Nanofibers Pure And Doped With a Transition Metal: BaTiO₃ and LiNbO₃ M.C. Maldonado-Orozco¹, R. Narro-García¹, C. Nava-Dino¹, J.P Flores-De los Ríos¹, M.T. Ochoa-Lara² and F. Espinosa-Magaña². Nowadays one dimensional nanomaterials such as nanofibers, have been synthesized by various processes, e.g. solution method, sol-gel, laser ablation, chemical vapor deposition (CVD), hydrothermal method and mechanochemical activation. In this work, structures ABO₃ such as BaTiO₃ and LiNbO₃ nanofibers were doped with Mn like transition metal and synthesized by electrospinning method, a detailed description of the procedure can be found in the literature [1][2]; this technique has been recognized as an efficient method to make polymeric nanofibers [3], who it is a straightforward way to synthesize nanostructures. The potentials applications of these materials are focused in one of the extensively studied ferroelectric material with wide range of applications in non-volatile ferroelectric random access memories, as transducers, sensors and actuators, etc [4]. The presence of a pure phase and patterns from BaTiO₃ doped is confirmed by XRD analysis, Fig 1. In the other hand, the presence of a pure phase and patterns from LiNbO₃ doped is confirmed in Fig 2. The metal transition is used to dope the composite taking care the BaTiO₃ and LiNbO₃ stoichiometry. Such as Fig 1. and Fig 2. show the "x" value, that in both cases corresponds to 2.5, 5 and 10%. In BaTiO₃ doped to the 10% change it from tetragonal to hexagonal structure. Fig 3. and Fig 4. show a SEM micrograph of as-spun fibers, BaTiO₃ and LiNbO₃ respectively. Cylindrical and randomly oriented BaTiO₃ fibers with diameter about 57-453 nm were obtained, compared with diameter about 57-146 nm obtained by LiNbO₃. TEM micrographs, Fig 5. and Fig 6, show a isolated and calcined $BaTi_{0.95}Mn_{0.05}O_3$ and $LiNb_{0.95}Mn_{0.05}O_3$ nanofibers respectively, both in the same Mn concentration. In Fig 5, it can be observed fibers with few μm in length and an irregular morphology. Fig. 6 shows TEM micrograph, different surface morphology is evident. ## References: - [1] J. Yuh, J.C. Nino and W.M. Sigmund, Materials Letters **59** (2005) p. 3645. - [2] M.C. Maldonado-Orozco et al, Ceramics International 41 (2015) p. 14886. - [3] J. P. Chu et al, J. Mater. Sci. 42 (2007) p. 346. - [4] S. Sharma, Adv. Mater. Lett. 4 (2013) p. 522. ¹ Facultad de Ingeniería de la Universidad Autónoma de Chihuahua, Nuevo Campus s/n, Chihuahua, México. ^{2.} Centro de Investigación de Materiales Avanzados, S.C., Laboratorio Nacional de Nanotecnología, Chihuahua, México. Figure 1. XRD pattern BaTi_{1-x}Mn_xO₃ Figure 2. XRD pattern LiNb_{1-x}Mn_xO₃ **Figure 3.** SEM images of as-spun Ba(C₂H₃O₂)₂:Ti[OCH(CH₃)₂]₄:PVP:CH₃CO OH:H₂O:C₂H₅OH composite. **Figure 4.** SEM images of as-spun HLiO:Nb(OCH₂CH₃)₅:PVP:CH₃COOH: C₂H₅OH. composite. **Figure 5.** TEM image of $BaTi_{0.95}Mn_{0.05}O_3$ nanofibers. **Figure 6.** TEM image of $LiNb_{0.95}Mn_{0.05}O_3$ nanofibers.