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Abstract

In regression discontinuity (RD), a running variable (or “score”) crossing a cutoff determines a treatment
that affects the mean-regression function. This paper generalizes this usual “one-score mean RD” in three
ways: (i) considering multiple scores, (i) allowing partial effects due to each score crossing its own cutoff, not
just the full effect with all scores crossing all cutoffs, and (iii) accommodating quantile/mode regressions.
This generalization is motivated by (i) many multiple-score RD cases, (ii) the full-effect identification needing
the partial effects to be separated, and (iii) informative quantile/mode regression functions. We establish
identification for multiple-score RD (MRD), and propose simple estimators that become “local difference in
differences” in case of double scores. We also provide an empirical illustration where partial effects exist.

Keywords: regression discontinuity, multiple running variables, partial effect, difference in differences

Introduction

Regression discontinuity (RD), originated by Thistlethwaite and Campbell (1960), has been gaining
popularity in many disciplines of social sciences. Just to name a few, Rao, Yu and Ingram (2011)
and Bernardi (2014) in sociology; Broockman (2009) and Caughey and Sekhon (2011) and Eggers
et al. (2015) in political science; and many studies in economics as can be seen in the references
of Imbens and Lemieux (2008), Lee and Lemieux (2010), and Choi and Lee (2017) who also list
statistical papers although there are not many.

In a typical RD with a treatment D, an individual is assigned to the treatment (D = 1) or
control group (D = 0), depending on a single running/forcing/assignment variable S crossing a
cutoff or not. There are, however, many RD cases where multiple running variables determine a
single treatment. One example is multiple test scores crossing cutoffs for school graduation or
grade advancement (Jacob and Lefgren 2004). Another example is spatial/geographical RD where
longitude and latitude are two running variables (Dell 2010; Keele and Titiunik 2015), although
often the scalar shortest distance to aboundaryisused asarunningvariable in the literature (Black
1999; Bayer, Ferreira and Mcmillan 2007). Since the word “running variable” will appear often in
this paper, we will call it simply “score” (S for Score).

When there are multiple scores, two cases arise: “OR case” where any score can cross a cutoff
to get treated (Jacob and Lefgren 2004; Matsudaira 2008; Wong, Steiner and Cook 2013), and “AND
case” where all scores should cross all cutoffs to get treated. For simplification, we will examine
only AND cases in this paper, because an OR case can be converted to the AND case by switching
the treatment and control groups.

“Multiple-score RD (MRD) for a single treatment” that is the focus of this paper differs from “RD
with multiple cutoffs for a single score” as in Angrist and Lavy (1999) and Van der Klaauw (2002),
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which is handled by looking at each cutoff one at a time. Whereas these studies dealt only with
fixed known cutoffs,say c;,j = 1,..., J, Cattaneo et al. (2016) examined a random cutoff C, which
can occur in multiparty elections/races.

The goal of this paper is to generalize the usual “single-score mean-regression RD” in three
ways. First, we consider multiple scores for a single treatment D. Second, differently from most
other RD studies for multiple scores, we allow “partial effects” due to each score crossing its own
cutoff, in addition to the (full) treatment effect due to D = 1 with all scores crossing all cutoffs.
Third, although we focus on RD with the usual mean regression E(Y|S) for a response variable Y,
our approach can be easily generalized to other location measures such as conditional quantiles
(Koenker 2005) and mode (Lee 1989; Kemp and Santos-Silva 2012).

Certainly, we are not the first to deal with MRD theoretically. Wong, Steiner and Cook (2013)
examined “OR-case MRD,” Keele and Titiunik (2015) “AND-case MRD,” and Imbens and Zajonc
(2009) and Reardon and Robinson (2012) both cases. A critical difference between these studies
(except Reardon and Robinson 2012) and this paper is that we allow partial effects while they do
not. To see the point, consider S = (Sy, S3)’ and

E(Y|S) = Bo + B161 + B262 + BuD, 5jE1[CjSSJ’] forj=1,2and D = 6,6, (1)

where B’s are parameters, ¢ = (c1, cz)’ are known cutoffs, and 1[A] = 1if A holds and 0 otherwise.
For instance, in the school graduation (D = 1) effect example (on lifetime income Y') by passing
both math (6; = 1) and English (6, = 1) exams, even if one fails to have D = 1, still passing/failing
the math exam may affect Y by encouraging/stigmatizing the student.

Ruling out partial effects, Imbens and Zajonc (2009), Wong, Steiner and Cook (2013) and
Keele and Titiunik (2015) found “boundary-specific” effects, which are then weighted-averaged,
in comparison to our simple effect at S = ¢ (under a weak continuity condition only at S = ¢).
Reardon and Robinson (2012) seems to be the only other paper allowing for partial effects in
MRD; they considered partial effects by casting MRD within a multiple treatment framework. But
Reardon and Robinson (2012) did not offer formal derivations as we do in this paper.

The aforementioned generalization of E(Y|S) for conditional quantiles or mode seems feasible
only for “sharp RD” where D is fully determined by the scores. Hence, we stick to sharp MRD in this
paper, as Wong, Steiner and Cook (2013) and Keele and Titiunik (2015) also did; only Imbens and
Zajonc (2009) dealt with fuzzy MRD under no partial effects. For simplification, we will examine
only two scores S = (S, S»)’ unless otherwise noted, as generalizations to more than two scores
are conceptually straightforward. Without loss of generality, we will set the cutoffs at zero unless
otherwise necessary, as (S1, S») can be always centered as (S1 — ¢1, Sp — ¢2).

In short, we focus on AND-case two-score sharp MRD allowing partial effects for the mean-
regression function E(Y|S). Since the treatment D takes the interaction form 516, as in Equation (1)
the effect is found essentially by “local difference in differences (DD)” where both partial effects
are removed in DD with only the desired interaction surviving. See Lee (2016) for the recent
developments in DD.

The rest of this paper is organized as follows. Section 2 examines the identification and
estimation for two-score MRD. Section 3 compares our identification conditions and estimators
with those in the literature. Section 4 provides an empirical illustration. Finally, Section 5
concludes. Our MRD coverage is limited, because every issue that ever occurred to single-score
RD also occurs to MRD and we cannot possibly address all the issues in one paper.

MRD with Two Scores
Recall S = (81, S2)’and D = 616, where §; = 1[0 < §;],j = 1, 2. First, we introduce four potential
responses correspondingto &1, 62 = 0, 1, and examine partial effects—an issue that does not arise
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2.1

for the usual single-score RD. Second, we impose a continuity condition and present the main
identified effect for MRD. Third, we propose a simple estimation scheme based on ordinary least
squares estimator (OLS) using only some observations local to the cutoff in both scores.

Four Potential Responses and Partial Effects
Define potential responses (Y%, Y19, Y01 y1) corresponding to (61, 82) being (0,0), (1,0), (0, 1),
(1, 1), respectively. Although our treatment of interest is the interaction D = 68, itis possible that
&1 and &, separately affect Y. Forinstance, to graduate high school, one has to pass both math ()
and English (6, ) exams, but failing the math test may stigmatize the student (“I cannot do math”)
to affect his/her lifetime income Y; in this case, Y is affected by §; as well as by D. More generally,
when an interaction term appears in a regression function, it is natural to allow the individual
terms in the regression function. Call the separate effects of §; and &, “partial effects.”
Ataglance, theindividual treatment effect of interest may look like Y'' - Y% because D = 6,65,
but this is not the case. To see why, think of the high school graduation example. Y is the lifetime
income when both exams are passed, and as such, Y''" includes the high school graduation effect
on lifetime income and the partial effect of passing the math exam (“I can do math”), as well as
the possible partial effect of passing the English exam (“I can do English”?). Hence the “net” effect
of high school graduation should be

11— y00 _ (y10 _ y00) _ (y01 _ y00) _ 11 _ 10 _ 01 4 100

where the two partial effects relative to Y% are subtracted from Y'! — Y90,
Rewrite E(Y|S) as

E(Y|S)=E(Y®|S)(1 = 6:1)(1 = &) + E(Y'1)6:1(1 - 6,)
+E(Y8)(1 - 81)6; + E(Y']S)8:68,. (2)

Further rewrite this so that §; and 6, and D = 6,8, appear separately:

E(Y|S)=E(Y®S) +{E(Y'0|S) — E(Y®|8)}81 + {E(Y?'|S) — E(Y®|$)}6,
+{E(Y"S) - E(Y'9S) - E(Y°'|S) + E(Y®°|S)}D (3)

which will play the main role for MRD. This equation does not hold for fuzzy RD, because D would
then depend on random variables other than S on the right-hand side while the left-hand side
E(Y|S)is afunction of only S. This is one of the reasons why we stick to sharp RD.

The slope of D = 616, in Equation (3) is reminiscent of the above Y — Y10 — y01 4 Y00 anditis
aDDwith E(Y'"]|S) - E(Y9]S) as the “treatment group difference” and E(Y?'|S) - E(Y®|S) as the
“control group difference.” Since D is an interaction, it is only natural that DD is used to find the
treatment effect, as DD is known to isolate the interaction effect by removing the partial effects.

If

no partial effects : E(Y'°|S) = E(Y°"|S) = E(¥™|S),

then Equation (3) becomes

E(Y|S) = E(Y®|S) + {E(Y""|S) - E(Y?|S)}D. (4)
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Figure 1. Two-Score RD in AND case (Square & Oval Neighborhoods).

It helps to see when the no partial-effect assumption is violated (recall Equation (1) with 8; # 0
or B2 # 0):

E(Y")=Bo+Bi+Po+Ba. E(YO)=Po+Bi, E(Y)=Po+p, E(YP) =p
= EY") - EY") —E(Y + E(Y®) = B4, E(Y') = E(YP) = B1 + B2 + Ba.

Examine squares 1-4 in the left panel of Figure 1, where (A, h;) are the two localizing bandwidths.
There is one treatment group (square 1) and three control groups (squares 2, 3 and 4). Under no
partial effect, the treatment effect can be found by comparing squares 1and 2,1and 4, or 1and 3.
With partial effects present, however, this is no longer the case: squares 1and 2 give the treatment
effect B4 plus the partial effect due to Sy crossing 0; squares 1and 4 give B4 plus the partial effect
dueto S, crossing 0; squares 1and 3 give B4 plus the two partial effects. It is only when we take DD
as in Equation (3) that the desired B, is identified. More generally than the left panel of Figure 1,
we may have the right panel where the four groups are not squares, but parts of an oval figure
depending on the correlation between S; and S,.

Identification and Remarks
To simplify notation for limits of E(Y|S = s) = E(Y|S; = s1, S2 = s7), denote

lim as lim, lim as lim, lim as lim, lim as lim.
s110,s210 +,+ s170,s210 -+ s110,5270 +,— s170,s270 -

Assume that these double limits of £(-|S) exist at O for the potential responses, and denote them
using 0~ and 0F; for example, £(Y®[0~,0%) = lim_, E(Y%|sy, s2).
Take the double limits on Equation (2) to get

E(Y|0*,07) = E(Y"'|0%,0%), E(Y|0%,07) = E(Y'°/0*,07),
E(Y]0-,0%) = E(Y°'|0~,0%), E(Y|0~,07) = E(Y®|0-,07).

These give a limiting version of the slope of D = 66, in Equation (3) at (0, 0):

E(Y|0*,0%) — E(Y|0*,07) — E(Y|0~,0%) + E(Y|0~,07)
= E(Y"o*,0%) - E(Y'°0*,07) = E(Y?"|0~,0%) + E(Y®|0~,07). (6)
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Assume the continuity condition (note that all right-hand side terms have (0%, 0%))

(i): E(YO' 0™, 0%) = E(Y°'|0", 0),
(ii): E(Y'90*,07) = E(Y'0|0", 0%), (7
(iii): E(Y%0~,07) = E(Y|0*,0%).

Equation (7)(i) is plausible because Y°' is untreated along s, (i) because Y'° is untreated
along s,, and (iii) because Y is untreated along both s; and s;. These continuity conditions
show how counterfactuals for the treatment group with (0%, 0%) can be identified. For example,
Equation (7)(i) is that the counterfactual £(Y°'|0*, 0*) for the treatment group can be identified
with £(Y°10~, 0*) from the partially treated group (0~, 0%).

Using Equations (7), (6) becomes

E(Y]0",0%) — E(Y|0*,07) - E(Y]07,0%) + E(Y]0,07) (8)
= By = E(Y''|07,0%) — E(Y'010*,0%) — E(YY"|0,0%) + E(Y®|0*, 07)

Equation (8) isanidentified entity thatis characterized by Equation (9)—the mean effect on the just
treated (0%, 0*). We summarize this (as well as Equation (4) under no partial effect) as a theorem,
with a three-score MRD extension provided in the appendix A.

THEOREM 1. Suppose the double limits of E(Y|S) exist at 0 for the potential responses, the
continuity condition Equation (7) holds, and the density function fs(s) of S is strictly positive on a
neighborhood of (0, 0). Then the effect

ﬂd — E(yH _ Y10 _ Y01 + YOO|O+,O+)

is identified by two-score MRD Equation (8). If no partial-effect condition holds at S = 0 (i.e.,
E(Y'00*,0%) = E(Y°'|0*,0%) = E(Y|0*,0%)), then By = E(Y"" — Y°|0*,0%).

Would partial effects really matter? Partial effects may be unlikely in certain MRDs. Forinstance,
in two-dimensional geographic MRD with latitude S; and longitude S;, simply crossing only one
boundary may not do much of anything. But if S; > 0 corresponds to being on the right side of
mountains ranging south to north, then a partial effect due to S, can occur, because the weather
on the right side of the mountain range can be much different from that on the left side. Another
example is the effects of a conservative party being the majority in both houses of parliament on
the passage of bills, where the cutoff is 50% of the seats in each house. Even if the conservative
party is the majority in only one of the two houses, still the passage rate can be different from when
the conservative party is not the majority in either house. Given that allowing for partial effects is
not difficult at all as can be seen shortly, there is no reason to simply assume away partial effects.

oLS

Although Equation (8) shows that B4 can be estimated by replacing the four identified elements
in Equation (8) with their sample versions, in practice, it is easier to implement MRD with
Equation (3), using only the local observations satisfying S; € (-h;, h;), j = 1,2. Specifically,
replace E£(Y®|S) in Equation (3) with a (piecewise-) continuous function of S, and replace the
slopes of 61, 62 and D with parameters 81, 82 and B4 to obtain

E(Y|S) = E(Y®|S) + 161 + 28y + BaD (10)
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where E(Y%|S) is specified as

linear: m4(S) = alinear function of Sy, S, with intercept By M

quadratic:  my(S) = my(S) + a linear function of §2, 52, 51 S,.

Then OLS can be applied to Equation (10) to do inference with the usual OLS asymptotic variance
estimator. If E(-|S) in Equation (10) is replaced with a conditional quantile/mode, quantile/mode
regression can be applied to estimate the quantile/modal parameters.

With

57 =1[-h <8 <0l & =10<8<hl j=12

another way to set £(Y%|S) is a piecewise-linear function continuous at 0:

E(Y®|S) = Bo + B1167 85 S1 + 1267 85 Sa + P21 67 65 S1 + B226; 85 S,
+ 316165 S1 + P3267 55 82 + Ba1657 85 St + a2 65 Ss. (12)

This allows different slopes across the four quadrants determined by (67, 67, 6,, 65).

The above MRD estimation requires choosing the functional form for £(Y®|S), h = (hy, hy)’ for
S, and a weighting function within the chosen local neighborhood. First, we use only a linear or
quadratic function of S in Equations (11) and (12), as Gelman and Imbens (2018) advise against
using high-order polynomials in RD. Second, developing optimal bandwidths for A in MRD as
Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014) did for single-score
RD would be very involved, going over the scope of this paper; instead, we use a rule-of-thumb
bandwidth N~1/6 with both scores standardized, and explore cross validation (CV) schemes below
tofind useful reference bandwidths. Third, we do not use any weighting function within the chosen
local neighborhood in the above OLS, which amounts to adopting the uniform weight; this is a
common practice, as weighting seems to make little difference in practice. There is no proof that
these choices that we make are optimal, which means that our proposed estimation strategy in
this section to be applied in the empirical section should be taken as tentative; hopefully, further
research settles the estimation issues in a more satisfactory manner.

In RD, the sample size can be small due to the localization, and the problem gets exacerbated for
MRD. In case this happens, Cattaneo, Frandsen and Titiunik (2015), Keele, Titiunik and Zubizarreta
(2015) and Cattaneo, Titiunik and Vazquez-Bare (2017) proposed “randomized inference.” But
applying this to MRD is challenging, because randomly assigning each subject to one of the four
groups under the null of no effect requires the null hypothesis to be 7 = 8, = B4 = Oin
Equation (10) instead of only B4 = 0 while allowing 81 # 0 or B # 0, which was the very
motivation for this paper. Designing a proper randomized inference for MRD is an interesting
research question, but it goes beyond the scope of this paper.

About choosing h, one CV scheme for MRD is minimizing

D oMY= E(VIS. 0y Y ] (13)

with respect to A, where wf = 1for S; with at least 2 or 3 observations in each of the four directions
within its “square neighborhood” (Sy; = hy, Sy; + h3), and wlf’ = 0 otherwise; this ensures ruling out
S;’s on its support boundaries. In this CV scheme, £_;(Y|S;, h) is a nonparametric kernel predictor
using an one-sided kernel estimator depending on the side of (0, 0) where S; is located among
the four sides, which is a generalization of the CV scheme in Ludwig and Miller (2007) who applied
Equation (13) to single-score RD. As as it turned out, however, we experienced the same problem as
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Ludwig and Miller (2007) experienced: too large bandwidths that make most wlf”s zero and predict
the few remaining Y;’s well to make Equation (13) small.
The problem of too large bandwidths does not occur to the “conventional CV” which uses
all-sided symmetric weighting to minimize
_ Xy KnlSj = Si)Y;

1 . .
— Y {Y;— E_i(Y|Si,h)}*> where E_;(Y|S;, h) = (14)
NZ{, (YISi. h)} YIS = S s,

and Kj, is a kernel function with bandwidths h. This is known to behave well: the resulting
minimand is nearly convex and the conventional CV bandwidth is asymptotically optimal. The
reason why this is not used in single-score RD is that E(Y|S) has a break, instead of being
continuous in S, and consequently £_;(Y|S;, h) is biased for E£(Y|S;) when S; is near the cutoff.
Nevertheless, since the goal is finding a reasonable h, not necessarily predicting Y well, we use
this conventional CV.

Although we adopt the uniform weight within a chosen neighborhood, still the neighborhood
should be chosen whose form differs as Figure 1illustrates. With p = COR(Sy, S,), o; = SD(S;) and

nj = hj/oj (&=h; = ojn;)forj = 1,2, we use

2 2
S St S S
(1)—2,31 2+(2)s1.
o1 o1M 0212 02112
These kernels need normalizing factors, but they are irrelevantin choosing 1 and n; because they
get canceled in £_,(Y|S;, h).

Setting n1 = 1, = n in Equation (15)(i) gives a square neighborhood of 0 in the standardized
scores (S1/04, S2/0%) and setting n1 = n2 = nand p = 0in Equation (15)(ii) gives a circle because

the two kernels become
2 2
Sy S S2 2
1 <nl-1[|— — | +|—=] <
[ _q] [02 (01) (02) =1

The oval shape is elongated along the 45 degree line when p > 0 as in the right panel of Figure 1,
and such a neighborhood can better capture observations scattered along the 45 degree line;
when p < 0, the oval shape is elongated along the 135 degree line.

Sy

02112

S

o1m

(i) square-neighbor kernel: Kx(S) = 1 [

(ii) oval-neighbor kernel: K;(S) = 1

S
o1

<n| and 1

Other Approaches in the Literature

Having presented our proposal, now we review the other approaches for MRD. First, two scores
are collapsed into one so that the familiar single-score RD arsenal can be mobilized. Second,
two-dimensional localization is avoided by doing, for example, one-dimensional localization for
S7 given S, > O (i.e., given &, = 1) to get the “effects on the boundary S; = 07; here as well,
the familiar single-score RD methods can be utilized. Third, those effects on the boundary can be
weight-averaged.

Minimum Score
Battistin et al. (2009) and Clark and Martorell (2014) defined

Sm=min(S1,Sy) = D =1[0< S,]

J. Choi and M. Lee | Political Analysis 264


https://doi.org/10.1017/pan.2018.13

https://doi.org/10.1017/pan.2018.13 Published online by Cambridge University Press

PA

3.2

to set up
E(Y|Sm) = Bo + B-Sm(1 = D) + B+ SmD + fmD

where B, is the treatment effect of interest. Recalling Equation (10) with 8; = B2 = 0, we can see
that £(Y|S;, S,) in Equation (10) is specified just as By + B_Sm(1 — D) + B4+ SmD.

This approach is problematic because the linear spline Bp+ 8-S, (1-D)+B. S D isinadequate:
it approximates £(Y%|S) only with S; when §; < S5, and only with S, when S, < S;—there is
no reason to voluntarily “handcuff” oneself this way, and better approximations can be seen in
Equations (11) and (12). Also, partial effects are ruled out because By + 8-S,(1 — D) + B, S, D is
continuous in S, thatis in turn continuous in S: no break along S; only (nor S, only) is allowed.

A couple of remarks are in order. First, Reardon and Robinson (2012) and Wong, Steiner
and Cook (2013) called this approach, respectively, “binding score approach” and “centering
approach,” but “min approach” would be more fitting. Second, Battistin et al. (2009) and Clark
and Martorell (2014) dealt with fuzzy mean-based MRDs, not sharp MRD. Third, S, can be easily
generalized to more than two scores; for example, min(Sy, Sz, S3) for three scores as in Clark and
Martorell (2014).

One-Dimensional Localization
The dominant approach in the MRD literature is looking at a subpopulation with one score already
greater than its cutoff (Jacob and Lefgren 2004; Lalive 2008; Matsudaira 2008). For instance, on the
subpopulation with 61 = 1, §;, equals D, and squares 1and 1’ in the left panel of Figure 1 become
the treatment group whereas squares 4 and 4" become the control group. This raises efficiency
because only one-dimensional localization is done with the larger control and treatment groups,
but a bias appears if there is a partial effect. Reardon and Robinson (2012) and Wong, Steiner and
Cook (2013) called this “frontier approach” and “univariate approach,” respectively.

To formalize the idea, set §; = 1 (&S; > 0) and D = &, in Equation (3) to have

E(Y|S) = E(Y™|S) + {E(Y"|S) - E(Y'°S)}62; (16)
E(Y9]S) is the baseline now. Take the upper and lower limits only for s, with s; > 0:

E(Y]s1,07) = E(Y'"s;,0%) + lirB{E(Y”|s1, s2) — E(Y sy, s2)},
52
E(Y]s1,07) = E(Y0sy,07).

Assume the continuity condition
E(Y"%s1,0%) = E(Y"%s1,07) Vs; > 0; (17)

whereas this has “Vs; > 0,” (ii) of Equation (7) is only for s; = 0* that is weaker than Equation (17).
Using Equation (17), the difference between the upper and lower limits gives

B(s1,07) = iM{E(YIs1, 52) = E(Y s, 52)} = E(Yls1,07) = E(¥ls1,07);
52
“10”in B'%(s;, 0*) refers to the baseline superscript in Y'°. For Equation (1), 8'%(s1,0%) = B2 + Ba,
not B4.

Proceeding analogously, set §, = 1 (&S, > 0) and D = &; in Equation (3) to have

E(Y|S) = E(Y'|S) + {E(Y"|S) - E(Y?'|S)}5:. (18)
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Take the upper and lower limits only for s; with s, > 0:

E(Y]0*, sp) = E(Y?'0%, s7) + lirB{E(Y”|s1, s2) — E(Ys1, s2)},
S1
E(Y]07, s2) = E(Y?'|07, 59).

Assume the continuity condition
E(Y?0*, s5) = E(Y?'|07,55) Vs, > 0. (19)
Using Equation (19), the difference between the upper and lower limits gives
B2H0%, s2) = UmAE(YIs1, 2) = E(Y!Is1, s2)} = E(YI07, 52) ~ E(Y10, 52).

For Equation (1), 8% (0%, s2) = B1 + B4, not By.
In estimation for Equation (16), the usual single-score RD approach would adopt

E(Y|S) = E(Y'0|S) + %6, foraparameter g'° (20)

analogously to Equation (10), where E(Y'°|S) is specified as in Equation (11); only the subsample
with (6, +67)61 = 1is used for estimation. There is no “oval-neighbor” analog, because only the
observations with | S| < hy are used given S; > 0.

The model Equation (20) may be inadequate, because S; in the slope of &, in Equation (16) is
not localized. That is, replacing 8'° in Equation (20) with a function of S; would be better, which
then results in a model such as

E(Y|S) = E(Y'0S) + 8'28,6, + B'°5, fora parameter B'2. @1
For the opposite case of localizing with Sy given S, > 0, we can use analogously
E(Y|S)=E(YYS) + %8 or E(Y|S)=E(Y'S) + B S,81 + B

Weighted Average of Boundary Effects
Imbens and Zajonc (2009) dealt with both multiple-score sharp RD and fuzzy RD in a general set-up
allowing both AND and OR cases. They discussed identification and estimation, assuming away
partial effects. With B denoting the treatment and control boundary, the treatment effectat s € B
for FRD is
_limyoo E{Y|S € NSf(s)} = limy_o E{Y|S € N, (s)}
= limy—o E{DI|S € Ny (s)} - lim,_o E{D|S € N, (s)}
where N (s) and N; (s) denote the “v-treated”- and “v-control” neighborhoods of s.

Imbens and Zajonc (2009) proposed also an integrated version of B4(s):

Ba(s)

_ _ Joep Bas)fs(s)os
Ba = fseB Ba(s)fs(s|S € B)os = [ (22)

Tests for the effect heterogeneity along B and the asymptotic distribution using a multivariate
local linear regression are also shown in Imbens and Zajonc (2009).

Keele and Titiunik (2015; “KT”) addressed AND-case two-score sharp MRD. Consider the two
boundary lines B stemming from the cutoff (¢y, ¢3) rightward and upward as in the left panel of
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Figure 1. With partial effects ruled out in KT, only the treatment gets administered as B is crossed
to the “treatment quadrant” (¢ < Si, ¢ < S) from any direction. Denoting a point in B as b, KT
assumed the continuity at all points in B for the potential untreated and treated responses Y, and
Yi:

lin’)) E(Yo|S =s)=E(Y|S=b) and lin’)) E|S =s) = E(W1|S = b).

Denoting a point in the treatment quadrant as s' and in the control quadrants as s¢, this
continuity condition identifies the effect 7(b) at b € B:

lim E(Y|S =s') = lim E(Y|S = s°) = lim E(Y3]|S = s") = lim E(Y|S = s°)
st—b s¢—b st—b s¢—b

= E(V;|S = b) — E(Y|S = b) = E(Y1 = Yo|S = b) = 7(b). (23)

A marginal effect can be found by integrating out 6 as in Equation (22). KT proposed a local
polynomial regression estimator for 7(b) using a distance from b, say the Euclidean distance
Ap(S) = ||S - b||, as a single “regressor.” This is to be done on the treatment and control quadrants
separately to obtain sample analogs for the first term of Equation (23). The difference of the
intercept estimators is then an estimator for t(b).

Wong, Steiner and Cook (2013; “WSC”) dealt with OR-case two-score sharp MRD where D =
1[Sy < ¢j or Sy < ¢;]; WSC ruled out partial effects. WSC laid out four approaches, and we explain
three (the remaining one does not seem tenable, and WSC did not recommend it either). The
firstis the aforementioned minimum of the scores. The second is essentially the one-dimensional
localization along the horizontal boundary (say B1) of B, and then along the vertical boundary
(say Bjy); the difference from KT is, however, that WSC obtained 71 = E(Y; — Yo|S € B;) and
T = E(Y] — Yo|S € By) instead of KT’s E(Y; — Yo|S = b) for all b € B. The third is getting an
weighted average of 71 and 1, which WSC called the “frontier average treatment effect.”

Although disallowing partial effects may look simplifying, to the contrary, it results
in considering boundary lines instead of the single boundary point (c1, cp). The possibly
heterogeneous effects along the boundaries may be informative, and possibly efficiency
enhancing if they are homogeneous, which however also raises the issue of finding a single
marginal effect as a weighted average of those boundary effects. Such a weighting requires
estimating densities for the boundary lines—a complicating scenario.

Of course, in reality, whether partial effects exist or not is an empirical question. The logical
thing to do is thus to allow nonzero partial effects first with our approach, and then test for zero
partial effects; if accepted, one may adopt some of the above approaches. This should be preferred
than simply ruling out partial effects from the beginning, unless there is a strong prior justification
to do so.

Empirical Illustration

This section provides an empirical example for congress “productivity”: the effects of the
Republican party being dominant in both lower and upper houses on passing bills, where the
sample size is only 104. We estimate the mean effect, but the inference is problematic due
to the small sample size. Also, the usual RD data plots are not helpful, because dividing the
range of S to create cells leaves only a few observations for each cell. We use two measures of
legislative productivity for the US Congress 1789-2004 in Grant and Kelly (2008): the “legislative
productivity index (LPI)” for all legislations, and the “major legislation index (MLI)” for major
legislations only. We obtained the House (S) and Senate (S,) Republican seat proportions from
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Table 1. Descriptive Statistics for Congress Productivity Data.

All Sample +0.10 +0.05
Mean (SD) Min, Max Mean (SD) Mean (SD)
S7 (House) 0.498 (0.139) 0.202,0.860 0.494 (0.057) 0.497 (0.028)
S, (Senate)  0.517 (0.147) 0.167,0.917  0.504(0.048) 0.502 (0.019)

D 0.404 (0.493) 0,1 0.405 (0.497)  0.357 (0.497)
LPI 90.8 (57.7) 3.9,187 98.5 (55.5) 108 (50.8)
MLI 11.1(5.20) 3.1,20.3 1.7 (5.24) 12.1 (4.60)
N 104 42 14

http://www.senate.gov/history/partydiv.ntm and http://history.house.gov/Institution/Party-
Divisions/Party-Divisions/.!

For the periods before 1837, we consider Jackson, Jackson Republican, Jeffersonian
Republican, and Anti-Administration as Republican parties to follow the party division that the
official Senate and House website makes. Since there was no official Republican party before 1857,
for 1837-1856, we consider the parties opposite to the Democratic party as Republican. Among
the total 108 congresses, we removed four cases where neither Democrats nor Republicans were
dominant.

Table 1 presents descriptive statistics. On average, the Republican seat proportions are around
0.5 and they are the majority in both houses 40% of the times. LPI is 90.8 on average and MLI is
11.1, and when we restrict the sample to +0.10 around the cutoff 0.5 in both houses to have 42
observations, the average LPI increases to 98.5 and MLI to 11.7. When we restrict the sample to
+0.05, the average LPI further increases to 108 and MLI to 12.1—but then only 14 observations are
left.

Figure 2 plots LPI and MLI, which reveals an increasing trend. We do the OLS of Y on
(1,¢, 81, S2, 61, 62, D), where t is to capture the trend, Y is standardized to ease interpretation
(i.e., Y is LPI/SD(LPI) or MLI/SD(MLI)), and D is the indicator for whether the Republican party is
dominant in both houses or not; other than ¢, we adopt Equation (10) with the linear model in
Equation (11). We also tried using 2 additionally, but the results are omitted as they do not differ
much.

Although there is no covariate in our data, the lagged outcome can be thought of as a covariate,
which may be unbalanced between the treatment and control groups. To check this out, we do the
OLS of the lagged Y on the same regressors to test Hy : B1 = B2 = B4 = O (i.e., balance across the
treatment and three control groups in the lagged Y). For three bandwidths 0.05,0.10,0.15 with
both scores standardized, the p values of the test are

LP1:0.008, 0.210, 0.104
MLI:0.245, 0.133, 0.469

The test rejects for LPI with bandwidth 0.05, which may very well be due to the small sample size
14, because 14 means 3.7 observations per group for which law of large numbers can hardly work.
For the other cases, the test does not reject.

For h = (h1, hy)’, we use the single rule-of-thumb bandwidth SD(S;)N~/6 = 0.065 for j = 1,2
due to SD(S;) =~ SD(S,) =~ 0.14 in Table 1, and the CV bandwidths described in Equation (14).
For CV, we try a common single bandwidth (n. = 1 = ny) or two different bandwidths 7 # 2
using the square or oval-neighbor kernels in Equation (15). For the common single bandwidth, the
CV gave SD(S;)n. = 0.09 with the square-neighbor kernel, and 0.12 with the oval-neighborhood

Replication files for the empirical results in this paper can be found in the Political Analysis Dataverse (Choi and Lee 2018).
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Figure 2. LPI and MLI across Congresses.

kernel. When we allowed n; # n3, the square-neighbor kernel gave (b1, h2) = (0.07,0.12), and the
oval-neighbor kernel gave (h1, h) = (0.10,0.12). The local observations selected by these four
different bandwidths are shown in Figure 3; since COR(S7, S2) = 0.76 in our data, the observations
are scattered along the 45 degree line with most observations in quadrants 1 and 3. Overall, the
CV bandwidths range over 0.07 to 0.12, and the rule-thumb bandwidth 0.065 is almost the same
as the smallest CV bandwidth 0.07.

The estimation results for LPI and MLI are in Tables 2 and 3, each with three panels. In the first
panel, “Sq” stands for square-neighbor kernel, “RT” stands for rule-of-thumb bandwidth, CV1is CV
with one common bandwidth, and CV2 is CV with two bandwidths. The row “N;-N,” lists the local
number of observationsin the four quadrants, and the row “3; N;/N” shows the proportion of the
used local observations relative to the total number of available observations N = 104. The second
panel shows the treatment effect estimates by our proposal (OLS) and the existing methods in the
literature: BW for the boundary-estimate-weighting method in Equation (22), MIN for min(Sy, S2),
RD1for one-dimensional RD with S;|6, = 1in (3.3), and RD2 for one-dimensional RD with S;|5; = 1
in Equation (16). The third panel presents the partial- effect estimates by our proposed OLS.

BW did not work with the rule-of-thumb bandwidth because it is too small to have enough
observations in each neighbor of all boundary points. Since MIN, RD1and RD2 use unidimensional
“square” neighbor, we put their estimates in the “Sq” columns. For inference, 90% and 95%
confidence intervals (CI) were calculated from bootstrap with 10,000 repetitions because the
sample size is small. The statistical significance is determined by whether the CI captures zero
or not; to save space, we present only 95% Cls.

In Table 2 for LPI, Oval-CV1, and Oval-CV2 use more than 50% of the available data, going away
from RD localization; hence we would trust the other columns (Sg-RT, Sq-CV, and Oval-RT) more,
where the treatment effects fall in 0.62-1.39 which are statistically significant. These numbers
differ much from the estimates from the existing methods in the literature. This difference is
understandable in view of the significant partial effect 8, ranging over —0.38-0.72 in the columns
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Figure 3. Square & Oval Neighbors (1 & 2 Bandwidths) Choose Different Observations.

Table 2. LPI Estimates for Treatment and Partial Effects.

N1-Ny 1,7,3,3 159,74  16,8,10,3  14,3,10,3  25,9,254  21,8,22,4

> NiIN 0.23 0.34 0.36 0.29 0.61 0.53
Treatment Effect 84 by OLS and Other Estimators
OLS 1.385* 0.620" 0.655 0.945* 0.447 0.480
(0.182.56)  (-0.14,1.47)  (-0.26,1.50)  (-0.18,2.01)  (-0.22,1.05)  (-0.35,1.19)
BW —-0.052 —-0.014 0.161 —0.238
(-0.56,0.81)  (=0.54,1.22) (-0.62,0.74)  (~0.80,0.68)
MIN 0.080 0.059 0.006
(-0.34,0.58)  (-0.39,0.42)  (-0.36,0.54)
RD1 0.448 0.272 0.128
(-0.75,1.87)  (-0.60,1.22)  (-0.71,1.62)
RD2 0.114 0.128 0.140

(-0.36,0.84)  (-0.38,0.70)  (~0.34,0.66)
Partial Effect 8; and 3, by OLS

Bi -0.584 -0.382 —0.571 -0.850 -0.551 —0.631
(-1.620.39)  (-1.24031) (-1.360.51)  (-1.57,036)  (-1.21,0.17)  (-1.28,0.17)
B2 -0.627* -0.382" -0.462*  -0.719* -0.378*  -0.375*

(-1.56.0.03)  (~1.13,0.09)  (~1.13,003)  (-1.38-0.08)  (-0.74,-0.01)  (-0.81,0.01)
Sq, square-neighbor kernel; Oval, oval-neighbor kernel
RT, rule-of-thumb bandwidth; CV1, CV with 1 bandwidth; CV2, CV with 2
95% bootstrap Clin (-); *,* for 5,10% level significance
BW, boundary weight; min, min(Sy, S;); RD1, $1|62 = 1; RD 2, S5|61 = 1

for Sg-RT, Sg-CV, and Oval-RT, because the existing methods are inconsistent if partial effects are

present. The partial effect ; is insignificant in all cases.
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Table 3. MLI Estimates for Treatment and Partial Effects.

Sq-RT Sg-Cvi Sq-Cv2 Oval-RT Oval-Ccv1 Oval-CVv2
Ni~Ns 1,733 15974 20,12,12,4 14,310,3 22,8,20,4 21,8224
> N;iIN 0.23 0.34 0.46 0.29 0.52 0.53
Treatment Effect 84 by OLS and Other Estimators
OoLS 0.629 0.497 0.361 0.666 0.268 0.264
(-0.75,1.82)  (-0.42,1.28)  (-0.13,1.17)  (-0.60,1.64)  (-0.65,1.11)  (~0.76,1.13)
BW -0.011 -0.127 -0.108 -0.168
(-0.77,0.71)  (~0.49,0.36) (-0.59,0.49)  (~0.53,0.47)
MIN 0.197 0.242 0.242
(-0.09,0.68)  (-0.21,0.55)  (—0.21,0.55)
RD1 0.499 0.261 -0.229
(-0.49,1.46)  (~0.53,1.00)  (~0.69,0.42)
RD2 0.122 0.149 0.149
(-0.31,0.62)  (-0.34,0.57)  (~0.34,0.57)
Partial Effect 8, and 3, by OLS
B 0.351 0.222 -0.143 0.032 -0.146 -0.088
(-0.69,1.42)  (-0.67,1.06)  (-0.89,0.60)  (~1.051.01)  (=0.90,0.75)  (~0.90,0.84)
B2 -0.412 -0.366 -0.319* -0.627* -0.372" -0.384%
(-1.17,0.17)  (-1.060.10)  (-1.060.02)  (-1.250.01)  (~1.01,0.03)  (~1.00,0.04)

Sq, square-neighbor kernel; Oval, oval-neighbor kernel

RT, rule-of-thumb bandwidth; CV1, CV with 1 bandwidth; CV2, CV with 2
95% bootstrap Clin (-); *,* for 5,10% level significance

BW, boundary weight; min, min(S;, S2); RD1, S1|6, = 1; RD 2, S5|61 = 1

The reader may wonder why the partial effects 81 and B, are negative in Table 2: Would being
the majority in either house still help passing bills? For this, recall the slope E(Y°'|S) — E(Y%|S)
of &, in Equation (3), which shows the effect of passing bills relative to “00,” that is, relative to the
Democrats being the majority in both houses. Here, “00” is not really a control in the sense that
no treatment is done; rather, it is almost the same treatment as “11.” It is hence natural that the
slopes of &1 and &, are both negative.

The reader may wonder also why B is significantly positive: Would the effect of the Republican
majority in both houses not be the same as the Democratic majority to result in 4 = 0? For this,
rewrite the slope of D in Equation (3) as

{E(Y1S) = E(Y®S)} = {E(Y'9S) - E(Yy®|8)} — {E(Y?"|S) - E(Y?|S)}:

the first term E(Y'"|S) — £(Y%|S) might be almost zero due to the symmetry of the either party
being the majority in both houses, and the last two terms (i.e., the partial effects) are negative so
that the slope of D becomes positive.

In Table 3 for MLI, Sg-CV2, Oval-CV1, and Oval-CV2 use nearly 50% of the available data, and
consequently we would trust the other columns (Sq-RT, Sq-CV1, and Oval-RT) more, where the
treatment effects fall in 0.50-0.67 which are statistically insignificant though, differently from
Table 2. These effect numbers differ much from the estimates from the existing methods in the
literature. This difference is understandable in view of the partly significant partial effect B,
ranging over —0.37-0.63 in the columns for Sg-RT, Sg-CV1, and Oval-RT. The partial effect g; is
insignificant in all cases as in Table 2.

A simple informative “back-of-the-envelope” calculation comes from positing

Bs{61(1 = 82) + (1 = 61)62} + Bu{b162 + (1 = &1)(1 = 62)}
=Py + (,BS - :Bu)61 + (ﬂs - ,Bu)52 + 2(,Bu - ,35)51 &2
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where f; is the effect of the split congress, and B, is the effect of the united congress. Recall that
theslope2(8,—Bs) of D = §16,is0.62 ~ 1.39in Table 2, and the slope B;—f,, of 62 is —0.38 ~ —0.72.
Taking the middle values in these ranges, since 2(8, — Bs) = 1.01 and B8s; — B, = —0.55, we have
By = Bs + 0.5: the effect of the united congress might be about 0.5 x SD greater than the effect of
the split congress.

Onefinalimportant point to make is that, even if one is interested only in the effect of being the
majority in both houses, it is ill-advised to compare only the cases of being the majority in both
houses versus not being the majority in neither house. This amounts to omitting §; and &, in the
above OLS, which results in an omitted variable bias, as long as the partial effects are not zero as
in Tables 2 and 3.

Conclusions

In this paper, we generalized the usual mean-based RD with a single running variable (“score”) in
three ways by allowing for (i) more than one scores, (ii) partial effects due to part of the scores
crossing cutoff, in addition to the full effect with all scores crossing all cutoffs, and (iii) regression
functions other than the mean although we focused mostly on the mean. The critical difference
between our and existing approaches for MRD is partial effects: allowed in this paper, but ruled
out in most other papers.

Weimposed a weak continuity assumption, presented the identified parameters, and proposed
simple local difference-in-differences-type estimators implemented by ordinary least squares
estimator. We applied our estimators to find the US congress “productivity”: the effect of the
Republicans dominating both houses on passing bills. We found significant partial effects, and
the legislative productivity is higher by about 0.5 x SD when the congress is united than divided.

Appendix. Three-Score MRD Identification
Consider D = §16,63 with §; = 1[0 < §;],j = 1,2, 3. Rewrite E(Y|S) as

E(Y]S) = E(Y*P18)(1 = &;)(1 = 8)(1 = 83) + E(Y'0|8)81(1 = 8,)(1 - &3)
+E(Y?'918)(1 = 61)82(1 = 83) + E(Y®'S)(1 = 8;1)(1 = 62)83 + E(Y'19|8)816,(1 - &3)
+E(YO18)81(1 — 8)83 + E(YO'S)(1 = 61)5,85 + E(Y']8)616,65.

Here, the slope of D = §18,63 is

E(Y'™S) — E(Y"918) — {E(Y°'|S) - E(Y?0I8)}
—[E(Y?'S) = E(Y'IS) — {E(Y®|S) — E(Y??|S)}].

Adopt the notation analogous to that for two-score MRD.
Take the triple limits on E(Y|S) to get

E(Y]0*,0%,0%) = E(¥y"'"|0%,0%,0%), E(Y|0",0%,07) = E(Y''00%,0%,07),
E(Y]0=,07,0%) = E(Y°""|0-,0%,0%), E(Y|0~,0%,07) = E(Y°'°/0~,0%,07),
E(Y|0*,07,0%) = E(Y'"|0%,07,0%), E(Y|0*,07,07) = E(Y'®0*,07,07),
E(Y|0~,07,0%) = E(Y®"|0~,07,0%), E(Y|0",07,07) = E(Y°®|0~,07,07).

These give the limiting version of the slope of D:

E(Y|0*,0%,0%) — E(Y|0%,0%,07) — {E(Y]0",0%,0%) — E(Y]0~,0%,07)}
-[E(Y]0*,07,0") — E(Y|0*,07,07) = {E(Y]0,07,0") — E(Y|0~,07,07)}].

J. Choi and M. Lee | Political Analysis 272


https://doi.org/10.1017/pan.2018.13

https://doi.org/10.1017/pan.2018.13 Published online by Cambridge University Press

PA

Assume the continuity conditions

) E(YHO|0+,0+,0+),

): E(Yo11|0+,0+, )’ E(Yo10|0—’0+’0—) — E(Yo10|0+’0+’0+)’
) E(Ym] 0*,0%,0%), E(Y1°O|O+,O_,O_) E(Y1°°|O+,O+,O+),
)= E(Y®o*,0%,0%), E(Y°®0",07,07) = E(Y®®|0*,0%,0%).

+

E(Yl 1o|0+’ 0*.0"
E(Y°"o~, 0", 0" 0
E(Y™"0*,07,0" 0
E(Y®0~,07,0"

With these, the slope of D in the preceding display can be written as, not surprisingly, “difference
in differences in differences”:

Bg = E[Y!T = Y110 _ (y011 _ y010) _ 101 _ 100 _ (4001 _ y000)y10+ o+ (+]

which is the effect on the just treated (0*, 0%, 0*). For four scores or more, we get quadruple or
higher differences; see Lee (2016).
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