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Representations
of Virasoro-Heisenberg Algebras
and Virasoro-Toroidal Algebras
Marc A. Fabbri and Frank Okoh

Abstract. Virasoro-toroidal algebras, T̃[n], are semi-direct products of toroidal algebras T[n] and the Virasoro
algebra. The toroidal algebras are, in turn, multi-loop versions of affine Kac-Moody algebras. Let Γ be an
extension of a simply laced lattice Q̇ by a hyperbolic lattice of rank two. There is a Fock space V (Γ) corre-
sponding to Γ with a decomposition as a complex vector space: V (Γ) =

∐
m∈Z K(m). Fabbri and Moody

have shown that when m 6= 0, K(m) is an irreducible representation of T̃[2]. In this paper we produce a
filtration of T̃[2]-submodules of K(0). When L is an arbitrary geometric lattice and n is a positive integer, we
construct a Virasoro-Heisenberg algebra H̃(L, n). Let Q be an extension of Q̇ by a degenerate rank one lattice.
We determine the components of V (Γ) that are irreducible H̃(Q, 1)-modules and we show that the reducible
components have a filtration of H̃(Q, 1)-submodules with completely reducible quotients. Analogous results
are obtained for H̃(Q̇, 2). These results complement and extend results of Fabbri and Moody.

0 Introduction

Toroidal algebras, T[n], are the universal central extensions of the iterated loop algebra
Ġ ⊗C C[t±1

1 , . . . , t
±1
n ] where Ġ is a simple finite-dimensional complex Lie algebra. They

were introduced by R. Moody, Eswara Rao, and T. Yokonuma in [MEY]. They also pro-
duced indecomposable representations of T[2]. The results in [MEY] were extended to ar-
bitrary n in [EM]. The authors in [MEY] remark on the difficulty of producing irreducible
representations of T[n] in a natural way. It is implicit in [MEY] that the authors consider
an irreducible of T[n] to be natural if it is a direct summand of some Fock space. Let us call
an irreducible representation of T[n] good if a subspace of the centre of T[n] does not act
as multiplication by a scalar. See p. 284 of [MEY] for comments on good representations.
Until [E1] there were no known good representations of T[n].

Starting with tensor products of highest weight modules, Eswara Rao constructs in [E1]
a family of completely reducible representations of T[n]. He also shows that the indecom-
posable T[n]-modules constructed in [MEY] and [EM] admit a filtration of submodules
such that the successive irreducible quotient modules are isomorphic to the irreducible
modules in [E1] up to an automorphism of the toroidal algebra. Note that T̃[n] in [E1] is
T[n]⊕D where D is the linear span of n derivations on T[n] and so is entirely different from
T̃[n] in this paper. We refer to [E2] for comments and results on good representations of
affine algebras.

A different tack is taken in [BC]. They factor out all but a finite-dimensional piece of
the centre of T[n]. This enables them to establish an irreducibility criterion for Verma-type
modules for the resulting algebra. Results and references on connections between toroidal
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algebras and other classes of Lie algebras, for instance P. Slodowy’s GIM algebras, can also
be found in [BC].

Fabbri and Moody initiated a third approach in [FM]. They enlarged the algebra T[2] to
the semi-direct algebra T̃[2] = Vir ∝ T[2]. This is the route we shall follow in this paper.
We extend the toroidal algebra in two directions to obtain Virasoro-Heisenberg algebras
and Virasoro-toroidal algebras. We shall be more precise after we develop the requisite
notation. Here is a summary of the sections of the paper.

In Section 1 we recall the definition of the toroidal algebra, Virasoro algebra, the oscilla-
tor operators, and the generalized Heisenberg algebras. The construction of the generalized
Heisenberg algebras requires three ingredients: a free Z-module, Zn of finite rank n, where
Z is the ring of integers, Cn, the n-dimensional complex vector space, and a geometric lat-
tice L, i.e.; a free Z-module of finite rank, not necessarily n, together with a non-trivial
symmetric Z-bilinear form. The notation H(L, n) for generalized Heisenberg algebras at-
tempts to capture these ingredients. The Fock spaces crucial for this paper are obtained
from the generalized Heisenberg algebras with n = 1. We now define the lattice Γ that
gives the most pervasive Fock space, V (Γ).

In this paper Q̇ will denote a lattice of type Am, Dm or Em with root lengths normalized
to two. Let

Q = Q̇⊕ Zδ(1)

Γ = Q⊕ Zµ(2)

Λ = Zδ ⊕ Zµ(3)

where (Q | δ) = (Q̇ | µ) = (µ | µ) = 0 and (δ | µ) = 1.
In Section 2 we obtain simpler expressions for the oscillator operators for the hyperbolic

lattice Λ in (3). We then obtain a family of completely reducible representations of the
Virasoro algebra. The results on V (Λ) are used in Sections 4 and 5 of the paper where
we deal with reducible representations of a Virasoro-Heisenberg algebra and a Virasoro-
toroidal algebra.

In Section 3 we use the algebras from Section 1 to construct the Virasoro-Heisenberg al-
gebras, H̃(L, n), and the Virasoro-toroidal algebras, T̃[n]. We then show that the Fock space
V (Γ) from Section 1 are representations of T̃[2] and H̃(L, n) for some restricted choices of
L and n ≤ 2.

Let Q̇ and Q be the lattices in (1). We give decompositions of V (Γ) as representations
of H̃(Q, 1) and H̃(Q̇, 2). In [FM] the components of V (Γ) that afford irreducible repre-
sentations of H̃(Q, 1) are identified. Using the irreducible representations of the Virasoro
algebra from Section 2, we show in Section 4 that the reducible components have a filtration
of H̃(Q, 1)-submodules with completely reducible quotients.

In Section 4 we also identify the components of the Fock space that afford irreducible
representations of H̃(Q̇, 2). The components that are reducible as representations of
H̃(Q̇, 2) are shown in Section 5 to have a filtration of subrepresentations.

As a T̃[2]-representation the Fock space V (Γ) decomposes as
∏

m∈Z K(m), for some sub-

representations K(m). In [FM] it is shown that K(m) is an irreducible representation of T̃[2]

when m 6= 0. In Section 5 we show that K(0) has a filtration of subrepresentations of T̃[2].
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The introduction ends with a list of the main objects of the paper. The object is defined
in or near (n). Other objects are defined as they occur. All vector spaces are over C, the
field of complex numbers.
• T̃[n] is the Virasoro-toroidal algebra, where T[n] is the toroidal algebra, i.e., the uni-

versal central extension of Ġ ⊗C C[t±1
1 , . . . , t

±1
n ], while Ġ is a simple finite-dimensional

complex Lie algebra. (4) and (58).
• H̃(L, n) is the Virasoro-Heisenberg algebra attached to the lattice L and Zn, where

H(L, n) is the corresponding generalized Heisenberg algebra. (9) and (59).
• Ã(L) is H̃(L, 1). (12) and (33).
• S
(
A(L)−

)
is the symmetric algebra of A(L)−, where A(L)− is the lower subalgebra in

a triangular decomposition of A(L). (15) and (24).
•VL(λ) = Ceλ⊗CS

(
A(L)−

)
is a canonical representation of A(L), whereλ is an element

in the complexification of a nondegenerate lattice containing L. (20).
•V (Γ) = C[Γ]⊗C S

(
A(Γ)−

)
is the full Fock space corresponding to Γ in (3). (38).

1 The Canonical Representations

We begin by recalling the construction of the toroidal algebras T[n].
Let A be any commutative C-algebra with identity element. Let Ġ be a simple finite-

dimensional complex Lie algebra. The structure of the universal covering algebra of
Ġ ⊗C A has been determined by Kassel in [KS]. Let ΩA be the A-module of differentials
of A. Let d : A→ ΩA be the differential map. Let − : ΩA → ΩA/dA be the canonical map.

Theorem 1.1 ([KS, Proposition 2.2], [MEY]) The Lie algebra G = Ġ⊗C A ⊕ ΩA/dA with
ΩA/dA central and multiplication given by

[x ⊗ a, y ⊗ b] = [x, y]⊗ ab + 〈x, y〉(da)b(4)

where 〈 , 〉 is the Killing form, is the universal covering algebra of Ġ⊗C A.

When A = C[t±1
1 , . . . , t

±1
n ] in Theorem 1.1, the algebra G is the toroidal algebra of rank

n or the n-toroidal algebra. We denote it by T[n]. In this case a basis of ΩA is {tr1
1 tr2

2 · · ·
tri−1

i−1 tri−1
i t ri+1

i+1 · · · t
rn
n dti : 1 ≤ i ≤ n, r = (r1, . . . , rn) ∈ Zn}.

It is noted in [MEY] that the toroidal Lie algebra contains a generalized Heisenberg
algebra. To introduce the latter, let

(
L, ( | )

)
be a geometric lattice, that is, a free Z-module

L of finite rank together with a non-trivial symmetric Z-bilinear form ( | ) : L× L→ Z. Let
L = C ⊗Z L, the complexification of L. Extend ( | ) to a symmetric bilinear form on L also
denoted by ( | ). We say that L is nondegenerate if ( | ) is nondegenerate on L.

For each r ∈ Zn ⊂ Cn, let L(r) be an isomorphic copy of L while Cn(r) is an isomorphic
copy of Cn. The isomorphism is given by x 7→ x(r). If x ∈ Cn, zx(r) will denote the element
x(r) to distinguish it from elements of L(r). For r ∈ Zn, γ, γ ′ ∈ L, s, s ′ ∈ Cn and α ∈ C
we have

zs(r) + zs ′(r) = zs+s ′(r)(5)

αzs(r) = zαs(r).(6)

γ(r) + γ ′(r) = (γ + γ ′)(r)(7)

αγ(r) = (αγ)(r).(8)
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Now, let Cn =
⊕

r∈Zn Cn(r), Dn =
⊕

r∈Zn Czr(r), where Czr(r) is the one-dimensional
complex vector space with basis zr(r). Let Zn = Cn/Dn. Consider the C-space

H(L, n) =
(⊕

r∈Zn

L(r)
)
⊕ Zn.(9)

Introduce a bracket operation on H(L, n) as follows

[γ(r1), η(r2)] = (γ | η)zr1 (r1 + r2)(10)

Zn central.(11)

By (10) and (11), H(L, n) is a two-step nilpotent algebra and hence the multiplication
satisfies the Jacobi identity. From (5), (6), (10), and (11) we deduce that H(L, n) is a Lie
algebra. We call it the generalized Heisenberg algebra associated to L and n.

The proofs of the next two propositions rely on (5) to (11). Denote vector space dimen-
sion by dim.

Proposition 1.2

(a)

dim Zn =

{
1 if n = 1

∞ if n ≥ 2.

(b) Let n = 2. Then the collection of elements {z(0,1)(m, 0), z(1,0)(0, 0) : m ∈ Z} ∪
{z(1,0)(m, n) : m ∈ Z, n ∈ Z \ {0}} is a basis for Z2 over C.

Proposition 1.3 The centre of H(L, n) is L(0) ⊕ Zn ⊕
(⊕

r∈Zn\{0}γ∈rad( | ) Cγ(r)
)
, where

rad is radical.

Proposition 1.4 gives a realisation of H(L, n) when L is the root lattice of a simple finite-
dimensional complex Lie algebra, see Section 3 of [MEY].

Proposition 1.4 Let Ġ be a simple finite-dimensional Lie algebra with root lattice Q̇. Let Ḣ

be a fixed Cartan subalgebra of Ġ. Let X be the subalgebra of T[n] generated by the subspace
Ḣ ⊗C C[t±1

1 , . . . , t
±1
n ]. Then H(Q̇, n) and X are isomorphic Lie algebras.

The Heisenberg algebra H(L, 1) is the linchpin of most of the representations in this
paper. We use the following simpler notation for it.

H(L, 1) = A(L).(12)

By Proposition 1.2(a), Z1 is one-dimensional. Let c denote a fixed generator of Z1. Then
A(L) =

(⊕
k∈Z L(k)

)
⊕ Cc. In A(L) Equations (10) and (11) assume the more familiar

form

[a(k1), b(k2)] = k1δk1+k2,0(a | b)c(13)

c central(14)
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where δ denotes Kronecker delta.
Observe that L(0) is an abelian subalgebra of A(L). It has a complement =(⊕

n∈Z\{0} L(n)
)
⊕ Cc satisfying A(L) =

((⊕
n∈Z\{0} L(n)

)
⊕ Cc

)
× L(0) where ×

denotes the direct product of Lie algebras. We shall construct a canonical representation of
A(L) by first defining a representation of the subalgebra

(⊕
n∈Z\{0} L(n)

)
⊕ Cc. Let

A(L)− =
∐
n>0

L(−n)(15)

with corresponding symmetric algebra S
(
A(L)−

)
. We may think of S

(
A(L)−

)
as the poly-

nomial ring in the indeterminates {ai(−n) : 1 ≤ i ≤ m, n > 0}, where {ai}m
i=1 is an

orthonormal basis of L = C ⊗Z L. By replacing n > 0 with n < 0 in (15) we get A(L)+

with corresponding symmetric algebra S
(
A(L)+

)
.

Let a, b ∈ L. Let m, n be positive integers. Denote by ∂a(n) the unique derivation of
S
(
A(L)−

)
satisfying

∂a(n)

(
b(−m)

)
= nδn,m(a | b)(16)

where δn,m is Kronecker delta. Let la(−n) be the map on S
(
A(L)−

)
defined by f 7→ a(−n) f ,

multiplication by a(−n). We then get the following representation on S
(
A(L)−

)
of the Lie

algebra
(⊕

n∈Z\{0} L(n)
)
⊕ Cc.

c f = f(17)

a(−n) f = la(−n) f(18)

a(n) f = ∂a(n) f .(19)

We see from (16) that the derivation ∂ai (n) corresponds to the partial differentiation opera-
tor n ∂

∂ai (n)
on S
(
A(L)−

)
.

Let M be any nondegenerate lattice containing L. Let M be the complexification of M.
Fix λ ∈M and let Ceλ be the one-dimensional C-space. Consider the C-space

VL(λ) = Ceλ ⊗C S
(
A(L)−

)
.(20)

We make VL(λ) an A(L)-module by defining

c(eλ ⊗ f ) = eλ ⊗ f(21)

a(n)(eλ ⊗ f ) = eλ ⊗ a(n) f , n 6= 0(22)

a(0)(eλ ⊗ f ) = (a | λ)eλ ⊗ f .(23)

where a(n) f , n 6= 0 is given by (18) and (19). As in Section 2 of [KR] one proves the next
proposition.

Proposition 1.5 VL(λ) is affords a representation of A(L) which is irreducible if and only if
L is a nondegenerate lattice.
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Since by (21) and (23) (a | λ)c−a(0)(eλ⊗ f ) = 0, VL(λ) is never a faithful A(L)-module.
The module VL(λ) is called a canonical representation of A(L).
We shall now realise VL(λ) as an induced module relative to a triangular decomposition

of A(L) in the sense of [MP2]. To that end, let L be a nondegenerate geometric lattice with
complexification, L. Define A(L)− =

∐
n>0 L(−n), A(L)+ =

∐
n>0 L(n), and A(L)0 =

L(0)⊕ Cc. Then we have

A(L) = A(L)− ⊕A(L)0 ⊕A(L)+.(24)

Next let σ : A(L) → A(L) be the unique linear map satisfying σ
(
a(n)
)
= a(−n), a ∈ L,

n ∈ Z, and σ(c) = c. Then σ fixes A(L)0, and interchanges A(L)+ and A(L)−. So σ is an
involution. This makes (24) a triangular decomposition of A(L) in the sense of [MP2].

Let α be a linear functional on A(L)0 and consider the one-dimensional vector space
Cv+. Let B = A(L)0 ⊕A(L)+. We make Cv+ into a B-module by setting

A(L)+v+ = 0(25)

A(L)0v+ = α
(
a(0)
)

v+(26)

cv+ = v+.(27)

Finally, we define the induced A(L)-module M(α) = U
(
A(L)

)
⊗U(B) Cv+ where U(X)

denotes the universal enveloping algebra of the Lie algebra X. Let λ ∈ L and let α be the
linear functional on A(L)0 defined by

α
(
a(0)
)
= (λ | a)(28)

α(c) = 1.(29)

The map eλ ⊗ u 7→ u⊗ v+ gives the the isomorphism of the next proposition.

Proposition 1.6 Let α be the linear functional in (28) and (29). Then M(α) and VL(λ) are
isomorphic as A(L)-modules.

Vir and its oscillator operators The Virasoro algebra Vir is an infinite-dimensional Lie
algebra with generators {dk : k ∈ Z} and bracket relations

[dk, dl] = (k− l)dk+l +
1

12
δk+l,0(k3 − k)ζ(30)

where ζ is a central symbol.
Let L be a geometric lattice of rank m. Define a representation of Vir on A(L) as follows.

For every k ∈ Z, let

dk

(
a(n)
)
= −na(n + k)(31)

dk(c) = 0 = ζ
(
A(L)

)
.(32)
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One checks that (ζdk − dkζ)
(
a(n)
)
= 0 = [dk, ζ]

(
a(n)
)

and [dk, dl]
(

a(n)
)
=

(dkdl − dldk)
(

a(n)
)
. This means that A(L) affords a representation of Vir. This repre-

sentation is a special case of a class of well-known representations of Vir. It is a direct
sum of m copies of V0,0 in the notation of Proposition 1.1 of [KR]. See also [Z]. We now
construct a new Lie algebra, Ã(L), from this representation. As a C-space,

Ã(L) = Vir⊕A(L).(33)

We use (31) and (32) to make Ã(L) a Lie algebra. For instance,

[dk, a(n)] = dk

(
a(n)
)
= −na(n + k).(34)

With Q as the lattice in (1), let ε : Q× Q → {±1} be a bimultiplicative map satisfying,
for α, β ∈ Q,

ε(α, α) = (−1)(α|α)/2(35)

ε(α, β)ε(β, α) = (−1)(α|β)(36)

ε(α, δ) = 1.(37)

Extend ε to a bimultiplicative map ε : Q × Γ → {±1}. For γ ∈ Γ, let eγ be a symbol.
Let C[Γ] be the complex vector space with C-basis {eγ : γ ∈ Γ}. Then C[Γ] contains
the subspace C[Q] =

∐
γ∈Q Ceγ . We equip C[Q], as in [BO] and [MEY], with a twisted

group algebra structure by defining eαeβ = ε(α, β)eα+β, α, β ∈ Q. Then C[Γ] becomes a
C[Q]-module in such a way that eαeγ = ε(α, γ)eα+γ , α ∈ Q, γ ∈ Γ. Here now is the full
Fock space associated to Γ.

V (Γ) = C[Γ]⊗C S
(
A(Γ)−

)
.(38)

As C-spaces, V (Γ) =
∐
λ∈Γ Ceλ⊗C S

(
A(Γ)−

)
=
∐
λ∈ΓVΓ(λ), where VΓ(λ) is a canon-

ical representation of A(Γ).
By Proposition 1.5, VΓ(λ) affords a representation of A(Γ). Componentwise action

makes V (Γ) an A(Γ)-module. Since Q ⊂ Γ, VΓ(λ) also affords a representation of A(Q).
Hence we have:

Proposition 1.7 V (Γ) = C[Γ] ⊗C S
(
A(Γ)−

)
affords a representation of A(Γ), hence of

A(Q).

In order to make V (Γ) a representation of the algebras in Section 3 we recall the oscilla-
tor representation of Vir.

Let L be an arbitrary non-degenerate geometric lattice of rank m with complexification
L = C ⊗Z L. Let {ai}m

i=1 be an orthonormal basis for L over C. We want to define a
representation of Vir on VL(λ). For r, s ∈ Z we define a normal ordering : : of ai(r)ai(s),
as in [KR], by

: ai(r)ai(s) : = ai(r)ai(s) if r ≤ s(39)

: ai(r)ai(s) : = ai(s)ai(r) if r > s.(40)
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Now for k ∈ Z consider the infinite quadratic expression, Lk, defined as follows

Lk =
1

2

∑
j∈Z

m∑
i=1

: ai(− j)ai( j + k) :.(41)

Due to the normal ordering each Lk is an operator of VL(λ) using (21) to (23). The operator
Lk is called a Virasoro operator or oscillator operator. A proof of Proposition 1.8 can be
obtained along similar lines as the proof of Proposition 2.3 of [KR]. The following formula
is obtained along the way, see Lemma 2.2 of [KR].

[Lk, a(n)] = −na(n + k)(42)

where k and n are integers and a is an arbitrary element of L.

Proposition 1.8 The assignment dk 7→ Lk, ζ 7→ mI, where m is the rank of L and I is the
identity operator, gives a representation of Vir on VL(λ).

2 Oscillator Representations of Vir Over Λ

In order to facilitate the computations we shall need notations specific to the hyperbolic
lattice Λ in (3). Recalling (15), let

S = S
(
A(Λ)−

)
.(43)

The set {α1, α2}, where α1 =
δ
2 + µ and α2 = i( δ2 − µ), i2 = −1, is an orthonormal basis

for C ⊗Z Λ. We use the notation Hk, k ∈ Z, for the corresponding oscillator operators. So
(41) becomes

Hk =
1

2

∑
j∈Z

: α1(− j)α1( j + k) : + : α2(− j)α2( j + k) :(44)

Proposition 2.1 For every n ∈ Z we have that

(i) Hn =
1
2

∑
j∈Z

(
: µ(− j)δ( j + n) : + : δ(− j)µ( j + n) :

)
(ii) Hn = H−n + H+

n where

H−n =
ε

2
µ(n/2)δ(n/2) +

∑
j>−n/2

µ(− j)δ( j + n),

H+
n =

ε

2
δ(n/2)µ(n/2) +

∑
j>−n/2

δ(− j)µ( j + n),

where

ε =

{
1 if n is even

0 if n is odd.
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Proof For any j ∈ Z, : α1(− j)α1( j + n) : + : α2(− j)α2( j + n) : = α1(− j)α1( j + n) +
α2(− j)α2( j + n) if − j ≤ j + n or α1( j + n)α1(− j) + α2( j + n)α2(− j) if − j > j + n.
Thus for (i), it suffices to show that α1(− j)α1( j + n) + α2(− j)α2( j + n) =
µ(− j)δ( j + n) +δ(− j)µ( j + n) and α1( j + n)α1(− j) +α2( j + n)α2(− j) = µ( j + n)δ(− j) +
δ( j + n)µ(− j). We show only the first since the second is similar. Since (a + b)(n) =
a(n) + b(n), we have α1(− j)α1( j + n) + α2(− j)α2( j + n) =( δ(− j)

2 + µ(− j)
)( δ( j+n)

2 + µ( j + n)
)
−
( δ(− j)

2 − µ(− j)
)( δ( j+n)

2 − µ( j + n)
)
=

1
4δ(− j)δ( j + n) + 1

2δ(− j)µ( j + n) + 1
2µ(− j)δ( j + n) + µ(− j)µ( j + n) −

1
4δ(− j)δ( j + n) + 1

2δ(− j)µ( j + n) + 1
2µ(− j)δ( j + n) − µ(− j)µ( j + n) =

δ(− j)µ( j + n) + µ(− j)δ( j + n). This proves (i).
For (ii), we first use (i) and then use the definition of normal ordering. Hence Hn =

1
2

∑
− j≤ j+n

(
µ(− j)δ( j+n)+δ(− j)µ( j+n)

)
+ 1

2

∑
− j> j+n

(
δ( j+n)µ(− j)+µ( j+n)δ(− j)

)
=

1
2

∑
j>−n/2

(
µ(− j)δ( j + n) + δ(− j)µ( j + n)

)
+ 1

2

∑
j>−n/2

(
δ(− j)µ( j + n) +

µ(− j)δ( j + n)
)

+ ε
2

(
µ(n/2)δ(n/2) + δ(n/2)µ(n/2)

)
, where we have split the first sum into

j = −n/2, j > −n/2 and replaced j by − j − n in the second sum. Regrouping we have
Hn =

∑
j>−n/2 µ(− j)δ( j +n)+ ε2µ(n/2)δ(n/2)+

∑
j>−n/2 δ(− j)µ( j +n)+ ε2δ(n/2)µ(n/2).

If we replace− j by i and j+n by j then we get the following alternative way of expressing
H±n

H−n =
∑
i< j

i+ j=n

µ(i)δ( j) +
ε

2
µ(n/2)δ(n/2)(45)

H+
n =

∑
i< j

i+ j=n

δ(i)µ( j) +
ε

2
δ(n/2)µ(n/2).(46)

Since C⊗Z Λ = Cδ ⊕ Cµ, we have (C ⊗Z Λ)(n) = Cδ(n)⊕ Cµ(n). The algebra S in (43)
contains the following C-subspaces

M = S
(∐

n>0

Cµ(−n)
)
, D = S

(∐
n>0

Cδ(−n)
)

(47)

We have that S = MD and hence for λ ∈ C ⊗Z Λ, we have the following canonical repre-
sentation of A(Λ).

VΛ(λ) = Ceλ ⊗C MD.(48)

By Proposition 1.8, VΛ(λ) is a Vir-module via Hn in Proposition 2.1. We shall now show
that it has a filtration of Vir-submodules. To that end we note that M = S

(∐
n>0 Cµ(−n)

)
has the following C-basis:

{µ(−n) : n ∈ Zs
+, s ≥ 1, n1 ≤ · · · ≤ ns} ∪ {1},(49)

where Z+ is the set of natural numbers, n = (n1, n2, . . . , ns), and µ(−n) =
µ(−n1)µ(−n2) · · ·µ(−ns).
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We say that µ(−n) has µ-length s. By replacing µ by δ we get δ-length. The length of the
zero polynomial is taken to be−∞ < the length of every nonzero polynomial.

Let M j = 0, if j < 0, M0 = C. For j > 0, let M j = the C-span of all monomials in M
of µ-length j. Set M≤ j =

∐
k≤ j Mk. Then M =

∐
j≥0 M j .

We use D j to denote the analogous C-spaces with µ replaced by δ. Then D =
∐

j≥0 D j .
With l an arbitrary integer, let

Sl =
∞∐
j=0

(M≤ j+lD j) ⊂ S.(50)

For λ ∈ Zδ, we let

VΛ(λ)l = Ceλ ⊗C Sl.(51)

Sections 4 and 5 pivot around VΛ(λ)l and Sl. So we are going to develop their properties
in detail. First we note that

M≤ j+l ⊆ M≤ j+l+1, Sl 6= S, Sl ⊆ Sl+1.(52)

Lemma 2.2

(a) Let x ∈ Sl and let n be a positive integer. Then δ(−n)x ∈ Sl.
(b) Let f ∈ S

(
A(Q̇)−

)
S
(
A(Zδ)−

)
. Then f x ∈ S

(
A(Q̇)−

)
Sl for every x ∈ S

(
A(Q̇)−

)
Sl

(c) Let (α + nδ)(m) ∈ S
(
A(Q)+

)
, α ∈ Q̇, f ∈ S

(
A(Q̇)−

)
Sl. Then (α + nδ)(m) f ∈

S
(
A(Q̇)−

)
Sl.

Proof (a) For some positive integer t , x = x0 + · · · + xt , where x j ∈ M≤ j+lD j . Then
δ(−n)x =

∑t
j=0 δ(−n)x j . Since δ(−n)x j ∈ M≤ j+lD j+1 ⊆ M≤ j+l+1D j+1 ⊆ Sl we get that

δ(−n)x ∈ Sl.
(b) The ring S

(
A(Q̇)−

)
S
(
A(Zδ)−

)
is commutative. Hence (b) follows from (a).

(c) Since m > 0, (α+ nδ)(m) = α(m) + nδ(m) acts as differentiation, see the remark af-
ter (19). The ring S

(
A(Q̇)−

)
is closed under differentiation. So it is sufficient to show that

M≤ j+lD j is invariant underα(m)+nδ(m). Every element in M≤ j+lD j is a sum of scalar mul-
tiples of elements of the form x = µ(−n1) · · ·µ(−ns)δ(k) where δ(k) = δ(−k1) · · · δ(−k j),
s ≤ j + l, and n1, . . . , ns, k1, . . . , k j are positive integers. From (16) and the line after (3)

we get that (α + nδ)(m)x = mn
∑i

t=1 δm,ntµ(−1) · · ·µ(−t) · · ·µ(−i)δ(k), where overbar
denotes omission. So (α + nδ)(m)x is in M≤ j−1+lD j ⊆ M≤ j+lD j .

Recall the definition of VΛ(nδ) and VΛ(nδ)l from (48) and (51) with λ = nδ.

Theorem 2.3 For any integers n and l, VΛ(nδ)l is a proper Vir-submodule of VΛ(nδ) and
VΛ(nδ)l ⊆ VΛ(nδ)l+1.

Proof Since Sl 6= S, we have that VΛ(nδ)l 6= VΛ(nδ). The inclusion follows from the
definition. We now have to show that VΛ(nδ)l is closed under the action of H±n . Using
(45) and (46) we need only check closure under (a) µ(i)δ( j), i < j, (b) δ(i)µ( j), i < j,
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(c) µ(n/2)δ(n/2), and (d) δ(n/2)µ(n/2). We proceed as in the proof of Lemma 2.2(c).
Let f = enδ ⊗ x, where x is as in the proof of Lemma 2.2(c). Let

z = µ(i)δ( j), i < j.

The element z acts on f as outlined in (22) and (23). We shall be using (16) to (23) in the
proof below. If j > 0 then δ( j)(enδ ⊗ x) = jenδ ⊗

∑s
t=1 xt , where xt = δ j,ntµ(−n1) · · ·

µ(−nt ) · · ·µ(−ns)δ(k), and overbar denotes omission. Each summand is either zero or its
µ-length is one less than that of x. If i < 0, then the µ-length of µ(i)xt is restored to that
of x. If i > 0, then the effect of µ(i) on each summand, xt , is to break it into summands
that are 0 or have δ-length one less than the δ-length of xt . Either way zx remains in Sl. So
µ(i)δ( j) f ∈ VΛ(nδ)l.

Suppose j < 0. Then δ( j)x has δ-length one more than that of x. Since i < j we have
that i < 0. In that case, the µ-length of µ(i)δ( j)x is one more than that of x. So µ(i)δ( j)x
is in M≤ j+1+lD j+1 ⊆ Sl.

Suppose j = 0. Since (δ | nδ) = 0 we get from (23) that µ(i)δ( j) f = 0. Cases (b), (c),
and (d) are handled in a similar fashion.

The next goal is to show that VΛ(nδ)l = VΛ(nδ)l/VΛ(nδ)l−1 is a completely reducible
representation of the Virasoro algebra. Even though our representations are more compli-
cated than those in [KR] we can still rely on Lectures 2 and 3 of [KR].

Denote the quotient Sl/Sl−1 by Sl and VΛ(λ)l/VΛ(λ)l−1 by VΛ(λ)l. We have that Sl
∼=∏∞

j=0 M j+lD j .

Proposition 2.4 Let n be any integer. The Vir-modules VΛ(nδ)l and VΛ(0)l are isomorphic.

Proof Let f0 =
∑r

k=0 ck(e0 ⊗ xk) ∈ VΛ(0)l, ck ∈ C. One checks using the method in the
proof of Theorem 2.3 that f0 7→ fnδ =

∑r
k=0 ck(enδ ⊗ xk) ∈ VΛ(nδ)l induces a Vir-module

isomorphism between VΛ(nδ)l and VΛ(0)l.

We now define a positive definite Hermitian form 〈 | 〉 on VΛ(λ) by extending the origi-
nal Z-bilinear form ( | ) on Λ to a Hermitian form on S: for ai , bi ∈ {δ, µ}, let

(
a1(−n1) · · · as(−ns) | b1(−m1) · · · br(−mr)

)
= δr,s

∑
σ∈P(r)

r∏
k=1

nkδnk,mσ(k) (ak | bσ(k))(53)

where δx,y, x, y ∈ Z, denotes the usual Kronecker delta and P(r) denotes the symmetric
group on r symbols.

We use below the notation in (49) for tuples of integers.
Let ι : S→ S be the unique anti-linear map satisfying ι

(
µ(−n)δ(−m)

)
= µ(−m)δ(−n),

ι(1) = 1, where n ∈ Zs
+, m ∈ Zr

+ r, s ≥ 1. The map ι is an involution.
Next we define a Hermitian form on VΛ(λ) using (53). Let x, x ′ ∈ S, z = eλ ⊗ x,

z ′ = eλ ⊗ x ′. Set 〈z | z ′〉 =
(
x | ι(x ′)

)
.

The proof of Proposition 2.2 in [KR] works for the next proposition.

Proposition 2.5 (a) The set {z = eλ ⊗ µ(−n)δ(−m) : n ∈ Zs
+, m ∈ Zr

+, n1 ≤ n2 · · · ≤
ns,m1 ≤ m2 · · · ≤ mr} ∪ {eλ ⊗ 1} is an orthogonal basis of VΛ(λ) with respect to 〈 | 〉.
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(b) The form 〈 | 〉 is positive definite on VΛ(λ) and ‖z‖2 = c(n)c(m)
∏s

i=1 ni
∏r

j=1 m j,
where ‖z‖ is the norm of z and c(n) is the cardinality of the set {σ ∈ P(s) : σ(n) = n} (replace
s by r for the definition of c(m).)

The degree of z in Proposition 2.5 is defined as
∑s

i=1 ni +
∑r

j=1 m j .

Let VΛ(0)l( j) denote the subspace of VΛ(0)l spanned by elements of degree j. This
is a finite-dimensional vector space. One checks that this finite-dimensional space is the
eigenspace of the eigenvalue j of the oscillator operator H0 in Proposition 2.1. In fact
VΛ(0)l =

∐
j≥0 VΛ(0)l( j) is a weight space decomposition of VΛ(0)l with respect to the

commutative subalgebra of the Virasoro algebra generated by d0 and the central element ζ .
The material above starting from (53) allows us to use Lectures 2 and 3 of [KR], in partic-
ular Proposition 3.1 of [KR], as a proof of the next theorem.

Theorem 2.6 Let l be any integer. Then the Vir-module VΛ(0)l is completely reducible.

By Proposition 2.4 and Theorem 2.6 we have

Corollary 2.7 For every pair of integers (n, l), the Vir-module VΛ(nδ)l is completely re-
ducible.

3 Virasoro-Heisenberg and Virasoro-Toroidal Algebras

It is well-known that one often gets a more satisfactory representation theory by enlarging
the algebra, see for instance the introduction of [MEY]. We shall accomplish our enlarge-
ment through semi-direct products. The use of semi-direct products in the representation
theory of Lie algebras can be traced back to E. Cartan’s thesis. See [COL]. We now recall
the essentials from the theory of vertex operators that we need and refer to [MEY], [MP1],
and [FLM] for more details.

Let z be a complex variable. Let Γ and Q be as in (1) and (2). Let α ∈ Q. So for n ∈ Z,
α(n) is the operator on VΓ(λ) defined in (22) and (23). Define

T+(α, z) = −
∑
n>0

1

n
α(n)z−n.(54)

T−(α, z) = −
∑
n<0

1

n
α(n)z−n.(55)

The vertex operator, X(α, z), for α on V (Γ) is defined by

X(α, z) = z(α|α)/2 exp T(α, z)(56)

where exp T(α, z) = exp T−(α, z)eαzα(0) exp T+(α, z) and zα(0)(eλ ⊗ f ) = z(α|λ)(eλ ⊗ f ),
f ∈ S

(
A(Γ)−

)
. It is also shown in [MP1] that X(α, z) can be formally expanded in powers

of z to give X(α, z) =
∑

n∈Z Xn(α)z−n. The coefficients Xn(α) are called moments and are
operators on V (Γ).

Proposition 3.1 ([MP1]) Let f ∈ S
(
A(Γ)−

)
. Suppose α ∈ Q, λ ∈ Γ. Then

Xn(α)(eλ ⊗ f ) = eλ+α ⊗ f1(57)

where f1 ∈ S
(
A(Γ)−

)
.

https://doi.org/10.4153/CJM-1999-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-024-x


Virasoro-Heisenberg Algebras 535

Thus in the decomposition of the full Fock space V (Γ) =
∐
λ∈ΓVΓ(λ) one can view the

moments as operators which move an element in the λ-stalk to an element in the (λ + α)-
stalk.

The next theorem summarizes the key commutation relations between the moments.

Theorem 3.2 ([FK] and [GO], [MP1]) Let α and β be elements of the lattice Q in (1).

CR0 [α(k),Xn(β)] = (α | β)Xn+k(β).
CR1 If (α | β) ≥ 0 then [Xm(α),Xn(β)] = 0.
CR2 If (α | β) = −1 then [Xm(α),Xn(β)] = ε(α, β)Xm+n(α + β).
CR3 If (α | α) = (β | β) = −(α | β) = 2 then [Xm(α),Xn(β)] = ε(α, β){mXn+m(α +

β) +
∑

k∈Z : α(k)Xm+n−k(α + β) :} where : α(k)Xm+n−k(β) : = α(k)Xm+n−k(β) if k ≤
m + n− k and Xm+n−k(β)α(k) if k > m + n− k.

CR4 [Lk,X(α, z)] = zk{ k
2 (α | α) + z d

dz}X(α, z).

Let {e±αi , hi : 1 ≤ i ≤ l} be a Chevalley basis of Ġ in Proposition 1.4. As an
addendum to Proposition 1.4 we note that T[2] contains an affine Kac-Moody algebra
Ġ ⊗C C[t1, t

−1
1 ] ⊕ Cc. Denote its root system by ∆, its set of real roots by ∆re and its

root lattice by Q in (1). Now we can state the main result from [MEY] which gives vertex
representations of T[2].

Theorem 3.3 ([MEY]) The assignment

eαi ⊗±smtn 7→ Xm(αi + nδ), n,m ∈ Z
−e−αi ⊗±smtn 7→ Xm(±αi + nδ), n,m ∈ Z, 1 ≤ i ≤ l
z(1,0)(m, n) 7→ Xm(nδ), n 6= 0
z(0,1)(m, 0) 7→ δ(m)
z(1,0)(0, 0) 7→ I where I is the identity map on V (Γ)

gives an isomorphism φ between the Lie algebra of operators T on V (Γ) generated by the
moments Xm(α), α ∈ ∆re ,m ∈ Z, and the toroidal algebra T[2].

Let {ai}l
i=1 be an orthonormal basis for C ⊗Z Q̇. Let {α1, α2} be an orthonormal basis

for C ⊗Z Λ where Λ = Zδ ⊕ Zµ. Let ui = ai , i = 1, . . . , l and ul+1 = α1 and ul+2 = α2.
Then {ui}l+2

i=1 is an orthonormal basis over C for C⊗Z Γ. Therefore by Proposition 1.8, the
oscillator operators given by this basis affords a representation of Vir on VΓ(λ) where the
centre ζ acts as (l + 2)I. So VΓ(λ) affords a representation of both Vir and A(Q). However
from (42), [Lk, a(n)] = −na(n + k). Therefore, by (34) we have proved that VΓ(λ) is an
Ã(Γ)-module and consequently we have the next proposition.

Proposition 3.4 V (Γ) =
∐
λ∈ΓVΓ(λ) is an Ã(Γ)-module decomposition.

Let T̃[2] be the Lie algebra of operators on V (Γ) generated by Xm(α) and Lk where m, k ∈
Z and α ∈ ∆re ⊂ Q.

Proposition 3.5 ([FM, Section 4]) T̃[2] is the semi-direct product of Vir and T[2].

Proof As C-spaces,

T̃[2] = Vir⊕T[2](58)

https://doi.org/10.4153/CJM-1999-024-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-024-x


536 M. A. Fabbri and F. Okoh

after using Theorem 3.3. A Lie algebra is a semi-direct product A ∝ B if A is a subal-
gebra and B is an ideal. We will show that T[2] is an ideal in (58). It suffices to show
that [Lk,Xm(α)] ∈ T[2], where k,m ∈ Z, and α ∈ ∆re . Indeed, by CR4,∑

m∈Z[Lk,Xm(α)]z−m = [Lk,X(α, z)] = zk{ k
2 (α, α) + z d

dz}X(α, z) =
∑

n∈Z zk{ k
2 (α, α) +

z d
dz}Xn(α)z−n =

∑
n∈Z

(
k
2 (α, α)− n

)
Xn(α)z−n+k. Now replacing n by m + k and equating

coefficients of z−m, we get

[Lk,Xm(α)] =
{k

2
(α | α)− (m + k)

}
Xm+k(α)(59)

which is in T[2].

The Lie algebra T̃[2] is called the Virasoro-toroidal algebra of rank two.
A generalization of this situation occurs when we replace Γ by Q̇ ⊥ Λn−1 with

{δ1, . . . , δn−1, µ1, . . . , µn−1} a basis for Λn−1 and (δi | Q̇) = (µ j | Q̇) = (δi | δ j) =
(µi | µ j) = 0 and (δi | µ j) = δi, j (δi, j is Kronecker delta) for all pairs (i, j).

Using this new lattice an analogue of Theorem 3.3 is proved in Theorem 3.14 of [EM]
for an arbitrary positive integer n. We can now define the Virasoro-toroidal algebra, T̃[n],
of rank n for an arbitrary positive integer n, as the algebra of operators on V (Q̇ ⊥ Λn−1)
generated by the moments Xm(α+ δ) in Theorem 3.14 of [EM] and the Virasoro operators
on V (Q̇ ⊥ Λn). The subalgebra of T̃[n] generated by the Virasoro operators Lk on V (Q̇ ⊥
Λn) and the subalgebra X ⊂ T[n] in Proposition 1.4 is the Virasoro-Heisenberg algebra
H̃(Q̇, n).

We can be explicit when n = 2. To that end we use the basis of Z2 given in Proposi-
tion 1.2. We let generators of Vir act on H(Q̇, 2) as follows:

dk

(
γ(m, n)

)
= −mγ(m + k, n)(60)

dk

(
z(1,0)(m, n)

)
= −(m + k)z(1,0)(m + k, n), n 6= 0(61)

dk

(
z(0,1)(m, 0)

)
= −mz(0,1)(m + k, 0)(62)

dk

(
z(1,0)(0, 0)

)
= 0(63)

ζ
(
H(Q̇, 2)

)
= 0.(64)

We use the above equations to get the Lie bracket in H̃(Q̇, 2). So, for instance,
[dk, γ(m, n)] = −mγ(m + k, n).

Let V (λ) = eλ+Q⊗C S
(
A(Γ)−

)
, where λ ∈ Γ. (This is not to be confused with VL(λ) in

(20).) To see how moments act on V (λ), set τ = X−N(δ) where N = (λ | δ).

Proposition 3.6 ([MEY, Proposition 5.3]) Let k,m ∈ Z.

(a) The operator X−kN (kδ) acts on V (λ) as multiplication by ε(δ, λ)kekδ . In particular τ acts
as multiplication by ε(δ, λ)eδ and X−kN (kδ) acts as τ k on V (λ).

(b) Xm(kδ) annihilates V (λ) if and only if m + kN > 0.

For γ ∈ C⊗Z Q̇, m, n ∈ Z, define

Tγm(nδ) =
∑
k∈Z

: γ(k)X−k+m(nδ) :(65)
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where the normal ordering is defined as in CR3 of Theorem 3.2. It follows from Proposi-
tion 3.6 and (16) that only finitely many terms of the infinite sum act non-trivially on any
fixed v ∈ V (Γ). We note that Tγm(nδ) is linear in its superscript.

In the next computation we use Theorem 3.3 with eαi denoted by ei , the CR rela-
tions, and the properties of the map ε in (35) to (37). We have [ei ⊗ 1, e−i ⊗ smtn] =
−[X0(αi + 0δ),Xm(−αi + nδ)] = −ε(αi ,−αi)

∑
k∈Z : αi(k)X−k+m(nδ) : = Tαi

m (nδ). Let

{h1, . . . , hl} be the basis of Ḣ, the Cartan subalgebra in Proposition 1.4. Let γ ∈ Ḣ. Then

for some complex numbers c1, . . . , cl, γ =
∑l

i=1 cihi . Then in Proposition 1.4, γ(m, n) 7→

γ ⊗ smtn =
∑l

i=1 ci(hi ⊗ smtn) ∈ T[2]. Since Tγm is linear in its superscript, the proof of the
next proposition follows from Theorem 3.3 and the above calculation.

Proposition 3.7 V (Γ) is an H(Q̇, 2)-module under the following correspondences.

γ(m, n) 7→ Tγm(nδ)(66)

z(1,0)(m, n) 7→ Xm(nδ), n 6= 0(67)

z(0,1)(m, 0) 7→ δ(m)(68)

z(1,0)(0, 0) 7→ I(69)

where I is the identity operator on V (Γ) and δ(m) acts on V (Γ) as specified in (22) and (23).

We extend the representation of H(Q̇, 2) in Proposition 3.7 to a representation of
H̃(Q̇, 2) on V (Γ) by letting the Virasoro generator dk act on each VΓ(λ) in Proposition 3.4
by the oscillator operator Lk defined just before Proposition 3.4, and extending the action
linearly. On each VΓ(λ), ζ acts as (l + 2)I.

Proposition 3.8 V (Γ) is an H̃(Q̇, 2)-module.

Proof We know from Proposition 1.8 and Proposition 3.7 that V (Γ) is both a Vir-module
and an H(Q̇, 2)-module. So we need only check that the operations from both algebras are
compatible with the bracket operations in H̃(Q̇, 2). By (42), [Lk, δ(m)] = −mδ(m + k). By
Proposition 3.7 and the remark following it [Lk, δ(m)] corresponds to [dk, z(0,1)(m, 0)] ∈
H̃(Q̇, 2). By (61), [dk, z(0,1)(m, 0)] = −mz(0,1)(m + k, 0), as required.

Since (nδ | nδ) = 0, we get by (59) that [Lk,Xm(nδ)] = −(m + k)Xm+k(nδ). By (61),
[dk, z(1,0)(m, n)] = −(m + k)z(1,0)(m + k, n). By (67), the latter element gives the operator
−(m + k)Xm+k(nδ) as required.

For the next computation, we first justify (70), which will permit us to remove : :
in (65).

∑
l∈Z

: ala−l+m : =
∑
l∈Z

ala−l+m −
∑
l> m

2

[al, a−l+m].(70)

As −l + m < l ⇔ l > m
2 , the left hand side of (70) is

∑
l≤m

2
ala−l+m +

∑
l> m

2
a−l+mal,

while the right hand side is
∑

l∈Z ala−l+m −
∑

l> m
2

(ala−l+m − a−l+mal). Simplifying this

expression gives the above form of the left hand side of (70).
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By (65) [Lk,Tγm(nδ)] = [Lk,
∑

l∈Z : γ(l)X−l+m(nδ) :]. By (70) the latter is equal to
[Lk,
∑

l∈Z γ(l)X−l+m(nδ)] −
∑

l> m
2

[
Lk, [γ(l),X−l+m(nδ)]

]
=
∑

l∈Z[Lk, γ(l)X−l+m(nδ)] −∑
l> m

2
[Lk, (γ | nδ)Xm(nδ)] where the last equality follows from CRO in Theorem 3.2. But

(γ | nδ) = 0 because γ ∈ Q in (3). Hence [Lk,Tγm(nδ)] =
∑

l∈Z[Lk, γ(l)X−l+m(nδ)] =∑
l∈Z{[Lk, γ(l)]X−l+m(nδ) + γ(l)[Lk,X−l+m(nδ)]}, which by (42) and (59) is equal to∑
l∈Z{−lγ(k + l)X−l+m(nδ) + (l−m− k)γ(l)Xk+m−l(nδ)} =

∑
l∈Z{−lγ(k + l)X−l+m(nδ) +

(l −m)γ(l + k)X−l+m(nδ)} = −m
∑

l∈Z γ(k + l)X−l+m(nδ) = −mTγm+k(nδ).
By Proposition 3.7 the operator [Lk,Tγm(nδ)] comes from [dk, γ(m, n)], which by (60),

is −mγ(m + k, n). By (66) this gives the operator−mTγm+k(nδ), as required.

For λ ∈ Γ, let H(λ) be the C-subspace of V (Γ) spanned by C[λ+ Zδ]⊗C S
(
A(Γ)−

)
. In

multiplicative notation, C[λ + Zδ] has C-basis {eλ+nδ : n ∈ Z}. As C-spaces,

V (Γ) =
∐
λ

H(λ)(71)

where λ ranges over a complete set of representatives of Γ/Zδ. The oscillator operator Lk

is a sum of compositions of the operator in (21) to (23). So it follows from Proposition 3.7
and Proposition 3.1 with α = nδ that H(λ) is an H̃(Q̇, 2)-submodule of V (Γ). We shall
study its structure in the next two sections.

4 Irreducible Representations

One of the main result of this section is that H(λ) in (71) affords an irreducible represen-
tation of H(Q̇, 2) if λ 6∈ Q. We begin by stating the results that we need for its proof.

We use (31) and (32) to extend the action of Vir on A(Q) to an action on S
(
A(Q)

)
so

that each dk acts as a derivation and ζ acts trivially. Then for any homogeneous polynomial
f ∈ S

(
A(Q)−

)
, d0( f ) = (deg f ) f . It is shown in (16) of [FM] that

dn(eλ ⊗ f ) =

(
δn,0

(λ | λ)

2
f + dn( f )

)
(eλ ⊗ 1)(72)

where δn,0 is Kronecker delta.

Proposition 4.1 The set A =
(∐

m∈Z L(m, 0)
)
⊕
(∐

m∈Z Cz(0,1)(m, 0)
)
⊕ Cz(1,0)(0, 0) is a

Lie-subalgebra of H(Q̇, 2) isomorphic to A(Q).

Proof We use Proposition 1.2. First, A is a subalgebra of H(Q̇, 2): For γ, η ∈ L, and
m, n ∈ Z we have, by (10) and (6), that [γ(m, 0), η(n, 0)] = (γ | η)z(m,0)(m + n, 0) =
m(γ | η)z(1,0)(m + n, 0) = mδm+n,0(γ | η)z(1,0)(0, 0), where the last equality follows from
the fact that if m + n 6= 0 then z(1,0)(m + n, 0) = 1

m+n z(m+n,0)(m + n, 0) ∈ D2. In that case
z(1,0)(m + n, 0) = 0 in Z2 = C2/D2. If m + n = 0 then z(1,0)(m + n, 0) = z(1,0)(0, 0), which
is in A. Now recall the Heisenberg algebra A(Q) = H(Q, 1) in (12) with L = Q. Under the
correspondences γ(m, 0) 7→ γ(m), z(0,1)(m, 0) 7→ δ(m), z(1,0)(0, 0) 7→ c, one checks using
(10), (11), (13), and (14) that this yields an isomorphism between A and A(Q).
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By Propositions 4.1 and 1.4 we have the following inclusions of Lie algebras

Ã(Q) ⊆ H̃(Q̇, 2) ⊆ T̃[2].

Any representation of T̃[2] is automatically a representation of its subalgebras. This will be
useful in the establishment of the irreducibility of some modules.

Proposition 4.2 Let λ ∈ Γ \ Q. Then H(λ) is an irreducible H̃(Q̇, 2)-module.

Proof We will show that (i) eλ ⊗ 1 generates H(λ) and (ii) every non-zero submodule of
H(λ) contains eλ ⊗ 1. First note that as a C-space

H(λ) =
∐

n∈Z Ceλ+nδ ⊗C S
(
A(Γ)−

)
=
∐

n∈Z VΓ(λ + nδ).
Since λ ∈ Γ \Q it follows that for each n ∈ Z, λ+ nδ ∈ Γ \Q. Thus by Proposition 9 of

[FM], Ceλ+nδ⊗C S
(
A(Γ)−

)
is an irreducible Ã(Q)-module generated by eλ+nδ⊗1. To show

(i) it suffices, by Proposition 4.1, to check that for every n ∈ Z, eλ+nδ ⊗ 1 is in the H̃(Q̇, 2)-
submodule generated by eλ ⊗ 1. Indeed given n ∈ Z choose m ∈ Z so that m + nN = 0
where N = (λ | δ). Then by Proposition 3.6(a) we have Xm(nδ)(eλ ⊗ 1) = ±eλ+nδ ⊗ 1.

Next let R be a non-zero submodule of H(λ) and let 0 6= z =
∑s

i=1 eλ+kiδ ⊗ fi ∈
R, ki ∈ Z, fi ∈ S

(
A(Γ)−

)
and s ≥ 1. We may assume that the ki ’s are distinct. We

use (16) to differentiate out all indeterminates of the form µ(−n), n > 0 using δ(n) and
those of the form α(−m), α ∈ Q̇, m > 0 using α(m). Thus we may assume that fi ∈
S
(∐

m>0 Cδ(−m)
)

. Now using (31) and (72) as in the proof of Proposition 7 of [FM] we
can further reduce z to a non-zero element x =

∑r
i=1 cieλ+kiδ ⊗ 1 in R where ci ’s are non-

zero complex numbers and r ≤ s. We say that x has length r if it has r distinct ki ’s. If r = 1
then by Proposition 3.6, Xk1N (−k1δ)(c1eλ+k1δ ⊗ 1) = ±c1(eλ⊗ 1) as required. If r ≥ 2 then
by induction it suffices to show that we can shorten the length of x by exactly one.

Let m = (λ|λ)
2 ∈ Z and choose an integer k so that n1 = m + (k − k1)N < 0, where

N = (λ | δ). Write n1 = −n, n > 0. Let y = L0δ(−n)XkN (−kδ)x. We claim that
y has length r − 1. Write x = (c1eλ+k1δ ⊗ 1) + x ′, where x ′ =

∑r
i=2 cieλ+kiδ ⊗ 1. So

y = c1L0δ(−n)XkN (−kδ)(eλ+k1δ⊗1)+L0δ(−n)XkN (−kδ)x ′. It suffices to show that the first
term is zero and no other term is zero. Indeed, for 1 ≤ i ≤ r and εi = ε(−kδ, λ+kiδ) = ±1,
and using Proposition 3.6 and (72), we get

L0δ(−n)XkN (−kδ)(eλ+kiδ ⊗ 1) = εiL0

(
eλ+(ki−k)δ ⊗ δ(−n)

)
= εi
( (λ | λ)

2
+ (ki − k)(λ | δ) + n

)(
eλ+(ki−k)δ ⊗ δ(−n)

)
= εi
(
m + (ki − k)N + n

)(
eλ+(ki−k)δ ⊗ δ(−n)

)
.

Now the coefficient m + (ki − k)N + n = 0⇔ k = k1 by the choice of n. So the length of x
has been shortened by one as required.

When λ ∈ Q we shall see in the next section that H(λ) is a reducible H̃(Q̇, 2)-module.
Our next batch of irreducible modules will be Ã(Q)-modules and will come from the

completely reducible modules in Theorem 2.6.
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Every element λ in the lattice Q of (1) is of the form α + nδ, α ∈ Q̇, nδ ∈ Zδ. Define
φ : VQ̇(α)⊗C VΛ(nδ)→ VΓ(λ) to be the unique linear map satisfying

φ
(
(eα ⊗ f )⊗ (enδ ⊗ g)

)
= eλ ⊗ f g.(73)

Since Γ = Q̇ ⊥ Λ, we have that S
(
A(Q̇−)

)
S
(
A(Λ)−

)
. Let

L̇k =
1

2

∑
j∈Z

l∑
1=1

: ui(− j)ui( j + k) :

where {u}l
i=1 is an orthonormal basis for C⊗Z Q̇. Let

Hk =
1

2

∑
j∈Z

2∑
i=1

: αi(− j)αi( j + k) :

where {α1, α2} is an orthonormal basis for C⊗Z Λ. Now, let m ∈ Z, a ∈ C⊗Z Q̇.
We make VQ̇(α)⊗C VΛ(nδ) an Ã(Q)-module as follows. We set

a(m)
(
(eα ⊗ f )⊗ (enδ ⊗ g)

)
=
(
a(m)(eα ⊗ f )

)
⊗ (enδ ⊗ g)

δ(m)
(

(eα ⊗ f )⊗ (enδ ⊗ g)
)
= (eα ⊗ f )⊗

(
δ(m)(enδ ⊗ g)

)
dm

(
(eα ⊗ f )⊗ (enδ ⊗ g)

)
=
(
(L̇m ⊗ I) + (I ⊗Hm)

)(
(eα ⊗ f )⊗ (enδ ⊗ g)

)
.

Use φ to make both sides of (73) Ã(Q)-modules.

Proposition 4.3 The map in (73) is an Ã(Q)-module isomorphism between VQ̇(α) ⊗C

VΛ(nδ) and VΓ(λ).

Denote VQ̇(α)⊗C VΛ(nδ)l by VΓ(λ)l.

Proposition 4.4 If λ ∈ Q then the family {VΓ(λ)l}l∈Z is a filtration of Ã(Q)-submodules of
VΓ(λ).

Proof By Theorem 2.3, VΛ(nδ)l is a Vir-submodule of VΛ(nδ). We get from (21) to (23),
with L = Λ, and Lemma 2.2 that it is also an A(Λ)-submodule. Hence VΛ(nδ)l is an Ã(Λ)-
submodule of VΛ(nδ). We get from Proposition 1.7 that VQ̇(α) is an Ã(Q̇)-module. So
Proposition 4.4 follows from Proposition 4.3 and Theorem 2.3.

For each l ∈ Z, let VΓ(λ)l denote VΓ(λ)l/VΓ(λ)l−1.

Theorem 4.5 If λ ∈ Q then {VΓ(λ)l}l∈Z is a family of Ã(Q)-completely reducible modules.

Proof As C-spaces, the map φ in (73) induces a vector space isomorphism φ : VΓ(λ)l →
VQ̇(α)⊗VΛ(nδ)l.

As in (73) we make φ an Ã(Q)-module isomorphism. By Corollary 2.7, X = VΛ(nδ)l

is a completely reducible Vir-module. Say X =
∐

j∈ J X j with X j irreducible as a Vir-

module. By Proposition 1.5, VQ̇(α) is an irreducible A(Q̇)-module. Using these one shows
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that
∐

j∈ J(VQ̇(α)⊗X j) is a completely reducible decomposition of VQ̇(α)⊗VΛ(nδ)l as an

Ã(Q)-module.

Remarks In Proposition 9 of [FM] it is shown that if λ 6∈ Q then VΓ(λ) is an irreducible
Ã(Q)-module. Our proof of complete reducibility in Theorem 4.5 depends on the factori-
sation in (73). The modules in the next section do not have such a factorisation.

5 Reducible Modules

For m an integer let K(m) be the C-subspace of V (Γ) spanned by {C[mµ + λ] ⊗C

S
(
A(Γ)−

)
: λ ∈ Q}. From Proposition 1.8, Theorem 3.3, and Proposition 3.1, we deduce

that K(m) is a T̃[2]-submodule of V (Γ). We have the decomposition of T̃[2]-submodules

V (Γ) =
∐
m∈Z

K(m).(74)

In [FM] it was shown that if m 6= 0, then K(m) is irreducible as a T̃[2]-module. We shall
show that both K(0) and H(λ) in (71), λ ∈ Q, have filtrations of submodules as modules
over T̃[2] and H̃(Q̇, 2) respectively. In order to do that we shall need an explicit expression
for Xm(α + nδ)(eσ+pδ ⊗ f ), where Xm is a moment as in Proposition 3.1 and

{α, σ} ⊂ Q̇, {m, n, p} ⊂ Z,(75)

and f ∈ Sl, l an arbitrary but fixed integer.
The notation in (75) above will be in force for the rest of the paper.
From the definition of Sl in (50), f is a finite sum of scalar multiples of elements of the

form µ(−q1)a1 · · ·µ(−qs)asδ(k), for various integers j and l, where a =
∑s

i=1 ai ≤ j + l,
δ(k) = δ(−k1) · · · δ(−k j), a1, . . . , as, k1, . . . , k j are positive integers, while q1, . . . , qs are
distinct positive integers. Distributivity of⊗ allows us to take f to be one such summand.
So let

f = µ(−q1)a1 · · ·µ(−qs)
asδ(k).(76)

For β ∈ Γ, define the elementary Schur polynomials Sr(β), r ∈ Z, by the expressions

exp T−(β, z) =
∞∑

r=0

Sr(β)zr.

If r < 0, put Sr(β) = 0.

Example 5.1 Let x ∈ Γ. The general formula for Sr(x) can be read off from p. 59 of [KR].

For instance S4(x) = 1
24

(
x(−1)

)4
+ 1

2

(
x(−1)

)2
x(−2) + x(−1)x(−3) + x(−4). The actual

coefficients are irrelevant in our computations. We shall be working with x = α + nδ,

α ∈ Q̇, n ∈ Z. Using (7),
(
(α + nδ)(−1)

)4
=
(
α(−1) + nδ(−1)

)4
. Since S

(
A(Γ)−

)
is

commutative we see that, for all integers r, α and n as in (75), we have that

Sr(α + nδ) ∈ S
(
A(Q̇)−

)
S
(
A(Zδ)−

)
.(77)
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Let f be as in (76).
We want to compute Xm(α + nδ)(eσ+pδ ⊗ f ). Let ε = ε(α + nδ, σ + pδ) = ±1.

Suppose f = 1. Then by (19) and (54) exp T+(α + nδ, z)(1) = 1. So by (56),∑
m∈Z Xm(α + nδ)z−m(eσ+pδ ⊗ 1) = z

1
2 (α+nδ|α+nδ) exp T−(α + nδ, z)eσ+nδz(α+nδ)(0)(eσ+pδ ⊗

1) = ε
∑∞

r=0

(
eσ+α+(p+n)δ ⊗ Sr(α + nδ)zr+ 1

2 (α|α)+(α|σ)
)
. Matching powers of z by putting

−m = r + 1
2 (α | α) + (α | σ) and solving for r, we get from equating coefficients of z−m

that

Xm(α + nδ)(eσ+pδ ⊗ 1) = εeσ+α+(p+n)δ ⊗ S−m−N (α + nδ)(78)

where N = 1
2 (α | α) + (α | σ).

Lemma 5.2 If eσ+pδ ⊗ 1 is in eσ+Zδ ⊗ S
(
A(Q̇)−

)
Sl or eQ ⊗ S

(
A(Q̇)−

)
Sl respectively, then

Xm(α + nδ)(eσ+pδ ⊗ 1) is in eσ+Zδ ⊗ S
(
A(Q̇)−

)
Sl or eQ ⊗ S

(
A(Q̇)−

)
Sl respectively.

Proof This follows from (78), (77), and Lemma 2.2.

Now assume that f in (76) is not a constant. The fact that (α + nδ | µ) = n and
(α + nδ | δ) = 0 will be used when applying (56). Since T+(α + nδ, z)(eσ+pδ ⊗ f ) =
−
∑

r>0
1
r (α+nδ)(r)z−r(eσ+pδ⊗ f ) we see from (16), (3), and (76) that only r ∈ {q1, . . . , qs}

can contribute a non-zero term. And so

−
∑
r>0

1

r
(α + nδ)(r)z−r(eσ+pδ ⊗ f )

= −n
s∑

i=1

(
eσ+pδ ⊗ aiµ(−q1)a1 · · ·µ(−qi)

ai−1 · · ·µ(−qs)
asδ(k)

)
z−qi .

(79)

We want to rewrite (79) in a more complicated way that generalises for Tl
+, l a positive

integer. First replace −
∑s

i=1 by (−)1
∑

and n by n1. Let w = (w1, . . . ,ws) ∈ Zs
≥0. Then

(−)1
∑

in (79) ranges over all possible s-tuples in Zs
≥0 with

∑s
i=1 wi = 1. Each such

s-tuple w gives a term fwz−
∑s

i=1 wi qi , where the coefficient, fw, of z−
∑s

i=1 wi qi has µ-length
≤ (µ-length of f )−1. The polynomial fw is a scalar multiple of the polynomial obtained by
replacing each µ(−qi)ai in (76) by its wi-th derivative with respect to µ(−qi). By replacing
1 by l in this version of (79) we get a Leibniz-rule-type formula for Tl

+(α + nδ)(eσ+pδ ⊗ f ).
A consequence of this visualised formula for Tl

+ is that if l > a =
∑s

i=1 ai , the µ-length of
f then Tl

+(α + nδ)(eσ+pδ ⊗ f ) = 0.
Let W = {(w1, . . . ,ws) ∈ Zs

≥0 : 0 ≤
∑s

i=1 wi ≤ a}. Let F = exp T+(α + nδ, z). Then

F(eσ+pδ ⊗ f ) =
∑

w∈W eσ+pδ⊗ cw fwz−
∑s

i=1 wi qi for some scalars cw, where c(0,0,...,0) = 1 and
f(0,0,...,0) = f .

We now recall (56) to get

∑
m∈Z

Xm(α + nδ)z−m(eσ+pδ ⊗ f ) = z(α|α)/2 exp T−(α + nδ, z)eα+nδz(α+nδ)(0)F(eσ+pδ ⊗ f )
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where exp T−(α + nδ, z) =
∑∞

r=0 Sr(α + nδ)zr . So X(α + nδ, z)(eσ+pδ ⊗ f ) =

ε
∑∞

r=0

(
eσ+α+(p+n)δ ⊗ Sr(α + nδ)zr+ 1

2 (α|α)+(α|σ)
)
F(eσ+pδ ⊗ f ). Since the constant ε = ±1

can be absorbed by F we shall suppress it. We get that
∑

m∈Z Xm(α + nδ)z−m(eσ+pδ ⊗ f ) =∑
w∈W

∑∞
r=0

(
eσ+α+(p+n)δ ⊗ Sr(α + nδ)cw fwzr+ 1

2 (α|α)+(α|σ)z−
∑s

i=1 wi qi
)
.

Matching powers of z, we let rw =
∑s

i=1 wiqi −m− 1
2 (α | α)− (α | σ). Then equating

coefficients of z−m, we get

Xm(α + nδ)(eσ+pδ ⊗ f ) = eσ+α+(p+n)δ ⊗
∑

w∈W

Srw (α + nδ)cw fw.(80)

The relevant thing about (80) for what follows is that fw is obtained from f in (76) by
lowering the µ−length of f .

Lemma 5.3 If eσ+pδ ⊗ f is in eσ+Zδ ⊗ S
(
A(Q̇)−

)
Sl or eQ ⊗ S

(
A(Q̇)−

)
Sl respectively. Then

Xm(α + nδ)(eσ+pδ ⊗ f ) is in eσ+α+Zδ ⊗ S
(
A(Q̇)−

)
Sl or eQ ⊗ S

(
A(Q̇)−

)
Sl respectively.

Proof We saw in the proof of Theorem 2.3 that Sl is invariant under reduction of µ-length.
So Lemma 5.3 follows from (80), (77), and Lemma 2.2.

Let H(λ)l = C[λ + Zδ]⊗C S
(
A(Q̇)−

)
Sl and K(0)l = C[Q]⊗C S

(
A(Q̇)−

)
Sl.

Remark 5.4 In the proof of Propositions 5.5 and 5.6 we shall use the fact that the invariance
of H(λ)l and K(0)l under Vir depends only on the invariance of S

(
A(Q̇)−

)
Sl under the

oscillator operators. This follows from (21) to (23). Since Sl ⊆ Sl+1 we have the inclusions
stated in Propositions 5.5 and 5.6.

Proposition 5.5 Let l be any integer. Then for every λ ∈ Q, H(λ)l is an H̃(Q̇, 2)-submodule
of H(λ) and H(λ)l is an H̃(Q̇, 2)-submodule of H(λ)l+1.

Proof Just before (60) we saw that H̃(Q̇, 2) is generated inside T̃[2] by the Virasoro op-
erators Lk on V (Γ) and H(Q̇, 2). As in Lemma 2.2 S

(
A(Q̇)−

)
Sl is closed under Lk and

δ(m). So H(λ)l is closed under Vir and δ(m). Using Proposition 3.7 we need only check
invariance of H(λ)l under Xm(nδ). This follows from Lemma 5.3 with α = 0.

Proposition 5.6 Let l be any integer. Then K(0)l is a T̃[2]-submodule of K(0) and K(0)l is a
T̃[2]-submodule of K(0)l+1.

Proof Invariance of K(0)l under Vir follows from Remark 5.4 and Proposition 5.5 while
invariance of K(0)l under Xm(α + nδ) and δ(m) follows from Lemma 5.3 and Lemma 2.2
respectively.

Proposition 5.7 Let λ ∈ Γ. Then every non-zero submodule of VΓ(λ) is an indecomposable
Ã(Q)-module.
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Proof Let M be a non-zero submodule of VΓ(λ). Since A(Q) ⊂ Ã(Q) it is enough to show
that M is an indecomposable A(Q)-module. We show that if M = A + B with both A and B
non-zero then A∩B 6= 0. Let x = eλ⊗ f ∈ A and y = eλ⊗ g ∈ B. By acting on them with
appropriate δ(n) as specified in (16) we may assume that neither x nor y has a µ-term, i.e.
f and g are in S

(
A(Q)−

)
. We then get from (18) that 0 6= eλ ⊗ f g ∈ A ∩ B.

Since A(Q) is a subalgebra of both H̃(Q̇, 2) and T̃[2], the proof of Proposition 5.7 gives
analogous results for H(λ) and K(0) over their respective algebras.

Proposition 5.8 Let λ ∈ Q. Then the modules H(λ), VΓ(λ), and K(0) do not contain
irreducible submodules over the respective Lie algebras, H̃(Q̇, 2), Ã(Q), and T̃[2].

Proof Fix X ∈ {VΓ(λ),H(λ),K(0)}, and let Xl be VΓ(λ)l,H(λ)l, or K(0)l} as the case may
be. Now, for m > 0, we have that 0 6= δ(−m)Xl ⊆ Xl−1. Let M be a non-zero submodule
of X. Then we must have 0 6= M ∩ Xl 6= M for some integer l because X =

⋃
l∈Z Xl and⋂

l∈Z Xl = {0}.

We have been able to do computations in T̃[n] and H̃(L, n) for n ≤ 2 and restricted
choices of n. As can be seen by comparing [EM] and [MEY], the jump from T[2] to T[n], n
arbitrary is fraught with difficulties.
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