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Abstract

In characteristic two, some criteria are obtained for a symmetric square-central element of a totally
decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.
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1. Introduction

A classical question concerning central simple algebras is to identify conditions under
which a square-central element lies in a quaternion subalgebra. This question is only
solved for certain special cases in the literature. Let A be a central simple algebra
of exponent two over a field F. In [2, (3.2)] it was shown that if char F , 2 and
F is of cohomological dimension less than or equal to 2, then every square-central
element of A is contained in a quaternion subalgebra (see also [4, (4.2)]). In [3, (4.1)],
it was shown that if char F , 2, then an element x ∈ A with x2 = λ2 ∈ F×2 lies in a
(split) quaternion subalgebra if and only if dimF(x − λ)A = 1

2 dimF A. This result was
generalised in [14, (3.2)] to an arbitrary characteristic and including λ = 0. On the
other hand, in [18] it was shown that there is an indecomposable algebra of degree 8
and exponent 2, containing a square-central element (see [8, (5.6.10)]). Using similar
methods, it was shown in [3] that for n > 3 there exists a tensor product of n quaternion
algebras containing a square-central element which does not lie in any quaternion
subalgebra.

A similar question for a central simple algebra with involution (A, σ) over F is
whether a symmetric or skew-symmetric square-central element of A lies in a σ-
invariant quaternion subalgebra. In the case where char F , 2, degF A = 8 and σ has a
trivial discriminant, the index of A is not 2 and one of the components of the Clifford
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algebra C(A, σ) splits, it was shown in [17, (3.14)] that every skew-symmetric square-
central element of A lies in a σ-invariant quaternion subalgebra. In [14], some criteria
were obtained for symmetric and skew-symmetric elements whose squares lie in F2 to
be contained in a σ-invariant quaternion subalgebra. Also, a sufficient condition was
obtained in [12, (6.3)] for symmetric square-central elements in a totally decomposable
algebra with orthogonal involution in characteristic two, to be contained in a stable
quaternion subalgebra.

In this work we study some properties of symmetric square-central elements in
totally decomposable algebras with orthogonal involution in characteristic two. Let
(A, σ) be a totally decomposable algebra with orthogonal involution over a field F of
characteristic two and let x ∈ A \ F be a symmetric element with α := x2 ∈ F. Since
the case where α ∈ F2 was investigated in [14], we assume that α ∈ F× \ F×2. First, in
Section 3, we study some properties of inseparable subalgebras, introduced in [12].
It is shown in Theorem 3.8 that (A, σ) has a unique inseparable subalgebra if and
only if either degF A 6 4 or σ is anisotropic. In Section 4, we study some isotropy
properties of a totally decomposable algebra with orthogonal involution (A, σ). Let
x ∈ A be an alternating element with x2 ∈ F× \ F×2 and let C = CA(x). As we shall see
in Theorem 4.7, if (C, σ|C) is totally decomposable, then (A, σ) and (C, σ|C) have the
same isotropy behaviour. We then study our main problem in Sections 5 and 6. For the
case where σ is anisotropic or A has degree 4, it is shown that every symmetric square-
central element of A lies in a σ-invariant quaternion subalgebra (see Theorem 5.1
and Proposition 5.2). However, we will see in Proposition 6.3 that if σ is isotropic,
degF A > 8 and (A, σ) ; (M2n (F), t), there always exists a symmetric square-central
element of (A, σ) which is not contained in any σ-invariant quaternion subalgebra
of A. If A has degree 8 or σ satisfies a certain isotropy condition, it is shown in
Proposition 5.7 and Theorem 5.10 that a symmetric square-central element of A lies
in a σ-invariant quaternion subalgebra if and only if it is contained in an inseparable
subalgebra of (A, σ). Finally, in Example 6.4 we shall see that this criterion cannot be
applied to arbitrary involutions.

2. Preliminaries

Throughout this paper, F denotes a field of characteristic two.
Let A be a central simple algebra over F. An involution on A is an antiautomorphism

σ : A→ A of order two. If σ|F = id, we say that σ is of the first kind. The sets of
alternating and symmetric elements of (A, σ) are defined as

Sym(A, σ) = {x ∈ A | σ(x) = x} and Alt(A, σ) = {σ(x) − x | x ∈ A}.

For a field extension K/F we use the notation AK = A ⊗ K, σK = σ ⊗ id and (A, σ)K =

(AK , σK). An extension K/F is called a splitting field of A if AK splits, that is, AK

is isomorphic to the matrix algebra Mn(K), where n = degF A is the degree of A
over F. If (V, b) is a symmetric bilinear space over F, the pair (EndF(V), σb) is
denoted by Ad(b), where σb is the adjoint involution of EndF(V) with respect to b
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(see [9, page 2]). According to [9, (2.1)], if K is a splitting field of A, then (A, σ)K

is adjoint to a symmetric bilinear space (V, b) over K. We say that σ is symplectic
if this form is alternating, that is, b(v, v) = 0 for every v ∈ V . Otherwise, σ is called
orthogonal. By [9, (2.6)], σ is symplectic if and only 1 ∈ Alt(A, σ). An involution
σ on a central simple algebra A is called isotropic if σ(x)x = 0 for some nonzero
element x ∈ A. Otherwise, σ is called anisotropic. If σ is an orthogonal involution, the
discriminant of σ is denoted by discσ (see [9, (7.2)]).

A quaternion algebra over F is a central simple algebra of degree 2. An algebra
with involution (A, σ) over F is called totally decomposable if it decomposes into
tensor products of quaternion F-algebras with involution. If (A, σ) '

⊗n
i=1(Qi, σi) is

a totally decomposable algebra with orthogonal involution over F, then every σi is
necessarily orthogonal by [9, (2.23)].

Let (V, b) be a bilinear space over F and let α ∈ F. We say that b represents α if
b(v, v) = α for some nonzero vector v ∈ V . The set of elements in F represented by b is
denoted by D(b). We also set Q(b) = D(b) ∪ {0}. Observe that Q(b) is an F2-subspace
of F. If K/F is a field extension, the scalar extension of b to K is denoted by bK . For
α1, . . . , αn ∈ F×, the diagonal bilinear form

∑n
i=1 αixiyi is denoted by 〈α1, . . . , αn〉. The

form 〈〈α1, . . . , αn〉〉 := 〈1, α1〉 ⊗ · · · ⊗ 〈1, αn〉 is called a bilinear (n-fold) Pfister form.
If b is a bilinear Pfister form over F, then there exists a bilinear form b′, called the
pure subform of b, such that b ' 〈1〉 ⊥ b′. The form b′ is uniquely determined, up to
isometry (see [1, page 906]).

3. The inseparable subalgebra

For an algebra with involution (A, σ) over F, we use the following notation:

Alt(A, σ)+ = {x ∈ Alt(A, σ) | x2 ∈ F},

Sym(A, σ)+ = {x ∈ Sym(A, σ) | x2 ∈ F},
S (A, σ) = {x ∈ A | σ(x)x ∈ Alt(A, σ) ⊕ F}.

The set S (A, σ) was introduced in [16]. Note that x ∈ S (A, σ) if and only if there exists
a unique element α ∈ F such that σ(x)x + α ∈ Alt(A, σ). As in [16], the element α is
denoted by qσ(x). We thus obtain a map qσ : S (A, σ)→ F satisfying

σ(x)x + qσ(x) ∈ Alt(A, σ) for x ∈ S (A, σ).

According to [16, (3.2) and (3.3)], S (A, σ) is an F-subalgebra of A and qσ is a totally
singular quadratic form on S (A, σ), that is, qσ(λx + y) = λ2qσ(x) + qσ(y) for λ ∈ F and
x, y ∈ S (A, σ). Note that if x ∈ S (A, σ) and α := x2 ∈ F, thenσ(x)x + α = 0 ∈ Alt(A, σ);
hence, x ∈ S (A, σ) and qσ(x) = α. In other words, Sym(A, σ)+ ⊆ S (A, σ) and the
restriction of qσ(x) to Sym(A, σ)+ is the squaring map x 7→ x2.

Let (A, σ) '
⊗n

i=1(Qi, σi) be a totally decomposable algebra of degree 2n with
orthogonal involution over F. According to [12, (4.6)] there exists a 2n-dimensional
subalgebra Φ ⊆ Sym(A, σ)+, called an inseparable subalgebra of (A, σ), satisfying:
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(i) CA(Φ) = Φ, where CA(Φ) is the centraliser of Φ in A; and
(ii) Φ is generated, as an F-algebra, by n elements.

For every inseparable subalgebra Φ of (A, σ) we have necessarily Φ ⊆ Alt(A, σ)+ ⊕ F.
It follows that

Φ ⊆ Alt(A, σ)+ ⊕ F ⊆ Sym(A, σ)+ ⊆ S (A, σ). (3.1)

By [12, (5.10)], if Φ1 and Φ2 are two inseparable subalgebras of (A, σ), then Φ1 ' Φ2
as F-algebras. Note that if vi ∈ Sym(Qi, σi)+ \ F is a unit for i = 1, . . . , n, then
F[v1, . . . , vn] is an inseparable subalgebra of (A, σ).

Theorem 3.1. Let (A, σ) be a totally decomposable algebra with anisotropic
orthogonal involution over F and let Φ be an inseparable subalgebra of (A, σ). Then
Φ = Alt(A, σ)+ ⊕ F = Sym(A, σ)+ = S (A, σ) is a maximal subfield of A. In particular,
the inseparable subalgebra Φ is uniquely determined.

Proof. By [16, (4.1)], Φ is a field and S (A, σ) = Φ. Hence, the required equalities
follow from (3.1). Also, as dimF Φ = degF A, Φ is a maximal subfield of A. �

Lemma 3.2. Let (A, σ) be a central simple F-algebra with orthogonal involution and
let x ∈ Alt(A, σ)+. If x2 < F2, then Sym(CA(x), σ|CA(x))+ ⊆ Sym(A, σ)+.

Proof. Set α = x2 ∈ F× \ F×2 and K = F(x) = F(
√
α). Then CA(x) is a central simple

algebra over K. Let u ∈ Sym(CA(x), σ|CA(x))+ and write u2 = a + bx for some a, b ∈ F.
Then u2 + a = bx ∈ Alt(A, σ). By [13, (6.4)], u4 + au2 = u(u2 + a)u ∈ Alt(A, σ). Thus,

b2α = (bx)2 = (u2 + a)2 = u4 + a2 = u4 + au2 + a(u2 + a) ∈ Alt(A, σ).

However, 1 < Alt(A, σ), because σ is orthogonal. Hence, b = 0, that is, u2 = a ∈ F.
This implies that u ∈ Sym(A, σ)+. �

Lemma 3.3. Let (A, σ) be a central simple algebra of degree 2n with orthogonal
involution over F. Let x ∈ Alt(A, σ)+ with x2 < F2 and set C = CA(x). If (C, σ|C)
is totally decomposable, then (A, σ) is also totally decomposable. In addition,
every inseparable subalgebra of (C, σ|C) is an inseparable subalgebra of (A, σ). In
particular, the element x is contained in some inseparable subalgebra of (A, σ).

Proof. Set K = F(x). Then (C, σ|C) is a totally decomposable algebra of degree 2n−1

with orthogonal involution over K. Let Φ be an inseparable subalgebra of (C, σ|C).
As Φ ⊆ Sym(C, σ|C)+, by Lemma 3.2, Φ ⊆ Sym(A, σ)+. Write Φ = K[v1, . . . , vn−1]
for some v1, . . . , vn−1 ∈ C. Since dimF Φ = 2n = degF A and Φ is generated, as an F-
algebra, by x, v1, . . . , vn−1, [12, (3.11)] implies that Φ is a Frobenius subalgebra of
A. Hence, CA(Φ) = Φ by [8, (2.2.3)]. It follows from [12, (4.6)] that (A, σ) is totally
decomposable and Φ is an inseparable subalgebra of (A, σ). �

Proposition 3.4. Let (A, σ) be a totally decomposable algebra with orthogonal
involution over F. Let x ∈ Alt(A, σ)+ with x2 < F2 and set C = CA(x). Then, (C, σ|C)
is totally decomposable if and only if x is contained in some inseparable subalgebra
of A.
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Proof. The ‘if’ implication can be found in [12, (6.3 (i))]. The converse follows from
Lemma 3.3. �

We recall that every quaternion algebra Q over F has a quaternion basis, that is, a
basis (1, u, v,w) satisfying u2 + u ∈ F, v2 ∈ F× and w = uv = vu + v (see [9, page 25]).
In this case, Q is denoted by [α, β)F , where α = u2 + u ∈ F and β = v2 ∈ F×.

Lemma 3.5. If (Q, σ) is a quaternion algebra with orthogonal involution over F, then
there is a quaternion basis (1, u, v,w) of Q such that u, v ∈ Sym(Q, σ).

Proof. Let v ∈ Alt(Q, σ) be a unit. Since v < F and v2 ∈ F×, it is easily seen that v
extends to a quaternion basis (1, u, v,w) of Q. By [13, (4.5)], σ(u) = u. �

Lemma 3.6 [13, page 7]. Let (A, σ) be a totally decomposable algebra with orthogonal
involution over F. If σ is isotropic, then (A, σ) ' (M2(F), t) ⊗ (B, τ), where t is the
transpose involution and (B, τ) is a totally decomposable F-algebra with orthogonal
involution.

Lemma 3.7. Let (A, σ) be a totally decomposable algebra of degree 8 with orthogonal
involution over F. If σ is isotropic, then there are two inseparable subalgebras Φ1 and
Φ2 of (A, σ) with Φ1 , Φ2.

Proof. By Lemma 3.6, we may identify (A, σ) = (Q1, σ1) ⊗ (Q2, σ2) ⊗ (M2(F), t),
where (Q1, σ1) and (Q2, σ2) are quaternion algebras with orthogonal involution. By
Lemma 3.5, there exists a quaternion basis (1, ui, vi, wi) of Qi over F such that
ui, vi ∈ Sym(Qi, σi), i = 1, 2. Let v3 ∈ Alt(M2(F), t) be a unit. By scaling we may
assume that v2

3 = 1, because disc t is trivial (see [9, page 82]). Then,

Φ1 = F[v1 ⊗ 1 ⊗ 1, 1 ⊗ v2 ⊗ 1, 1 ⊗ 1 ⊗ v3]

is an inseparable subalgebra of (A, σ). Set

w = v1 ⊗ u2 ⊗ 1 + (v1 ⊗ u2 + v1 ⊗ 1) ⊗ v3 ∈ Sym(A, σ).

Then, w2 = v2
1 ⊗ 1 ⊗ 1; hence, w−1 = α−1w, where α = v2

1 ∈ F×. Set Φ2 = w ·Φ1 · w−1 ⊆

Sym(A, σ)+. Then Φ2 is an 8-dimensional subalgebra of (A, σ), which is generated,
as an F-algebra, by three elements. Also, the equality CA(Φ1) = Φ1 implies that
CA(Φ2) = Φ2. Hence, Φ2 is an inseparable subalgebra of (A, σ). On the other hand,
computations show that the element w−1(1 ⊗ v2 ⊗ 1)w ∈ Φ2 does not belong to Φ1;
hence, Φ1 , Φ2. �

Theorem 3.8. A totally decomposable algebra with orthogonal involution (A, σ) over
F has a unique inseparable subalgebra if and only if either degF A 6 4 or σ is
anisotropic.

Proof. Let Φ be an inseparable subalgebra of (A, σ). If A is a quaternion algebra,
then Φ = Alt(A, σ) ⊕ F by dimension count. If degF A = 4, then Φ = Alt(A, σ)+ ⊕ F
by [15, (4.4)]. Also, if σ is anisotropic, then Φ is uniquely determined by Theorem
3.1. This proves the ‘if’ implication. To prove the converse, let degF A = 2n.
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Suppose that σ is isotropic and degF A > 8, that is, n > 3. By Lemma 3.6, we
may identify (A, σ) =

⊗n−1
i=1 (Qi, σi) ⊗ (M2(F), t), where every (Qi, σi) is a quaternion

algebra with orthogonal involution over F. By Lemma 3.7, the algebra with involution

(Qn−2, σn−2) ⊗ (Qn−1, σn−1) ⊗ (M2(F), t),

has two inseparable subalgebras Φ1 and Φ2 with Φ1 , Φ2. Let Φ3 be an inseparable
subalgebra of

⊗n−3
i=1 (Qi, σi). Then, Φ3 ⊗ Φ1 and Φ3 ⊗ Φ2 are two inseparable

subalgebras of (A, σ) with Φ3 ⊗ Φ1 , Φ3 ⊗ Φ2, proving the result. �

4. The isotropy index

Definition 4.1 [5]. Let (A, σ) '
⊗n

i=1(Qi, σi) be a totally decomposable algebra with
orthogonal involution over F. The Pfister invariant of (A, σ) is defined as Pf(A, σ) :=
〈〈α1, . . . , αn〉〉, where αi ∈ F× is a representative of the class discσi ∈ F×/F×2, for
i = 1, . . . , n.

According to [5, (7.2)], the isometry class of the Pfister invariant is independent of
the decomposition of (A, σ). Moreover, every inseparable subalgebra Φ of (A, σ) may
be considered as an underlying vector space of Pf(A, σ) such that Pf(A, σ)(x, x) = x2

for x ∈ Φ (see [12, (5.5)]).

Lemma 4.2. Let (A, σ) be a totally decomposable algebra with orthogonal involution
over F. If x ∈ Sym(A, σ)+, then x2 ∈ Q(Pf(A, σ)).

Proof. As already observed, x ∈ S (A, σ) and qσ(x) = x2. The result therefore follows
from [16, (4.3)]. �

For a positive integer n, we denote the bilinear n-fold Pfister form 〈〈1, . . . , 1〉〉 by
〈〈1〉〉n. We also set 〈〈1〉〉0 = 〈1〉.

Let b be a bilinear Pfister form over F. In view of [1, A.5], one can find a
nonnegative integer r and an anisotropic bilinear Pfister form c such that b ' 〈〈1〉〉r ⊗ c.
As in [13], we denote the integer r by i(b). If (A, σ) is a totally decomposable F-
algebra with orthogonal involution, we simply denote i(Pf(A, σ)) by i(A, σ) and we
call it the isotropy index of (A, σ). By [5, (5.7)], (A, σ) is anisotropic if and only
if i(A, σ) = 0. If r := i(A, σ) > 0, there exists a totally decomposable algebra with
anisotropic orthogonal involution (B, ρ) over F such that (A, σ) ' (M2r (F), t) ⊗ (B, ρ)
(see [13, page 7]). In particular, if A is of degree 2n then i(A, σ) = n if and only if
(A, σ) ' (M2n (F), t). Also, ifσ is isotropic and Φ is an inseparable subalgebra of (A, σ),
then there exists an element x ∈ Φ such that x2 = 1.

Proposition 4.3. Let b be a bilinear n-fold Pfister form over F. If α ∈ Q(b) \ F2, then
i(bF(

√
α)) = i(b) + 1.

Proof. Set K = F(
√
α) and r = i(b). As Q(〈〈1〉〉n) = F2 and α ∈ Q(b) \ F2, it follows

that b ; 〈〈1〉〉n, that is, r < n. Write b ' 〈〈1〉〉r ⊗ c for some anisotropic bilinear Pfister
form c over F. Since Q(b) = Q(c), we have α ∈ Q(c). Hence, the pure subform of c
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represents α + λ2 for some λ ∈ F. By [1, A.2], there exist α2, . . . , αs ∈ F such that
c ' 〈〈α + λ2, α2, . . . , αs〉〉. Note that α + λ2 ∈ K×2; hence, cK ' 〈〈1, α2, . . . , αs〉〉K . Since
c = 〈〈α + λ2〉〉 ⊗ 〈〈α2, . . . , αs〉〉 is anisotropic and K = F(

√
α + λ2), by [7, (4.2)] the

form 〈〈α2, . . . , αs〉〉K is anisotropic. It follows that i(cK) = 1; hence, i(bK) = r + 1 =

i(b) + 1. �

Corollary 4.4. Let (A, σ) be a totally decomposable algebra with orthogonal
involution over F. If x ∈ Sym(A, σ)+ with α = x2 < F2, then i((A, σ)F(

√
α)) = i(A, σ) + 1.

In particular, (A, σ) ; (M2n (F), t).

Proof. By Lemma 4.2, α ∈ Q(Pf(A, σ)). The result follows from Proposition 4.3. �

Lemma 4.5. Let (A, σ) be a totally decomposable algebra of degree 2n with orthogonal
involution over F and let x ∈ Sym(A, σ)+ be a unit. If Φ is an inseparable subalgebra
of (A, σ), then for every unit y ∈ Φ, there exists a positive integer k such that (xy)k ∈

Sym(A, σ)+. In addition, for such an integer k, we have (xy)k x = x(xy)k.

Proof. Since x and y are units, the element (xy)r is a unit for every integer r. For r > 0,
let Φr = (xy)r · Φ · (xy)−r. Then Φr is a 2n-dimensional commutative subalgebra of A,
which is generated by n elements and satisfies u2 ∈ F for every u ∈ Φr. Set α = x2 ∈ F×

and β = y2 ∈ F×. Then,

(xy)−r = (y−1x−1)r = (β−1yα−1x)r = α−rβ−r(yx)r.

Hence, Φr = α−rβ−r(xy)r · Φ · (yx)r ⊆ Sym(A, σ), that is, Φr is an inseparable
subalgebra of (A, σ). However, there exists a finite number of inseparable subalgebras
of (A, σ), so Φr = Φs for some nonnegative integers r, s with r > s. It follows that
Φr−s = Φ0 = Φ. In particular, (xy)r−sy(xy)s−r ∈ Φ and

(xy)r−sy(xy)s−ry = y(xy)r−sy(xy)s−r. (4.1)

Set λ = αs−rβs−r, so that (xy)s−r = λ(yx)r−s. Substituting in (4.1),

λ(xy)r−sy(yx)r−sy = λy(xy)r−sy(yx)r−s.

It follows that λy2(xy)2(r−s) = λy2(yx)2(r−s), because y2 ∈ F×. Hence, (xy)k = (yx)k,
where k = 2(r − s). Also, σ((xy)k) = (yx)k = (xy)k and ((xy)k)2 = (xy)k(yx)k ∈ F×;
hence, (xy)k ∈ Sym(A, σ)+. Finally, (xy)k x = x(yx)k = x(xy)k, completing the proof. �

Proposition 4.6. Let (A, σ) be a totally decomposable algebra with orthogonal
involution over F and let x ∈ Sym(A, σ)+ with x2 < F2. Then, σ is isotropic if and
only if σ|CA(x) is isotropic.

Proof. Since x2 < F2, CA(x) is a central simple algebra over F(x) = F(
√
α), where

α = x2 ∈ F×. If σ|CA(x) is isotropic, then σ is clearly isotropic. To prove the converse,
let Φ be an inseparable subalgebra of (A, σ). Since σ is isotopic, there exists y ∈ Φ \ F
with y2 = 1. By Lemma 4.5, there is a positive integer k such that (xy)k ∈ Sym(A, σ)+.
Let r be the minimum positive integer with (xy)r ∈ Sym(A, σ)+; hence, (xy)r = (yx)r.
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We claim that (xy)r , xr. Suppose that (xy)r = xr. If r is odd, write r = 2s + 1 for some
nonnegative integer s. The equality (xy)r = xr then implies that (yx)sy(xy)s = x2s = αs.
As (xy)s = αs(yx)−s, we get αs(yx)sy(yx)−s = αs. Hence, y = 1 ∈ F, which contradicts
the assumption. If r is even, write r = 2s for some positive integer s, so that (xy)r =

xr = αs. Multiplying by (xy)−s,

(xy)s = αs(xy)−s = αsα−s(yx)s = (yx)s.

It follows that (xy)s ∈ Sym(A, σ)+, contradicting the minimality of r. This proves the
claim. According to Lemma 4.5, (xy)r ∈ CA(x). Set z = (xy)r + xr ∈ CA(x). Then z , 0
and σ(z)z = αr + αr = 0, that is, σ|CA(x) is isotropic. �

Theorem 4.7. Let (A, σ) be a totally decomposable algebra with orthogonal involution
over F. Let x ∈ Alt(A, σ)+ with x2 < F2 and let C = CA(x). If (C, σ|C) is totally
decomposable, then i(C, σ|C) = i(A, σ).

Proof. If σ|C is anisotropic, then σ is also anisotropic by Proposition 4.6; hence,
i(C, σ|C) = i(A, σ) = 0. Suppose that σ|C is isotropic. Set r = i(C, σ|C) > 0 and K =

F(x). Write (C, σ|C) ' (M2r (K), t) ⊗ (B, τ) for some totally decomposable algebra with
anisotropic orthogonal involution (B, τ) over K. Note that the algebra B is nontrivial
by Corollary 4.4. Since (M2r (K), t) ' (M2r (F), t)K , we may identify M2r (F) with a
subalgebra of A. Let D = CA(M2r (F)). Then x ∈ D,

(A, σ) ' (M2r (F), t) ⊗ (D, σ|D), (4.2)

and one has a monomorphism of F-algebras with involution (B, τ) ↪→ (D, σ|D).
Considering this map as an inclusion, we see that B = CD(x). By [11, (3.5)],
x ∈ Alt(D, σ|D). It follows that x ∈ Alt(D, σ|D)+, because x2 ∈ F. Since (B, τ) is totally
decomposable, the pair (D, σ|D) is also totally decomposable by Lemma 3.3. Also,
Proposition 4.6 implies that σ|D is anisotropic, because τ is anisotropic. Hence, using
(4.2) we obtain i(A, σ) = r, proving the result. �

5. Stable quaternion subalgebras

In this section we study some conditions under which a symmetric square-central
element of a totally decomposable algebra with orthogonal involution is contained in
a stable quaternion subalgebra. We start with anisotropic involutions.

Theorem 5.1. Let (A, σ) be a totally decomposable algebra with anisotropic
orthogonal involution over F. Then every x ∈ Sym(A, σ)+ is contained in aσ-invariant
quaternion subalgebra of A.

Proof. Since σ is anisotropic, Theorem 3.1 shows that x is contained in the unique
inseparable subalgebra of (A, σ). If x2 = λ2 for some λ ∈ F, then (x + λ)2 = 0. Hence,
x = λ by [5, (6.1)] and the result is trivial. Otherwise, x2 < F2 and the conclusion
follows from [12, (6.3 (ii))]. �
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We next consider algebras of degree 4 and 8.

Proposition 5.2. Let (A, σ) be a totally decomposable algebra of degree 4 with
orthogonal involution over F. If x ∈ Sym(A, σ)+ with x2 < F2, then x is contained
in a σ-invariant quaternion subalgebra of A.

Proof. By Corollary 4.4, either i(A, σ) = 0 or i(A, σ) = 1. In the first case, the result
follows from Theorem 5.1. Suppose i(A, σ) = 1. Set C = CA(x) and K = F(x). By
Proposition 4.6, (C, σ|C) is isotropic. However, (C, σ|C) is a quaternion K-algebra and
the isotropy of σ|C implies i(C, σ|C) = 1, that is, (C, σ|C) ' (M2(K), t) ' (M2(F), t)K .
Hence, the algebra M2(F) may be identified with a subalgebra of C ⊆ A. The algebra
Q = CA(M2(F)) is then a σ-invariant quaternion subalgebra of A containing x. �

The next result follows from [7, (4.2)] and the Witt decomposition theorem [6,
(1.27)]. Recall that a symmetric bilinear space (V, b) over F is called metabolic if there
exists a subspace W of V with dimF W = 1

2 dimF V such that b|W×W = 0.

Lemma 5.3. Let b be an anisotropic symmetric bilinear form over F and α ∈ F× \ F×2.
Then b ⊗ 〈〈α〉〉 is metabolic if and only if bF(

√
α) is metabolic.

Recall that two bilinear forms b and c are called similar if b ' λ · c for some λ ∈ F×.

Lemma 5.4. Let b be a 4-dimensional symmetric nonalternating bilinear form over F
and let K = F(

√
α) for some α ∈ F× \ F×2. If b ⊗ 〈〈α〉〉 is metabolic, then bK is similar

to a Pfister form.

Proof. By the Witt decomposition theorem, one can write b ' b1 ⊥ b2, where b1
is anisotropic and b2 is metabolic. The hypothesis implies that the form b1 ⊗ 〈〈α〉〉
is metabolic. By Lemma 5.3, the form (b1)K (and therefore bK) is also metabolic.
Since bK is not alternating, by [6, (1.24) and (1.22(3))] either bK ' 〈a, a, b, b〉 or
bK ' 〈a, a〉 ⊥ H, where a, b ∈ K× and H is the hyperbolic plane. In the first case,
bK is similar to 〈1, 1, ab, ab〉 = 〈〈1, ab〉〉. In the second case, using the isometry
〈a, a, a〉 ' 〈a〉 ⊥ H in [6, (1.16)], we get bK ' 〈a, a, a, a〉. Hence, bK is similar
to 〈〈1, 1〉〉. �

Lemma 5.5. Let (A, σ) be a central simple algebra of degree 4 with orthogonal
involution over F and let K/F be a separable quadratic extension. If (A, σ)K is totally
decomposable, then (A, σ) is also totally decomposable.

Proof. By [10, (7.3)], a 4-dimensional orthogonal involution is totally decomposable
if and only if its discriminant is trivial. The result therefore follows from the equality
K×2 ∩ F× = F×2. �

Lemma 5.6 [14, (5.4)]. Let (Q, σ) be a quaternion algebra with orthogonal involution
over F. If x ∈ Sym(Q, σ)+ \ F then there exists λ ∈ F such that x + λ ∈ Alt(Q, σ)+.

Proposition 5.7. Let (A, σ) be a totally decomposable algebra of degree 8 over F. For
an element x ∈ Sym(A, σ)+ with x2 < F2, the following conditions are equivalent:
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(1) There exists a σ-invariant quaternion subalgebra of A containing x.
(2) There exists an inseparable subalgebra Φ of (A, σ) such that x ∈ Φ.

Proof. If i(A, σ) = 0, by Theorems 5.1 and 3.1 both conditions are satisfied. Let
i(A, σ) > 0. Then (A, σ) ' (M2(F), t) ⊗ (Q1, σ1) ⊗ (Q2, σ2), where (Qi, σi), i = 1,2, is a
quaternion algebra with orthogonal involution over F. Suppose first that x is contained
in a σ-invariant quaternion subalgebra Q3 of A. By Lemma 5.6, replacing x with x + λ
for some λ ∈ F, we may assume that x ∈ Alt(A, σ)+ (note that this replacement does
not change the hypothesis x2 < F2 and the conditions (1) and (2)). Set B = CA(Q3),
σ3 = σ|Q3 and ρ = σ|B, so that (A, σ) ' (Q3, σ3) ⊗ (B, ρ). Then

(Q3, σ3) ⊗ (B, ρ) ' (M2(F), t) ⊗ (Q1, σ1) ⊗ (Q2, σ2). (5.1)

Let C = CA(x) and K = F(x) = F(
√
α), where α = x2 ∈ F× \ F×2. Then (C, σ|C) '

(B, ρ)K as K-algebras. We claim that (B, ρ)K is totally decomposable. The result then
follows from Proposition 3.4.

By Lemma 3.5, for i = 1, 2, 3, there exists a quaternion basis (1, ui, vi,wi) of Qi such
that ui ∈ Sym(Qi, σi). Let βi = u2

i + ui ∈ F. For i = 0,1,2,3, define a field Li inductively
as follows: set L0 = F. For i > 1 set Li = Li−1(ui) if βi < ℘(Li−1) := {y2 + y | y ∈ Li−1}

and Li = Li−1 otherwise. In other words, either Li = Li−1 or Li/Li−1 is a separable
quadratic extension. Note that L×2

i ∩ F× = F×2; hence, either Li(
√
α) = Li−1(

√
α) or

Li(
√
α)/Li−1(

√
α) is a separable quadratic extension. We show that ρL3(

√
α) is totally

decomposable, which implies that ρLi(
√
α) is totally decomposable for i = 0, 1, 2 thanks

to Lemma 5.5. In particular, ρK = ρF(
√
α) is also totally decomposable, as required.

Set L = L3. Then for i = 1,2,3, the algebra QiL splits. Hence, (Qi, σi)L ' (M2(L), τi),
where τi is an orthogonal involution on M2(L). By (5.1),

(M2(L), τ3) ⊗ (B, ρ)L ' (M2(L), t) ⊗ (M2(L), τ1) ⊗ (M2(L), τ2). (5.2)

In particular, BL splits and we may identify (B, ρ)L = Ad(b) for some symmetric
bilinear form b over L. Since x ∈ Alt(Q3, σ3)+, we have discσ3 = αF×2 and so

(M2(L), τ3) ' (Q3, σ3)L ' Ad(〈〈α〉〉L), (5.3)

by [9, (7.4)]. The right side of (5.2) is the adjoint involution of a metabolic bilinear
form over L. Hence, it follows from (5.3) that b ⊗ 〈〈α〉〉 is also metabolic. By Lemma
5.4, bL(

√
α) is similar to a Pfister form. Hence, ρL(

√
α) is totally decomposable. This

proves that (1) implies (2). The converse follows from [12, (6.3 (ii))]. �

Lemma 5.8 [9, pages 13–14]. If b is an n-dimensional symmetric bilinear form over F,
then Ad(b) ' (Mn(F), t) if and only if b is similar to n × 〈1〉.

Lemma 5.9. Let (A, σ) be a central simple algebra of degree n with orthogonal
involution over F. If (A, σ) ⊗ (Mm(F), τ) ' (Mmn(F), t), where m is a nonnegative
integer and τ is an orthogonal involution, then (A, σ) ' (Mn(F), t).
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Proof. Observe first that A splits; hence, we may identify (A, σ) = Ad(b1) and
(Mm(F), τ) = Ad(b2) for some symmetric nonalternating bilinear forms b1 and b2 over
F. By Lemma 5.9, Ad(b1 ⊗ b2) ' Ad(mn × 〈1〉). Hence, the forms b1 ⊗ b2 and mn × 〈1〉
are similar by [9, (4.2)]. As Q(mn × 〈1〉) = F2, we obtain Q(b1) ⊆ λ · F2 for some
λ ∈ F×. Since b1 is nonalternating, it is diagonalisable by [6, (1.17)] and is therefore
similar to n × 〈1〉. By Lemma 5.8, (A, σ) ' (Mn(F), t). �

Theorem 5.10. Let (A, σ) be a totally decomposable algebra of degree 2n with
orthogonal involution over F and let x ∈ Sym(A, σ)+ with x2 < F2. If i(A, σ) = n − 1,
then the following statements are equivalent:

(1) There exists a σ-invariant quaternion subalgebra Q of A containing x.
(2) There exists an inseparable subalgebra Φ of (A, σ) such that x ∈ Φ.

Proof. The implication (2) ⇒ (1) follows from [12, (6.3 (ii))]. For the converse,
observe that by Lemma 5.6, replacing x with x + λ for some λ ∈ F, we may assume
that x ∈ Alt(A, σ)+. Let C = CA(x). In view of Proposition 3.4, it suffices to show
that (C, σ|C) is totally decomposable. Let τ = σ|Q, B = CA(Q) and ρ = σ|B. Then,
(A, σ) ' (B, ρ) ⊗ (Q, τ). Set K = F(x), so that (C, σ|C) 'K (B, ρ)K . Hence, it is enough
to show that (B, ρ)K is totally decomposable. By Corollary 4.4, i(A, σ)K = n, so
(A, σ)K ' (M2n (K), t). It follows that (B, ρ)K ⊗K (Q, τ)K ' (M2n (K), t). Since x ∈ Q
and x2 ∈ K2, the algebra QK splits. Hence, by Lemma 5.9, (B, ρ)K 'K (M2n−1 (K), t). In
particular, (B, ρ)K is totally decomposable, proving the result. �

6. Examples for isotropic involutions

In this section we show that the criteria obtained in Section 5 do not necessarily
apply to arbitrary involutions.

Lemma 6.1. Let (A, σ) be a totally decomposable algebra of degree 2n with orthogonal
involution over F. If n > 2 and (A, σ) ; (M2n (F), t), then there exist an element
w ∈ Sym(A, σ) \ (Alt(A, σ) ⊕ F) and a unit u ∈ Alt(A, σ) such that u2 ∈ F× \ F×2 and
uw = wu.

Proof. Let (A, σ) '
⊗n

i=1(Qi, σi) be a decomposition of (A, σ). Since (A, σ) ;
(M2n (F), t), (by re-indexing) we may assume that (Q1, σ1) ; (M2(F), t). Let
u ∈ Alt(Q1, σ1) be a unit, so that u2 ∈ F×. If u2 ∈ F×2 then Q1 splits and discσ1

is trivial. As disc t is also trivial (see [9, page 82]), (Q1, σ1) ' (M2(F), t) by
[9, (7.4)], contradicting the assumption. Hence, u2 ∈ F× \ F×2. By [9, (2.6)],
dimF Sym(Q2, σ2) = 3 and dimF Alt(Q2, σ2) = 1. Hence, there exists an element
w ∈ Sym(Q2, σ2) \ (Alt(Q2, σ2) ⊕ F). The elements u and w may be identified with
elements of A, so that uw = wu, w ∈ Sym(A, σ) and u ∈ Alt(A, σ). Observe that
α + w < Alt(Q2, σ2) for every α ∈ F. By [11, (3.5)], it follows that α + w < Alt(A, σ)
for all α ∈ F, that is, w ∈ Sym(A, σ) \ (Alt(A, σ) ⊕ F). �
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Remark 6.2. Let (B, ρ) be a central simple algebra with involution over F and set
(A, σ) = (B, ρ) ⊗ (M2(F), t). Then every element x ∈ A can be written as ( a b

c d ), where
a, b, c, d ∈ B. The involution σ maps x to ( ρ(a) ρ(c)

ρ(b) ρ(d)). It follows that

Alt(A, σ) =

{(
a b
ρ(b) c

) ∣∣∣∣ a, c ∈ Alt(B, ρ) and b ∈ B
}
,

Sym(A, σ) =

{(
a b
ρ(b) c

) ∣∣∣∣ a, c ∈ Sym(B, ρ) and b ∈ B
}
.

The next result shows that Theorem 5.1 does not hold for isotropic involutions of
degree > 8 (see also Proposition 5.2).

Proposition 6.3. Let (A, σ) be a totally decomposable algebra of degree 2n with
isotropic orthogonal involution over F. If n > 3 and (A, σ) ; (M2n (F), t), then there
exists an element x ∈ Sym(A, σ)+ with x2 < F2 which is not contained in any σ-
invariant quaternion subalgebra of A.

Proof. Since i(A, σ) > 0, we may identify (A, σ) = (B, ρ) ⊗ (M2(F), t), where (B, ρ) is
a totally decomposable algebra with orthogonal involution over F. The assumptions
n > 3 and (A, σ) ; (M2n (F), t) imply degF B > 4 and (B, ρ) ; (M2n−1 (F), t). By Lemma
6.1, there exists an element w ∈ Sym(B, ρ) \ (Alt(B, ρ) ⊕ F) and a unit u ∈ Alt(B, ρ) for
which u2 ∈ F× \ F×2 and uw = wu. Set

x =

(
w w + u

w + u w

)
∈ A.

By Remark 6.2, x ∈ Sym(A, σ) \ (Alt(A, σ) ⊕ F). Since u2 ∈ F× \ F×2, we have
x2 ∈ F× \ F×2; hence, x ∈ Sym(A, σ)+. By Lemma 5.6, x is not contained in any
σ-invariant quaternion subalgebra of A, because x + α < Alt(A, σ) for every α ∈ F. �

We conclude by showing that the implication (1) ⇒ (2) in Theorem 5.10 and
Proposition 5.7 does not hold for arbitrary involutions. We use the ideas of [5, (9.4)].
Recall that the canonical involution γ on a quaternion F-algebra Q is defined as
γ(x) = TrdQ(x) − x for x ∈ Q, where TrdQ(x) is the reduced trace of x in Q. For a
division algebra with involution (D, θ) over F and α1, . . . , αn ∈ D× ∩ Sym(D, θ), the
diagonal hermitian form h on Dn defined by h(x, y) =

∑n
i=1 θ(xi)αiyi is denoted by

〈α1, . . . , αn〉θ.

Example 6.4. Let F , F2 and let K = F(X,Y,Z), where X, Y and Z are indeterminates.
Let Q = [X,Y)K and let γ be the canonical involution on Q. By [5, (9.3)], Q is a division
algebra over K. Choose an element s ∈ Sym(Q, γ) with s2 = Y . Let ψ be the diagonal
hermitian form 〈1, Z, s, s〉γ over (Q, γ) and set (B, ρ) = Ad(ψ). By [5, (9.4)], (B, ρ) is
not totally decomposable, but (B, ρ)L is totally decomposable for every splitting field
L of A.

Now, choose α ∈ F× \ F×2 and let Q′ = [X, α)K with a quaternion basis (1, u, v,w).
Let τ be the involution on Q′ induced by τ(u) = u and τ(v) = v. Then, τ is an orthogonal
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involution and v = τ(uv) − uv ∈ Alt(Q′, τ). Set (A, σ) = (B, ρ) ⊗K (Q′, τ). Then, (A, σ)
is a central simple algebra with orthogonal involution over K. We claim that (A, σ)
is totally decomposable. Let L = K(u) ⊆ Q′ and set C = CA(1 ⊗ u). Then, L/K is a
separable quadratic extension and

(C, σ|C) 'L (B, ρ)L (6.1)

is a central simple L-algebra with orthogonal involution. Since u2 + u = X, it follows
that QL ' [X, Y)L splits, which implies that BL is also split. Thus (B, ρ)L is totally
decomposable, that is, (C, σ|C) is totally decomposable by (6.1). Using [13, (7.3)] and
the isomorphism (6.1), one can find a totally decomposable algebra with orthogonal
involution (C′, σ′) over K such that (C, σ|C) ' (C′, σ′)L. As C ⊆ A, the algebra C′ may
be identified with a subalgebra of A. Let Q′′ = CA(C′). Then, Q′′ is a quaternion K-
subalgebra of A and (A, σ) 'K (C′, σ′) ⊗K (Q′′, σ|Q′′) is totally decomposable, proving
the claim.

The element 1 ⊗ v ∈ Alt(A, σ)+ is contained in the copy of Q′ in A, which is a σ-
invariant quaternion subalgebra of A. Note that (CA(1 ⊗ v), σ|CA(1⊗v)) ' (B, ρ)K(v) as
K(v)-algebras. We show that (B, ρ)K(v) is not totally decomposable, which implies that
1 ⊗ v is not contained in any inseparable subalgebra of (A, σ), by [12, (6.3(i))]. Since
v2 = α ∈ F× \ F×2, we have K(v) ' F(

√
α)(X, Y, Z). Hence, QK(v) is still a division

algebra by [5, (9.3)]. By [5, (9.4)], (B, ρ)K(v) is not totally decomposable.
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