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Abstract
In regression discontinuity (RD), a running variable (or “score”) crossing a cutoff determines a treatment

that affects the mean-regression function. This paper generalizes this usual “one-score mean RD” in three

ways: (i) consideringmultiple scores, (ii) allowing partial effects due to each score crossing its own cutoff, not

just the full effect with all scores crossing all cutoffs, and (iii) accommodating quantile/mode regressions.

This generalization ismotivated by (i) manymultiple-score RD cases, (ii) the full-effect identification needing

the partial effects to be separated, and (iii) informative quantile/mode regression functions. We establish

identification for multiple-score RD (MRD), and propose simple estimators that become “local difference in

differences” in case of double scores. We also provide an empirical illustration where partial effects exist.

Keywords: regression discontinuity, multiple running variables, partial effect, difference in differences

1 Introduction
Regressiondiscontinuity (RD), originatedbyThistlethwaite andCampbell (1960), hasbeengaining

popularity in many disciplines of social sciences. Just to name a few, Rao, Yu and Ingram (2011)

and Bernardi (2014) in sociology; Broockman (2009) and Caughey and Sekhon (2011) and Eggers

et al. (2015) in political science; and many studies in economics as can be seen in the references

of Imbens and Lemieux (2008), Lee and Lemieux (2010), and Choi and Lee (2017) who also list

statistical papers although there are not many.

In a typical RD with a treatment D , an individual is assigned to the treatment (D = 1) or

control group (D = 0), depending on a single running/forcing/assignment variable S crossing a

cutoff or not. There are, however, many RD cases where multiple running variables determine a

single treatment. One example is multiple test scores crossing cutoffs for school graduation or

grade advancement (Jacob and Lefgren 2004). Another example is spatial/geographical RDwhere

longitude and latitude are two running variables (Dell 2010; Keele and Titiunik 2015), although

often thescalar shortestdistance toaboundary isusedasa runningvariable in the literature (Black

1999; Bayer, Ferreira and Mcmillan 2007). Since the word “running variable” will appear often in

this paper, we will call it simply “score” (S for Score).

When there are multiple scores, two cases arise: “OR case” where any score can cross a cutoff

to get treated (Jacob and Lefgren 2004;Matsudaira 2008;Wong, Steiner andCook 2013), and “AND

case” where all scores should cross all cutoffs to get treated. For simplification, we will examine

only AND cases in this paper, because an OR case can be converted to the AND case by switching

the treatment and control groups.

“Multiple-score RD (MRD) for a single treatment” that is the focus of this paper differs from “RD

with multiple cutoffs for a single score” as in Angrist and Lavy (1999) and Van der Klaauw (2002),

Authors’ note: The authors are grateful to the associate editor and three anonymous reviewers for detailed comments
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comments. Myoung-jae Lee’s research has been supported by a Korea University grant. Replication files for the empirical

results in this paper can be found in the Political Analysis Dataverse (Choi and Lee 2018).
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which is handled by looking at each cutoff one at a time. Whereas these studies dealt only with

fixed known cutoffs, say cj , j = 1, . . . , J , Cattaneo et al. (2016) examined a random cutoffC , which

can occur in multiparty elections/races.

The goal of this paper is to generalize the usual “single-score mean-regression RD” in three

ways. First, we consider multiple scores for a single treatment D . Second, differently from most

other RD studies for multiple scores, we allow “partial effects” due to each score crossing its own

cutoff, in addition to the (full) treatment effect due to D = 1 with all scores crossing all cutoffs.

Third, although we focus on RD with the usual mean regression E (Y �S ) for a response variableY ,

our approach can be easily generalized to other location measures such as conditional quantiles

(Koenker 2005) andmode (Lee 1989; Kemp and Santos-Silva 2012).

Certainly, we are not the first to deal with MRD theoretically. Wong, Steiner and Cook (2013)

examined “OR-case MRD,” Keele and Titiunik (2015) “AND-case MRD,” and Imbens and Zajonc

(2009) and Reardon and Robinson (2012) both cases. A critical difference between these studies

(except Reardon and Robinson 2012) and this paper is that we allow partial effects while they do

not. To see the point, consider S = (S1, S2)
′ and

E (Y �S ) = β0 + β1δ1 + β2δ2 + βdD , δj ≡ 1[cj ≤ Sj ] for j = 1, 2 andD = δ1δ2 (1)

where β ’s are parameters, c ≡ (c1, c2)′ are known cutoffs, and 1[A] = 1 ifA holds and 0 otherwise.

For instance, in the school graduation (D = 1) effect example (on lifetime incomeY ) by passing

bothmath (δ1 = 1) and English (δ2 = 1) exams, even if one fails to haveD = 1, still passing/failing

the math exammay affectY by encouraging/stigmatizing the student.

Ruling out partial effects, Imbens and Zajonc (2009), Wong, Steiner and Cook (2013) and

Keele and Titiunik (2015) found “boundary-specific” effects, which are then weighted-averaged,

in comparison to our simple effect at S = c (under a weak continuity condition only at S = c).

Reardon and Robinson (2012) seems to be the only other paper allowing for partial effects in

MRD; they considered partial effects by casting MRD within a multiple treatment framework. But

Reardon and Robinson (2012) did not offer formal derivations as we do in this paper.

The aforementioned generalization ofE (Y �S ) for conditional quantiles ormode seems feasible

only for “sharp RD”whereD is fully determined by the scores. Hence, we stick to sharpMRD in this

paper, as Wong, Steiner and Cook (2013) and Keele and Titiunik (2015) also did; only Imbens and

Zajonc (2009) dealt with fuzzy MRD under no partial effects. For simplification, we will examine

only two scores S = (S1, S2)
′ unless otherwise noted, as generalizations to more than two scores

are conceptually straightforward. Without loss of generality, we will set the cutoffs at zero unless

otherwise necessary, as (S1, S2) can be always centered as (S1 − c1, S2 − c2).
In short, we focus on AND-case two-score sharp MRD allowing partial effects for the mean-

regression functionE (Y �S ). Since the treatmentD takes the interaction form δ1δ2 as in Equation (1)

the effect is found essentially by “local difference in differences (DD)” where both partial effects

are removed in DD with only the desired interaction surviving. See Lee (2016) for the recent

developments in DD.

The rest of this paper is organized as follows. Section 2 examines the identification and

estimation for two-score MRD. Section 3 compares our identification conditions and estimators

with those in the literature. Section 4 provides an empirical illustration. Finally, Section 5

concludes. Our MRD coverage is limited, because every issue that ever occurred to single-score

RD also occurs to MRD and we cannot possibly address all the issues in one paper.

2 MRDwith Two Scores
Recall S = (S1, S2)

′ andD = δ1δ2 where δj ≡ 1[0 ≤ Sj ], j = 1, 2. First, we introduce four potential

responses corresponding to δ1, δ2 = 0, 1, and examine partial effects—an issue that does not arise
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for the usual single-score RD. Second, we impose a continuity condition and present the main

identified effect for MRD. Third, we propose a simple estimation scheme based on ordinary least

squares estimator (OLS) using only some observations local to the cutoff in both scores.

2.1 Four Potential Responses and Partial Effects
Define potential responses (Y 00,Y 10,Y 01,Y 11) corresponding to (δ1, δ2) being (0, 0), (1, 0), (0, 1),

(1, 1), respectively. Althoughour treatmentof interest is the interactionD = δ1δ2, it is possible that

δ1 and δ2 separately affectY . For instance, to graduate high school, onehas topass bothmath (δ1)

and English (δ2 ) exams, but failing themath test may stigmatize the student (“I cannot domath”)

to affect his/her lifetime incomeY ; in this case,Y is affected by δ1 as well as byD . More generally,

when an interaction term appears in a regression function, it is natural to allow the individual

terms in the regression function. Call the separate effects of δ1 and δ2 “partial effects.”

At aglance, the individual treatment effect of interestmay look likeY 11−Y 00 becauseD = δ1δ2,

but this is not the case. To seewhy, think of the high school graduation example.Y 11 is the lifetime

incomewhen both exams are passed, and as such,Y 11 includes the high school graduation effect

on lifetime income and the partial effect of passing the math exam (“I can do math”), as well as

the possible partial effect of passing the English exam (“I can do English”?). Hence the “net” effect

of high school graduation should be

Y 11 −Y 00 − (Y 10 −Y 00) − (Y 01 −Y 00) =Y 11 −Y 10 −Y 01 +Y 00

where the two partial effects relative toY 00 are subtracted fromY 11 −Y 00.

Rewrite E (Y �S ) as

E (Y �S ) = E (Y 00�S )(1 − δ1)(1 − δ2) + E (Y 10�S )δ1(1 − δ2)

+E (Y 01�S )(1 − δ1)δ2 + E (Y 11�S )δ1δ2. (2)

Further rewrite this so that δ1 and δ2 andD = δ1δ2 appear separately:

E (Y �S ) = E (Y 00�S ) + {E (Y 10�S ) − E (Y 00�S )}δ1 + {E (Y 01�S ) − E (Y 00�S )}δ2

+ {E (Y 11�S ) − E (Y 10�S ) − E (Y 01�S ) + E (Y 00�S )}D (3)

which will play themain role for MRD. This equation does not hold for fuzzy RD, becauseD would

then depend on random variables other than S on the right-hand side while the left-hand side

E (Y �S ) is a function of only S . This is one of the reasons why we stick to sharp RD.

The slope ofD = δ1δ2 in Equation (3) is reminiscent of the aboveY
11−Y 10−Y 01 +Y 00, and it is

a DDwithE (Y 11�S )−E (Y 10�S ) as the “treatment group difference” andE (Y 01�S )−E (Y 00�S ) as the

“control group difference.” Since D is an interaction, it is only natural that DD is used to find the

treatment effect, as DD is known to isolate the interaction effect by removing the partial effects.

If

no partial effects : E (Y 10�S ) = E (Y 01�S ) = E (Y 00�S ),

then Equation (3) becomes

E (Y �S ) = E (Y 00�S ) + {E (Y 11�S ) − E (Y 00�S )}D . (4)
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Figure 1. Two-Score RD in AND case (Square & Oval Neighborhoods).

It helps to see when the no partial-effect assumption is violated (recall Equation (1) with β1 � 0

or β2 � 0):

E (Y 11) = β0 + β1 + β2 + βd , E (Y 10) = β0 + β1, E (Y 01) = β0 + β2, E (Y 00) = β0

=⇒ E (Y 11) − E (Y 10) − E (Y 01) + E (Y 00) = βd , E (Y
11) − E (Y 00) = β1 + β2 + βd .

Examine squares 1–4 in the left panel of Figure 1, where (h1, h2) are the two localizing bandwidths.

There is one treatment group (square 1) and three control groups (squares 2, 3 and 4). Under no

partial effect, the treatment effect can be found by comparing squares 1 and 2, 1 and 4, or 1 and 3.

With partial effects present, however, this is no longer the case: squares 1 and 2 give the treatment

effect βd plus the partial effect due to S1 crossing 0; squares 1 and 4 give βd plus the partial effect

due to S2 crossing 0; squares 1 and 3 give βd plus the two partial effects. It is onlywhenwe take DD

as in Equation (3) that the desired βd is identified. More generally than the left panel of Figure 1,

we may have the right panel where the four groups are not squares, but parts of an oval figure

depending on the correlation between S1 and S2.

2.2 Identification and Remarks
To simplify notation for limits of E (Y �S = s ) = E (Y �S1 = s1, S2 = s2), denote

lim
s1↓0,s2↓0

as lim
+,+
, lim

s1↑0,s2↓0
as lim−,+ , lim

s1↓0,s2↑0
as lim

+,− , lim
s1↑0,s2↑0

as lim−,− .

Assume that these double limits of E (·�S ) exist at 0 for the potential responses, and denote them
using 0− and 0+; for example, E (Y 00�0−, 0+) ≡ lim−,+ E (Y 00�s1, s2).

Take the double limits on Equation (2) to get

E (Y �0+, 0+) = E (Y 11�0+, 0+), E (Y �0+, 0−) = E (Y 10�0+, 0−),

E (Y �0−, 0+) = E (Y 01�0−, 0+), E (Y �0−, 0−) = E (Y 00�0−, 0−).
(5)

These give a limiting version of the slope ofD = δ1δ2 in Equation (3) at (0, 0):

E (Y �0+, 0+) − E (Y �0+, 0−) − E (Y �0−, 0+) + E (Y �0−, 0−)

= E (Y 11�0+, 0+) − E (Y 10�0+, 0−) − E (Y 01�0−, 0+) + E (Y 00�0−, 0−). (6)
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Assume the continuity condition (note that all right-hand side terms have (0+, 0+))

(i): E (Y 01�0−, 0+) = E (Y 01�0+, 0+),

(ii): E (Y 10�0+, 0−) = E (Y 10�0+, 0+),

(iii): E (Y 00�0−, 0−) = E (Y 00�0+, 0+).

(7)

Equation (7)(i) is plausible because Y 01 is untreated along s1, (ii) because Y 10 is untreated

along s2, and (iii) because Y
00 is untreated along both s1 and s2. These continuity conditions

show how counterfactuals for the treatment group with (0+, 0+) can be identified. For example,

Equation (7)(i) is that the counterfactual E (Y 01�0+, 0+) for the treatment group can be identified

with E (Y 01�0−, 0+) from the partially treated group (0−, 0+).
Using Equations (7), (6) becomes

E (Y �0+, 0+) − E (Y �0+, 0−) − E (Y �0−, 0+) + E (Y �0−, 0−) (8)

= βd ≡ E (Y 11�0+, 0+) − E (Y 10�0+, 0+) − E (Y 01�0+, 0+) + E (Y 00�0+, 0+)

= E (Y 11 −Y 10 −Y 01 +Y 00�0+, 0+); (9)

Equation (8) is an identifiedentity that is characterizedbyEquation (9)—themeaneffecton the just

treated (0+, 0+). We summarize this (as well as Equation (4) under no partial effect) as a theorem,

with a three-score MRD extension provided in the appendix A.

THEOREM 1. Suppose the double limits of E (Y �S ) exist at 0 for the potential responses, the

continuity condition Equation (7) holds, and the density function fS (s ) of S is strictly positive on a

neighborhood of (0, 0). Then the effect

βd = E (Y 11 −Y 10 −Y 01 +Y 00�0+, 0+)

is identified by two-score MRD Equation (8). If no partial-effect condition holds at S = 0 (i.e.,

E (Y 10�0+, 0+) = E (Y 01�0+, 0+) = E (Y 00�0+, 0+)), then βd = E (Y 11 −Y 00�0+, 0+).

Wouldpartial effects reallymatter? Partial effectsmaybeunlikely in certainMRDs. For instance,

in two-dimensional geographic MRD with latitude S1 and longitude S2, simply crossing only one

boundary may not do much of anything. But if S2 ≥ 0 corresponds to being on the right side of

mountains ranging south to north, then a partial effect due to S2 can occur, because the weather

on the right side of the mountain range can be much different from that on the left side. Another

example is the effects of a conservative party being the majority in both houses of parliament on

the passage of bills, where the cutoff is 50% of the seats in each house. Even if the conservative

party is themajority in only oneof the twohouses, still thepassage rate canbedifferent fromwhen

the conservative party is not the majority in either house. Given that allowing for partial effects is

not difficult at all as can be seen shortly, there is no reason to simply assume away partial effects.

2.3 OLS
Although Equation (8) shows that βd can be estimated by replacing the four identified elements

in Equation (8) with their sample versions, in practice, it is easier to implement MRD with

Equation (3), using only the local observations satisfying Sj ∈ (−hj , hj ), j = 1, 2. Specifically,

replace E (Y 00�S ) in Equation (3) with a (piecewise-) continuous function of S , and replace the

slopes of δ1, δ2 andD with parameters β1, β2 and βd to obtain

E (Y �S ) = E (Y 00�S ) + β1δ1 + β2δ2 + βdD (10)

J. Choi and M. Lee � Political Analysis 262

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.13


where E (Y 00�S ) is specified as

linear: m1(S ) ≡ a linear function of S1, S2 with intercept β0

quadratic: m2(S ) ≡ m1(S ) + a linear function of S
2
1 , S

2
2 , S1S2.

(11)

Then OLS can be applied to Equation (10) to do inference with the usual OLS asymptotic variance

estimator. If E (·�S ) in Equation (10) is replaced with a conditional quantile/mode, quantile/mode
regression can be applied to estimate the quantile/modal parameters.

With

δ−j ≡ 1[−hj < Sj < 0], δ+
j ≡ 1[0 ≤ Sj < hj ], j = 1, 2,

another way to set E (Y 00�S ) is a piecewise-linear function continuous at 0:

E (Y 00�S ) = β0 + β11δ
−
1 δ
−
2 S1 + β12δ

−
1 δ
−
2 S2 + β21δ

−
1 δ

+
2 S1 + β22δ

−
1 δ

+
2 S2

+ β31δ
+
1 δ
−
2 S1 + β32δ

+
1 δ
−
2 S2 + β41δ

+
1 δ

+
2 S1 + β42δ

+
1 δ

+
2 S2. (12)

This allows different slopes across the four quadrants determined by (δ−1 , δ
+
1 , δ

−
2 , δ

+
2 ).

The above MRD estimation requires choosing the functional form for E (Y 00�S ), h ≡ (h1, h2)′ for
S , and a weighting function within the chosen local neighborhood. First, we use only a linear or

quadratic function of S in Equations (11) and (12), as Gelman and Imbens (2018) advise against

using high-order polynomials in RD. Second, developing optimal bandwidths for h in MRD as

Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014) did for single-score

RD would be very involved, going over the scope of this paper; instead, we use a rule-of-thumb

bandwidthN −1/6 with both scores standardized, and explore cross validation (CV) schemes below
to finduseful referencebandwidths. Third,wedonotuseanyweighting functionwithin thechosen

local neighborhood in the above OLS, which amounts to adopting the uniform weight; this is a

common practice, as weighting seems to make little difference in practice. There is no proof that

these choices that we make are optimal, which means that our proposed estimation strategy in

this section to be applied in the empirical section should be taken as tentative; hopefully, further

research settles the estimation issues in a more satisfactory manner.

InRD, the sample size canbesmall due to the localization, and theproblemgetsexacerbated for

MRD. In case this happens, Cattaneo, Frandsen and Titiunik (2015), Keele, Titiunik and Zubizarreta

(2015) and Cattaneo, Titiunik and Vazquez-Bare (2017) proposed “randomized inference.” But

applying this to MRD is challenging, because randomly assigning each subject to one of the four

groups under the null of no effect requires the null hypothesis to be β1 = β2 = βd = 0 in

Equation (10) instead of only βd = 0 while allowing β1 � 0 or β2 � 0, which was the very

motivation for this paper. Designing a proper randomized inference for MRD is an interesting

research question, but it goes beyond the scope of this paper.

About choosing h, one CV scheme for MRD is minimizing

(13)

with respect to h, whereωh
i = 1 for Si with at least 2 or 3 observations in each of the four directions

within its “square neighborhood” (S1i ±h1, S2i ±h2), andωh
i = 0 otherwise; this ensures ruling out

Si ’s on its support boundaries. In this CV scheme, Ẽ−i (Y �Si , h) is a nonparametric kernel predictor

using an one-sided kernel estimator depending on the side of (0, 0) where Si is located among

the four sides, which is a generalization of the CV scheme in Ludwig andMiller (2007) who applied

Equation (13) to single-scoreRD.Asas it turnedout, however,weexperienced the sameproblemas
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Ludwig andMiller (2007) experienced: too large bandwidths thatmakemostωh
i ’s zero and predict

the few remainingYi ’s well to make Equation (13) small.

The problem of too large bandwidths does not occur to the “conventional CV” which uses

all-sided symmetric weighting to minimize

1

N

∑
i

{Yi − Ê−i (Y �Si , h)}
2 where Ê−i (Y �Si , h) ≡

∑
j�i Kh (Sj − Si )Yj∑
j�i Kh (Sj − Si )

(14)

and Kh is a kernel function with bandwidths h. This is known to behave well: the resulting

minimand is nearly convex and the conventional CV bandwidth is asymptotically optimal. The

reason why this is not used in single-score RD is that E (Y �S ) has a break, instead of being

continuous in S , and consequently Ê−i (Y �Si , h) is biased for E (Y �Si ) when Si is near the cutoff.

Nevertheless, since the goal is finding a reasonable h, not necessarily predictingY well, we use

this conventional CV.

Although we adopt the uniform weight within a chosen neighborhood, still the neighborhood

should be chosenwhose form differs as Figure 1 illustrates. With ρ ≡ COR(S1, S2), σj ≡ SD(Sj ) and

ηj ≡ hj /σj (⇐⇒hj ≡ σj ηj ) for j = 1, 2, we use

(i) square-neighbor kernel: Kh (S ) = 1

[�����
S1

σ1η1

����� ≤ 1

]
· 1

[�����
S2

σ2η2

����� ≤ 1

]
,

(ii) oval-neighbor kernel: Kh (S ) = 1
⎡⎢⎢⎢⎢⎣
(
S1

σ1η1

)2
− 2ρ S1

σ1η1

S2

σ2η2
+

(
S2

σ2η2

)2
≤ 1

⎤⎥⎥⎥⎥⎦ .
(15)

These kernels neednormalizing factors, but they are irrelevant in choosing η1 and η2 because they

get canceled in Ê−i (Y �Si , h).

Setting η1 = η2 ≡ η in Equation (15)(i) gives a square neighborhood of 0 in the standardized

scores (S1/σ1, S2/σ2) and setting η1 = η2 ≡ η and ρ = 0 in Equation (15)(ii) gives a circle because

the two kernels become

1

[�����
S1

σ1

����� ≤ η

]
· 1

[�����
S2

σ2

����� ≤ η

]
and 1

⎡⎢⎢⎢⎢⎣
(
S1

σ1

)2
+

(
S2

σ2

)2
≤ η2

⎤⎥⎥⎥⎥⎦ .
The oval shape is elongated along the 45 degree line when ρ > 0 as in the right panel of Figure 1,

and such a neighborhood can better capture observations scattered along the 45 degree line;

when ρ < 0, the oval shape is elongated along the 135 degree line.

3 Other Approaches in the Literature
Having presented our proposal, now we review the other approaches for MRD. First, two scores

are collapsed into one so that the familiar single-score RD arsenal can be mobilized. Second,

two-dimensional localization is avoided by doing, for example, one-dimensional localization for

S1 given S2 ≥ 0 (i.e., given δ2 = 1) to get the “effects on the boundary S1 = 0”; here as well,

the familiar single-score RDmethods can be utilized. Third, those effects on the boundary can be

weight-averaged.

3.1 Minimum Score
Battistin et al. (2009) and Clark and Martorell (2014) defined

Sm ≡ min(S1, S2) =⇒ D = 1[0 ≤ Sm ]
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to set up

E (Y �Sm ) = β0 + β−Sm (1 − D ) + β+SmD + βmD

where βm is the treatment effect of interest. Recalling Equation (10) with β1 = β2 = 0, we can see

that E (Y 00�S1, S2) in Equation (10) is specified just as β0 + β−Sm (1 − D ) + β+SmD .

This approach is problematic because the linear splineβ0+β−Sm (1−D )+β+SmD is inadequate:

it approximates E (Y 00�S ) only with S1 when S1 < S2, and only with S2 when S2 < S1—there is

no reason to voluntarily “handcuff” oneself this way, and better approximations can be seen in

Equations (11) and (12). Also, partial effects are ruled out because β0 + β−Sm (1 − D ) + β+SmD is

continuous in Sm that is in turn continuous in S : no break along S1 only (nor S2 only) is allowed.

A couple of remarks are in order. First, Reardon and Robinson (2012) and Wong, Steiner

and Cook (2013) called this approach, respectively, “binding score approach” and “centering

approach,” but “min approach” would be more fitting. Second, Battistin et al. (2009) and Clark

and Martorell (2014) dealt with fuzzy mean-based MRDs, not sharp MRD. Third, Sm can be easily

generalized to more than two scores; for example, min(S1, S2, S3) for three scores as in Clark and

Martorell (2014).

3.2 One-Dimensional Localization
The dominant approach in theMRD literature is looking at a subpopulationwith one score already

greater than its cutoff (JacobandLefgren2004; Lalive 2008;Matsudaira 2008). For instance, on the

subpopulation with δ1 = 1, δ2 equalsD , and squares 1 and 1
′′ in the left panel of Figure 1 become

the treatment group whereas squares 4 and 4′′ become the control group. This raises efficiency
because only one-dimensional localization is done with the larger control and treatment groups,

but a bias appears if there is a partial effect. Reardon and Robinson (2012) and Wong, Steiner and

Cook (2013) called this “frontier approach” and “univariate approach,” respectively.

To formalize the idea, set δ1 = 1 (⇐⇒S1 ≥ 0) andD = δ2 in Equation (3) to have

E (Y �S ) = E (Y 10�S ) + {E (Y 11�S ) − E (Y 10�S )}δ2; (16)

E (Y 10�S ) is the baseline now. Take the upper and lower limits only for s2 with s1 ≥ 0:

E (Y �s1, 0
+) = E (Y 10�s1, 0

+) + lim
s2↓0

{E (Y 11�s1, s2) − E (Y 10�s1, s2)},

E (Y �s1, 0
−) = E (Y 10�s1, 0

−).

Assume the continuity condition

E (Y 10�s1, 0
+) = E (Y 10�s1, 0

−) �s1 ≥ 0; (17)

whereas this has “�s1 ≥ 0,” (ii) of Equation (7) is only for s1 = 0+ that is weaker than Equation (17).

Using Equation (17), the difference between the upper and lower limits gives

β 10(s1, 0
+) ≡ lim

s2↓0
{E (Y 11�s1, s2) − E (Y 10�s1, s2)} = E (Y �s1, 0

+) − E (Y �s1, 0
−);

“10” in β 10(s1, 0
+) refers to the baseline superscript inY 10. For Equation (1), β 10(s1, 0

+) = β2 + βd ,

not βd .

Proceeding analogously, set δ2 = 1 (⇐⇒S2 ≥ 0) andD = δ1 in Equation (3) to have

E (Y �S ) = E (Y 01�S ) + {E (Y 11�S ) − E (Y 01�S )}δ1. (18)
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Take the upper and lower limits only for s1 with s2 ≥ 0:

E (Y �0+, s2) = E (Y 01�0+, s2) + lim
s1↓0

{E (Y 11�s1, s2) − E (Y 01�s1, s2)},

E (Y �0−, s2) = E (Y 01�0−, s2).

Assume the continuity condition

E (Y 01�0+, s2) = E (Y 01�0−, s2) �s2 ≥ 0. (19)

Using Equation (19), the difference between the upper and lower limits gives

β 01(0+, s2) ≡ lim
s1↓0

{E (Y 11�s1, s2) − E (Y 01�s1, s2)} = E (Y �0+, s2) − E (Y �0−, s2).

For Equation (1), β 01(0+, s2) = β1 + βd , not βd .

In estimation for Equation (16), the usual single-score RD approach would adopt

E (Y �S ) = E (Y 10�S ) + β 10δ2 for a parameter β 10 (20)

analogously to Equation (10), where E (Y 10�S ) is specified as in Equation (11); only the subsample

with (δ−2 + δ+
2 )δ1 = 1 is used for estimation. There is no “oval-neighbor” analog, because only the

observations with �S2� ≤ h2 are used given S1 ≥ 0.

The model Equation (20) may be inadequate, because S1 in the slope of δ2 in Equation (16) is

not localized. That is, replacing β 10 in Equation (20) with a function of S1 would be better, which

then results in a model such as

E (Y �S ) = E (Y 10�S ) + β 12S1δ2 + β 10δ2 for a parameter β 12. (21)

For the opposite case of localizing with S1 given S2 ≥ 0, we can use analogously

E (Y �S ) = E (Y 01�S ) + β 01δ1 or E (Y �S ) = E (Y 01�S ) + β 21S2δ1 + β 01δ1.

3.3 Weighted Average of Boundary Effects
ImbensandZajonc (2009)dealtwithbothmultiple-score sharpRDand fuzzyRD inageneral set-up

allowing both AND and OR cases. They discussed identification and estimation, assuming away

partial effects. WithB denoting the treatment and control boundary, the treatment effect at s ∈ B
for FRD is

βd (s ) ≡ limν→0 E {Y �S ∈ N +
ν (s )} − limν→0 E {Y �S ∈ N −ν (s )}

limν→0 E {D �S ∈ N +
ν (s )} − limν→0 E {D �S ∈ N −ν (s )}

where N +
ν (s ) and N

−
ν (s ) denote the “ν-treated”- and “ν-control” neighborhoods of s .

Imbens and Zajonc (2009) proposed also an integrated version of βd (s ):

βd ≡
∫
s ∈B

βd (s )fS (s �S ∈ B )∂s =

∫
s ∈B βd (s )fS (s )∂s∫

s ∈B fS (s )∂s
. (22)

Tests for the effect heterogeneity along B and the asymptotic distribution using a multivariate

local linear regression are also shown in Imbens and Zajonc (2009).

Keele and Titiunik (2015; “KT”) addressed AND-case two-score sharp MRD. Consider the two

boundary lines B stemming from the cutoff (c1, c2) rightward and upward as in the left panel of
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Figure 1. With partial effects ruled out in KT, only the treatment gets administered as B is crossed

to the “treatment quadrant” (c1 ≤ S1, c2 ≤ S2) from any direction. Denoting a point in B as b , KT

assumed the continuity at all points inB for the potential untreated and treated responsesY0 and

Y1:

lim
s→b

E (Y0�S = s ) = E (Y0�S = b) and lim
s→b

E (Y1�S = s ) = E (Y1�S = b).

Denoting a point in the treatment quadrant as s t and in the control quadrants as sc , this

continuity condition identifies the effect τ(b) at b ∈ B :

lim
s t→b

E (Y �S = s t ) − lim
sc→b

E (Y �S = sc ) = lim
s t→b

E (Y1�S = s t ) − lim
sc→b

E (Y0�S = sc )

= E (Y1�S = b) − E (Y0�S = b) = E (Y1 −Y0�S = b) ≡ τ(b). (23)

A marginal effect can be found by integrating out b as in Equation (22). KT proposed a local

polynomial regression estimator for τ(b) using a distance from b , say the Euclidean distance

λb (S ) ≡ ��S −b �� , as a single “regressor.” This is to be done on the treatment and control quadrants
separately to obtain sample analogs for the first term of Equation (23). The difference of the

intercept estimators is then an estimator for τ(b).

Wong, Steiner and Cook (2013; “WSC”) dealt with OR-case two-score sharp MRD where D =

1[S1 < c1 or S2 < c2]; WSC ruled out partial effects. WSC laid out four approaches, andwe explain

three (the remaining one does not seem tenable, and WSC did not recommend it either). The

first is the aforementionedminimumof the scores. The second is essentially the one-dimensional

localization along the horizontal boundary (say B1) of B , and then along the vertical boundary

(say B2); the difference from KT is, however, that WSC obtained τ1 ≡ E (Y1 − Y0�S ∈ B1) and

τ2 ≡ E (Y1 − Y0�S ∈ B2) instead of KT’s E (Y1 − Y0�S = b) for all b ∈ B . The third is getting an

weighted average of τ1 and τ2, which WSC called the “frontier average treatment effect.”

Although disallowing partial effects may look simplifying, to the contrary, it results

in considering boundary lines instead of the single boundary point (c1, c2). The possibly

heterogeneous effects along the boundaries may be informative, and possibly efficiency

enhancing if they are homogeneous, which however also raises the issue of finding a single

marginal effect as a weighted average of those boundary effects. Such a weighting requires

estimating densities for the boundary lines—a complicating scenario.

Of course, in reality, whether partial effects exist or not is an empirical question. The logical

thing to do is thus to allow nonzero partial effects first with our approach, and then test for zero

partial effects; if accepted, onemayadopt someof theaboveapproaches. This shouldbepreferred

than simply ruling out partial effects from the beginning, unless there is a strong prior justification

to do so.

4 Empirical Illustration
This section provides an empirical example for congress “productivity”: the effects of the

Republican party being dominant in both lower and upper houses on passing bills, where the

sample size is only 104. We estimate the mean effect, but the inference is problematic due

to the small sample size. Also, the usual RD data plots are not helpful, because dividing the

range of S to create cells leaves only a few observations for each cell. We use two measures of

legislative productivity for the US Congress 1789–2004 in Grant and Kelly (2008): the “legislative

productivity index (LPI)” for all legislations, and the “major legislation index (MLI)” for major

legislations only. We obtained the House (S1) and Senate (S2) Republican seat proportions from
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Table 1. Descriptive Statistics for Congress Productivity Data.

All Sample ±0.10 ±0.05
Mean (SD) Min, Max Mean (SD) Mean (SD)

S1 (House) 0.498 (0.139) 0.202, 0.860 0.494 (0.057) 0.497 (0.028)

S2 (Senate) 0.517 (0.147) 0.167, 0.917 0.504 (0.048) 0.502 (0.019)

D 0.404 (0.493) 0, 1 0.405 (0.497) 0.357 (0.497)

LPI 90.8 (57.7) 3.9, 187 98.5 (55.5) 108 (50.8)

MLI 11.1 (5.20) 3.1, 20.3 11.7 (5.24) 12.1 (4.60)

N 104 42 14

http://www.senate.gov/history/partydiv.htm and http://history.house.gov/Institution/Party-

Divisions/Party-Divisions/.1

For the periods before 1837, we consider Jackson, Jackson Republican, Jeffersonian

Republican, and Anti-Administration as Republican parties to follow the party division that the

official Senate andHousewebsitemakes. Since therewas noofficial Republicanparty before 1857,

for 1837–1856, we consider the parties opposite to the Democratic party as Republican. Among

the total 108 congresses, we removed four cases where neither Democrats nor Republicans were

dominant.

Table 1 presents descriptive statistics. On average, the Republican seat proportions are around

0.5 and they are the majority in both houses 40% of the times. LPI is 90.8 on average and MLI is

11.1, and when we restrict the sample to ±0.10 around the cutoff 0.5 in both houses to have 42

observations, the average LPI increases to 98.5 and MLI to 11.7. When we restrict the sample to

±0.05, the average LPI further increases to 108 andMLI to 12.1—but then only 14 observations are
left.

Figure 2 plots LPI and MLI, which reveals an increasing trend. We do the OLS of Y on

(1, t , S1, S2, δ1, δ2,D ), where t is to capture the trend, Y is standardized to ease interpretation

(i.e.,Y is LPI/SD(LPI) or MLI/SD(MLI)), and D is the indicator for whether the Republican party is

dominant in both houses or not; other than t , we adopt Equation (10) with the linear model in

Equation (11). We also tried using t 2 additionally, but the results are omitted as they do not differ

much.

Although there is no covariate in our data, the lagged outcome can be thought of as a covariate,

whichmaybeunbalancedbetween the treatment and control groups. To check this out,wedo the

OLS of the laggedY on the same regressors to test H0 : β1 = β2 = βd = 0 (i.e., balance across the

treatment and three control groups in the laggedY ). For three bandwidths 0.05, 0.10, 0.15 with

both scores standardized, the p values of the test are

LPI : 0.008, 0.210, 0.104

MLI : 0.245, 0.133, 0.469

The test rejects for LPI with bandwidth 0.05, which may very well be due to the small sample size

14, because 14means 3.7 observations per group for which law of large numbers can hardly work.

For the other cases, the test does not reject.

For h = (h1, h2)
′, we use the single rule-of-thumb bandwidth SD(Sj )N

−1/6 = 0.065 for j = 1, 2

due to SD(S1) 
 SD(S2) 
 0.14 in Table 1, and the CV bandwidths described in Equation (14).

For CV, we try a common single bandwidth (ηc ≡ η1 = η2) or two different bandwidths η1 � η2

using the square or oval-neighbor kernels in Equation (15). For the common single bandwidth, the

CV gave SD(Sj )ηc = 0.09 with the square-neighbor kernel, and 0.12 with the oval-neighborhood

1 Replication files for the empirical results in this paper can be found in the Political Analysis Dataverse (Choi and Lee 2018).

J. Choi and M. Lee � Political Analysis 268

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.13


Figure 2. LPI and MLI across Congresses.

kernel. When we allowed η1 � η2, the square-neighbor kernel gave (h1, h2) = (0.07, 0.12), and the

oval-neighbor kernel gave (h1, h2) = (0.10, 0.12). The local observations selected by these four

different bandwidths are shown in Figure 3; since COR(S1, S2) = 0.76 in our data, the observations

are scattered along the 45 degree line with most observations in quadrants 1 and 3. Overall, the

CV bandwidths range over 0.07 to 0.12, and the rule-thumb bandwidth 0.065 is almost the same

as the smallest CV bandwidth 0.07.

The estimation results for LPI and MLI are in Tables 2 and 3, each with three panels. In the first

panel, “Sq” stands for square-neighbor kernel, “RT” stands for rule-of-thumbbandwidth, CV1 is CV

with one commonbandwidth, and CV2 is CVwith two bandwidths. The row “N1–N4” lists the local

numberof observations in the fourquadrants, and the row“
∑

j Nj /N ” shows theproportionof the

used localobservations relative to the total numberof availableobservationsN = 104. The second

panel shows the treatment effect estimates by our proposal (OLS) and the existingmethods in the

literature: BW for the boundary-estimate-weightingmethod in Equation (22), MIN for min(S1, S2),

RD1 for one-dimensional RDwith S1�δ2 = 1 in (3.3), andRD2 for one-dimensional RDwith S2�δ1 = 1

in Equation (16). The third panel presents the partial- effect estimates by our proposed OLS.

BW did not work with the rule-of-thumb bandwidth because it is too small to have enough

observations in each neighbor of all boundary points. SinceMIN, RD1 andRD2 use unidimensional

“square” neighbor, we put their estimates in the “Sq” columns. For inference, 90% and 95%

confidence intervals (CI) were calculated from bootstrap with 10, 000 repetitions because the

sample size is small. The statistical significance is determined by whether the CI captures zero

or not; to save space, we present only 95% CIs.

In Table 2 for LPI, Oval-CV1, and Oval-CV2 usemore than 50% of the available data, going away

from RD localization; hence we would trust the other columns (Sq-RT, Sq-CV, and Oval-RT) more,

where the treatment effects fall in 0.62–1.39 which are statistically significant. These numbers

differ much from the estimates from the existing methods in the literature. This difference is

understandable in view of the significant partial effect β2 ranging over−0.38–0.72 in the columns
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Figure 3. Square & Oval Neighbors (1 & 2 Bandwidths) Choose Different Observations.

Table 2. LPI Estimates for Treatment and Partial Effects.

Sq-RT Sq-CV1 Sq-CV2 Oval-RT Oval-CV1 Oval-CV2

N1–N4 11,7,3,3 15,9,7,4 16,8,10,3 14,3,10,3 25,9,25,4 21,8,22,4∑
j Nj /N 0.23 0.34 0.36 0.29 0.61 0.53

Treatment Effect βd by OLS and Other Estimators

OLS 1.385∗
(0.18,2.56)

0.620+
(−0.14,1.47)

0.655
(−0.26,1.50)

0.945+
(−0.18,2.01)

0.447
(−0.22,1.05)

0.480
(−0.35,1.19)

BW −0.052
(−0.56,0.81)

−0.014
(−0.54, 1.22)

0.161
(−0.62,0.74)

−0.238
(−0.80,0.68)

MIN 0.080
(−0.34,0.58)

0.059
(−0.39,0.42)

0.006
(−0.36,0.54)

RD1 0.448
(−0.75,1.87)

0.272
(−0.60,1.22)

0.128
(−0.71,1.62)

RD2 0.114
(−0.36,0.84)

0.128
(−0.38,0.70)

0.140
(−0.34,0.66)

Partial Effect β1 and β2 by OLS

β1 −0.584
(−1.62,0.39)

−0.382
(−1.24,0.31)

−0.571
(−1.36,0.51)

−0.850
(−1.57,0.36)

−0.551
(−1.21,0.17)

−0.631
(−1.28,0.17)

β2 −0.627+
(−1.56,0.03)

−0.382+
(−1.13,0.09)

−0.462+
(−1.13,0.03)

−0.719∗
(−1.38,−0.08)

−0.378∗
(−0.74,−0.01)

−0.375+
(−0.81, 0.01)

Sq, square-neighbor kernel; Oval, oval-neighbor kernel

RT, rule-of-thumb bandwidth; CV1, CV with 1 bandwidth; CV2, CV with 2

95% bootstrap CI in (·); ∗,+ for 5,10% level significance

BW, boundary weight; min, min(S1, S2); RD1, S1�δ2 = 1; RD 2, S2�δ1 = 1

for Sq-RT, Sq-CV, and Oval-RT, because the existing methods are inconsistent if partial effects are

present. The partial effect β1 is insignificant in all cases.

J. Choi and M. Lee � Political Analysis 270

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.13


Table 3. MLI Estimates for Treatment and Partial Effects.

Sq-RT Sq-CV1 Sq-CV2 Oval-RT Oval-CV1 Oval-CV2

N1∼ N 4 11,7,3,3 15,9,7,4 20,12,12,4 14,3,10,3 22,8,20,4 21,8,22,4∑
j Nj /N 0.23 0.34 0.46 0.29 0.52 0.53

Treatment Effect βd by OLS and Other Estimators

OLS 0.629
(−0.75,1.82)

0.497
(−0.42,1.28)

0.361
(−0.13,1.17)

0.666
(−0.60,1.64)

0.268
(−0.65,1.11)

0.264
(−0.76,1.13)

BW −0.011
(−0.77,0.71)

−0.127
(−0.49, 0.36)

−0.108
(−0.59,0.49)

−0.168
(−0.53,0.47)

MIN 0.197
(−0.09,0.68)

0.242
(−0.21,0.55)

0.242
(−0.21,0.55)

RD1 0.499
(−0.49,1.46)

0.261
(−0.53,1.00)

−0.229
(−0.69,0.42)

RD2 0.122
(−0.31,0.62)

0.149
(−0.34,0.57)

0.149
(−0.34,0.57)

Partial Effect β1 and β2 by OLS

β1 0.351
(−0.69,1.42)

0.222
(−0.67,1.06)

−0.143
(−0.89,0.60)

0.032
(−1.05,1.01)

−0.146
(−0.90,0.75)

−0.088
(−0.90,0.84)

β2 −0.412
(−1.17,0.17)

−0.366
(−1.06,0.10)

−0.319+
(−1.06,0.02)

−0.627+
(−1.25,0.01)

−0.372+
(−1.01,0.03)

−0.384+
(−1.00,0.04)

Sq, square-neighbor kernel; Oval, oval-neighbor kernel

RT, rule-of-thumb bandwidth; CV1, CV with 1 bandwidth; CV2, CV with 2

95% bootstrap CI in (·); ∗,+ for 5,10% level significance

BW, boundary weight; min, min(S1, S2); RD1, S1�δ2 = 1; RD 2, S2�δ1 = 1

The reader may wonder why the partial effects β1 and β2 are negative in Table 2: Would being

the majority in either house still help passing bills? For this, recall the slope E (Y 01�S ) − E (Y 00�S )

of δ2 in Equation (3), which shows the effect of passing bills relative to “00,” that is, relative to the

Democrats being the majority in both houses. Here, “00” is not really a control in the sense that

no treatment is done; rather, it is almost the same treatment as “11.” It is hence natural that the

slopes of δ1 and δ2 are both negative.

The readermaywonder alsowhy βd is significantly positive:Would the effect of the Republican

majority in both houses not be the same as the Democratic majority to result in βd = 0? For this,

rewrite the slope ofD in Equation (3) as

{E (Y 11�S ) − E (Y 00�S )} − {E (Y 10�S ) − E (Y 00�S )} − {E (Y 01�S ) − E (Y 00�S )}:

the first term E (Y 11�S ) − E (Y 00�S ) might be almost zero due to the symmetry of the either party

being the majority in both houses, and the last two terms (i.e., the partial effects) are negative so

that the slope ofD becomes positive.

In Table 3 for MLI, Sq-CV2, Oval-CV1, and Oval-CV2 use nearly 50% of the available data, and

consequently we would trust the other columns (Sq-RT, Sq-CV1, and Oval-RT) more, where the

treatment effects fall in 0.50–0.67 which are statistically insignificant though, differently from

Table 2. These effect numbers differ much from the estimates from the existing methods in the

literature. This difference is understandable in view of the partly significant partial effect β2

ranging over −0.37–0.63 in the columns for Sq-RT, Sq-CV1, and Oval-RT. The partial effect β1 is
insignificant in all cases as in Table 2.

A simple informative “back-of-the-envelope” calculation comes from positing

βs{δ1(1 − δ2) + (1 − δ1)δ2} + βu{δ1δ2 + (1 − δ1)(1 − δ2)}

= βu + (βs − βu )δ1 + (βs − βu )δ2 + 2(βu − βs )δ1δ2
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where βs is the effect of the split congress, and βu is the effect of the united congress. Recall that

the slope2(βu−βs ) ofD = δ1δ2 is0.62 ∼ 1.39 inTable2, and the slopeβs−βu of δ2 is−0.38 ∼ −0.72.
Taking the middle values in these ranges, since 2(βu − βs ) 
 1.01 and βs − βu 
 −0.55, we have
βu 
 βs + 0.5: the effect of the united congress might be about 0.5 × SD greater than the effect of
the split congress.

One final important point tomake is that, even if one is interested only in the effect of being the

majority in both houses, it is ill-advised to compare only the cases of being the majority in both

houses versus not being the majority in neither house. This amounts to omitting δ1 and δ2 in the

above OLS, which results in an omitted variable bias, as long as the partial effects are not zero as

in Tables 2 and 3.

5 Conclusions
In this paper, we generalized the usual mean-based RD with a single running variable (“score”) in

three ways by allowing for (i) more than one scores, (ii) partial effects due to part of the scores

crossing cutoff, in addition to the full effect with all scores crossing all cutoffs, and (iii) regression

functions other than the mean although we focused mostly on the mean. The critical difference

between our and existing approaches for MRD is partial effects: allowed in this paper, but ruled

out in most other papers.

We imposedaweakcontinuity assumption, presented the identifiedparameters, andproposed

simple local difference-in-differences-type estimators implemented by ordinary least squares

estimator. We applied our estimators to find the US congress “productivity”: the effect of the

Republicans dominating both houses on passing bills. We found significant partial effects, and

the legislative productivity is higher by about 0.5 × SD when the congress is united than divided.

Appendix. Three-Score MRD Identification
ConsiderD = δ1δ2δ3 with δj ≡ 1[0 ≤ Sj ], j = 1, 2, 3. Rewrite E (Y �S ) as

E (Y �S ) = E (Y 000�S )(1 − δ1)(1 − δ2)(1 − δ3) + E (Y 100�S )δ1(1 − δ2)(1 − δ3)

+E (Y 010�S )(1 − δ1)δ2(1 − δ3) + E (Y 001�S )(1 − δ1)(1 − δ2)δ3 + E (Y 110�S )δ1δ2(1 − δ3)

+E (Y 101�S )δ1(1 − δ2)δ3 + E (Y 011�S )(1 − δ1)δ2δ3 + E (Y 111�S )δ1δ2δ3.

Here, the slope ofD = δ1δ2δ3 is

E (Y 111�S ) − E (Y 110�S ) − {E (Y 011�S ) − E (Y 010�S )}

− [E (Y 101�S ) − E (Y 100�S ) − {E (Y 001�S ) − E (Y 000�S )}].

Adopt the notation analogous to that for two-score MRD.

Take the triple limits on E (Y �S ) to get

E (Y �0+, 0+, 0+) = E (Y 111�0+, 0+, 0+), E (Y �0+, 0+, 0−) = E (Y 110�0+, 0+, 0−),

E (Y �0−, 0+, 0+) = E (Y 011�0−, 0+, 0+), E (Y �0−, 0+, 0−) = E (Y 010�0−, 0+, 0−),

E (Y �0+, 0−, 0+) = E (Y 101�0+, 0−, 0+), E (Y �0+, 0−, 0−) = E (Y 100�0+, 0−, 0−),

E (Y �0−, 0−, 0+) = E (Y 001�0−, 0−, 0+), E (Y �0−, 0−, 0−) = E (Y 000�0−, 0−, 0−).

These give the limiting version of the slope ofD :

E (Y �0+, 0+, 0+) − E (Y �0+, 0+, 0−) − {E (Y �0−, 0+, 0+) − E (Y �0−, 0+, 0−)}

− [E (Y �0+, 0−, 0+) − E (Y �0+, 0−, 0−) − {E (Y �0−, 0−, 0+) − E (Y �0−, 0−, 0−)}].
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Assume the continuity conditions

E (Y 110�0+, 0+, 0−) = E (Y 110�0+, 0+, 0+),

E (Y 011�0−, 0+, 0+) = E (Y 011�0+, 0+, 0+), E (Y 010�0−, 0+, 0−) = E (Y 010�0+, 0+, 0+),

E (Y 101�0+, 0−, 0+) = E (Y 101�0+, 0+, 0+), E (Y 100�0+, 0−, 0−) = E (Y 100�0+, 0+, 0+),

E (Y 001�0−, 0−, 0+) = E (Y 001�0+, 0+, 0+), E (Y 000�0−, 0−, 0−) = E (Y 000�0+, 0+, 0+).

With these, the slope ofD in the preceding display can be written as, not surprisingly, “difference

in differences in differences”:

βd = E [Y 111 −Y 110 − (Y 011 −Y 010) − {Y 101 −Y 100 − (Y 001 −Y 000)}�0+, 0+, 0+]

which is the effect on the just treated (0+, 0+, 0+). For four scores or more, we get quadruple or

higher differences; see Lee (2016).
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