 0 for v > w0. The last non-vanishing term of the sum 2.3(3) with 
w = n0 converges to 0 because AXn/Xn —» 0. Therefore, 2.3(3) is equivalent to 

n 
2.3(4) X(w)"1 L Sl(v) A2X, -> 0 forn -> « . 

With AX „/X„ also X ,+i/X „ is decreasing, and so X „X „+2 ^ X ,+i2 and 

2.3(5) X,A2X, = X,X,+2 ~ 2X,X,+1 + *>2 < (X,+i-X,)2 = (AX,)2, 

Xn"1 Z X,A2X,/AX, ^ Xn""1 £ AX, = 1. 

By a variant of the theorem of Silverman-Toeplitz we now see that 

Xn"1 Ê 0 ( F ) A'X, = X»"1 £ ^ ^ 0( v) **-' -» 0, 
o »»=o AX, XF 

if fl(v)AX„/X„-*0. 

(b) W^ £r0*>e (ii). For 0 < K < 1 the necessary and sufficient condition 
is again 2.3(3), where a„(<*>) is defined by the transformation 2.1(3). Con-
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sidering the last non-vanishing term we see that Q(n)(A\n/\n)
K —> 0, that is 

2.3(2) is necessary. Let 2.3(2) be true. Then 2.3(3) is equivalent to 

2.3(4) 5 = X(a>)~< £ 0(»)| A2(X(co) -X»)"| -» 0, 
n = 0 

where coi is some integer of the form coi = a; — p, and p is constant. It will be 
sufficient to take p ^ 5. 

We have, if 0 ^ c < b < a and a - 2b + c ^ 0, 

aK-2bK + C = C-(2b-a)K + a*-2bK + {2b-aY 
= K(a~2b + c)?-1 + #c(#c —1) ( 6 - a ) V ~ 2 , 

where c < £ < 2b — a < 6, c < rj < a. Applying this to 5, we obtain 

S ^ ClOl + 02^2, 

2.3(6) 
Sx = X(co)-Ki:0(w)A2Xn|x(co)-X'n|--1, 

n=0 

5 2 = X(co)-« £ £2(n) (AXn)2 |X(o;)-X , ,
n |-2, 

*=o 

where X'm and X"* are between Xn and Xn+2- If AU is such that 
— A(X(OJ)— \ny = K(\(OJ) -/xrO'-^AXn, Xn < Mn < Xn+i, we have 

X(o>) — \rn = i _ X r n ~ Mn > , X n +2 Xn >̂  ^ 

X(oj )— IXn \(ù))—fJLn Xn+5 — X n + i 

and therefore, using again 2.3(5), 
Ul A2X 

S1 <: CMo>)-*i:n(n)yp[(\(œ)-\n)'-(Ho>)-\n+iy} 

^ C3X(o,)-' £ a(n) — [(X(«) -X»)«-(X(«) - \ „ + i ) ' ] . 
»=o X„ 

We may,regard this as a transformation of the sequence Q(n) AXn/Xn and 
obtain as before Si —» 0 for w —» <». 

To deal with S2f 2.3(1) will not be enough and we need 2.3(2) in full. We 
have 

St = 0(l)\(œ)-^Z\n^A\n)l-^H0>)-Xn)^2A\n 
»=0 

^ o(l) (AXn.) l~'E (X(o))~Xn)-2AXll 
» = 0 

As before, it is easy to see that (X(«)—X„)C^AXJI = 0(A(X(co) — Xn)1^1)» and 
therefore 

5 2 = o(l) (AXn,)1-'[(X(o))-X(Wl + 1) ) - 1 -X(a) ) - 1 ] . 
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Since AXn/Xn is decreasing, 1 ^ AXn+i/AX* ^ Xn+i/Xn —• 1 and so 
AXn-fi/AXn -> 1 for n -> a>. But this implies [X(«)-X(«i + l)]/AXno = 0(1) 
and 5 2 = o{\). Therefore 5 —> 0 and the proof of the theorem is complete. 

3. Riesz and Abel methods. Case when AXn is decreasing 

3,1. If AXn is decreasing, the condition 2.1(5) is automatically fulfilled. 
By the argument used in §2.2 it is seen that we even have Xn/AXn ^ Cn for 
some constant C > 0. 

THEOREM 3. If AXn is decreasing, all functions 12(rc) = o(n) are summability 
functions of the methods R(Xn, K), K > 0 and A(Xn). 

Proof. It is sufficient to consider R(Xn, K) for 0 < K ^ 1. We prove that 
A(o), 0) —»0, if Q(n) = o(n). Choose an e > 0 and break the matrix A = 
(««(«)) of R(X„, K) into the parts A' = (a'„(w)), A" = (a"„(<w)), where 

(a>) for 0 ^ » ^ «i — 1, 
for w > an — 1 ; 

// / \ = / 0 for 0 ^ n ^ coi — 1, 
\an(co) for w > coi — 1, 

and coi is defined by X(o>i) = (1 —€)X(co). Clearly, 

i4(«, 0) ^ 4 ' ( « , 0) + 4 " ( « , 0). 

For » ^ coi — 1 we have, with some X'n between Xn and X^ i 

a'n(co) = *X(«)-'(X(«) - X'n^AXn 

/ X(a>) V-« AXn c AX» , . 

\X(a J)-X ,
n / X(a>) €l~« X(a>) 

say. We put an(co) = 0 for n > an — 1. These an(co) are positive, decreasing 
and have uniformly bounded sums ^nan(œ). Therefore, A'(a), 0) —»0, by 
[15, Theorem 7]. On the other hand, 

A"(<*,Q) ^ £<*"*(«) ^ X(«)-«(X(«)-X(«i-1))« 

= (1 —(1 —€) +^(1))« = (€ + 0(1))'. 

Therefore lim <,_>«> i4(w, Q) ^ e"; and since e > 0 was arbitrary, lim i4(o>,Q) 
= 0, q.e.d. 

THEOREM 4. / / AXn decreases, all functions Q(n) = tf(n) are summability 
functions of the second kind of the methods A(Xn) and R(Xn, K), K ^ 1. 

Proof. It is sufficient to consider R(Xn, 1). The assertion is then 
R(Xn, 1) D Ci, and this is a theorem of Cesàro [5, p. 58]. 

Theorems 3 and 4 give only sufficient conditions, but it is clear that they 
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may not be improved, since 0(n) = n is not a summability function for any 
regular method. On the other hand, summability functions which do not 
satisfy Q,(n) = o(n) may exist. For instance the method R (log n, 1), which is 
equivalent to the method of logarithmic means, possesses summability functions 
S2(w) such that 0(w) ?± o(<p(n)) provided <p(n) has the property <p(n) = 
o(n log n). 

3.2. Now we shall show that in case 0 < K < 1 the condition for a summa­
bility function tl(n) of the second kind is again 2.3(2). But for this result we 
require a much greater amount of regularity of \(n) than up to now. However, 
any function \(n) which is a product of powers of n and iterated logarithms 
satisfies our conditions. 

THEOREM 5. If for all large real n 

(a) \(n + h) — \(n) is decreasing for any fixed h > 0, 
(P) A (log n)/\(n) is decreasing, 
(7) AX„/AX2« ^ Jlf, 

then the general form of a summability function to(n) of the second kind of the 
method R(Xn, K), 0 < K < 1 is 2.3(2). 

For instance, if Xn = log log w, the conditions are satisfied and we obtain 
£l(n) = o(n log n log log w)\ 

Proof. We first observe that (7) implies 

3.2(1) 1 ^ AXn/AXn+i ^ M. 

As in Theorem 2(b) we see that the condition 2.3(2) is necessary, further that 
to prove it sufficient it is enough to derive from it that the sums Si and S2 in 
2.3(6) converge to 0 as œ —» 00. We shall first deduce £2 —> 0 from Si —> 0. 
Using the inequality A(anbn) ^ bn+iAan if an ^ 0, bn increases, we see that 
with the X"n of 2.3(6), 

A[(X(a>) - Xn+î)"-1*^)] ^ 0(n + 1)A(A(«) - X ^ ) * " 1 

£ (1 - jc)Q(n) (X(«) - Xn+2)*-2AXn+2 

£ CO(n)(X(«) - X"«)*-2AXn. 

Therefore, using the formula of partial summation, 2.3(2) and 3.2(1), 

S2 $ G X ( » ) - " E AXn+3A[(X(co) - X»+,)--10(»)] 
n = 0 

= CiX(«)-'{ - AX3(X(co) -XO r-10(0) + AXWl+3(X(oJ) - X^1+g)«-10(«i+ 1) 

- E (X(«) - X n + ^ ^ Q ^ A ^ n ^ } 
n = l 

<c o(i) + CiX(a,)-̂ E (x(«) - XO^QWIAXI . 

But the second term is — Si with œi replaced by o>i + 2. Thus we have only 
to show that Si —» 0 if coi < a> — 1 or that 
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S' = £ (AXn)-'|A2X„|(X(o.) - Xn)«-1 

«<w—1 

is bounded. We break up 5 ' into three parts £ i , £ 2 , £ 3 according to the 
inequalities n ^ log co, log co < w ^ |w, §co < n ^ w — 1. For £ 1 we have 
X(o>) — Xw ^ X(o>) — X(log w) —> + 00 by (0), and therefore 

E i = *(1) L (AXn)-'|A2Xn| = o(l) | £ A(AXn)H 
n<logû> n =0 

^ ( l M A X o ) 1 - ' ^ ! ) . 

On the other hand, since A(X(log n)/\(n)) ^ 0, 

3.2(2) X(log(n + 1)) - X(log n) < X(logn) < L 

AXn ^ X(n) 

Using (a), 3.2(2) and (0) we see t h a t 

AX(log n) = X(log « + 1) - X(log n) 

^ [X(log4tt)-X(log(4tt-l))]+ . . . + [ X ( l o g ( » + l » - X ( l o g » ] 
^ 3n[X(log(w + l))-X(log n)] ^ C2nA\n 

and therefore 

3.2(3) AX(log»)/(wAXn) ^ C2 

for some constant Ci. We have further 

A(«)-A» £ (« - rc)AX(u) ^ (co/2)AX(o>) 

if 0 ^ n ^ Jw. Therefore 

Z2 ^ C3(coAX(o,))*-1 L (AX„HA2Xn | 
log o><«^« 

« c/^Mf))1- = 0(1), 
\ wAX(«) / )AX(«) 

by 3.2(3). Finally, 

£ , ^ (AX(«))-i £ (AXn)-'|A%,| ^ cJ^^Y' = 0(1) 
i « < » < « - i \ AX(o>) / 

by (7). This completes the proof. 

4. Absolute summability functions 

4.1. Let Q,(n) be, as before, a non-decreasing positive function which tends 
to + co with n. In analogy with our former definitions we shall say that Q(n) 
is an absolute summability function of a method of summation A (given by 1.1(1)), 
if any bounded sequence sn for which sn = 0 except for a subsequence {n9) 
with the counting function co(») ^ Œ(#), is absolutely A-summable, that is if 
X Ier™ ~~ tfm-il < + °° for any such sequence. 
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The following Lemma will be useful. (With another proof, the Lemma has 
been communicated to the author by Dr. K. Zeller, Tubingen). 

LEMMA 1. The transformation 
CO 

4.1(1) vm = Y, bmvSp (m = 0, 1, . . .) 

maps any bounded sequence s = \sv\ into a sequence v = {vm} with Y\vm\ < + 0 0 

if and only if one of the following three conditions is fulfilled: 

4.1(2) | E E bmJ[ ^ M, 
meei vee 

4.1(3) E | E M ^ M, 
m =0 vce 

oo 

4.1(4) E I E bm\ ^ M. 
m =0 veE 

Here E is an arbitrary subset and e} e\ arbitrary finite subsets of the set of all 
positive integers, and the M independent of e, ei, E. 

Proof. The conditions are equivalent. It is clear, that 4.1(4) implies 4.1(3) 
and this impies 4.1(2), and we leave to the reader the elementary proof that 
4.1(2) implies 4.1(4). Further, Y%o\bmJ[ < + °°, m = 0, 1, . . . is necessary 
and is also a consequence of any of our conditions. 

Let 5 and V be Banach spaces of bounded sequences s — {sv) and of 
sequences v = {vm\ with Y\vm\ < + °°, respectively. Suppose that v = B(s), 
defined by 4.1(1), maps 5 into V. For a fixed m, Y^mrS, is a linear functional 
in 5. Therefore the transformation v = Bm(s)y defined by z;M = Y%obnvSP for 
0 ^ n ^ m, Vu = 0 for /z > m, is a linear operation mapping S into V. But 
clearly Bm(s) —» 5(5) for 5 G 5 in the norm of the space V. Therefore v — B(s) 
is also a linear operation and there is an M such that ||v|| ^ M \\s\\. But this 
is identical with 4.1(4), if we put sv = 1 for v £ E, sv = 0 for v £ E. 

It remains to show that if 4.1(4) is true, then v = B(s) maps 5 into V. The 
function F(s) = ]Em=o|]L^o bmvs\ ^ + °° is clearly lower semi-continuous 
in S. If the sequence s = {sv\ is positive, takes only a finite number of values 
and if ||s(| ^ 1, then 5 = a ( l )s ( l )+ . . . + a (p)s (p), where the s(ï) are sequences of 
0's and Vs, and a ( i ) ^ 0 , £ a ( i ) ^ L Using 4.1(4) we obtain F(s) ^ Ya(i)F(sl) 
^ AT. Without the condition of positiveness of 5 we have F(s) ^ 2M. But 
these new 5 are dense in the unit sphere of S. Therefore F(s) ^ 2M for any 
5 with | |s | | ^ 1, and F(s) < + œ everywhere. This completes the proof of 
the Lemma. 

4.2. From Lemma 1 we obtain 

THEOREM 6. In order that Q(n) be an absolute summability function of the 
method 1.1(1) for which £|#on| < + 00 t it is necessary and sufficient that for 
for any finite or infinite sequence n\ < n% < . . . with the counting function 
o)(n) ^ 12 (w) there is an M such that 
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4.2(1) var £ amp, ^ M 
m v = 1 

for any subsequence pv of the sequence nv. 

Proof. We apply Lemma 1 to the transformation 4.1(1), where bmv is 
0"mnv #ra—1> nv and a_i, n = 0. Then 4.2(1) is equivalent to 4.1(4). 

There are of course two other forms of the condition which are obtained 
from 4.1(2) or 4.1(3). More useful is the following sufficient condition: 

00 

4.2(2) £ var amn, < + » 
* = 1 m 

for any sequence n\ < ni < . . . whose counting function does not exceed tt(n). 

THEOREM 7. The method of summation A generated by the matrix (amn) for 
which 2ja0n| < + °o has absolute summability functions if and only if the 
variation of the n-th column F n = var amn converges to 0 for m —» œ. 

m 

Proof, (a) TTze condition is sufficient. Suppose that Vn —» 0 for w —» «>. Put 
Wn = max Fp , take a sequence nv such that ^Wn,, < + °° and denote by 

£2(w) the counting function of \nv}. If n'v is an increasing sequence of integers 
with the counting function o)(n) ^ ti(n)f then n'v ^ w„ for all v [15, 2.1]. But 
this implies ]£ Fn 'F < + °°. Applying the sufficient condition 4.2(2) we see 
that the matrix A' = (awn 'v) sums absolutely every bounded sequence, and 
the matrix A every bounded sequence sn such that sn — 0 if n9én\(v = 1, 2 , . . .). 
Therefore, fl(n) is an absolute summability function for A. 

(b) The condition is necessary. Suppose that Vn does not tend to 0 and that 
Q(n) is an absolute summability function for the method A. We shall show 
that there is a sequence nv with the counting function a)(n) ^ ti(n) such that 

4.2(3) v a r 2 > « » , = + « . 
m v = 1 

This contradiction with Theorem 6 will show that no absolute summability 
function 12 (n) can exist. 

If the integer p is sufficiently large, the sequence consisting of p alone has 
certainly the counting function ^ Q(w); therefore 4.2(1) shows that almost all 
Vn are finite. We write bmn = amn — aw_i, » (a_i, n = 0). Then for any 
sequence w„ with the counting function ^Q(n) all series Ya%ibmnvSnv> 
m = 0, 1, . . . must converge for all bounded sny. It follows that all series 
£*|^winj converge. It is now clear that there is a monotone sequence of 
integers pr whose counting function is ^12(«), such that all series £m|&7»pj 
and X]r|&mpJ are convergent and that 

4.2(4) Z\bmPr\ Ï * (r = 1, 2, . . .) 
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for some constant e > 0. For simplicity we write cmT instead of bmPr. Induc­
tively we choose two increasing sequences of integers r„, Mv. If all numbers 
with indices less than v are defined, we choose first an M, > Mv-\ which 
satisfies 

4.2(5) A, = £ "E \cmru\ < e/5, 
m > Mp M = 1 

then rp > r„_i such that 

4.2(6) Bv = E E \cmr\ < e/5. 
m ^ My r^rv 

We have then 
CD 

£ I ! £ £mr>| ^ E \Cmrp\ — A, — Bv+\ 
Mv<m^Mv+\ n=l My<m<Afr+i 

oo 

^ E l^mrj - E k m r j — E l^mrj - 2 e / 5 
w =0 w^My m>Mp+t 

$> € - 4e/5 = e/5 

by 4.2(5), 4.2(6), and 4.2(4). It follows that Em\Z>cnr,\ = + «>, and this 
proves 4.2(3). The proof is complete. 

4.3. As an example of application of Theorem 7 we consider Abel, Riesz 
and Hausdorff methods. 

(i) The method A(Xn) has absolute summability functions if it has sum-
mability functions, that is if and only if AXn/Xn —* 0 (compare §2.1). 

In fact, the coefficient an(x) = e~x*x — e~^+ix of the A(Xn) transformation 
2.1(4) has its maximum for some value xn of x between Xn

_1 and Xn+i_1, and 
is monotone in 0 ^ x ^ xn and x ^ xn. Therefore, 

Vn = var an(x) = 2an(xn) —> 0, n —* oo, 
0<*<+oo 

if A(Xn) has summability functions of the first kind. This proof applies also 
to R(Xn, K), K > 0 and gives the same result (in fact, to any regular method 
A for which amn has one single maximum in every column). 

(ii) A regular Hausdorff method Hg with the generating function g(t) of 
bounded variation has absolute summability functions whenever Hg has 
summability functions, that is if and only if g{t) is continuous at t — 1 [14, 
Theorem 13]. 

For the method Hg, 

amn = jlpnm(t)dg(t), pnm(t) = ( 5 ) r ( l - t)m~n, 0 ^ n ^ m, 

and amn = 0 for n > m. Therefore, if Hff has summability functions, 
00 

4.3(1) Vn = var amn < |on n | + / J E \pnm(t) - p (01 \dg{t)\ 
m m =n 

= 0(1) + $lP(t)\dg(t)\, 
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say. But for fixed n and t, pnm(t) is first increasing with m and then decreasing, 
the maximal value being 0(ri~*) = o(l) for n—><» uniformly in any interval 
8 ^ i ^ 1 - 5, Ô > 0. Moreover Pn(t) ^ 2 for all n and /. Since g(J) is 
continuous at / = 0 (by the regularity of Hg) and at / = 1, 4.3(1) implies 
Vn —• 0, which proves our result. 

4.4. In this and the next section we use conditions 4.2(1) and 4.2(2) to 
find all absolute summability functions of the Cesàro, Euler-Knopp and Borel 
methods. 

THEOREM 8. A function Q(n) is an absolute summability function of the 
method C« if and only if 

OO 

4.4(1) E n-l-*Q(n) <+<*>, 0 < a < l , 

or 

4.4(2) X > - 2 Û ( n ) < + o o , a ^ 1. 
n = i 

We shall need two lemmas. 

LEMMA 2. For a sequence of integers 0 < Wi < ni < . . . with the counting 
function oo(n) the two following conditions are equivalent (a > 0): 

00 

4.4(3) E n~l~* w(n) < + ao 

oo 

4.4(4) £ « / - • < + « > . 

In fact, 

n = l » F <n * = 1 n^ np 

oo 

= 0 E n,-«, 

where 0 is some number, contained in a fixed interval (a, ô), 0 < a < b < <». 

LEMMA 3. Le£ E w ~ I - a ^(w) = + °°, a > 0 att<£ let a > 1 be an integer. 
Set pP = a'. 77*ew 

4.4(5) E pr*[Q(p,) " 0(/*-i)] = + » . 

For we have, with positive constants Ci, C«, 
AT 

E Pr*Mpr) - 0(^r-l)] 
2 V - 1 

= - Qfa)pr* + E «(P.) (pr« - />r+ra) + PN-*Q(PN) 
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N 

z o(i) +Cii%r« 
N-l pv-i 

ï 0(i) + c 2 Z a(P>) L n-*-* 
v=\ n-py-i 

^ 0(1) + C 2 I n " 1 - ^ ^ ) . 

Proo/ 0/ Theorem 8. (a) ITze conditions are sufficient. Suppose that 4.4(1) 
holds with some a, 0 < a ^ 1, and let «1 < n2 < . . . have a counting function 
œ(n) ^ 12(w). Then £ft,Ta < + °°, by Lemma 2. It will be sufficient to 
show that 4.2(2) holds. But for the method Ca, amn = 0 for m < n, 

4.4(6) amn = ( ^ i r U i l 1 . for m ^ «, A\ = (w+a) ~ " a / r ( a + 1), 

and amn is a decreasing function of m for m ^ w. Therefore, 

v a r a m n = 2ann = 2(Al)~1 ^ CV~°, 
m 

and 4.2(2) follows. The rest follows from the inclusion |C0 |C \Cp\ for a ^ ft. 

(b) r&e conditions are necessary. First suppose 0 < a < 1. By [15, 5.1] 
we may assume that Q,(n) = #(#). Suppose that ^n~1~a^l{n) = + 00. We 
define u>\(ri) inductively by putting wi(l) = 0 and, if o)i(n) is known, coi(n + l) 
= wi(w) + 1 if this number is ^ £2(n + 1), and wi(w + 1) = coi(w) in the 
contrary case. Using 12 (w) = tf(n) one proves easily that ^n~1~aœi(n) = + 0 0 . 
œi(w) is the counting function of some sequence. Omitting, if necessary, some 
terms of this sequence, we obtain another sequence of integers n\ < w2 < . . . 
such that (i) its counting function œ(n) ^ 12(w) ; (ii) £ nv~

a = + 00 ; (iii) for 
any v, nv + 1 does not belong to the sequence. We now observe that the 
coefficient amn given by 4.4(6) is decreasing for m ^ n and that 

ann - an+h n = (Al)-1 - (An\xYxA\^ 

= r i ( l - a ) n + l Cn_a 

n + 1 + a 

with some constant C > 0. Using (iii) and (ii) we obtain 
CD 00 CO 

V a r Y, <lmnp ^ Z L (<*nMn, ~ « n M + l , n , ) 
y = 1 JI =*1 * = 1 

00 

and the result follows by Theorem 6. 
Next consider the case a ^ 1. We may assume a > 1. Without restriction 

of generality we may also suppose that 12(n) = o(n) and takes only integral 
values. We choose k > ea and then an integer a > ka. If 4.4(2) is not ful-
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filled, we must have E î l i r t ^ + °°, qv = &(pv) — &(/>,_i), by Lemma 3. 
Consider the sequence consisting of all groups of integers w, pv ^ n 
< pv + qv (v = 1, 2, . . .). The counting function of the sequence is ^Q(w). 

00 

Put / (w) = ]L/,(w), /v(m) = £ a™*- If we can show that 
v=l Pv^n<pv-\-qv 

4.4(7) varf(m) = + « 

our result will follow by Theorem 6. Since 

- i _ an — m — 1 . 
flm+l.n Own — 1 — — ffl £ W, 

(m - n + \){m + a + 1) 
the coefficient amn is surely decreasing as a function of m for m > a n. There­
fore, fv(m) decreases if m > a(pv + qv). Let m'v = [apv], m"r — [kapv]. 
Since m"v < pv+h /M(w) = 0 for n > v, m ^ m"v. On the other hand, 
Mm)> IJL < v are decreasing for m ^ m'v. Therefore 

4.4(8) f{m'v) - f(m",) > Mm',) - Mm",). 

Using 4.4(6) and qv = o(pv) we have 

4.4(9) Mm'>) = L <*m> ^ q^mr„ Pp+<jv 
Pv<,n<pv+qv 

^ Cqv(apv)-*((a - l ) ^ ) 0 " 1 ^ Cqv{eapv)~\ 

where C denotes the constant T(a + l ) / r ( a ) . On the other hand 

4.4(10) M*n">) $ q^m"vp, GË CMkapv)-*((ka - l ) ^ )*" 1 

^ Cqv{kpv)~
l. 

Since k > ea, from 4.4(8), 4.4(9), and 4.4(10) it follows that 

/(m',) -f(m"v) ï Ciq,prl, G > 0, 

and we obtain 4.4(7). 
We do not know whether the condition 4.4(2), which is clearly necessary, 

is also sufficient for the Abel method A. But there is a proof similar to the 
last case of Theorem 8 if qvpv~

1 is sufficiently smooth, if for instance 2(n) is a 
quotient of n by iterated logarithms. 

4.5. THEOREM 9. A function Q,(n) is an absolute summability function of 
the Buler-Knopp method E*, 0 < t < 1, or of the Borel method B if and only if 

GO 

4.5(1) £ n-V2n(n) < + » . 
» = i 

Proof. In view of the inclusion | E * | < | B | (Knopp-Lorentz [11]) it will be 
sufficient to show that (i) 4.5(1) is sufficient for the method E*; (ii) 4.5(1) is 
necessary for B. 

Now the E* transformation is 
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*m = E Pnm(t)sn ( w = 0, 1, . . . ) . 
n=0 

For fixed n and /, pnm{t) takes its maximal value at m — trio, where ra0 is the 
least integer satisfying m > nt~l — 1. This maximum is ^ C(f)n~2. As 
pnm(t) is monotone in n <$ m ^ ra0 and w ^ w0, 

4.5(2) varpnm(0 ^ 2C(0»"*. 
m 

Now if {rc„} is a sequence with the counting function co(w) ^ Œ(w), we have 
Z)wV~* < + °° by Lemma 2, and from 4.5(2) we see that 4.2(2) holds. This 
proves (i). 

Now suppose the series 4.5(1) be divergent. Taking a = 4 we apply Lemma 
3 and obtain Y,P»~*Q' - + °° with qv = 12(£„) — S2(£,_i). Again we may 
assume that £2(w) takes only integral values and [15, 5.2] has the property 
12(«) = o(r&). Consider the sequence (with counting function ^ iï(n)) which 
consists of all integers n contained in the intervals pP ^ n < p¥ + q„ 
(u = 1,2 ). Let 

/(*) = L/,(*), /,(*) = £ «-*7*! 

To prove (ii) we have, by Theorem 6 (or rather its continuous analogue), 
to show that 

4.5(3) var /(*) = + œ. 
0<x<+oo 

But an{x) = e~xxn/n\ attains its maximum ^(27rn)~* at x = n. Moreover, 
if 0 ^ r ^ C»~^, then an + r(n) ^ Ctn~K Since ç, = o(pP~^), we obtain 

On the other hand, 

7(3/»,) = £ / , (3 /> , )^ £ ««(3/>.) = 0 ( « - ^ ) 

for some y > 0 (see for instance [5, p.200]). We see that 

var/(») £ £ {/,(*>,) + 0(e-«M} £ CiE*T*J. + 0(1) = + » , 

which proves 4.5(3). 

5. Some further theorems, applications and remarks 

5.1. In this section we wish to discuss some applications of the results in 
[14], [15] and this paper and their relation to known theorems. We begin with 
the following remark. The definition of a summability function of the second 

https://doi.org/10.4153/CJM-1951-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-028-7


METHODS OF SUMMABILITY 251 

kind (see §1.1) may obviously be restated as follows: ft(w) is a summability 
function of the second kind of a regular A if and only if o-n = (s0+Si 
+ . . . + sn)/(n + 1) = s + 0(n~lQ,(n)) implies the A-summability of sn to s. 
Thus from [15, 5.2] follows the theorem of Knopp ([10], also [5, p. 213]): <rn = 
s + o{ri~*) implies Et -summability of sn together with the result that this is 
the best possible theorem. 

5.2. We observed in [15, 3.1] that summability functions may be used to 
show that Tauberian conditions of a certain kind may not be improved. Thus 
our results in §2 and §3 imply that under certain conditions un = 0(AXn/Xn) 
is the best possible Tauberian condition for R(Xn, K) and A(Xn). This method 
however fails to give the full truth if AXn/Xn is smaller than n~l, since a regular 
method of summation cannot possess summability functions like n log w. 
The following theorem, based on the sufficiency part of [14, Theorem 8], 
gives, as far as we know, a precise result for all practically interesting special 
methods of summation (compare also [12]). 

THEOREM 10. (i) Suppose that A = (awn) is a regular method of summation 
and «i < w2 < . . . a sequence of integers for which 

nv+\ — 1 

5.2(1) lim {max £ |amn |} = 0. 
ra-*a> v n—nv 

Then un = 0 for n 9^ nv is not a Tauberian condition for A. 
(ii) / / , moreover, cn —> 0, cn ^ 0 and 

5.2(2) n ' + E cn ï Ô > 0 (v = 1, 2, . . .), 
n =n9 

then un = O(cn) is not a Tauberian condition for A. 

Both statements are true even for bounded sequences sn = ££=O W P-

Proof. Let A' = (#'m,) and a'mv= X) amn- Then m a x ^ ^ ^ O for m—» <» , 
n=nw 

and by [14, Theorem 8 and 8*], there is a bounded divergent sequence which is 
A' -summable. This implies (i). 

To prove (ii) consider the method A" = (an'*»„), where 

5.2(3) a"m, = 1 |aw»|. 

Since max a" -»0 and E| &"mp\ < + °° for any m, by [14, Theorem 8], 
V V 

there is a divergent sequence of 0's and l's A" -summable to 0 (Theorem 8 is 
formulated for regular methods, but only the two properties of A" stated 
above are used in the proof). In other words there is a subsequence v(k) 
of the v such that 
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00 tt„(*) + i - l 

5.2(4) •£ £ \amn\ -» 0 for m -» « . 

Using 5.2(2) and cn —» 0 we can choose, for all large k, an n'k between «„(*) and 
*Mfc)+i and un positive in nv(k) ^ n < n'k, negative in rik ^ n < w„(*)+i such 
that 

n ' f c - l « p ( t ) + i - l 

Wn = 0(cn), JL Un = 5/3, Z W» = 0. 
nv{K) nv(k) 

We put wn = 0 for the remaining n. The sequence sn = X)£=OWP is bounded, 
divergent, A -summable to 0 and has the property un = 0(cn). This proves (ii). 

It follows from the proof that Theorem 10 remains true if instead of 5.2(1) 
we assume only 

5.2(5) lim j m a x û " m , J = 0 , m —> oo 
m—)O0 r 

for a subsequence vr of the J>. 

5.3. From the possible applications of Theorem 10 we choose those to 
Riesz and Wiener methods. 

THEOREM 11. Suppose that \(n) =\ is a positive function increasing to +oo 
with n. 

(i) If nv is a sequence of integers increasing to + œ and such that 
lim [\(nv+i)/\(nv)] = 1, then un = 0, n ^ nv is not a Tauberian condition of 

the method R(Xn, K), K > 0. 

(ii) If cn = <p(n)AXn/^n —> 0, wfterg £ c w = + °° flwd p(n) —» + °°, /ftffw 
un — 0(cn) is not a Tauberian condition for R(Xn, K). 

Proof, We may assume 0 < JC < 1. By 2.1(3) we have 

5.3(1) a",(«) = L ^n(co) 

rX(a))-'{[X(aj)-X(w,)]'f-[X(aj)-X(w,+1)]'
t} if « £ »,+i 

= iX(co)~x[X(co)— X(n,)]" if w„ ^ w < «F+i, 
(O if a) < w,. 

Using the inequality 0 < K < 1 we see that for fixed v, a"„(co) takes its 
maximum for w = nv+i which is equal to X(w,+i)~*[X(w,+i) — X(w,)]". Since 
the lower limit of this expression for v —> oo is 0, and since a"v(u>) —» 0 for fixed 
v and w —> oo, there is a subsequence vr such that 5.2(5) holds. Using the 
remark at the end of 5.2 we obtain (i). 

In proving (ii) we may suppose that cn ^ 1. We take n\ arbitrary and define 
n,+i, if nv is known, to be the first integer > nF such that £ cn ^ 1. 

Then 

2 £ L Cn £ «KOx^+i)-1 [x(tt,+i)- x(n,)L 
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and therefore \(ny+i)/\(nv) —> 1. As in the proof of (i) we see that this 
implies 5.2(1). The proof is completed by applying Theorem 10. 

By a different and more difficult method, Theorem 11, (ii) had been proved 
by Ingham [8]. Instead of our hypothesis cn —* 0 Ingham assumes that 
Xn+i/Xn —» 1. This difference is inessential, as in the latter case we may 
always replace (p(n) by a smaller function tending to + <», for which cn —» 0 
holds. 

Passing to Wiener's methods, we call a bounded function f(x), 0 ^ x < + <» 
summable to 5 by a Wiener method Wg, if J*o°°(gW|^ < + °° and 

1 1 g[z)f(t)dt-5.3(2) g{t)dt, 

The well known Tauberian theorem of Pitt [5, p. 296, Theorem 233] asserts 
that if /o° g(t)tixdt ^ 0 for real x, then 

5.3(3) fix+ 8) -f(x)^0 for S > 0, ô/x -> 0, x -> » 

is a Tauberian condition for the method Wg. In particular, if f(x) is absolutely 
continuous, 

5.3(4) f(x) = O(*-0, 

is a Tauberian condition. We use the analogue of Theorem 10 for integrals 
to show that these conditions cannot be improved. 

THEOREM 12. 

5.3(5) 

The conditions 

f(x + Ô) -f(x) 0 for 5 > 0, 8<p(x)/x -* 0, * -> «> 

or 

5.3(6) fix) = orvw), 
where <p(x) is bounded in any finite interval and <p(x) 
conditions for any method Wa. 

oo are not Tauberian 

Proof. It will be sufficient to consider 5.3(6). We define t„ (v — 1, 2, 
inductively by t\ = 1, 

5.3(7) 

Then t9+\/t9 

W 
x 1v(x)dx — 1 ( v = 1 ,2 , . . . ) . 

1. The expression corresponding to 5.2(3) is 

a",(x) = -
W 

\g(t/x)\dt = 
'x-Uw+i 

x~lh 
\g(u)\du. 

Taking A > 0 so large that J A|g|d# < €, we observe that the maximal length 
of (x~~Hv, x~~H,+i) for all v with x"% ^ A tends to 0 as x —> œ. This implies 
that #"„(:*;) < € for all y and all sufficiently large x. Thus we obtain 5.2(1) 
and 5.3(7) gives the condition 5.2(2) of Theorem 10. The proof is complete. 
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A theorem on absolute summability corresponding to Theorem 10, (i) may 
be obtained using Theorem 7, §4.2 instead of [14, Theorem 8]. In this way we 
obtain that un = 0, n ^ nv (v = 1 ,2 , . . . ) is not a Tauberian condition for 
absolute summability by the matrix A = (amn) if 

5.3(8) lim {var £ amn} = 0. 

(More precisely, if 5.3(8) holds, there are bounded divergent sequences with 
un — 0, n 9^ nVy which are absolutely A -summable.) As an example we have 
that the high indices theorem for absolute Abel summability of Zygmund 
[17] cannot be improved. 

5.4. In [15, 6.2] it has been shown that un = o(ri~l) is a Tauberian condition 
for any regular Hausdorff method Hg. We show now that for an unspecified 
generating function g(t) this condition cannot be improved. There are regular 
methods Hg such that un = 0(n~l) is not a Tauberian condition, even for bounded 
sequences. 

Set |0 in [0, £), 
g(t) = U in [ i f ) , 

The corresponding Hg transformation is given by 

5.4(1) Gn = I L ( ^ ' ( l - h)n-> + /2*(1 -t2y->]s„ h = i h = I 

Using the well known properties of the Newton probabilities pn*(t) = 
(?)/"(l — t)n~v it is easy to prove that under the hypotheses un = 0(ri~l), 
sn — 0(1) the method 5.4(1) is equivalent to the method defined by 

5 .4 (2 ) <Tn = -§(S[n/3] + ^2n/3]). 

Therefore it is sufficient to give a function s(u) of the real argument u ^ 1 
such that s(u) = 0(1), s(u + I) - s(u) = 0(u~l) and s(u) + s(2u) - • 0. But 
a function of this kind is defined by 

C/,A _ f ( - l ) ' ( l o g 2 " - v) for 2> <:u< 2>+* 
SW - \ ( - l )*(„+l- log2w) for 2>+* ^ u < 2 '+ 1 , (v = 0, 1, . . .). 

Our proof in [15, 6.2] was based on a gap theorem of Agnew [2] for the 
methods Hg. It is perhaps worth while to remark that the following improve­
ment of Agnew's result is true. For any regular method Hg there is a constant 
X = \g > 1 such that un = Ofor n T± np(v = 1, 2, . . .) is a Tauberian condition 
for the method Hff, if 

5.4(3) n,+x/n, > X. 

(Agnew assumes nv+i/n, —* o° instead of this.) The proof is obtained by 
combining Agnew's argument with , a well known elementary Mercerian 
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theorem ([1], also [16]). It is not known whether we may take X̂  as near to 1 
as we please. 

5.5. In this section we make some minor remarks, and corrections to earlier 
papers. 

We first observe, that almost convergence [14, 1] may be defined for 
sequences of elements xn of a Banach space. We call xn almost convergent 
to x, if 

5.5(1) \x — 
%n-\-l ~t~ • • • "T~ %n + " 0 for v —» oo uniformly in n. 

(This implies that the | |#n | | are bounded.) We have, for example, the following 
theorem. Any weakly convergent sequence of elements of a uniformly convex 
Banach space contains a strongly almost convergent subsequence (which is there­
fore strongly Ca -summable for any a > 0). In fact, a modification of the 
argument used by Kakutani [9] shows that the subsequence xn which he proves 
to be strongly Crsummable, is even strongly almost convergent. 

Dr. R. G. Cooke kindly points out that he has used our condition [15, 2.4(1)] 
for some other purpose in [3]. He also makes the following remark. The 
condition I —> 0 is equivalent, for any method A with the property 

n 

5.5(2) 

for 

^ M, to the condition 

2> 
»=0 

2 
mn ' m 

max|amn |2 ^ L a>ln ^ M max|a„ 

Now 5.5(2) is given by Hill [7] as a necessary condition for a method A to 
possess the Borel property. Hence, by [14, Theorem 8*] if a regular method 
A has the Borel property, then it possesses summability functions of the first 
kind. 

We note that a theorem by Garabedian, Hille and Wall [4, Theorem 5.2] 
gives a set of necessary and sufficient conditions in order that all functions 
U(n) — o(n) be summability functions of the second kind of a Hausdorff 
method Hg. 

We use this opportunity to rectify some mistakes in our previous papers. 

In the proof of [14, Theorem 10] the sequence »i < ni < . . . depends upon 
m (it is erroneously stated there that it is the same for all m in question). 

In the formulation of Theorem 5 in Operations in linear metric spaces, Duke 
Math. J., vol. 15 (1948) 755-761, replace "when" by "if and only if". 

In a review of the above paper (Math. Reviews, vol. 10 (1949), 255) it is 
stated that the proof of the main Theorem 1 of this paper is incomplete. The 
slips are, however, of minor nature and are rectified as follows: 
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(a). The (well known) definition of openness of a mapping is incorrectly 
formulated on p. 757, lines 1-3. To obtain a correct one, replace the first part 
of line 3 by: "for any y£ Uff(yo) an element xÇ U€(x0) exists for which y = Sx". 
Only the correct definition is used in the proof. 

(b). Lines 15-16 on p. 757 are not sufficient to insure that the set Ba,b = 
[a < <f>(y) < b] is analytical. But the argument in the text applies to the set 
Bb = [$(y) < b], and since the Ba,b are unions of differences of the Bhl they, 
too, are analytical. 
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