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Let π be a discrete group, and let G be a compact-connected Lie group. Then, there
is a map Θ: Hom(π, G)0 → map∗(Bπ, BG)0 between the null components of the
spaces of homomorphisms and based maps, which sends a homomorphism to the
induced map between classifying spaces. Atiyah and Bott studied this map for π a
surface group, and showed that it is surjective in rational cohomology. In this paper,
we prove that the map Θ is surjective in rational cohomology for π = Z

m and the
classical group G except for SO(2n), and that it is not surjective for π = Z

m with
m � 3 and G = SO(2n) with n � 4. As an application, we consider the surjectivity
of the map Θ in rational cohomology for π a finitely generated nilpotent group. We
also consider the dimension of the cokernel of the map Θ in rational homotopy
groups for π = Z

m and the classical groups G except for SO(2n).
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1. Introduction

Given two topological groups G and H, there is a natural map

Θ̂: Hom(G,H) → map∗(BG,BH)

sending a homomorphism to its induced map between classifying spaces, where
Hom(G,H) and map∗(BG,BH) denote the spaces of homomorphisms and based
maps, respectively. If G and H are discrete, then the map Θ̂ in π0 is a well-known
bijection:

Hom(G,H) ∼= [BG,BH]∗.
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However, the map Θ̂ in π0 is not bijective in general. Indeed, if G = H = U(n),
then Sullivan [28] constructed a map between classifying spaces, called the unstable
Adams operation, which is not in the image of the map Θ̂ in π0, even rationally.
Since then, the map Θ̂ in π0 has been intensely studied for both G and H being
Lie groups completed at a prime, which led to a new development of algebraic
topology and has been producing a variety of applications. See surveys [11, 17, 20]
for details. Clearly, the map Θ̂ is of particular importance not only in π0. However,
not much is known about higher homotopical structures of the map Θ̂ such as
homotopy groups and (co)homology of dimension � 1.

We describe two interpretations of the map Θ̂. The first one is from algebraic
topology. Stasheff [27] introduced an A∞-map between topological monoids, which
is defined by replacing the equality in the definition of a homomorphism by coherent
higher homotopies with respect to the associativity of the multiplications. He also
showed that to each A∞-map, we can assign a map between classifying spaces, and
so there is a map

A∞(G,H) → map∗(BG,BH)

where A∞(G,H) denotes the space of A∞-maps between topological groups G,H.
It is proved in [14, 29] that this map is a weak homotopy equivalence, and since
the map Θ̂ factors through this map, we can interpret that the map Θ̂ depicts the
difference of homomorphisms, solid objects, and A∞-maps, soft objects, between
topological groups.

The second interpretation is from bundle theory. Let π be a finitely generated
discrete group, and let G be a compact-connected Lie group. Let Hom(π,G)0 and
map∗(Bπ,BG)0 denote the path components of Hom(π,G) and map∗(Bπ,BG)
containing trivial maps, respectively. In this paper, we study the natural map

Θ: Hom(π,G)0 → map∗(Bπ,BG)0

which is the restriction of the map Θ̂. If Bπ has the homotopy type of a manifold M ,
then Hom(π,G)0 and map∗(Bπ,BG)0 are identified with the based moduli spaces
of flat connections and all connections on the trivial G-bundle over M , denoted by
Flat(M,G)0 and C(M,G)0, respectively. Under this identification, the map Θ can
be interpreted as the inclusion:

Flat(M,G)0 → C(M,G)0.

Atiyah and Bott [4] studied the map Θ for a surface group π through the above flat
bundle interpretation in the context of gauge theory because flat connections are
solutions to the Yang–Mills equation over a Riemann surface. In particular, they
used Morse theory to prove that the map Θ is surjective in rational cohomology
whenever π is a surface group. However, their proof is so specialized to surface
groups that it does not apply to other groups π. Then, we ask:

Question 1.1. Is the map Θ surjective in rational cohomology whenever Bπ is of
the homotopy type of a manifold?
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In this paper, we study the above question in the special case π = Zm. The space
Hom(Zm, G) is called the space of commuting elements in G because there is a
natural homeomorphism

Hom(Zm, G) ∼= {(g1, . . . , gm) ∈ Gm | gigj = gjgi for 1 � i, j � m}
where we will not distinguish these two spaces. Recently, several results on the
space of commuting elements in a Lie group have been obtained from a view of
algebraic topology [1–3, 5–7, 12, 15, 16, 21, 22, 25, 26]. In particular, the first
and the second authors gave a minimal generating set of the rational cohomol-
ogy of Hom(Zm, G)0 when G is the classical group except for SO(2n). Using this
generating set, we will prove:

Theorem 1.2. If G is the classical group except for SO(2n), then the map

Θ: Hom(Zm, G)0 → map∗(BZm, BG)0

is surjective in rational cohomology.

As an application of theorem 1.2, we will prove the following theorem. We refer
to [19] for the localization of nilpotent groups.

Theorem 1.3. Let π be a finitely generated nilpotent group, and let G be the
classical group except for U(1) and SO(2n). Then, the map

Θ: Hom(π,G)0 → map∗(Bπ,BG)0

is surjective in rational cohomology if and only if the rationalization π(0) is abelian.

As a corollary, we will obtain:

Corollary 1.4. Let M be a nilmanifold, and let G be the classical group except
for SO(2n). Then, the inclusion

Flat(M,G)0 → C(M,G)0

is surjective in rational cohomology if and only if M is a torus.

As a corollary to theorem 1.2, we will show that the map Θ is surjective in
rational cohomology for G = SO(2n) with n = 2, 3 (corollary 3.10). On the contrary,
as mentioned above, the result of Atiyah and Bott [4] implies that the map Θ is
surjective in rational cohomology for m = 2 and G = SO(2n) with any n � 2. Then,
we may expect that the map Θ is also surjective in rational cohomology for m � 3
and n � 4. However, the surjectivity breaks as:

Theorem 1.5. For m � 3 and n � 4, the map

Θ: Hom(Zm, SO(2n))0 → map∗(BZm, BSO(2n))0

is not surjective in rational cohomology.
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We will also consider the map Θ in rational homotopy groups. It is proved in
[21] that Hom(Zm, G)0 is rationally hyperbolic, and so the total dimension of its
rational homotopy groups is infinite. On the contrary, we will see in § 4 that the
rational homotopy group of map∗(BZm, BG)0 is finite dimensional. Then, the map
Θ for π = Zm cannot be injective. On the contrary, we can consider the surjectivity
of the map Θ in rational homotopy groups by looking at its cokernel. Baird and
Ramras [7] gave a lower bound for the dimension of the cokernel of the map Θ for
G = GLn(C) in rational homotopy groups. In particular, for π = Zm, they proved
that the dimension of the cokernel of the map

Θ∗ : πi(Hom(Zm,GLn(C))0) ⊗ Q → πi(map∗(BZm, BGLn(C))0) ⊗ Q

is bounded below by
∑

i<k�n

(
m

2i−k

)
whenever n � (m + i)/2. By using theorem 1.2,

we can improve this result as follows.

Theorem 1.6. Let ci(m,G) be the dimension of the cokernel of the map

Θ∗ : πi(Hom(Zm, G)0) ⊗ Q → πi(map∗(BZm, BG)0) ⊗ Q.

(1) For G = U(n), SU(n), we have

ci(m,G) =
∑

i<k�n

(
m

2i − k

)
.

(2) For G = Sp(n), SO(2n + 1), we have

ci(m,G) �
∑

i/3<k�n

(
m

4i − k

)

where the equality holds for i � 2n + 3.

Remarks on theorem 1.6 are in order. By [16], π1(Hom(Zm, G)0) is abelian, and it
is easy to see that π1(map∗(BZm, BG)) is abelian too. Then, π1 ⊗ Q in theorem 1.6
makes sense. By [8], the G = U(n) case is equivalent to the G = GLn(C) case, and
so we can see that the lower bound of Baird and Ramras [7] for π = Zm mentioned
above is attained by theorem 1.6.

2. The map Φ

Hereafter, let G be a compact-connected Lie group with maximal torus T , and let
W denote the Weyl group of G. We define a map

Φ: G/T ×W Tm → Hom(Zm, G)0

by Φ(gT, (g1, . . . , gm)) = (gg1g
−1, . . . , ggmg−1) for g ∈ G and g1, . . . , gm ∈ T , where

Tm denotes the direct product of m copies of T , instead of a torus of dimension m.
In this section, we will define maps involving the map Φ and show their properties.
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First, we recall the following result of Baird [5]. It is well known that there is a
natural isomorphism:

H∗(G/T ×W Tm; Q) ∼= H∗(G/T × Tm; Q)W

and so we will not distinguish them. Baird [5] proved:

Theorem 2.1. The map

Φ∗ : H∗(Hom(Zm, G)0; Q) → H∗(G/T × Tm; Q)W

is an isomorphism.

By using theorem 2.1, the first and the second authors [21] gave a minimal
generating set of the rational cohomology of Hom(Zm, G)0 when G is the classical
group except for SO(2n), which we recall in the next section.

In order to define maps involving the map Φ, we need the functoriality of clas-
sifying spaces. Then, we employ the Milnor construction [24] as a model for the
classifying space. Let

EG = lim
n→∞G ∗ · · · ∗ G︸ ︷︷ ︸

n

where X ∗ Y denotes the join of spaces X and Y . Following Milnor [24], we denote
a point of EG by

t1g1 ⊕ t2g2 ⊕ · · ·

such that ti � 0,
∑

n�1 tn = 1 with only finitely many ti being non-zero, and s1g1 ⊕
s2g2 ⊕ · · · = t1h1 ⊕ t2h2 ⊕ · · · if sk = tk = 0 (gk �= hk, possibly) and for i �= k, si =
ti and gi = hi, where e denotes the identity element of G. Then, G acts freely on
EG by

(t1g1 ⊕ t2g2 ⊕ · · · ) · g = t1g1g ⊕ t2g2g ⊕ · · · .

We define the classifying space of G by

BG = EG/G.

Note that the inclusion ET → EG induces a map ι : BT → EG/T which is a homo-
topy equivalence because both ET and EG are contractible. We record a simple
fact which follows immediately from the definition of the Milnor construction.

Lemma 2.2. The natural map BT → BG factors as the composite:

BT
ι−→ EG/T → EG/G = BG.
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Now, we define a map

φ : G/T × BT → BG, (gT, [t1g1 ⊕ t2g2 ⊕ · · · ]) 	→ [t1gg1 ⊕ t2gg2 ⊕ · · · ]
for g ∈ G and [t1g1 ⊕ t2g2 ⊕ · · · ] ∈ BT . Since T is abelian, we have

[t1ghg1 ⊕ t2ghg2 ⊕ · · · ] = [t1gg1h ⊕ t2gg2h ⊕ · · · ] = [t1gg1 ⊕ t2gg2 ⊕ · · · ]
for h ∈ T , implying that the map φ is well-defined. We also define

ᾱ : G/T → EG/T, gT 	→ [1g ⊕ 0e ⊕ 0e ⊕ · · · ].

Let α denote the composite G/T
ᾱ−→ EG/T

ι−1

−−→ BT . Then, there is a homotopy
fibration G/T

α−→ BT → BG.

Lemma 2.3. There is a map φ̂ : G/T × BT → BT satisfying the homotopy commu-
tative diagram:

G/T ∨ BT ��

α∨1

��

G/T × BT ��

φ̂

��

G/T × BT

φ

��
BT �� BT �� BG.

Proof. Define a map:

φ̄ : G/T × BT → EG/T, (gT, [t1g1 ⊕ t2g2 ⊕ · · · ]) 	→ [t1gg1 ⊕ t2gg2 ⊕ · · · ].
Quite similarly to the map φ, we can see that the map φ̄ is well-defined. Let φ̂
denote the composite:

G/T × BT
φ̄−→ EG/T

ι−1

−−→ BT.

Then, by lemma 2.2, the right square of the diagram in the statement is homotopy
commutative. We also have

φ̄(gT, [1e ⊕ 0e ⊕ 0e ⊕ · · · ]) = [1g ⊕ 0e ⊕ 0e ⊕ · · · ] = ᾱ(gT )

and

φ̄(eT, [t1g1 ⊕ t2g2 ⊕ · · · ]) = [t1g1 ⊕ t2g2 ⊕ · · · ] = ι([t1g1 ⊕ t2g2 ⊕ · · · ])
for [t1g1 ⊕ t2g2 ⊕ · · · ] ∈ BT , where [1e ⊕ 0e ⊕ 0e ⊕ · · · ] is the basepoint of BT .
Then, the left square is homotopy commutative too, finishing the proof. �

We may think of the map φ̂ as a higher version of the map defined by conjugation
in [10]. We define a map

Φ̂: G/T ×W map∗(BZm, BT )0 → map∗(BZm, BG)0

by Φ̂(gT, f)(x) = φ(gT, f(x)) for g ∈ G, f ∈ map∗(BZm, BT )0 and x ∈ BZm. Since
there is a natural homomorphism Hom(Zm, T )0 ∼= Tm, we will not distinguish them.
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Lemma 2.4. There is a commutative diagram:

G/T ×W Hom(Zm, T )0
Φ ��

1×Θ

��

Hom(Zm, G)0

Θ

��
G/T ×W map∗(BZm, BT )0

Φ̂ �� map∗(BZm, BG)0.

Proof. By definition, we have

Θ(f)([t1g1 ⊕ t2g2 ⊕ · · · ]) = [t1f(g1) ⊕ t2f(g2) ⊕ · · · ]
for f ∈ Hom(Zm, T )0 and [t1g1 ⊕ t2g2 ⊕ · · · ] ∈ BZm. Then, we get

Φ̂ ◦ (1 × Θ)(gT, f)([t1g1 ⊕ t2g2 ⊕ · · · ])
= [t1gf(g1)g−1 ⊕ t2gf(g2)g−1 ⊕ · · · ]
= Θ ◦ Φ(gT, f)([t1g1 ⊕ t2g2 ⊕ · · · ])

for g ∈ G, f ∈ Hom(Zm, T )0 and [t1g1 ⊕ t2g2 ⊕ · · · ] ∈ BZm. Thus, the proof is
finished. �

Next, we consider the evaluation map:

ω : map∗(X,Y )0 × X → Y, (f, x) 	→ f(x).

Note that the map φ : G/T × BT → BG factors through G/T ×W BT . We denote
the map G/T ×W BT → BG by the same symbol φ.

Lemma 2.5. There is a commutative diagram:

G/T ×W map∗(BZm, BT )0 × BZm
Φ̂×1

��

1×ω

��

map∗(BZm, BG)0 × BZm

ω

��
G/T ×W BT

φ
�� BG.

Proof. For g ∈ G, f ∈ map∗(BZm, BT )0 and x ∈ BZm, we have

ω ◦ (Φ̂ × 1)(gT, f, x) = φ(gT, f(x)) = φ(gT, ω(f, x)) = φ ◦ (1 × ω)(gT, f, x).

Thus, the statement is proved. �

3. Rational cohomology

In this section, we will prove theorems 1.2 and 1.5, and we will apply theorem 1.2 to
prove theorem 1.3. To prove theorem 1.2, we will employ the generating set of the
rational cohomology of Hom(Zm, G)0 given in [21], and to prove theorem 1.5, we will
consider a specific element of H∗(Hom(Zm, SO(2n))0) ∼= H∗(SO(2n)/T × Tm)W .

https://doi.org/10.1017/prm.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.112


8 D. Kishimoto, M. Takeda and M. Tsutaya

3.1. Cohomology generators

Hereafter, the coefficients of (co)homology will be always in Q, and we will sup-
pose that G is of rank n, unless otherwise specified. First, we set notation on
cohomology. Since G is of rank n, the cohomology of BT is given by

H∗(BT ) = Q[x1, . . . , xn], |xi| = 2.

We also have that the cohomology of Tm is given by

H∗(Tm) = Λ(y1
1 , . . . , y1

n, . . . , ym
1 , . . . , ym

n ), |yj
i | = 1

such that yk
i = π∗

k(
k

σ(xi)), where πk : BZm → BZ is the k-th projection and σ
denotes the cohomology suspension. Let [m] = {1, 2, . . . ,m}. For I = {i1 < · · · <
ik} ⊂ [m], we set:

yI
i = yi1

i . . . yik
i .

It is well known that the map α : G/T → BT induces an isomorphism:

H∗(G/T ) ∼= H∗(BT )/(H̃∗(BT )W ).

We denote α∗(xi) by the same symbol xi, and so H∗(G/T ) is generated by
x1, . . . , xn.

Now, we recall the minimal generating set of the rational cohomology of
Hom(Zm, G)0 given in [21]. For d � 1 and I ⊂ [m], we define

z(d, I) = xd−1
1 yI

1 + · · · + xd−1
n yI

n ∈ H∗(G/T × Tm)

and let

S(m,U(n)) = {z(d, I) | d � 1, ∅ �= I ⊂ [m], d + |I| − 1 � n}

where we have |z(d, I)| = 2d + |I| − 2. We also let:

S(m,SU(n)) = {z(d, I) ∈ S(m,U(n)) | d � 2 or |I| � 2}

where x1 + · · · + xn = 0 and yi
1 + · · · + yi

n = 0 for i = 1, . . . , m. Since W is the sym-
metric group on [n] for G = U(n), SU(n) such that for σ ∈ W , σ(xi) = xσ(i) and
σ(yj

i ) = yj
σ(i), we have

S(m,G) ⊂ H∗(G/T × Tm)W .

For an integer k, let ε(k) = 0 for k even and ε(k) = 1 for k odd. We define

w(d, I) = x
2d+ε(|I|)−2
1 yI

1 + · · · + x2d+ε(|I|)−2
n yI

n ∈ H∗(G/T × Tm)

and let

S(m,Sp(n)) = {w(d, I) | d � 1, ∅ �= I ⊂ [m], 2d + |I| + ε(|I|) − 2 � 2n}
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where we have |w(d, I)| = 4d + |I| + 2ε(|I|) − 4. We also let

S(m,SO(2n + 1)) = S(m,Sp(n)).

Since W is the signed symmetric group on [n] for G = Sp(n), SO(2n + 1) such that
for σ ∈ W , (±σ)(xi) = ±xσ(i) and (±σ)(yj

i ) = ±yj
σ(i), we have

S(m,G) ⊂ H∗(G/T × Tm)W .

The following theorem is proved in [21].

Theorem 3.1. If G is the classical group except for SO(2n), (Φ∗)−1(S(m,G)) is
a minimal generating set of the rational cohomology of Hom(Zm, G)0.

3.2. Proof of theorem 1.2

First, we consider the map φ̂ : G/T × BT → BT of lemma 2.3 in cohomology.

Lemma 3.2. For each xi ∈ H∗(BT ), we have

φ̂∗(xi) = xi × 1 + 1 × xi.

Proof. The statement immediately follows from the left square of the homotopy
commutative diagram in lemma 2.3. �

Next, we consider the map Θ: Hom(Zm, T )0 → map∗(BZm, BT )0.

Lemma 3.3. The map Θ: Hom(Z, T )0 → map∗(BZ, BT )0 is a homotopy equiva-
lence.

Proof. For a topological group K with a non-degenerate unit, there is a homomor-
phism (K ∗ K)/K ∼= Σ̃K such that the composite

Σ̃K � (K ∗ K)/K → BK

is identified with the adjoint of the natural homotopy equivalence K � ΩBK, where
Σ̃ denotes the unreduced suspension. By definition, Σ̃Z is homotopy equivalent to
a wedge of infinitely many copies of S1, and the map Σ̃Z → BZ is identified with
the fold map onto S1. Thus, the composite Σ̃{0, 1} → Σ̃Z → BZ is a homotopy
equivalence. Note that for any homomorphism f : Z → T , there is a commutative
diagram:

Σ̃{0, 1} ��

��

Σ̃Z

Σ̃f
��

��

Σ̃T

��
BZ �� BZ

Bf
�� BT.
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Thus, since Hom(Z, T )0 = map∗({0, 1}, T )0, we get a commutative diagram:

map∗({0, 1}, T )0
Σ̃ ��

��

map∗(Σ̃{0, 1}, Σ̃T )∗ �� map∗(Σ̃{0, 1}, BT )0

Hom(Z, T )0
Θ �� map∗(BZ, BT )0.

�
��

Clearly, the composite of the top maps is identified with the homotopy equivalence
map∗({0, 1},ΩBT )0 ∼= map∗(Σ{0, 1}, BT )0. Then, the bottom map is a homotopy
equivalence too, completing the proof. �

Lemma 3.4. The map Θ: Hom(Zm, T )0 → map∗(BZm, BT )0 is a homotopy equiv-
alence.

Proof. Let Fm be the free group of rank m. Clearly, we have

Hom(Fm, T )0 ∼= (Hom(Z, T )0)m.

Since BFm is homotopy equivalent to a wedge of m copies of S1, we also have

map∗(BFm, BT )0 � (map∗(BZ, BT )0)m.

It is easy to see that through these equivalences, the map Θ: Hom(Fm, T )0 →
map∗(BFm, BT )0 is identified with the product of m copies of the
map Θ: Hom(Z, T )0 → map∗(BZ, BT )0. Thus, by lemma 3.3, the map
Θ: Hom(Fm, T )0 → map∗(BFm, BT )0 is a homotopy equivalence. Now, we consider
the commutative diagram

Hom(Zm, T )0
Θ ��

��

map∗(BZm, BT )0

��
Hom(Fm, T )0

Θ �� map∗(BFm, BT )0

induced from the abelianization Fm → Zm. Since T is abelian, the left map is a
homomorphism. Since the cofibre of the map BFm → BZm is simply-connected, the
right map is a homotopy equivalence. Thus, the top map is a homotopy equivalence
too, completing the proof. �

We consider the evaluation map ω : map∗(BZm, BT )0 × BZm → BT in coho-
mology. Since BZm is homotopy equivalent to the m-dimensional torus, we
have

H∗(BZm) = Λ(t1, . . . , tm), |ti| = 1.

For I = {i1 < · · · < ik} ⊂ [m], let:

tI = ti1 · · · tik
.

https://doi.org/10.1017/prm.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.112


The space of commuting elements and classifying spaces 11

Lemma 3.5. For each xi ∈ H∗(BT ), we have

(ω ◦ (Θ × 1))∗(xi) = y1
i × t1 + · · · + ym

i × tm.

Proof. For the evaluation map ω : map∗(BZ, BT )0 × BZ → BT , we have

ω∗(x1) = y1
1 × t1

as in [23], where we identify map∗(BZ, BT )0 with T . By lemma 3.4, we may assume
Θ∗(y1

1) = y1
1 . Let ιi : BZ → BZm and πi : BZm → BZ denote the i-th inclusion

and the i-th projection, respectively. Since ω ◦ (π∗
i × ιj) is trivial for i �= j, ω∗(xk)

is a linear combination of π∗
k(y1

1) × t1, . . . , π
∗
k(ym

1 ) × tm. There is a commutative
diagram:

map∗(BZ, BT )0 × BZ
ω ��

π∗
i ×ιi

��

BT

��
map∗(BZm, BT )0 × BZm

ω �� BT.

Then, we get:

(Θ × 1)∗ ◦ ω∗(xk) = (Θ × 1)∗(π∗
k(y1

1) × t1 + · · · + π∗
k(ym

1 ) × tm)

= y1
k × t1 + · · · + ym

k × tm.

Thus, the proof is finished. �

Next, we consider the evaluation map ω : map∗(BZm, BG)0 × BZm → BG in
cohomology. Recall that the rational cohomology of BG is given by

H∗(BG) = Q[z1, . . . , zn].

We choose generators z1, . . . , zn as

j∗(zi) =

{
xi

1 + · · · + xi
n G = U(n)

x2i
1 + · · · + x2i

n G = Sp(n), SO(2n + 1)

and set H∗(BSU(n)) = H∗(BU(n))/(z1), where j : BT → BG denotes the natural
map. For i = 1, . . . , n and ∅ �= I ⊂ [m], we define zi,I ∈ H∗(map∗(BZm, BG)0) by

ω∗(zi) =
∑

∅�=I⊂[m]

zi,I × tI

where zi,I = 1 for |zi| = |I| and zi,I = 0 for |zi| < |I|.

Proposition 3.6. The rational cohomology of map∗(BZm, BG)0 is a free
commutative-graded algebra generated by

S = {zi,I | 1 � i � n, ∅ �= I ⊂ [m], |zi| > |I|}.
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Proof. Since the rationalization of BG is homotopy equivalent to a product of
Eilenberg–MacLane spaces, so is the rationalization of map∗(BZm, BG)0. Then,
the cohomology of map∗(BZm, BG)0 is a free commutative algebra. The rest can
be proved quite similarly to [4, Proposition 2.20]. �

We compute Θ∗(zi,I) for the classical group G except for SO(2n).

Proposition 3.7. For i = 1, . . . , n and ∅ �= I ⊂ [m], if |zi| > |I|, then

Φ∗ ◦ Θ∗(zi,I) =

⎧⎨⎩
i!

(i−|I|)!z(i − |I| + 1, I) G = U(n), SU(n)
(2i)!

(2i−|I|)!w(i − |I|+ε(|I|)
2 + 1, I) G = Sp(n), SO(2n + 1).

Proof. First, we prove the G = U(n) case. By lemmas 2.3 and 3.2, we have

φ∗(zi) = φ̂∗(j∗(zi)) = φ̂∗(xi
1 + · · · + xi

n) =
n∑

k=1

(xk × 1 + 1 × xk)i.

By lemmas 2.4 and 2.5, there is a homotopy commutative diagram:

G/T × Tm × BZm
1×Θ×1

��

Φ×1

��

G/T × map∗(BZm, BT )0 × BZm
1×ω

��

Φ̂×1

��

G/T × BT

φ

��
Hom(Zm, G) × BZm

Θ×1
�� map∗(BZm, BT )0 × BZm

ω �� BG.

Then, by lemma 3.5, we get

(Φ × 1)∗ ◦ (Θ × 1)∗ ◦ ω∗(zi)

= (1 × Θ × 1)∗ ◦ (Φ̂ × 1)∗ ◦ ω∗(zi)

= (1 × Θ × 1)∗ ◦ (1 × ω)∗ ◦ φ∗(zi)

= (1 × Θ × 1)∗ ◦ (1 × ω)∗
(

n∑
k=1

(xk × 1 + 1 × xk)i

)

=
n∑

k=1

(xk × 1 + y1
k × t1 + · · · + ym

k × tm)i

=
∑

∅�=I⊂[m]

i!
(i − |I|)!

(
n∑

k=1

x
i−|I|
k × yI

k

)
× tI

=
∑

∅�=I⊂[m]

i!
(i − |I|)!Φ

∗(z(i − |I| + 1, I)) × tI .

Thus, the G = U(n) case is proved. The G = SU(n) case follows immediately from
the G = U(n) case, and the G = Sp(n), SO(2n + 1) case can be proved verbatim.

�

https://doi.org/10.1017/prm.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.112


The space of commuting elements and classifying spaces 13

Now, we are ready to prove theorem 1.2.

Proof of theorem 1.2. Combine theorem 3.1 and proposition 3.7. �

3.3. Proof of theorem 1.3

We show a property of the rational cohomology of a nilpotent group that we are
going to use. We refer to [19] for the localization of nilpotent groups. For a finitely
generated group π, let ab: π → Zm denote the composite of the abelianization
π → πab and the projection πab → πab/Tor ∼= Zm, where Tor is the torsion part of
πab.

Lemma 3.8. Let π be a finitely generated nilpotent group. Then, the rationalization
π(0) is abelian if and only if the map

ab
∗
: H2(BZm) → H2(Bπ)

is injective.

Proof. By definition, the rationalization of Bπ is rationally homotopy equivalent
to an iterated principal S1-bundles. Then, as in [18], the minimal model of Bπ is
given by (Λ(x1, . . . , xn), d) for |xi| = 1 such that

dx1 = · · · = dxm = 0, dxk =
∑

i,j<k

αi,jxixj �= 0 (k > m).

Moreover, the minimal model of BZm is given by (Λ(x1, . . . , xm), d = 0) such
that the map ab: Bπ → BZm induces the inclusion (Λ(x1, . . . , xm), d = 0) →
(Λ(x1, . . . , xn), d). Observe that π(0) is abelian if and only if the map ab: Bπ →
BZm is a rational homotopy equivalence. Then, π(0) is abelian if and only if m = n,
which is equivalent to the map ab

∗
: H2(BZm) → H2(Bπ) is injective. �

Now, we are ready to prove theorem 1.3.

Proof of theorem 1.3. By the naturality of the map Θ, there is a commutative
diagram:

Hom(Zm, G)0
Θ ��

ab
∗

��

map∗(BZm, BG)0

ab
∗

��
Hom(π,G)0

Θ �� map∗(Bπ,BG)0.

Bergeron and Silberman [9] proved that the left map is a homotopy equivalence.
Since the rationalization of BG is a product of Eilenberg–MacLane spaces, there is
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a rational homotopy equivalence

map∗(X,BG)0 �(0)

∞∏
n−i�1

K(Hi(X) ⊗ πn(BG), n − i) (3.1)

for any connected CW complex X, which is natural with respect to X and
G. In particular, since π4(BG) ∼= Z, there is a monomorphism ι : H2(X) →
QH2(map∗(X,BG)0) which is natural with respect to X, where QA denotes
the module of indecomposables of an augmented algebra A. Then, there is a
commutative diagram:

H2(Bπ)

ab∗
��

ι �� QH2(map∗(Bπ,BG))
Θ∗

��

(ab
∗
)∗

��

QH2(Hom(Bπ,G)0)

(ab
∗
)∗∼=

��
H2(BZm)

ι �� QH2(map∗(BZm, BG))
Θ∗

�� QH2(Hom(BZm, G)0).

By theorem 3.1 and propositions 3.6 and 3.7, the composite of the bottom maps is
an isomorphism. Thus, by lemma 3.8, the statement is proved. �

Proof of corollary 1.4. It is well known that a nilmanifold M is homotopy equiv-
alent to the classifying space of a finitely generated torsion-free nilpotent group.
Thus, by theorem 1.3, the proof is finished. �

3.4. Proof of theorem 1.5

Before we begin the proof of theorem 1.5, we consider the case of SO(2n) for
n = 2, 3. We need the following lemma.

Lemma 3.9. Let G,H be compact-connected Lie groups. If there is a covering G →
H, then there is a commutative diagram:

Hom(Zm, BG)0
Θ ��

��

map∗(BZm, BG)0

��
Hom(Zm, BH)0

Θ �� map∗(BZm, BH)0,

where the vertical maps are isomorphisms in rational cohomology and rational
homotopy groups.

Proof. Let K be the fibre of the covering G → H. Then, K is a finite subgroup of G
contained in the centre. In particular, the map BG → BH is a rational homotopy
equivalence, implying that the right map is a rational homotopy equivalence. As is
shown in [15], the left map is a covering map with fibre Km, so it is an isomorphism
in rational homotopy groups because the fundamental groups of Hom(Zm, G)0 and
Hom(Zm,H)0 are abelian as in [16]. It is also proved in [21] that the left map is
an isomorphism in rational cohomology, completing the proof. �
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Corollary 3.10. For n = 2, 3, the map

Θ: Hom(Zm, SO(2n))0 → map∗(BZm, BSO(2n))0

is surjective in rational cohomology.

Proof. By lemma 3.9, it is sufficient to prove the statement for Spin(2n), instead
of SO(2n). Then, since Spin(4) ∼= SU(2) × SU(2) and Spin(6) ∼= SU(4), the proof
is finished by theorem 1.2. �

Now, we begin the proof of theorem 1.5. For a monomial z = xi1
1 · · ·xin

n yI1
1 · · · yIn

n

in H∗(BT × Tm), let

d(z) = (i1 + |I1|, . . . , in + |In|)
where I1, . . . , In ⊂ [m]. If all entries of d(z) are even (resp. odd), then we call a
monomial z even (resp. odd).

Lemma 3.11. If G = SO(2n), then every element of H∗(BT × Tm)W is a linear
combination of even and odd monomials.

Proof. Given 1 � i < j � n, there is w ∈ W such that:

w(xk) =

{
−xk k = i, j

xk k �= i, j
w(yk) =

{
−yk k = i, j

yk k �= i, j.

Then, every monomial z in H∗(BT × Tm) satisfies w(z) = (−1)di+dj z, where
d(z) = (d1, . . . , dn). So if z is contained in some element of H∗(BT × Tm)W ,
d1 + d2, d2 + d3, . . . , dn−1 + dn are even. Thus, z is even for d1 even, and z is odd
for d1 odd, completing the proof. �

We define a map

π : H∗(BT × Tm) → H∗(BT × Tm)W , x 	→
∑

w∈W

w(x).

For m � 3 and G = SO(2n) with n � 4, let

ā = x1 . . . xn−4y
1
n−3y

2
n−2y

3
n−1y

1
ny2

ny3
n ∈ H∗(BT × Tm)

and let a = π(ā).

Lemma 3.12. The element (α × 1)∗(a) of H∗(SO(2n)/T × Tm)W is indecompos-
able, where α : G/T → BT is as in § 2.

Proof. It is easy to see that α∗(x1 . . . xn−4) �= 0 in H∗(SO(2n)/T ) because

H∗(SO(2n)/T ) = Q[x1, . . . , xn]/(p1, . . . , pi−1, e)

where pi is the i-th elementary symmetric polynomial in x2
1, . . . , x

2
n and e =

x1 . . . xn. Then, (α × 1)∗(ā) �= 0 in H∗(SO(2n)/T × Tm). So, since a includes the
term 2n−1(n − 4)!ā, we have (α × 1)∗(a) �= 0 in H∗(SO(2n)/T × Tm)W .
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Now, we suppose that (α × 1)∗(a) is decomposable. Then, there are b, c ∈
H̃∗(BT × Tm) such that π(b)π(c) includes the monomial ā, and so we may assume
ā = bc. Note that

(1, . . . , 1, 3) = d(ā) = d(bc) = d(b) + d(c).

Then, since d(b) �= 0 and d(c) �= 0, it follows from lemma 3.11 that we may assume
d(b) = (1, . . . , 1), implying b = x1 . . . xn−4y

1
n−3y

2
n−2y

3
n−1y

i
n for some i = 1, 2, 3. Let

σ be the transposition of n and k, where k = n − 3, n − 2, n − 1 for i = 1, 2, 3,
respectively. Then, σ belongs to W , and σ(b) = b. Let W = V � V σ be the coset
decomposition. Then, we have

π(b) =
∑
v∈V

v(b + σ(b)) =
∑
v∈V

v(b − b) = 0

and so we get (α × 1)∗(a) = 0, which is a contradiction. Thus, we obtain that (α ×
1)∗(a) is indecomposable, as stated. �

Proposition 3.13. If m � 3 and n � 4, then (α × 1)∗(a) ∈ H∗(SO(2n)/T ×
Tm)W does not belong to the image of the composite

SO(2n)/T ×W Tm Φ−→ Hom(Zm, SO(2n))0
Θ−→ map∗(BZm, BSO(2n))0

in rational cohomology.

Proof. First, we consider the m = 3 case. Suppose that there is â ∈
H∗(map∗(BZ3, BSO(2n))0) such that (α × 1)∗(a) = Φ∗(Θ∗(â)). Then, by
lemma 3.12, Φ∗(Θ∗(â)) is indecomposable. On the contrary, by lemma 2.4, we
have Φ∗(Θ∗(â)) = Θ∗(Φ̂∗(â)) = Φ̂(â), and by proposition 3.6, every indecompos-
able element of the image of Φ̂∗ cannot contain a monomial xi1

1 . . . xin
n yI1

1 · · · yIn
n

with |I1| + · · · + |In| > 4. Thus, we obtain a contradiction, so (α × 1)∗(a) does not
belong to the image of Φ∗ ◦ Θ∗.

Next, we consider the case m > 3. Since Z3 is a direct summand of Zm, the
maps Φ̂ and Θ for m = 3 are homotopy retracts of the maps Φ̂ and Θ for m > 3,
respectively. Thus, the m = 3 case above implies the m > 3 case, completing the
proof. �

Now, we are ready to prove theorem 1.5.

Proof of theorem 1.5. Combine theorem 2.1 and proposition 3.13. �

4. Rational homotopy groups

This section proves theorem 1.6. We begin with a simple lemma. Let
hur∗ : H∗(X) → Hom(π∗(X), Q) denote the dual Hurewicz map. As in the proof
of theorem 1.3, let QA denote the module of indecomposables of an augmented
algebra A. We refer to [13] for rational homotopy theory.
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Lemma 4.1. Let X be a simply-connected space such that there is a map:

X →
n∏

i=2

K(Vi, i)

which is a rational equivalence in dimension � n, where Vi is a Q-vector space of
finite dimension. Then, for i � n + 2, the map

hur∗ : QHi(X) → Hom(πi(X), Q)

is injective.

Proof. The minimal model of X in dimension � n is given by

(Λ(V2 ⊕ · · · ⊕ Vn), d = 0)

where ΛV denotes the free commutative-graded algebra generated by a graded vec-
tor space V and each Vi is of degree i. Then, there is no element of degree one in
the minimal model of X, so any element of QHi(X) for i � n + 2 is represented by
an indecomposable element of the minimal model of X. Since the module of inde-
composables of the minimal model of X is isomorphic to Hom(π∗(X), Q) through
the dual Hurewicz map, the proof is finished. �

We recall a property of the minimal generating set S(m,G) that we are going to
use. Let:

d(m,G) =

{
2n − m G = U(n), SU(n)
2n + 1 G = Sp(n), SO(2n + 1).

Let Q{S} denote the graded Q-vector space generated by a graded set S. We
consider a map:

λ =
∏

x∈S(m,G)

x : Hom(Zm, G)0 →
∏

x∈S(m,G)

K(Q, |x|).

The following is proved in [21].

Theorem 4.2. Let G be the classical group except for SO(2n). Then, the map

λ∗ : Λ(Q{S(m,G)}) → H∗(Hom(Zm, G)0)

is an isomorphism in dimension � d(m,G).

We define a map hur∗ : S(m,G) → Hom(π∗(Hom(Zm, G)0), Q) by the linear part
of the map λ in the minimal models.

Lemma 4.3. If G is the classical group except for SO(2n), then the map

hur∗ : Q{S(m,G)} → Hom(π∗(Hom(Zm, G)0), Q)

is injective in dimension � d(m,G) + 2.
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Proof. By [16], Hom(Zm, G)0 is simply-connected whenever G is simply-connected.
Then, by lemma 3.9, we may assume Hom(Zm, G)0 is simply-connected for
G = SU(n), Sp(n), SO(2n + 1) as long as we consider rational cohomology and
rational homotopy groups. By theorem 4.2, the map λ is an isomorphism in
rational cohomology in dimension � d(m,G). Then, the statement for G =
SU(n), Sp(n), SO(2n + 1) is proved by the J.H.C. Whitehead theorem and
lemma 4.1. For G = U(n), we may consider S1 × SU(n) by lemma 3.9, instead
of U(n). In this case, the dual Hurewicz map for G = U(n) is identified with the
map:

1 × hur∗ : Qm × Q{S(m,SU(n))} → Qm × Hom(π∗(Hom(Zm, SU(n))0), Q)

because Hom(Zm, S1 × SU(n))0 = (S1)m × Hom(Zm, SU(n))0. Thus, the state-
ment follows from the G = SU(n) case. �

Lemma 4.4. For G = U(n), SU(n), the map

hur∗ : Q{S(m,G)} → Hom(π∗(Hom(Zm, G)0), Q)

is injective.

Proof. Let G = U(n), SU(n). We induct on m. If m = 1, then the statement is obvi-
ous. Assume that the statement holds less than m. Take any ∅ �= I ⊂ [m]. Then,
there are the obvious inclusion ιI : Z|I| → Zm and the obvious projection πI : Zm →
Z|I| such that πI ◦ ιI = 1. In particular, we get maps ι∗I : Hom(Zm, G)0 →
Hom(Z|I|, G)0 and π∗

I : Hom(Z|I|, G)0 → Hom(Zm, G)0 such that ι∗I ◦ π∗
I = 1. Note

that the map π∗
I induces a map (π∗

I )∗ : S(m,G) → S(|I|, G) such that:

(π∗
I )∗(z(d, J)) =

{
z(d, J) J ⊂ I

0 J �⊂ I.
(4.1)

Then, there is a commutative diagram:

Q{S(m,G)}
(π∗

I )∗
��

hur∗

��

Q{S(|I|, G)}

hur∗

��
Hom(π∗(Hom(Zm, G)0), Q)

((π∗
I )∗)∗

�� Hom(π∗(Hom(Z|I|, G)0), Q).

(4.2)

Now, we assume ∑
z(d,J)∈S(m,G)

ad,Jhur∗(z(d, J)) = 0
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for ad,J ∈ Q. Then, by (4.1) and (4.2), we have

0 = ((π∗
I )∗)∗

⎛⎝ ∑
z(d,J)∈S(m,G)

ad,Jhur∗(z(d, J))

⎞⎠
=

∑
z(d,J)∈S(m,G)

ad,Jhur∗(π∗
I )∗(z(d, J)))

=
∑

z(d,J)∈S(m,G)
J⊂I

ad,Jhur∗(z(d, J))

=
∑

z(d,J)∈S(|I|,G)

ad,ιI(J)hur∗(z(d, J)).

So, since the right map of (4.2) is injective for I �= [m] by the induction hypothesis,
we get ad,J = 0 for J �= [m], implying:∑

z(d,[m])∈S(m,G)

ad,[m]hur∗(z(d, [m])) = 0.

Note that every z(d, [m]) ∈ S(m,G) is of degree � 2n − m + 1. Then, by lemma 4.3,
we get ad,[m] = 0, completing the proof. �

Now, we prove theorem 1.6.

Proof of theorem 1.6. Let Si and Si(m,G) denote the degree i parts of S and
S(m,G), respectively, where S is as in proposition 3.6. Then, by proposition 3.6
and theorem 4.2, there is a commutative diagram:

Q{Si}
Θ∗

��

hur∗

��

Q{Si(m,G)}

hur∗

��
Hom(πi(map∗(BZm, BG)0), Q)

(Θ∗)∗
�� Hom(πi(Hom(Zm, G)0), Q).

Let Ki denote the kernel of the bottom map. Clearly, the dimension of Ki coincides
with

dim Coker{Θ∗ : πi(Hom(Zm, G)0) ⊗ Q → π∗(mapi(BZm, BG)0) ⊗ Q}

and so we compute dim Ki. By proposition 3.6, the left map is an isomorphism.
Then, we get:

dim Ki � dim Q{Si} − dim Q{Si(m,G)}.
By lemma 4.3, the equality holds for G = Sp(n), SO(2n + 1) and i � d(m,G) + 2,
and by lemma 4.4, the equality holds for G = U(n), SU(n) and all i. We can easily

https://doi.org/10.1017/prm.2023.112 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.112


20 D. Kishimoto, M. Takeda and M. Tsutaya

compute:

dim Q{Si} − dim Q{Si(m,G)} =

{∑
i<k�n

(
m

2k−i

)
G = U(n), SU(n)∑

i/3<k�n

(
m

4k−i

)
G = Sp(n), SO(2n + 1)

and thus the proof is finished. �
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