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Abstract
We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in
𝐻𝑠 (R) for any regularity 𝑠 > − 1

2 . Well-posedness has long been known for 𝑠 ≥ 0, see [55], but not previously for
any 𝑠 < 0. The scaling-critical value 𝑠 = − 1

2 is necessarily excluded here, since instantaneous norm inflation is
known to occur [11, 40, 48].

We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de
Vries equations in 𝐻𝑠 (R) for any 𝑠 > − 1

2 . The best regularity achieved previously was 𝑠 ≥ 1
4 (see [15, 24, 33, 39]).

To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting
flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is
the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-
posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local
nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing
and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that
remain meaningful at this low regularity.
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1. Introduction
We consider solutions 𝑞 : R × R→ C of the nonlinear Schrödinger equation

𝑖
𝑑

𝑑𝑡
𝑞 = −𝑞′′ ± 2|𝑞 |2𝑞, (NLS)

and the (complex Hirota) modified Korteweg–de Vries equation

𝑑

𝑑𝑡
𝑞 = −𝑞′′′ ± 6|𝑞 |2𝑞′, (mKdV)

with initial data 𝑞(0) ∈ 𝐻𝑠 (R). The upper choice of signs yields the defocusing cases of these equations,
while the lower signs correspond to the focusing cases. In this paper, the symbols ± and ∓ will only be
used in the context of this dichotomy. By restricting (mKdV) to the case of real initial data, we recover
the classical mKdV equation of Miura [46]:

𝑑

𝑑𝑡
𝑞 = −𝑞′′′ ± 2(𝑞3)′. (mKdVR)

To treat both the defocusing and focusing versions of (NLS) and (mKdV) within the same framework,
throughout this paper, we adopt the notation

𝑟 := ±𝑞.

With this convention, both (NLS) and (mKdV) are Hamiltonian equations with respect to the following
Poisson structure on Schwartz space: Given 𝐹, 𝐺 : S → C,

{𝐹, 𝐺} := 1
𝑖

∫
𝛿𝐹
𝛿𝑞

𝛿𝐺
𝛿𝑟 − 𝛿𝐹

𝛿𝑟
𝛿𝐺
𝛿𝑞 𝑑𝑥, (1.1)

where our notation for functional derivatives is the classical one (see (2.2)). Correspondingly, any
Hamiltonian 𝐻 : S → R generates a flow, which we denote by 𝑒𝑡 𝐽∇𝐻 , via the equation

𝑖
𝑑

𝑑𝑡
𝑞 =

𝛿𝐻

𝛿𝑟
, or equivalently, 𝑖

𝑑

𝑑𝑡
𝑟 = −𝛿𝐻

𝛿𝑞
. (1.2)

In particular, since Hamiltonians are real-valued, the relations 𝑞 = ±𝑟 are preserved by any such flow.
With these conventions, the equations (NLS) and (mKdV) are the Hamiltonian flows associated to

𝐻NLS :=
∫

𝑞′𝑟 ′ + 𝑞2𝑟2 𝑑𝑥 and 𝐻mKdV := 1
𝑖

∫
𝑞′𝑟 ′′ + 3𝑞2𝑟𝑟 ′ 𝑑𝑥,

respectively. Two other important Hamiltonians are the mass and momentum,

𝑀 :=
∫

𝑞𝑟 𝑑𝑥 and 𝑃 = 1
𝑖

∫
𝑞𝑟 ′ 𝑑𝑥,

which generate phase rotations and spatial translations, respectively. While our names for the basic
conserved quantities agree with the usual parlance in the defocusing case, their signs are reversed in the
focusing case; in particular, the mass becomes negative definite. However, this sign change is offset by a
corresponding sign change in the Poisson structure, so the dynamics remains those given in (NLS) and
(mKdV).
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All four functions M, P, 𝐻NLS, and 𝐻mKdV Poisson commute. While commutation with M and P
merely represent gauge and translation invariance, the commutativity of 𝐻NLS and 𝐻mKdV is surprising
and a first sign of a very profound property of these equations: they are completely integrable.

One expression of this complete integrability is the existence of an infinite family of commuting flows.
Taken together, these form the AKNS–ZS hierarchy. This name honors the authors of the seminal papers
[1, 56]. For an authoritative introduction to this hierarchy, with particular attention to the Hamiltonian
structure, we recommend [16].

The odd and even numbered Hamiltonian flows in the AKNS–ZS hierarchy behave differently under
(𝑞, 𝑟) ↦→ (𝑞, 𝑟). In particular, conjugation acts as a time-reversal operator for M and 𝐻NLS but leaves
the P and 𝐻mKdV flows unchanged. This leads to a number of significant differences in our treatment of
(NLS) and (mKdV).

As we will discuss more fully below, it has been known for a long time that both (NLS) and (mKdV)
are globally well-posed for sufficiently regular initial data. In fact, the question of what constitutes
sufficiently regular initial data has occupied several generations of researchers. We are now able to give
a definitive answer:

Theorem 1.1 (Global well-posedness of the NLS and mKdV). Let 𝑠 > − 1
2 . Then the equations (NLS)

and (mKdV) are globally well-posed for all initial data in 𝐻𝑠 (R) in the sense that the solution map Φ
extends uniquely from Schwartz space to a jointly continuous map Φ : R × 𝐻𝑠 (R) → 𝐻𝑠 (R).

Here, we are evidently taking the well-posedness of (NLS) and (mKdV) on Schwartz space for
granted. This has been known for a long time [30, 54].

The threshold 𝑠 = − 1
2 appearing in Theorem 1.1 is both sharp and necessarily excluded. It is also the

scaling-critical regularity. Indeed, each evolution in the AKNS-ZS hierarchy admits a scaling symmetry
of the form

𝑞𝜆 (𝑡, 𝑥) = 𝜆𝑞(𝜆𝑚𝑡, 𝜆𝑥), or, equivalently, 𝑞𝜆 (𝑡, 𝜉) = 𝑞(𝜆𝑚𝑡, 𝜉/𝜆), (1.3)

where m denotes the ordinal position of the Hamiltonian. For example, 𝑚 = 0 for M, while (NLS)
corresponds to 𝑚 = 2 and (mKdV) to 𝑚 = 3.

While a great many dispersive equations have recently been shown to be well-posed at the scaling-
critical regularity, this fails for (NLS) and (mKdV). In fact, one has instantaneous norm inflation: For
every 𝑠 ≤ − 1

2 and 𝜀 > 0, there is a Schwartz solution 𝑞(𝑡) to (NLS) satisfying

‖𝑞(0)‖𝐻 𝑠 < 𝜀 and sup
|𝑡 |<𝜀

‖𝑞(𝑡)‖𝐻 𝑠 > 𝜀−1. (1.4)

This was shown for (NLS) in [11, 40, 48]. In Appendix A, we revisit this work, giving a simplified
presentation and showing that the same norm inflation holds also for (mKdV), as well as other members
of the hierarchy. This ill-posedness effect does not seem to have been noticed before.

This norm inflation argument does not extend to (mKdVR). Nevertheless, in the appendix, we show
(seemingly for the first time) that a slightly weaker form of ill-posedness holds in the focusing case (see
Proposition A.3). Previously, [2] showed that the data-to-solution map cannot be extended continuously
to the delta-function initial data in the focusing case. The analogous assertion for NLS (both focusing
and defocusing) was proved in [35].

Let us turn our attention to the existing well-posedness theory. The advent of Strichartz estimates
[53] had a transformative effect on the study of nonlinear dispersive equations. These estimates provide
an elegant and efficient expression of the dispersive effect and allowed researchers to pass beyond the
regularity required to make sense of the nonlinearity pointwise in time. In [55], Tsutsumi used this new
tool to prove global well-posedness of (NLS) in 𝐿2 (R).

We know of no further progress in the scale of 𝐻𝑠 spaces since that time. Here is one reason: No
ingenious harmonic analysis estimate, nor clever choice of metric, can reduce matters to a contraction
mapping argument. Such constructions lead to solutions that depend analytically on the initial data;
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however, in [10, 11, 35], it is shown that the data-to-solution map cannot even be uniformly continuous
on bounded subsets of 𝐻𝑠 (R) when 𝑠 < 0.

Due to the derivative in the nonlinearity, Strichartz estimates alone do not suffice to understand the
behavior of (mKdV). By bringing in local-smoothing and maximal-function estimates, Kenig–Ponce–
Vega [33], were able to prove that (mKdV) is locally well-posed in 𝐻𝑠 (R) for all 𝑠 ≥ 1

4 . The solution
they construct depends analytically on the initial data. Moreover, the threshold 𝑠 = 1

4 is sharp if one
seeks solutions that depend uniformly continuously on the initial data. This was shown in [10, 35]. In the
case of (NLS), the critical threshold for analytic well-posedness coincides with an exact conservation
law, namely, that of 𝑀 (𝑞). Thus, Tsutsumi’s result is automatically global in time [55]. Due to the
absence of any obvious conservation law at regularity 𝑠 = 1

4 , it was unclear at that time whether the
Kenig–Ponce–Vega solutions to (mKdV) are, in fact, global in time. This was subsequently shown
for (mKdVR) through the construction of suitable almost conserved quantities. For 𝑠 > 1

4 , this was
proved by Colliander–Keel–Staffilani–Takaoka–Tao [15] with the endpoint added later by Guo and
Kishimoto [24, 39].

With the exact threshold for analytic (or even uniformly continuous) dependence settled, the question
immediately arises as to what happens at lower regularity: What lies in the sizable gap remaining
between these well-posedness results and the known breakdown of continuity at 𝑠 = − 1

2 ? This gap
corresponds to regularities − 1

2 < 𝑠 < 0 for (NLS) and − 1
2 < 𝑠 < 1

4 for (mKdV).
For typical Schrödinger equations in R𝑑 with polynomial nonlinearities, there is no gap between

analytic local well-posedness and the onset of ill-posedness [11]. Thus, it is all the more remarkable to
discover a region of nonperturbative well-posedness in this setting. This phenomenon appears to be a
remarkable feature of completely integrable systems, and investigating it necessitates methods that take
advantage of this integrability.

A natural first step toward understanding solutions in this delicate region is to seek a priori𝐻𝑠 bounds.
While boundedness of solutions would obviously follow from well-posedness, proving boundedness is
typically a first step. It is also the principal challenge in the construction of weak solutions. On the other
hand, showing impossibility of such bounds would give ill-posedness.

Early successes in this direction include [13, 41, 42] for (NLS) and [14] for (mKdV). Recently,
the definitive result in this direction was obtained in [38, 43], where exact conservation laws were
constructed that control the 𝐻𝑠 norm of solutions all the way down to 𝑠 > − 1

2 . Given the norm inflation
discussed earlier, one cannot go any lower. The macroscopic conservation laws constructed in [38, 43]
interact with the scaling symmetry in a useful way; indeed, this was already employed in [38] to connect
differing regularities and to obtain bounds in Besov spaces. Another important consequence of this
interaction is that when 𝑠 < 0, it guarantees equicontinuity of orbits (cf. Definition 4.5 and Proposition
4.6 below). This seems to have been first noted explicitly in [37] and will play several important roles
in what follows.

One example of the significance of equicontinuity is that it connects well-posedness at different
regularities: If 𝜎 > 𝑠, then existence and uniqueness of solutions with initial data in 𝐻𝑠 automatically
guarantees the same for initial data in 𝐻𝜎 . That the 𝐻𝑠-solution remains in 𝐻𝜎 at later times follows
from the existence of a priori bounds. However, continuity of the data-to-solution map in 𝐻𝜎 requires
more; convergence at low regularity together with boundedness at higher regularity does not guarantee
convergence at the higher regularity. Equicontinuity in 𝐻𝜎 is the simple necessary and sufficient
condition for convergence in 𝐻𝜎 under these circumstances. There are two further aspects of the history
we wish to discuss before describing the methods we employ: well-posedness results outside the scale
of 𝐻𝑠 spaces and for these partial differential equations (PDEs) posed on the torus.

By working in Fourier–Lebesgue and modulation spaces, several researchers succeeded in studying
well-posedness questions outside the scale of 𝐻𝑠 spaces. For (NLS), for example, analytic local well-
posedness was shown in almost-critical spaces by Grünrock [19] and Guo [23]. For (mKdV), analogous
almost-critical results in Fourier–Lebesgue spaces were obtained in [18, 22]. The threshold for analytic
well-posedness of (mKdV) in modulation spaces was determined in [8, 50]; however, this still does not
coincide with scaling criticality.
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Each of the three types of spaces (Fourier–Lebesgue, modulation, and Sobolev) has a very different
character; nevertheless, each of the spaces just described can be enveloped by 𝐻𝑠 provided one takes
𝑠 > − 1

2 sufficiently close to − 1
2 . Conversely, both Fourier–Lebesgue and modulation spaces suppress

high frequencies more strongly than negative regularity𝐻𝑠 spaces; this substantially reduces the dangers
of high-high-low interactions, which are the dominant source of instability in these models.

We are not aware of any global well-posedness results in Fourier–Lebesgue spaces close to criticality.
However, by ingeniously exploiting the way Galilei boosts interact with the conservation laws constructed
in [38], Oh and Wang [49] obtained global bounds in modulation spaces, which then yield global well-
posedness in these spaces.

In order to construct solutions via a contraction mapping argument, one must employ an array of
subtle norms expressing the dispersive effect. The question arises whether there might be other solutions
that are continuous in 𝐻𝑠 but lie outside the auxiliary space. This is the question of unconditional
uniqueness, pioneered by Kato [31, 32]. For the latest advances in this direction, see [25, 44]. We now
give a quick review of what is known for (NLS) and (mKdV) posed on the circle (i.e., for periodic initial
data). In the Euclidean setting, dispersion causes solutions to spread out. This is impossible on the circle,
there is nowhere to spread to. Nevertheless, Bourgain [3, 4] proved that select Strichartz estimates do
hold (expressing a form of decoherence). As an application, these new estimates were used to prove
global well-posedness of (NLS) in 𝐿2 (T) and local well-posedness of (mKdV) in 𝐻1/2(T). Global well-
posedness of (mKdVR) in 𝐻1/2 (T) was subsequently proved in [15]. Moreover, [10] showed that these
results match the threshold for analytic (or uniformly continuous) dependence on the initial data.

For (NLS) on the circle, this 𝐿2 threshold also marks the boundary for even continuous dependence
on the initial data. This was shown in [6, 12, 26] and represents a sharp distinction from the line case.
This “premature” breakdown of well-posedness is now understood as arising from an infinite phase
rotation, which, in turn, suggests a suitable renormalization, namely, Wick ordering the nonlinearity.
This point of view has been confirmed in [9, 21, 49], where Wick-ordered NLS is shown to be globally
well-posed in (almost-critical) Fourier–Lebesgue spaces where the traditional (NLS) is ill-posed.

For (mKdVR) on the circle,𝐻1/2 is not the threshold for continuous dependence. In [29], Kappeler and
Topalov proved well-posedness in 𝐿2 (T); this was shown to be sharp by Molinet [47]. By renormalizing
the nonlinearity (to remove an infinite transport term), well-posedness was then shown in [28] for a
larger Fourier–Lebesgue class of initial data (see also [52]). The recent work [7] dramatically clarifies
the situation regarding the full complex equation (mKdV): It is shown that 𝐻1/2 is the threshold for
continuous dependence in this setting; moreover, it is shown that to go below this threshold (even in
Fourier–Lebesgue spaces), a second renormalization is required.

Given the known thresholds for continuous dependence on the circle, the proof of Theorem 1.1 must
employ some property of our equations that distinguishes the line and the circle cases! This will be the
local smoothing effect, that is, a gain of regularity locally in space on average in time. This constitutes
a significant point of departure from [37], where the arguments developed do not distinguish between
the two geometries.

The local smoothing estimates that are relevant to us involve fractional numbers of derivatives.
Correspondingly, some prudence is required in selecting the proper way to localize in space. We do so
by choosing a fixed family of Schwartz cutoff functions

𝜓(𝑥) := sech( 𝑥99 ) and 𝜓ℎ (𝑥) := 𝜓(𝑥 − ℎ), (1.5)

whose particular properties will allow it to be used throughout the analysis. Corresponding to this cut-
off, we define local smoothing norms by

‖𝑞‖2
𝑋𝜎 := sup

ℎ∈R

∫ 1

−1
‖𝜓6

ℎ𝑞‖
2
𝐻 𝜎 𝑑𝑡. (1.6)

In Lemma 2.2, we will see that this norm is strong enough to control any other choice of Schwartz-class
cut-off function.
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The restriction of time to the interval [−1, 1] in (1.6) was a rather arbitrary choice; however, we see
little advantage to introducing additional time parameters. Results for alternate time intervals (or indeed
other spatial intervals) can be achieved by a simple covering argument, using time- and space-translation
invariance.

We are now ready to state the local smoothing estimates we prove for the solutions constructed in
Theorem 1.1. As the gain in regularity differs between the two evolutions, it is easier to state our results
separately:

Theorem 1.2 (Local smoothing: NLS). Fix − 1
2 < 𝑠 < 0. Given initial data 𝑞0 ∈ 𝐻𝑠 (R), the corre-

sponding solution 𝑞(𝑡) to NLS constructed in Theorem 1.1 satisfies

‖𝑞‖
𝑋𝑠+ 1

2
�

(
1 + ‖𝑞0‖𝐻 𝑠

) 8
1+2𝑠 ‖𝑞0‖𝐻 𝑠 ; (1.7)

moreover, 𝑞0 ↦→ 𝑞(𝑡) is a continuous mapping from 𝐻𝑠 to 𝑋𝑠+ 1
2 .

Theorem 1.3 (Local smoothing: mKdV). Fix − 1
2 < 𝑠 < 1

2 . The solution 𝑞(𝑡) to mKdV with initial data
𝑞0 ∈ 𝐻𝑠 (R) constructed in Theorem 1.1 satisfies

‖𝑞‖𝑋𝑠+1 �
(
1 + ‖𝑞0‖𝐻 𝑠

) 11
1+2𝑠 ‖𝑞0‖𝐻 𝑠 ; (1.8)

moreover, 𝑞0 ↦→ 𝑞(𝑡) is a continuous mapping from 𝐻𝑠 to 𝑋𝑠+1.

Estimates of this type are well-known for the underlying linear equations and readily proven either
by Fourier-analytic techniques, or by explicit monotonicity identities. In the special cases where one
has a suitable microscopic conservation law, the latter technique can be adapted to nonlinear problems.
Indeed, the original local smoothing effect was the case 𝑠 = 0 of (1.8), which was proven in [30] by
employing the microscopic conservation law

𝜕𝑡
(
|𝑞 |2

)
+ 𝜕3

𝑥

(
|𝑞 |2

)
− 3𝜕𝑥

(
|𝑞′ |2 ± |𝑞 |4

)
= 0

satisfied by solutions of (mKdV). The analogous microscopic conservation law for (NLS) is

𝜕𝑡2 Im(𝑞𝑞′) − 𝜕3
𝑥

(
|𝑞 |2

)
+ 𝜕𝑥

(
4|𝑞′ |2 ± 2|𝑞 |4

)
= 0,

which yields (1.7) with 𝑠 = 1
2 .

When the sought-after regularity does not match a known conservation law, local smoothing results
for nonlinear PDE have traditionally been proven perturbatively, building on the corresponding estimates
for the underlying linear equation. In particular, the arguments of [55] can be used to show that (1.7)
continues to hold for 𝑠 ≥ 0. That (1.8) continues to hold for 𝑠 ≥ 1

4 was proved in [33]; indeed, there the
local smoothing effect was crucial to even constructing solutions.

Due to the breakdown in uniform continuity of the data-to-solution map at low regularity, we cannot
expect the nonlinear flow to be well modeled by a linear flow, and so some truly nonlinear technique is
needed to prove Theorems 1.2 and 1.3. It is the discovery of a new one-parameter family of microscopic
conservation laws for these equations that will allow us to achieve such low regularity. As local smoothing
is a linear effect, it is surprising that the loss of uniform continuity is not accompanied by any lessening
of this effect — the estimates we obtain exhibit the same derivative gain as seen for the linear equation.

As we shall see, the proof of Theorem 1.1 relies crucially on the local smoothing effect (though in a
rather stronger form than presented in Theorems 1.2 and 1.3). With this in mind, it is natural to begin our
discussion of the methods employed in this paper by describing how local smoothing is to be proved.
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Local smoothing estimates also allow us to make better sense of the nonlinearity. Note that Theorem
1.1 already allows us to make sense of the nonlinearity taken holistically: If 𝑞𝑛 are Schwartz solutions
converging to q in 𝐿∞𝑡 𝐻

𝑠 , then directly from the equation, we see that the corresponding sequence of
nonlinearities converge, for example, as spacetime distributions. By contrast, one may seek to make
sense of the individual factors in the nonlinearity in a way that allows them to be multiplied; this is
where local smoothing helps.

For example, our results show that for any 𝑠 > −1/2, solutions of (mKdVR) with initial data in 𝐻𝑠 (R)
belong to 𝐿3

𝑡 ,𝑥 on all compact regions of spacetime. Analogously, we see that solutions to (NLS) are
locally 𝐿3

𝑡 ,𝑥 whenever 𝑠 ≥ −1/6.

1.1. Outline of the proof

As we have mentioned earlier, (NLS) and (mKdV) belong to an infinite hierarchy of evolution equations
whose Hamiltonians Poisson commute. Among PDEs, this phenomenology was first discovered in the
case of the Korteweg–de Vries equation [17]. And it was these discoveries that Lax [45] elegantly
codified by introducing the Lax pair formalism (the monograph [16] employs a parallel approach based
around the zero-curvature condition).

As noted above, Lax pairs for (NLS) and (mKdV) were introduced in [1, 56]. Several different (but
equivalent) choices of these operators exist in the literature. Our convention will be to use Lax operators

𝐿(𝜘) :=
[
𝜘 − 𝜕 𝑞
−𝑟 𝜘 + 𝜕

]
as well as 𝐿0 (𝜘) :=

[
𝜘 − 𝜕 0

0 𝜘 + 𝜕

]
. (1.9)

Here, 𝜘 denotes the spectral parameter (which will always be real in this paper). The second member of
the Lax pair (traditionally denoted P) can be taken to be

𝑖

[
2𝜕2 − 𝑞𝑟 −𝑞𝜕 − 𝜕𝑞
𝑟𝜕 + 𝜕𝑟 −2𝜕2 + 𝑞𝑟

]
and

[
−4𝜕3 + 3𝑞𝑟𝜕 + 3𝜕𝑞𝑟 3𝑞′𝜕 + 3𝜕𝑞′

3𝑟 ′𝜕 + 3𝜕𝑟 ′ −4𝜕3 + 3𝑞𝑟𝜕 + 3𝜕𝑞𝑟

]
,

for (NLS) and (mKdV), respectively.
The Lax equation 𝜕𝑡𝐿 = [𝑃, 𝐿] guarantees that the Lax operators at different times are conjugate. In

the setting of finite matrices, this would guarantee that the characteristic polynomial of L is independent
of time. In the case of (1.9), renormalization is required — indeed, L is not even bounded, let alone trace-
class. Such a renormalization was presented in [38] based on the renormalized Fredholm determinant
det2 (1 + 𝐴) = det(1 + 𝐴)𝑒− tr(𝐴) . Concretely, it was shown in [38] that

± log det2 [𝐿0 (𝜘)−1𝐿(𝜘; 𝑞)]

is well-defined, conserved for Schwartz solutions, and coercive. This was the origin of the coercive
macroscopic conservation laws constructed in that paper. The regularities of these laws were adjusted
by integrating against a suitable measure in 𝜘.

Unfortunately, such macroscopic conservation laws are of no use in proving local smoothing. We
need not only microscopic conservation laws but coercive microscopic conservation laws. In Section 4,
we present our discovery of just such a density 𝜌 and its attendant currents j. We feel that this is an
important contribution to the much-studied algebraic theory of these hierarchies. Moreover, it is the
driver of all that follows.

We do not have a systematic way of finding microscopic conservation laws attendant to the conserva-
tion of the perturbation determinant. If we compare the answer for KdV from [37] with that developed
in this paper, it is tempting to predict that it should always be a rational function of components of the
diagonal Green’s function. However, we have also found the corresponding quantity for the Toda lattice
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[27], and, in that case, it is a transcendental function of entries in the Green’s matrix. On the other hand,
the closely related one-parameter family of macroscopic conservation laws

𝜕

𝜕𝜘
log det2 [𝐿0 (𝜘)−1𝐿(𝜘; 𝑞)] = tr

{
𝐿(𝜘; 𝑞)−1 − 𝐿0 (𝜘)−1} (1.10)

are easily seen to admit a microscopic representation based on the diagonal of the Green’s function. The
associated density 𝛾 turns out to be far inferior for what we need to do here. Indeed, in Lemma 4.9, we
will show that, unfortunately, the current corresponding to 𝛾 is not adequately coercive. This undermines
its utility for proving local smoothing. In principle, one could recover a 𝜌-like object by integrating
𝛾 in energy. (Of course, this need only agree with 𝜌 up to a mean-zero function.) In fact, we pursued
this approach for a long time while still seeking the true form of 𝜌. We can attest that this approach is
extremely painful and dramatically increases the number of subtle cancellations that need to be exhibited
later in the argument.

The proof of local smoothing is far and away the most lengthy and complicated part of the paper,
comprising the entirety of Section 5 and employing crucially all of the preceding analysis. One reason
is that we actually need a two-parameter family of estimates that go far beyond the simple a priori
bounds (1.7) and (1.8). The role of the first of these two parameters is easy to explain at this time: it
acts as a frequency threshold in the local smoothing norm. This refinement will allow us to prove that
the high-frequency contribution to the local-smoothing norm is controlled (in a very quantitative way)
by the high-frequency portion of the initial data. This is the essential ingredient in the continuity claims
made in Theorems 1.2 and 1.3. (The basic question of whether such continuity holds for Kato’s original
estimate [30] seems to have been open up until now.)

This extra frequency parameter also plays a major role in Section 6, where it is used to show that an
𝐻𝑠-precompact set of Schwartz-class initial data leads to a collection of solutions that is 𝐻𝑠-precompact
at later times. In view of the equicontinuity of orbits mentioned earlier, this is a question of tightness.

As local smoothing estimates control the flow of the 𝐻𝑠 norm through compact regions of spacetime,
it is natural to attempt to employ them to prove tightness in 𝐻𝑠 . However, it is precisely the fact that
the transport of 𝐻𝑠 norm cannot exceed the total 𝐻𝑠 norm available that is used to prove Theorems
1.2 and 1.3; thus, these results do not provide sufficient control to yield tightness! Our tightness result
relies crucially on the extra frequency parameter to demonstrate that there is little local smoothing norm
residing at high frequencies and, consequently, little high-speed transport of 𝐻𝑠-norm.

The compactness result just enunciated guarantees the existence of weak solutions. To obtain well-
posedness, we must verify uniqueness (i.e., that different subsequences do not lead to different solutions),
as well as continuous dependence on the initial data. To achieve that, we will rely crucially on ideas
introduced in [37] and further developed in [5, 36].

While these papers provide a useful precedent on overall strategy, they provide no guidance on how
to implement it. The first triumph of this paper is to construct the algebraic and analytic framework
needed for this type of analysis in the AKNS-ZS hierarchy. We will see that even though the two
equations belong to the same hierarchy, the fundamental monotonicity laws for (NLS) and (mKdV) are
different; moreover, neither equation provides significant guidance in finding the numerous cancellations
necessary to treat the other.

The first step in this strategy is the introduction of regularized Hamiltonians indexed by a scalar
parameter 𝜅. The flows induced by these Hamiltonians should (a) be readily seen to be well-posed, (b)
commute with the full flows, and (c) converge to the full flows as 𝜅 → ∞. Such flows are introduced in
Section 4 where they are easily proven to have properties (a) and (b). That they enjoy property (c) in the
desired topology, however, is highly nontrivial. This is the subject of Section 7, which is the climax of
this paper.

Due to their commutativity, the problem of controlling the difference between the full and regularized
flows can be reduced to controlling the evolution under the difference Hamiltonian (that is, the difference
of the full and regularized Hamiltonians). In fact, this is the key insight of the commuting flow paradigm
introduced in [37]: instead of needing to estimate the distance between two solutions (which is rendered
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intractable by the breakdown of uniformly continuous dependence), one need only study a single
evolution, albeit under a much more complicated flow.

The difference flow retains all the bad behavior of the original PDE; indeed, the regularized flows are
(by construction) relatively harmless. All obstacles that prevented previous researchers from successfully
analyzing solutions in this nonperturbative regime are retained. To succeed, we will need to rely on a
number of new insights; these include the new two-parameter local smoothing estimates, a novel change
of unknown, and the demonstration of myriad cancellations between the full flow and its regularized
counterpart.

The necessity of employing a (diffeomorphic) change of variables is common also to [5, 37]. In
those works, the new variable is the diagonal Green’s function. The fact that this originates from a
microscopic conservation law places one derivative in a favorable position. Alas, all conservation laws
for the NLS/mKdV hierarchy are quadratic in q, and so none can offer a diffeomorphic change of
variables.

In place of the diagonal Green’s function that proved so successful in the treatment of the KdV
hierarchy, we adopt an off-diagonal entry 𝑔12(𝑥) of the Green’s function as our new variable. Among its
merits are the following: it has a relatively accessible time evolution; as an integral part of the definition
of 𝜌, it is something for which we need to develop extensive estimates anyway; the mapping 𝑞 ↦→ 𝑔12 is
a diffeomorphism; and, lastly, it gains one degree of regularity, which aids in estimating nonlinear terms.

Nevertheless, this change of variables comes with significant shortcomings. Foremost, it is not
possible to control the evolution of 𝑔12 without employing local smoothing (or some other manifestation
of the underlying geometry). For, otherwise, one would obtain results for the circle that are known to
be false!

At this moment, it is important to remember that we are discussing the difference flow and that
our ambition is to prove that it converges to the identity as 𝜅 → ∞. Concomitant with this, the local
smoothing effect deteriorates rapidly as 𝜅 → ∞. This inherent deterioration in the local smoothing
estimates means that in order to treat all regularities 𝑠 > − 1

2 , we must discover every cancellation
available between the full and regularized flows. This, in turn, necessitates the carefully premeditated
decomposition of error terms in Section 7 and the stringent estimation of paraproducts in Section 5.

Due to the need for local smoothing estimates, we will only be able to verify convergence locally in
space. The tightness results of Section 6 are therefore essential for overcoming this deficiency.

In Section 8, we prove Theorem 1.1. The tools we develop in the first seven sections allow us to prove
Theorem 1.1 in the range − 1

2 < 𝑠 < 0. This suffices for (NLS) but leaves the gap [0, 1
4 ) for (mKdV).

To close this gap, we construct suitable macroscopic conservation laws for both equations that allow us
to prove the equicontinuity of orbits in 𝐻𝑠 for 0 ≤ 𝑠 < 1

2 and so deduce well-posedness from that at
lower regularity. This is interesting even for (NLS), where, for example, global in time equicontinuity of
orbits in 𝐿2 does not seem to have been shown previously (nor is it trivially derivable from the standard
techniques).

Section 9 is devoted to proving Theorems 1.2 and 1.3. All the ingredients we need for the range
− 1

2 < 𝑠 < 0 are presented already in Section 5. Thus, the majority of Section 9 is devoted to proving local
smoothing for (mKdV) over the range 0 ≤ 𝑠 < 1

2 by using a new underlying microscopic conservation
law.

In closing, let us quickly recapitulate the structure of the paper that follows. Section 2 discusses
myriad preliminaries: settling notation, verifying basic properties of the local smoothing spaces, and
proving a variety of commutator estimates. In Section 3, we discuss the (matrix-valued) Green’s function
of the Lax operator, with particular emphasis at the confluence of the two spatial coordinates. Section 4
introduces the conserved density 𝜌 and derives equations for the time evolution of this and other
important quantities. Section 5 proves local smoothing estimates, not only for (NLS) and (mKdV),
but also for the associated difference flows. It is essential for what follows that these local smoothing
estimates contain an additional frequency cut-off parameter. The freedom to vary this parameter plays
a crucial role, for example, in Section 6, where these local smoothing estimates are used to control the
transport of 𝐻𝑠-norm. Section 7 uses local smoothing to demonstrate the convergence of the regularized
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flows to the full PDEs by proving that the difference flow approximates the identity. In Section 8, we
prove Theorem 1.1. Section 9 addresses Theorems 1.2 and 1.3. Appendix A gives a new presentation
of existing ill-posedness results for (NLS), extending them to other members of the hierarchy, including
(mKdV).

2. Some notation and preliminary estimates

For the remainder of the paper, we constrain

𝑠 ∈ (− 1
2 , 0)

and all implicit constants are permitted to depend on s. In view of the scaling (1.3), it will suffice to
prove all our theorems under a small-data hypothesis. For this purpose, we introduce the notation

𝐵𝛿 := {𝑞 ∈ 𝐻𝑠 : ‖𝑞‖𝐻 𝑠 ≤ 𝛿} . (2.1)

We use angle brackets to represent the pairing:

〈 𝑓 , 𝑔〉 =
∫

𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥.

In addition to being the natural inner product on (complex) 𝐿2 (R), this also informs our notions of dual
space (the dual of 𝐻𝑠 (R) is 𝐻−𝑠 (R)) and of functional derivatives: If 𝐹 : S → C is 𝐶1, then

𝑑
𝑑𝜃

���
𝜃=0

𝐹 (𝑞 + 𝜃 𝑓 ) =
〈
𝑓 , 𝛿𝐹𝛿𝑞

〉
±

〈
𝑓 , 𝛿𝐹𝛿𝑟

〉
. (2.2)

For real-valued F, the functions 𝛿𝐹
𝛿𝑞 and 𝛿𝐹

𝛿𝑞̄ = ± 𝛿𝐹
𝛿𝑟 are complex conjugates. These are functional

analogues of the (Wirtinger) directional derivatives of complex analysis — q and 𝑞 are not independent
variables!

We write ℑ𝑝 for the ℓ𝑝 Schatten class over the Hilbert space 𝐿2 (R). For most of our analysis, the
Hilbert–Schmidt class ℑ2 will suffice.

Commensurate with our choice of time interval in (1.6), all spacetime norms will also be taken
over this time interval (unless the contrary is indicated explicitly). Thus, for any Banach space Z and
1 ≤ 𝑝 ≤ ∞, we define

‖𝑞‖𝐿𝑝
𝑡 𝑍

:=
��‖𝑞(𝑡)‖𝑍 ��𝐿𝑝 (𝑑𝑡;[−1,1]) .

Our convention for the Fourier transform is

𝑓 (𝜉) = 1√
2𝜋

∫
R

𝑒−𝑖 𝜉 𝑥 𝑓 (𝑥) 𝑑𝑥, whence 𝑓̂ 𝑔(𝜉) = 1√
2𝜋

[ 𝑓 ∗ 𝑔̂] (𝜉).

We shall repeatedly employ a “continuum partition of unity” device based on the cut-off 𝜓12
ℎ .

Specifically, as ∫
R

𝜓(𝑥 − ℎ)12 𝑑ℎ ≡ 512
7 , so 𝑓 (𝑥) = 7

512

∫
R

𝑓 (𝑥)𝜓12
ℎ (𝑥) 𝑑ℎ (2.3)

in 𝐻𝜎 (R) sense, for any 𝑓 ∈ 𝐻𝜎 (R) and any 𝜎 ∈ R.
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2.1. Sobolev spaces

For real |𝜅 | ≥ 1 and 𝜎 ∈ R, we define the norm

‖𝑞‖2
𝐻 𝜎

𝜅
:=

∫ (
4𝜅2 + 𝜉2

)𝜎
|𝑞(𝜉) |2 𝑑𝜉

and write 𝐻𝜎 := 𝐻𝜎
1 .

For − 1
2 < 𝑠 < 0, elementary considerations yield

‖ 𝑓 ‖𝐿∞ ≤ ‖ 𝑓 ‖𝐿1 ≤ ‖ 𝑓 ‖𝐻 𝑠+1
𝜅

��(|𝜉 |2 + 4𝜅2)−
𝑠+1

2
��
𝐿2 � |𝜅 |−(𝑠+

1
2 ) ‖ 𝑓 ‖𝐻 𝑠+1

𝜅
. (2.4)

Consequently, we have the following algebra property:

‖ 𝑓 𝑔‖𝐻 𝑠+1
𝜅
� |𝜅 |−(

1
2+𝑠) ‖ 𝑓 ‖𝐻 𝑠+1

𝜅
‖𝑔‖𝐻 𝑠+1

𝜅
. (2.5)

Arguing by duality and using the fractional product rule, Sobolev embedding, and (2.4), we may
bound

‖𝑞 𝑓 ‖𝐻 𝑠 � ‖𝑞‖𝐻 𝑠 ‖ 𝑓 ‖𝐿∞ + ‖𝑞‖
𝐿

2
1−2|𝑠 |

‖ |∇| |𝑠 | 𝑓 ‖
𝐿

1
|𝑠 |

� ‖𝑞‖𝐻 𝑠

[
|𝜅 |−(𝑠+

1
2 ) ‖ 𝑓 ‖𝐻 𝑠+1

𝜅
+ ‖|∇|

1
2 𝑓 ‖𝐿2

]
(2.6)

� |𝜅 |−(𝑠+
1
2 ) ‖𝑞‖𝐻 𝑠 ‖ 𝑓 ‖𝐻 𝑠+1

𝜅
.

Lemma 2.1. If 𝑠′ < 𝑠, |𝜅 | ≥ 1, and 𝑞 ∈ 𝐻𝑠 , then

‖𝑞‖2
𝐻 𝑠

𝜅
≈𝑠,𝑠′

∫ ∞

|𝜅 |
𝜘2(𝑠−𝑠′) ‖𝑞‖2

𝐻 𝑠′
𝜘

𝑑𝜘
𝜘 . (2.7)

Proof. By scaling, it suffices to consider the case 𝜅 = 1. We may then write∫ ∞

1
𝜘2(𝑠−𝑠′) (4𝜘2 + 𝜉2)𝑠′ 𝑑𝜘𝜘 = |𝜉 |2𝑠

∫ ∞

1
|𝜉 |

𝜘2(𝑠−𝑠′) (4𝜘2 + 1)𝑠′ 𝑑𝜘𝜘 .

By considering the cases |𝜉 | ≤ 2 and |𝜉 | > 2 separately, we may bound

|𝜉 |2𝑠
∫ ∞

1
|𝜉 |

𝜘2(𝑠−𝑠′) (4𝜘2 + 1)𝑠′ 𝑑𝜘𝜘 ≈𝑠,𝑠′ (4 + 𝜉2)𝑠,

and the estimate (2.7) then follows from the Fubini-Tonelli theorem. �

2.2. Local smoothing spaces

It will be important to consider a one-parameter family of local smoothing norms, generalizing that
presented in the Introduction. To this end, given 𝜅 ≥ 1 and 𝜎 ∈ R, we define the local smoothing space

‖𝑞‖2
𝑋𝜎
𝜅

:= sup
ℎ∈R

�� 𝜓6
ℎ
𝑞

√
4𝜅2−𝜕2

��2
𝐿2
𝑡 𝐻

𝜎+1 ,

so that 𝑋𝜎
1 = 𝑋𝜎 , where we write 𝜓6

ℎ
𝑞

√
4𝜅2−𝜕2 = (4𝜅2 − 𝜕2)− 1

2 (𝜓6
ℎ𝑞). At this moment, placing the inverse

differential operators under their arguments (rather than in front of them) may seem clumsy; however,
the mere act of writing out (3.23) in traditional form will quickly convince the reader of the virtue of
this approach.
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To ease dimensional analysis, the 𝑋𝜎
𝜅 spaces have been defined to scale the same as 𝐻𝜎 spaces.

Our next lemma allows us to understand the effect of changing the localizing function 𝜓6 or the
regularity 𝜎 in the definition of the local smoothing norm:

Lemma 2.2. Given 𝜅 ≥ 1, 𝜎 ∈ R, and 𝜙 ∈ S ,�� 𝜙𝑞√
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝜎+1 �𝜙,𝜎 ‖𝑞‖𝑋𝜎
𝜅
. (2.8)

Moreover, if 𝑠 − 1 ≤ 𝜎′ ≤ 𝜎, then

‖𝑞‖𝑋𝜎′
𝜅
� 𝜅

𝜎′−𝜎
1+𝜎−𝑠

(
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠

)
. (2.9)

Proof. We begin by discussing (2.8). Let 𝑇ℎ : 𝐿2 → 𝐿2 denote the operator with integral kernel

(4 + 𝜉2) 𝜎+1
2

(4𝜅2 + 𝜉2) 1
2
𝜙𝜓6

ℎ (𝜉 − 𝜂)
(4𝜅2 + 𝜂2) 1

2

(4 + 𝜂2) 𝜎+1
2
.

By applying Schur’s test, we find that

‖𝑇ℎ ‖op � ‖𝜙𝜓6
ℎ ‖𝐻 |𝜎 |+2 and so

∫
R

‖𝑇ℎ ‖op 𝑑ℎ �𝜙 1.

Moreover, this bound holds uniformly in 𝜅. Thus, by employing (2.3), we find

�� 𝜙𝑞√
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝜎+1 �
∫ �� 𝜙𝜓12

ℎ 𝑞
√

4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝜎+1 𝑑ℎ �
∫
R

‖𝑇ℎ ‖op‖𝑞‖𝑋𝜎
𝜅
𝑑ℎ �𝜙 ‖𝑞‖𝑋𝜎

𝜅
,

which settles (2.8).
Turning to (2.9), and setting 𝑁 = 𝜅

1
1+𝜎−𝑠 , we have

‖ 𝜓6
ℎ
𝑞

√
4𝜅2−𝜕2 ‖𝐿2

𝑡 𝐻
𝜎′+1 � 𝜅−1+ 𝜎′+1−𝑠

1+𝜎−𝑠 ‖(𝜓6
ℎ𝑞)≤𝑁 ‖𝐿∞

𝑡 𝐻
𝑠 + 𝜅

𝜎′−𝜎
1+𝜎−𝑠

��𝑃>𝑁 𝜓6
ℎ
𝑞

√
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝜎+1 .

Taking the supremum over h, we obtain the estimate (2.9). �

Next, we record several commutator-type estimates that we will use in the later sections.

Lemma 2.3. Fix 𝜅 ≥ 1. Then��[𝜓ℎ , 1
4𝜅2−𝜕2

]
𝑞
��
𝐻 𝜎 � 𝜅

−3+𝜎−𝑠 ‖𝑞‖𝐻 𝑠
𝜅

for − 1 ≤ 𝜎 ≤ 3 + 𝑠, (2.10)

��[𝜓ℎ , 𝜕ℓ

4𝜅2−𝜕2

]
𝑞
��
𝐻 𝜎 � 𝜅

−3+ℓ+𝜎−𝑠 ‖𝑞‖𝐻 𝑠
𝜅

for 1 ≤ 𝜎 + ℓ ≤ 3 + 𝑠, ℓ = 1, 2, 3, (2.11)

uniformly for ℎ ∈ R. Moreover, for ℓ = 2, 3, 4 and 2 + 𝑠 ≤ 𝜎 + ℓ ≤ 4 + 𝑠,��[𝜓ℎ , 𝜕ℓ

4𝜅2−𝜕2

]
𝑞
��
𝐿2
𝑡 𝐻

𝜎 � 𝜅
−2+ 1

2 (ℓ+𝜎−𝑠) [‖𝑞‖𝑋𝑠+1
𝜅

+ ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠

]
, (2.12)

uniformly for ℎ ∈ R.

Proof. The estimate (2.10) follows from the observation that[
𝜓ℎ ,

1
4𝜅2−𝜕2

]
= 1

4𝜅2−𝜕2

(
𝜓 ′′
ℎ − 2𝜕𝜓 ′

ℎ

) 1
4𝜅2−𝜕2 . (2.13)

The lower bound on 𝜎 expresses that the maximum possible decay in 𝜅 is 𝜅−4−𝑠 .

https://doi.org/10.1017/fmp.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.4


Forum of Mathematics, Pi 13

To handle ℓ = 1, 2, 3, we also use the fact that[
𝜓ℎ ,

𝜕ℓ

4𝜅2−𝜕2

]
=

[
𝜓ℎ ,

1
4𝜅2−𝜕2

]
𝜕ℓ + 1

4𝜅2−𝜕2 [𝜓ℎ , 𝜕ℓ],

from which we see that the maximum possible decay in 𝜅 is 𝜅−2−𝑠 .
We now turn to (2.12) and write[

𝜓ℎ ,
𝜕ℓ

4𝜅2−𝜕2

]
= 𝜕ℓ

(4𝜅2−𝜕2)2

(
𝜓 ′′
ℎ − 2𝜕𝜓 ′

ℎ

)
+ 1

4𝜅2−𝜕2

[
𝜓 ′′
ℎ − 2𝜕𝜓 ′

ℎ ,
𝜕ℓ

4𝜅2−𝜕2

]
+ 1

4𝜅2−𝜕2

ℓ−1∑
𝑚=0

𝑐𝑚𝜕
𝑚𝜓 (ℓ−𝑚)

ℎ 𝑞.

Using (2.8), this readily yields ��[𝜓ℎ , 𝜕ℓ

4𝜅2−𝜕2

]
𝑞
��
𝐿2
𝑡 𝐻

𝜎 � ‖𝑞‖𝑋𝜎+ℓ−3
𝜅

and (2.12) follows from an application of (2.9). �

We also have the following estimates:

Lemma 2.4. Let 𝜎 > 0, 𝜅 ≥ 1, and 𝑓 , 𝑔 ∈ C ([−1, 1];S). If |𝜘| ≥ 1, then

‖(2𝜘 − 𝜕) 𝑓 ‖𝑋𝜎
𝜅
� |𝜘|‖ 𝑓 ‖𝑋𝜎

𝜅
+ ‖ 𝑓 ‖𝑋𝜎+1

𝜅
� ‖(2𝜘 − 𝜕) 𝑓 ‖𝑋𝜎

𝜅
+ ‖ 𝑓 ‖𝐿∞

𝑡 𝐻
𝜎 . (2.14)

Further, we have the product estimates

‖ 𝑓 𝑔‖𝑋𝜎
𝜅
� |𝜘|−(𝑠+

1
2 )

(
‖ 𝑓 ‖𝑋𝜎

𝜅
‖𝑔‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘

+ ‖ 𝑓 ‖𝐿∞
𝑡 𝐻

𝑠+1
𝜘

‖𝑔‖𝑋𝜎
𝜅

)
, (2.15)

‖ 𝑓 𝑔‖𝑋𝜎
𝜅
� |𝜘|−(𝑠+

1
2 )
[
‖ 𝑓 ‖𝑋𝜎

𝜅
‖𝑔‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘

+ ‖ 𝑓 ‖𝐿∞
𝑡 𝐻

𝑠
𝜘

(
|𝜘|‖𝑔‖𝑋𝜎

𝜅
+ ‖𝑔‖𝑋𝜎+1

𝜅

) ]
, (2.16)

‖ 𝑓 𝑔‖𝑋𝜎
𝜅 ∩𝐿∞

𝑡 𝐻
𝑠+1
𝜘
� |𝜘|−(

1
2+𝑠) ‖ 𝑓 ‖𝑋𝜎

𝜅 ∩𝐿∞
𝑡 𝐻

𝑠+1
𝜘

‖𝑔‖𝑋𝜎
𝜅 ∩𝐿∞

𝑡 𝐻
𝑠+1
𝜘
. (2.17)

All estimates are uniform in 𝜅 and 𝜘.

Proof. By translation invariance, it suffices to prove the estimates for a fixed choice of 𝜓ℎ on the left-
hand side. For simplicity, we take ℎ = 0.

We start with (2.14). By Plancherel, we have

4𝜘2�� 𝜓6 𝑓√
4𝜅2−𝜕2

��2
𝐿2
𝑡 𝐻

𝜎+1 +
�� 𝜓6 𝑓√

4𝜅2−𝜕2

��2
𝐿2
𝑡 𝐻

𝜎+2 ≈
�� (2𝜘−𝜕) (𝜓6 𝑓 )√

4𝜅2−𝜕2

��2
𝐿2
𝑡 𝐻

𝜎+1 .

On the other hand, (2𝜘 − 𝜕) (𝜓6 𝑓 ) = 𝜓6 (2𝜘 − 𝜕) 𝑓 − (𝜓6)′ 𝑓 . Thus, the first inequality in (2.14) follows
from (2.8); the second is elementary.

For the product estimates (2.16) and (2.15), we first decompose dyadically to obtain

‖ 𝜓6 𝑓 𝑔√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

𝜎+1 ≈
∑
𝑁

𝑁 2𝜎+2

𝜅2+𝑁 2

��� ∑
𝑁1 ,𝑁2

��𝑃𝑁 [
(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2

]��
𝐿2
𝑡,𝑥

���2. (2.18)

For the high-low interactions, where 𝑁2 � 𝑁1 ≈ 𝑁 , we use Bernstein’s inequality at low frequency to
bound

‖𝑃𝑁
[
(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2

]
‖𝐿2

𝑡,𝑥
� ‖(𝜓3 𝑓 )𝑁1 ‖𝐿2

𝑡,𝑥
‖(𝜓3𝑔)𝑁2 ‖𝐿∞

𝑡,𝑥

� 𝑁
1
2
2 (|𝜘| + 𝑁2)−(𝑠+1) ‖ (𝜓3 𝑓 )𝑁1 ‖𝐿2

𝑡,𝑥
‖𝑔‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘
.
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After summing in 𝑁, 𝑁1, 𝑁2, we obtain a contribution to RHS (2.18) that is

� |𝜘|−2(𝑠+ 1
2 ) ‖ 𝑓 ‖2

𝑋𝜎
𝜅
‖𝑔‖2

𝐿∞
𝑡 𝐻

𝑠+1
𝜘
.

For the high-high interactions where 𝑁 � 𝑁1 ≈ 𝑁2, we use Bernstein’s inequality at the output
frequency to bound

‖𝑃𝑁
[
(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2

]
‖𝐿2

𝑡,𝑥
� 𝑁

1
2 ‖(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2 ‖𝐿2

𝑡 𝐿
1

� 𝑁
1
2 (|𝜘| + 𝑁1)−(𝑠+1) ‖ (𝜓3 𝑓 )𝑁1 ‖𝐿2

𝑡,𝑥
‖𝑔‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘
.

After summation, we again obtain a contribution to RHS (2.18) that is

� |𝜘|−2(𝑠+ 1
2 ) ‖ 𝑓 ‖2

𝑋𝜎
𝜅
‖𝑔‖2

𝐿∞
𝑡 𝐻

𝑠+1
𝜘
.

For the low-high interactions, where 𝑁1 � 𝑁2 ≈ 𝑁 , we proceed similarly to the case of the high-low
interactions, using Bernstein’s inequality at low frequency to bound

‖𝑃𝑁
[
(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2

]
‖𝐿2

𝑡,𝑥
� ‖(𝜓3 𝑓 )𝑁1 ‖𝐿∞

𝑡,𝑥
‖(𝜓3𝑔)𝑁2 ‖𝐿2

𝑡,𝑥

� 𝑁
1
2
1 (|𝜘| + 𝑁1)−(𝑠+1) ‖ 𝑓 ‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘

‖(𝜓3𝑔)𝑁2 ‖𝐿2
𝑡,𝑥
.

In this case, we obtain a contribution to RHS (2.18) that is

� |𝜘|−2(𝑠+ 1
2 ) ‖ 𝑓 ‖2

𝐿∞
𝑡 𝐻

𝑠+1
𝜘

‖𝑔‖2
𝑋𝜎
𝜅
.

This completes the proof of (2.15). Alternatively, we may bound

‖𝑃𝑁
[
(𝜓3 𝑓 )𝑁1 (𝜓3𝑔)𝑁2

]
‖𝐿2

𝑡,𝑥
� 𝑁

1
2
1 (|𝜘| + 𝑁1)−𝑠 ‖ 𝑓 ‖𝐿∞

𝑡 𝐻
𝑠
𝜘
‖(𝜓3𝑔)𝑁2 ‖𝐿2

𝑡,𝑥
,

to obtain a contribution to RHS (2.18) of

� |𝜘|−2(𝑠+ 1
2 ) ‖ 𝑓 ‖2

𝐿∞
𝑡 𝐻

𝑠
𝜘

(
|𝜘|‖𝑔‖𝑋𝜎

𝜅
+ ‖𝑔‖𝑋𝜎+1

𝜅

)2
,

which completes the proof of (2.16).
The bound (2.17) follows from (2.5) and (2.15). �

2.3. Operator estimates

For 0 < 𝜎 < 1 and |𝜅 | ≥ 1, we define the operator (𝜅 ∓ 𝜕)−𝜎 using the Fourier multiplier (𝜅 ∓ 𝑖𝜉)−𝜎 ,
where, for arg 𝑧 ∈ (−𝜋, 𝜋], we define

𝑧−𝜎 = |𝑧 |−𝜎𝑒−𝑖𝜎 arg 𝑧 . (2.19)

We observe that with this convention, for all |𝜅 | ≥ 1, we have

((𝜅 ∓ 𝜕)−𝜎)∗ = (𝜅 ± 𝜕)−𝜎 ,

and readily obtain the estimate

‖(𝜅 ∓ 𝜕)−𝜎 ‖op ≤ |𝜅 |−𝜎 .
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We will make frequent use of the following Hilbert–Schmidt estimates:

Lemma 2.5. For all 𝑞 ∈ 𝐻𝑠
𝜅 (R),

‖(𝜅 − 𝜕)
𝑠
2 −

1
4 𝑞(𝜅 + 𝜕)

𝑠
2 −

1
4 ‖2

ℑ2
� ‖𝑞‖2

𝐻 𝑠
𝜅
, (2.20)

‖(𝜅 − 𝜕)𝑠𝑞(𝜅 + 𝜕)−
3
4−

𝑠
2 ‖2

ℑ2
� 𝜅−

1
2 (1+2𝑠) ‖𝑞‖2

𝐻 𝑠
𝜅
, (2.21)

‖(𝜅 − 𝜕)−
1
2 𝑞(𝜅 + 𝜕)−

1
2 ‖2

ℑ2
≈

∫
log

(
4 + 𝜉 2

𝜅2

) |𝑞(𝜉) |2√
4𝜅2 + 𝜉2

𝑑𝜉. (2.22)

Moreover, for any real |𝜅 | ≥ 1,

‖(𝜅 − 𝜕)−(1+𝑠) 𝑓 (𝜅 + 𝜕)−(1+𝑠) ‖op � 𝜅−
1
2 (1+2𝑠) ‖ 𝑓 ‖

𝐻
−(1+𝑠)
𝜅

. (2.23)

Proof. By scaling, it suffices to consider 𝜅 = 1. By Plancherel’s theorem, we have

‖(1 − 𝜕)−𝛼𝑞(1 + 𝜕)−𝛽 ‖2
ℑ2

= tr
{
(1 − 𝜕2)−𝛼𝑞(1 − 𝜕2)−𝛽𝑞

}
= 1

2𝜋

∬ |𝑞(𝜉 − 𝜂) |2 𝑑𝜂 𝑑𝜉(
1 + 𝜉2)𝛼 (

1 + 𝜂2)𝛽 .
For the particular choices of 𝛼 and 𝛽 relevant to (2.20) and (2.21), we have∫

1(
1 + (𝜉 + 𝜂)2)𝛼 (

1 + 𝜂2)𝛽 𝑑𝜂 � (4 + 𝜉2)𝑠,

from which we obtain (2.20). The estimate (2.22) can be proved in a parallel manner (see [38, Lemma
4.1]).

Arguing by duality, the key observation to prove (2.23) is that���� ∫ 𝑓 𝑔ℎ 𝑑𝑥

���� � |𝜅 |−
1
2 (1+2𝑠) ‖ 𝑓 ‖

𝐻−(1+𝑠)
𝜅

‖𝑔‖𝐻 1+𝑠
𝜅

‖ℎ‖𝐻 1+𝑠
𝜅
,

which combines the duality of 𝐻𝜎
𝜅 and 𝐻−𝜎

𝜅 with the algebra property (2.5). �

Our next two lemmas are devoted to similar bounds, but employing the local smoothing norm on the
right-hand side. The former employs the local smoothing norm pertinent to (NLS), while the latter is
relevant to (mKdV).

By introducing spatial localization, we obtain the following improvements:

Lemma 2.6. We have the estimates

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ𝑞) (𝜘 + 𝜕)−

1
2 ‖2

𝐿2
𝑡 ℑ2
� |𝜘|−1𝜅−

4𝑠
3

(
‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

+ ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠

)
, (2.24)

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ𝑞) (𝜘 + 𝜕)−

1
2 ‖4

𝐿4
𝑡 ℑ4
� |𝜘|−3 [𝜅 2

3−
8𝑠
3 + |𝜘|−4𝑠] ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠

(
‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

+ ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠

)
, (2.25)

uniformly for |𝜘| ≥ 𝜅
2
3 ≥ 1, 𝑞 ∈ C ([−1, 1];𝐻𝑠) ∩ 𝑋

𝑠+ 1
2

𝜅 , and ℎ ∈ R.

Proof. By translation invariance, it suffices to consider the case ℎ = 0. Given a dyadic number 𝑁 ≥ 1,
we define

Λ𝑁 = (𝜘 − 𝜕)−
1
2 (𝜓𝑞)𝑁 (𝜘 + 𝜕)−

1
2 ,
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presaging the notation (3.5). Employing (2.22), we may bound

‖Λ𝑁 ‖2
𝐿2
𝑡 ℑ2
�

log(4 + 𝑁 2

𝜘2 )
𝑁2𝑠 (|𝜘| + 𝑁)

min
{
‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠 ,
(𝜅 + 𝑁)2

𝑁3 ‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

}
. (2.26)

The estimate (2.24) now follows by taking a square root and summing over 𝑁 ∈ 2N.
From Bernstein’s inequality, we have

‖Λ𝑁 ‖𝐿∞
𝑡 op � |𝜘|−1‖(𝜓𝑞)𝑁 ‖𝐿∞

𝑡,𝑥
� |𝜘|−1𝑁

1
2−𝑠 ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 ,

which combined with the first part of (2.26) yields

‖Λ𝑁 ‖𝐿∞
𝑡 op � 𝑁

−𝑠 min
{
|𝜘|−1𝑁

1
2 , (|𝜘| + 𝑁)−

1
2
[

log(4 + 𝑁 2

𝜘2 )
] 1

2
}
‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 . (2.27)

Thus, we may prove (2.25) via first interpolating between (2.26) and (2.27), and then summing over
𝑁 ∈ 2N. This is most easily accomplished by breaking the sum at 𝜅 2

3 and |𝜘|. �

Lemma 2.7. Fix 2 ≤ 𝑝 < ∞. Then

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ𝑞) (𝜘 + 𝜕)−

1
2 ‖ 𝑝

𝐿
𝑝
𝑡 ℑ𝑝

� |𝜘|1−𝑝
[
𝜅

𝑝
2 ( 1

2−𝑠)−
1
2 +

(
1 + 𝜅2

𝜘2

)
|𝜘|𝑝 (

1
2−𝑠)−3 log𝑝

�� 4𝜘2

𝜅

��] [‖𝑞‖2
𝑋𝑠+1
𝜅

+ ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠

]
,

uniformly for |𝜘| ≥ 𝜅
1
2 ≥ 1, 𝑞 ∈ C ([−1, 1]; 𝐵𝛿) ∩ 𝑋𝑠+1

𝜅 , and ℎ ∈ R. Moreover, the factor (1 + 𝜅2

𝜘2 ) may
be deleted if 𝑝 ≤ 5.

Proof. We mimic the proof of Lemma 2.6, replacing (2.26) with

‖Λ𝑁 ‖2
𝐿2
𝑡 ℑ2
�

log(4 + 𝑁 2

𝜘2 )
𝑁2𝑠 (|𝜘| + 𝑁)

min
{
‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠 ,
(𝜅 + 𝑁)2

𝑁4 ‖𝑞‖2
𝑋𝑠+1
𝜅

}
(2.28)

and reusing (2.27). We simply interpolate and then sum. Note that the logarithmic factor is only necessary
when 𝑝( 1

2 − 𝑠) ∈ {3, 5}. When 𝑝 ≤ 5, the extra factor can be neglected due to the other summand and
the constraint |𝜘| ≥ 𝜅

1
2 . �

In order to apply Lemmas 2.6 and 2.7, we will need to bring some power of the localizing function
𝜓 adjacent to copies of q and r. This is the role of the following:

Lemma 2.8 (Multiplicative commutators). For |𝜘|, |𝜅 | ≥ 1, 𝜎 ∈ R, and any integer |ℓ | ≤ 12, we have
the following estimate uniformly for ℎ ∈ R and 𝑢 ∈ S ,

‖𝜓ℓℎ (𝜘 − 𝜕)
−1𝜓−ℓ

ℎ 𝑢‖𝐻 𝜎
𝜅
�𝜎 ‖(𝜘 − 𝜕)−1𝑢‖𝐻 𝜎

𝜅
. (2.29)

Further, if 𝑁 ≥ 1 is a dyadic integer, 1 ≤ 𝑝 ≤ ∞, and 𝑛 ≥ 0, we have

‖𝜓ℓℎ
𝜕𝑛

4𝜅2−𝜕2𝜓
−ℓ
ℎ 𝑃𝑁 ‖𝐿𝑝→𝐿𝑝 �𝑛 𝑁 𝑛

(𝜅+𝑁 )2 . (2.30)

Proof. By translation invariance, it suffices to consider the case ℎ = 0.
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Using Schur’s test and the explicit kernel (3.3), we find

‖𝜓−ℓ (𝜘 − 𝜕)−1𝜓ℓ ‖𝐿𝑝→𝐿𝑝 � 𝜘−1. (2.31)

We will need this shortly. It is important, here, that the exponential decay of the convolution kernel is
faster than that of the function 𝜓ℓ . This is a reason both for the large constant 99 appearing in (1.5) and
for requiring a bound on the size of ℓ.

We first consider the estimate (2.29). By duality, it suffices to consider the case 𝜎 ≥ 0. For 𝑧 ∈ C,
we write

𝐵ℓ (𝑧) := (4𝜅2 − 𝜕2)
𝑧
2 𝜓ℓ (𝜘 − 𝜕)−1𝜓−ℓ (𝜘 − 𝜕) (4𝜅2 − 𝜕2)−

𝑧
2 ,

with the intention of using complex interpolation to prove ‖𝐵ℓ (𝜎)‖ �𝜎,ℓ 1, which implies (2.29). As
imaginary powers of 𝜅2 − 𝜕2 are unitary, we find

‖𝐵ℓ (𝜎)‖op ≤ ‖𝐵ℓ (0)‖ (𝑚−𝜎)/𝑚
op ‖𝐵ℓ (𝑚)‖𝜎/𝑚

op

for any integer 𝑚 ≥ 𝜎. For concreteness, we choose the least such integer.
Combining |𝜓 ′ | � 𝜓 and (2.31) with the rewriting

𝐵ℓ (0) = 1 + 𝜓ℓ (𝜘 − 𝜕)−1𝜓−ℓ [𝜓ℓ (𝜕𝜓−ℓ ) ] , yields ‖𝐵ℓ (0)‖op � 1.

Turning our attention now to 𝐵ℓ (𝑚), we notice that

𝐵̃ℓ (𝑚) = (2𝜅 + 𝜕)𝑚𝐵ℓ (0) (2𝜅 + 𝜕)−𝑚 satisfies ‖𝐵̃ℓ (𝑚)‖op = ‖𝐵ℓ (𝑚)‖op;

moreover, we may expand 𝐵̃ℓ (𝑚) as

1 +
∑ ( 𝑚

𝑚1 ,𝑚2 ,𝑚3 ,𝑚4

) [
𝜓−ℓ (𝜕𝑚2𝜓ℓ

) ] [
𝜓ℓ (𝜘 − 𝜕)−1𝜓−ℓ ] [𝜓ℓ (𝜕1+𝑚3𝜓−ℓ ) ] [ (2𝜅)𝑚1𝜕𝑚4

(2𝜅+𝜕)𝑚
]
,

where the sum is over all decompositions 𝑚 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚4 using nonnegative integers. The key
observation that finishes the proof is that each operator in square brackets is bounded; indeed, for every
𝑛 ≥ 0, we have

|𝜕𝑛𝜓(𝑥) | �𝑛 𝜓(𝑥), whence ‖𝜓−ℓ (𝜕𝑛𝜓ℓ)‖𝐿∞ �𝑛 1 (2.32)

for any integers ℓ and 𝑛 ≥ 0.
The proof of (2.30) employs similar ideas: We first write

𝜓ℓ 𝜕𝑛

4𝜅2−𝜕2𝜓
−ℓ𝑃𝑁 =

𝑛∑
𝑚=0

( 𝑛
𝑚

)
𝜓ℓ 1

4𝜅2−𝜕2 (𝜕𝑚𝜓−ℓ) (4𝜅2 − 𝜕2) 𝜕𝑛−𝑚

4𝜅2−𝜕2 𝑃𝑁 ,

which shows that we need only prove

‖(4𝜅2 − 𝜕2) (𝜕𝑚𝜓−ℓ) 1
2𝜅−𝜕𝜓

ℓ𝜓−ℓ 1
2𝜅+𝜕𝜓

ℓ ‖𝐿𝑝′→𝐿𝑝′ �𝑚 1. (2.33)

This is easily verified, by commuting the derivatives and employing (2.31) and (2.32). �

3. The diagonal Green’s functions

The role of this section is to introduce three central characters in the analysis, namely, 𝑔12, 𝑔21, and 𝛾,
and to develop some basic estimates for them. What unifies these objects is that they all arise from the
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Green’s function associated to the Lax operator 𝐿(𝜅) introduced in (1.9). Recall

𝐿(𝜅) = 𝐿0 (𝜅) +
[

0 𝑞
−𝑟 0

]
, where 𝐿0 (𝜅) :=

[
𝜅 − 𝜕 0

0 𝜅 + 𝜕

]
. (3.1)

We shall only consider 𝜅 ∈ R with |𝜅 | ≥ 1. Note that

𝐿(𝜅)∗ =
{
−𝐿(−𝜅) in the defocusing case𝑟 = 𝑞,
−[ 1 0

0 −1 ]𝐿(−𝜅) [ 1 0
0 −1 ] in the focusing case𝑟 = −𝑞.

(3.2)

Evidently, both identities hold for 𝐿0, since then 𝑞 = 𝑟 = 0.
We will be constructing the Green’s function, which is matrix valued, perturbatively from the case

𝑞 = 𝑟 = 0. By direct computation, one finds that

𝑅0(𝜅) := 𝐿0 (𝜅)−1 =

[
(𝜅 − 𝜕)−1 0

0 (𝜅 + 𝜕)−1

]
admits the integral kernel

𝐺0(𝑥, 𝑦; 𝜅) = 𝑒−𝜅 |𝑥−𝑦 |
[
1{𝑥<𝑦 } 0

0 1{𝑦<𝑥 }

]
for 𝜅 > 0. (3.3)

For 𝜅 < 0, we may use 𝐺0 (𝑥, 𝑦;−𝜅) = −𝐺0(𝑦, 𝑥; 𝜅), which follows from (3.2).
Formally, at least, the resolvent identity indicates that 𝑅(𝜅) := 𝐿(𝜅)−1 can be expressed as

𝑅 = 𝑅0 +
∞∑
ℓ=1

(−1)ℓ
√
𝑅0

(√
𝑅0(𝐿 − 𝐿0)

√
𝑅0

)ℓ √
𝑅0. (3.4)

Here, and below, fractional powers of 𝑅0 are defined via (2.19). This series forms the foundation of
everything in this section; its convergence will be verified shortly as part of proving Proposition 3.1.
With a view to this, we adopt the following notations:

Λ := (𝜅 − 𝜕)−
1
2 𝑞(𝜅 + 𝜕)−

1
2 and Γ := (𝜅 + 𝜕)−

1
2 𝑟 (𝜅 − 𝜕)−

1
2 , (3.5)

whose significance is that

√
𝑅0 (𝐿 − 𝐿0)

√
𝑅0 =

[
0 Λ
−Γ 0

]
. (3.6)

These operators also satisfy

‖Λ‖ℑ2 = ‖Γ‖ℑ2 � |𝜅 |−(𝑠+
1
2 ) ‖𝑞‖𝐻 𝑠

𝜅
, (3.7)

as is easily deduced from either (2.20) or (2.22).

Proposition 3.1 (Existence of the Green’s function). There exists 𝛿 > 0 so that 𝐿(𝜅) is invertible, as an
operator on 𝐿2 (R), for all 𝑞 ∈ 𝐵𝛿 and all real |𝜅 | ≥ 1. The inverse 𝑅(𝜅) := 𝐿(𝜅)−1 admits an integral
kernel 𝐺 (𝑥, 𝑦; 𝜅) so that

𝑞 ↦→ 𝐺 − 𝐺0 (3.8)

https://doi.org/10.1017/fmp.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.4


Forum of Mathematics, Pi 19

is a continuous mapping from 𝐻𝑠
𝜅 (R) to the space of Hilbert–Schmidt operators from 𝐻

− 3
4−

𝑠
2

𝜅 to 𝐻
3
4+

𝑠
2

𝜅 .
Moreover, 𝐺 − 𝐺0 is continuous as a function of (𝑥, 𝑦) ∈ R2. Lastly,

𝜕𝑥𝐺 (𝑥, 𝑦; 𝜅) =
[
𝜅 𝑞(𝑥)

𝑟 (𝑥) −𝜅

]
𝐺 (𝑥, 𝑦; 𝜅) +

[
−𝛿(𝑥 − 𝑦) 0

0 𝛿(𝑥 − 𝑦)

]
, (3.9)

𝜕𝑦𝐺 (𝑥, 𝑦; 𝜅) = 𝐺 (𝑥, 𝑦; 𝜅)
[
−𝜅 𝑞(𝑦)
𝑟 (𝑦) 𝜅

]
+
[
𝛿(𝑥 − 𝑦) 0

0 −𝛿(𝑥 − 𝑦)

]
, (3.10)

in the sense of distributions.

Proof. From (3.7), we have��√𝑅0 (𝐿 − 𝐿0)
√
𝑅0

��
ℑ2

≤
√

2‖Λ‖ℑ2 � ‖𝑞‖𝐻 𝑠
𝜅
� 𝛿

uniformly for |𝜅 | ≥ 1. Thus, for 𝛿 > 0 sufficiently small, the series (3.4) converges in operator norm
uniformly for |𝜅 | ≥ 1. It is elementary to then verify that the sum acts as a (two-sided) inverse to 𝐿(𝜅).

This argument also yields that 𝑅 − 𝑅0 ∈ ℑ2. In particular, it admits an integral kernel in 𝐿2 (R2). To
prove (3.8) is continuous, we only need to verify that the series defining 𝑅 − 𝑅0 converges in the sense
of Hilbert–Schmidt operators from 𝐻

− 3
4−

𝑠
2

𝜅 to 𝐻
3
4+

𝑠
2

𝜅 . This follows readily from (2.20).
The continuity of 𝐺 − 𝐺0 as a function of (𝑥, 𝑦) follows from the Hilbert–Schmidt bound on (3.8)

because 3
4 + 𝑠

2 >
1
2 .

For regular q, the identities (3.9) and (3.10) precisely express the fact that G is an integral kernel for
𝑅(𝜅). The issue of how to make sense of them for irregular q is settled by (3.8). �

From the jump discontinuities evident in (3.3), we see that one cannot expect to restrict 𝐺 (𝑥, 𝑦; 𝜅) to
the 𝑥 = 𝑦 diagonal in a meaningful way. However, as we have just shown, 𝐺 − 𝐺0 is continuous. This
allows us to unambiguously define the continuous functions

𝛾(𝑥; 𝜅) := sgn(𝜅)
[
𝐺11(𝑥, 𝑥; 𝜅) + 𝐺22 (𝑥, 𝑥; 𝜅)

]
− 1,

𝑔12 (𝑥; 𝜅) := sgn(𝜅)𝐺12 (𝑥, 𝑥; 𝜅),
𝑔21 (𝑥; 𝜅) := sgn(𝜅)𝐺21 (𝑥, 𝑥; 𝜅).

Here, subscripts indicate matrix entries. While the inclusion of the factor sgn(𝜅) may seem unnecessary,
it has the esthetical virtue of eliminating corresponding factors in many subsequent formulas, such as
(3.12)–(3.14) below.

If 𝑞 ∈ 𝐵𝛿 ∩ S , we may use the identities (3.9) and (3.10) for G to obtain

𝛾′ = 2 (𝑞𝑔21 + 𝑟𝑔12) , (3.11)

𝑔′12 = 2𝜅𝑔12 + 𝑞[𝛾 + 1], (3.12)

𝑔′21 = −2𝜅𝑔21 + 𝑟 [𝛾 + 1], (3.13)

in the sense of distributions. Combining (3.11), (3.12), and (3.13) yields the further identity

2(𝜅 − 𝜘)
[
𝑔12(𝜅)𝑔21 (𝜘) − 𝑔21 (𝜅)𝑔12 (𝜘)

]
= 𝜕𝑥

{
𝑔12 (𝜅)𝑔21 (𝜘) + 𝑔21 (𝜅)𝑔12 (𝜘) − [𝛾 (𝜅)+1] [𝛾 (𝜘)+1]

2
}
, (3.14)

which recurs several times in our analysis. From (3.2), we also have

𝛾(𝜅) = 𝛾̄(−𝜅) and 𝑔12 (𝜅) = ±𝑔̄21 (−𝜅). (3.15)
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From the series representation (3.4) of the resolvent, we naturally can deduce corresponding series
representations of 𝑔12, 𝑔21, and 𝛾. These are effectively power-series in terms of q and r, albeit with
each term being a paraproduct, rather than a monomial. In what follows, we shall often need to discuss
individual terms in these series so, being sensitive to the order of such terms in q and r, we adopt the
following notations:

𝑔 [2𝑚+1]
12 (𝜅) := sgn(𝜅) (−1)𝑚−1

〈
𝛿𝑥 , (𝜅 − 𝜕)−

1
2 Λ (ΓΛ)𝑚 (𝜅 + 𝜕)−

1
2 𝛿𝑥

〉
, (3.16)

𝑔 [2𝑚+1]
21 (𝜅) := sgn(𝜅) (−1)𝑚

〈
𝛿𝑥 , (𝜅 + 𝜕)−

1
2 Γ (ΛΓ)𝑚 (𝜅 − 𝜕)−

1
2 𝛿𝑥

〉
, (3.17)

with 𝑔 [2𝑚]
12 (𝜅) = 𝑔 [2𝑚]

21 (𝜅) := 0, and similarly, 𝛾 [2𝑚+1] (𝜅) := 0 and

𝛾 [2𝑚] (𝜅) := (−1)𝑚 sgn(𝜅)
〈
𝛿𝑥 , (𝜅 − 𝜕)−

1
2 (ΛΓ)𝑚(𝜅 − 𝜕)−

1
2 𝛿𝑥

〉
+ (−1)𝑚 sgn(𝜅)

〈
𝛿𝑥 , (𝜅 + 𝜕)−

1
2 (ΓΛ)𝑚(𝜅 + 𝜕)−

1
2 𝛿𝑥

〉
. (3.18)

In this way, we see that

𝑔12(𝜅) =
∞∑
ℓ=1

𝑔 [ℓ ]12 (𝜅), 𝑔21 (𝜅) =
∞∑
ℓ=1

𝑔 [ℓ ]21 (𝜅), and 𝛾(𝜅) =
∞∑
ℓ=2

𝛾 [ℓ ] (𝜅). (3.19)

In particular, we note that the expansion of 𝑔12 contains only terms with q appearing once more than r,
while the expansion of 𝛾 contains only terms of even order, with q and r appearing equally. Analogous
to our notation for individual terms, we write tails of these series as

𝑔 [≥𝑚]
12 (𝜅) :=

∞∑
ℓ=𝑚

𝑔 [ℓ ]12 (𝜅).

We also extend these “square bracket” notations to algebraic combinations of these series (see, for
example, (3.38)).

For small indices, it is possible to find explicit representations of the individual paraproducts via the
explicit form of 𝐺0; however, this quickly becomes overwhelming. A more systematic approach can be
based on iteration of the identities

𝑔12 = −(2𝜅 − 𝜕)−1 [𝑞 + 𝛾𝑞], 𝑔21 = (2𝜅 + 𝜕)−1 [𝑟 + 𝛾𝑟], and 𝛾 = 2𝑔12𝑔21 − 1
2𝛾

2,

which follow from (3.12), (3.13), and (3.31), respectively. Pursuing either method, one is led to

𝑔 [1]12 (𝜅) = − 𝑞
2𝜅−𝜕 , 𝑔 [3]12 (𝜅) = 2

2𝜅−𝜕
(
𝑞 · 𝑟

2𝜅+𝜕 · 𝑞
2𝜅−𝜕

)
, (3.20)

𝑔 [1]21 (𝜅) = 𝑟
2𝜅+𝜕 , 𝑔 [3]21 (𝜅) = −2

2𝜅+𝜕
(
𝑟 · 𝑞

2𝜅−𝜕 · 𝑟
2𝜅+𝜕

)
, (3.21)

as well as

𝛾 [2] (𝜅) = −2 𝑞
2𝜅−𝜕 · 𝑟

2𝜅+𝜕 , (3.22)

𝛾 [4] (𝜅) = 𝑞
2𝜅−𝜕 · 4

2𝜅+𝜕
(
𝑟 · 𝑞

2𝜅−𝜕 · 𝑟
2𝜅+𝜕

)
+ 4

2𝜅−𝜕
(
𝑞 · 𝑟

2𝜅+𝜕 · 𝑞
2𝜅−𝜕

)
· 𝑟

2𝜅+𝜕 (3.23)
− 2 𝑞

2𝜅−𝜕 · 𝑟
2𝜅+𝜕 · 𝑞

2𝜅−𝜕 · 𝑟
2𝜅+𝜕 .

Here, dots emphasize occurrences of pointwise multiplication.
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With these preliminaries out of the way, we are now ready to present some basic estimates on 𝑔12,
𝑔21, and 𝛾. Propositions 3.2 and 3.3 focus on properties that hold pointwise in time; later in Lemma 3.4
and Corollary 3.5, we employ local smoothing spaces.

Proposition 3.2 (Properties of 𝑔12 and 𝑔21). There exists 𝛿 > 0 so that for all real |𝜅 | ≥ 1, the maps
𝑞 ↦→ 𝑔12 (𝜅) and 𝑞 ↦→ 𝑔21 (𝜅) are (real analytic) diffeomorphisms of 𝐵𝛿 into𝐻𝑠+1 satisfying the estimates

‖𝑔12 (𝜅)‖𝐻 𝑠+1
𝜅

+ ‖𝑔21 (𝜅)‖𝐻 𝑠+1
𝜅
� ‖𝑞‖𝐻 𝑠

𝜅
. (3.24)

Further, the remainders satisfy the estimate

‖𝑔 [≥3]
12 (𝜅)‖𝐻 𝑠+1

𝜅
+ ‖𝑔 [≥3]

21 (𝜅)‖𝐻 𝑠+1
𝜅
� |𝜅 |−(2𝑠+1) ‖𝑞‖3

𝐻 𝑠
𝜅
, (3.25)

uniformly in 𝜅. Finally, if q is Schwartz, then so are 𝑔12 (𝜅) and 𝑔21(𝜅).

Proof. It suffices to consider the case 𝜅 ≥ 1, as the case 𝜅 ≤ −1 is similar; moreover, by (3.15), it
suffices to consider 𝑔12 (𝜅). Recalling (3.20), we obtain

‖𝑔 [1]12 (𝜅)‖𝐻 𝑠+1
𝜅

= ‖𝑞‖𝐻 𝑠
𝜅
. (3.26)

To bound the remaining terms in the series, we employ duality and Lemma 2.5:��〈 𝑓 , 𝑔 [≥3]
12 (𝜅)〉

�� ≤ ‖(𝜅 + 𝜕)−(1+𝑠) 𝑓 (𝜅 − 𝜕)−(1+𝑠) ‖op‖(𝜅 − 𝜕)𝑠𝑞(𝜅 + 𝜕)−(
3
4+

𝑠
2 ) ‖2

ℑ2

×
∞∑
ℓ=1

‖(𝜅 − 𝜕)−
1
4+

𝑠
2 𝑞(𝜅 + 𝜕)−

1
4+

𝑠
2 ‖2ℓ−1

ℑ2
𝜅−(ℓ−1) (1+2𝑠)

� |𝜅 |−(2𝑠+1) ‖ 𝑓 ‖
𝐻

−(1+𝑠)
𝜅

‖𝑞‖3
𝐻 𝑠

𝜅
,

provided 𝛿 > 0 is sufficiently small. This proves (3.25) and completes the proof of (3.24).
We wish to apply the inverse function theorem to obtain the diffeomorphism property. At the

linearized level, we already have

𝛿𝑔12
𝛿𝑞 (𝜅)

��
𝑞=0 = −(2𝜅 − 𝜕)−1 and 𝛿𝑔12

𝛿𝑟 (𝜅)
��
𝑞=0 = 0

which is an isomorphism, as noted already in (3.26). At the nonlinear level, we apply the resolvent
identity, which shows that for any test function 𝑓 ∈ S , we have

𝑑

𝑑𝜀

����
𝜀=0

𝐺 (𝑥, 𝑧; 𝑞 + 𝜀 𝑓 ) = −
∫

𝐺 (𝑥, 𝑦; 𝑞)
[

0 𝑓 (𝑦)
∓ 𝑓 (𝑦) 0

]
𝐺 (𝑦, 𝑧; 𝑞) 𝑑𝑦.

Repeating the analysis used to prove (3.25), we find�� 𝛿𝑔12
𝛿𝑟 (𝜅)

��
𝐻 𝑠

𝜅 →𝐻 𝑠+1
𝜅

+
�� 𝛿𝑔12

𝛿𝑞 (𝜅) + (2𝜅 − 𝜕)−1��
𝐻 𝑠

𝜅 →𝐻 𝑠+1
𝜅
� 𝛿2 |𝜅 |−(2𝑠+1) � 𝛿2

and so deduce that the diffeomorphism property holds for 𝛿 > 0 sufficiently small, which can be chosen
independent of |𝜅 | ≥ 1.

Next, we seek to show 𝑔12 ∈ S whenever 𝑞 ∈ 𝐵𝛿 ∩ S , beginning with a consideration of derivatives.
For any ℎ ∈ R, we have

𝑔12(𝑥 + ℎ; 𝑞) = 𝑔12(𝑥; 𝑞(· + ℎ)).
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In particular, differentiating n times with respect to h and evaluating at ℎ = 0, we may use duality to
bound

‖𝜕𝑛𝑥 𝑔12(𝜅)‖𝐻 𝑠+1 ≤
∞∑
ℓ=0

∑
𝜎∈N2ℓ+1
|𝜎 |=𝑛

(
𝑛

𝜎

)
|𝜅 |−(2𝑠+1)ℓ

2ℓ+1∏
𝑚=1

‖𝜕𝜎𝑚
𝑥 𝑞‖𝐻 𝑠

≤
∞∑
ℓ=0

𝐶2ℓ+1 (2ℓ + 1)𝑛 |𝜅 |−(2𝑠+1)ℓ ‖𝑞‖2ℓ
𝐻 𝑠 ‖𝜕𝑛𝑥 𝑞‖𝐻 𝑠 �𝑛 ‖𝜕𝑛𝑥 𝑞‖𝐻 𝑠 ,

where the constant 𝐶 = 𝐶 (𝑠) > 0 may be chosen independent of 𝜅. To handle spatial weights, we
observe that

𝑥𝑛 (𝜅 − 𝜕)−1 =
𝑛∑

𝑚=0
(−1)𝑚 𝑛!

(𝑛 − 𝑚)! (𝜅 − 𝜕)
−𝑚−1𝑥𝑛−𝑚.

In particular, by duality, we may bound

‖𝑥𝑛𝑔12 (𝜅)‖𝐻 𝑠+1 ≤
∞∑
ℓ=0

𝑛∑
𝑚=0

𝐶2ℓ+1 𝑛!
(𝑛 − 𝑚)! |𝜅 |

−𝑚−(2𝑠+1)ℓ ‖𝑥𝑛−𝑚𝑞‖𝐻 𝑠 ‖𝑞‖2ℓ
𝐻 𝑠

�𝑛 ‖〈𝑥〉𝑛𝑞‖𝐻 𝑠 .

Combining these, we see that if 𝑞 ∈ 𝐵𝛿 ∩ S , then 𝑔12(𝜅) ∈ S . �

Proposition 3.3 (Properties of 𝛾). There exists 𝛿 > 0 so that for all real |𝜅 | ≥ 1, the map 𝑞 ↦→ 𝛾(𝜅) is
bounded from 𝐵𝛿 to 𝐿1 ∩ 𝐻𝑠+1, and we have the estimates

‖𝛾(𝜅)‖𝐻 𝑠+1
𝜅
� |𝜅 |−(𝑠+

1
2 ) ‖𝑞‖2

𝐻 𝑠
𝜅
, (3.27)

‖𝛾(𝜅)‖𝐿∞ � |𝜅 |−(2𝑠+1) ‖𝑞‖2
𝐻 𝑠

𝜅
, (3.28)

‖𝛾(𝜅)‖𝐿1 � ‖𝑞‖2
𝐻−1

𝜅
+ |𝜅 |−2(2𝑠+1)−1‖𝑞‖4

𝐻 𝑠
𝜅
, (3.29)

‖𝛾 [≥4] (𝜅)‖𝐿1 � |𝜅 |−2(2𝑠+1)−1‖𝑞‖4
𝐻 𝑠

𝜅
, (3.30)

uniformly in 𝜅. Further, we have the quadratic identity

𝛾 + 1
2𝛾

2 = 2𝑔12𝑔21, (3.31)

and if q is Schwartz, then so is 𝛾(𝜅).

Proof. Once again, it suffices to consider the case 𝜅 ≥ 1. Using (2.5) and (3.22), we obtain

‖𝛾 [2] ‖𝐻 𝑠+1
𝜅
� 𝜅−(𝑠+

1
2 ) ‖𝑞‖2

𝐻 𝑠
𝜅
.

To handle 𝛾 [≥4] , we use the series representation (3.19) and the same duality argument used to prove
(3.25). The estimate (3.28) then follows from (3.27) via (2.4).

Setting 𝜘 = 𝜅 in (3.14), we find that

𝜕𝑥
{
2𝑔12 (𝑥; 𝜅)𝑔21 (𝑥; 𝜅) − 1

2𝛾(𝑥; 𝜅)2 − 𝛾(𝑥; 𝜅)
}
= 0.

From (3.24) and (3.27), we see that the term in braces vanishes as |𝑥 | → ∞. Thus, the quadratic identity
(3.31) follows by integration.
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By using this quadratic identity, we may write

𝛾 [≥4] = − 1
2𝛾

2 + 2𝑔 [≥3]
12 · 𝑔21 + 2𝑔 [1]12 · 𝑔 [≥3]

21 . (3.32)

By Proposition 3.2 and (3.27), we have

‖𝑔 [≥3]
12 ‖𝐿2 + ‖𝑔 [≥3]

21 ‖𝐿2 � |𝜅 |−(1+𝑠)
[
‖𝑔 [≥3]

12 ‖𝐻 𝑠+1
𝜅

+ ‖𝑔 [≥3]
21 ‖𝐻 𝑠+1

𝜅

]
� |𝜅 |−(2+3𝑠) ‖𝑞‖3

𝐻 𝑠
𝜅

‖𝑔12‖𝐿2 + ‖𝑔21‖𝐿2 � |𝜅 |−(1+𝑠)
(
‖𝑔12‖𝐻 𝑠+1

𝜅
+ ‖𝑔21‖𝐻 𝑠+1

𝜅

)
� |𝜅 |−(1+𝑠) ‖𝑞‖𝐻 𝑠

𝜅

‖𝛾‖𝐿2 � |𝜅 |−(1+𝑠) ‖𝛾‖𝐻 𝑠+1
𝜅
� |𝜅 |−(

3
2+2𝑠) ‖𝑞‖2

𝐻 𝑠
𝜅
.

Thus

‖𝛾 [≥4] ‖𝐿1 � ‖𝛾‖2
𝐿2 + ‖𝑔 [≥3]

12 ‖𝐿2 ‖𝑔21‖𝐿2 + ‖𝑔 [1]12 ‖𝐿2 ‖𝑔 [≥3]
21 ‖𝐿2 � |𝜅 |−(3+4𝑠) ‖𝑞‖4

𝐻 𝑠
𝜅
,

which yields the estimate (3.30). The estimate (3.29) then follows from applying the Cauchy-Schwarz
inequality to (3.22).

If 𝑞 ∈ 𝐵𝛿 ∩ S , then from Proposition 3.2 and the quadratic identity (3.31), we see that 𝛾 + 1
2𝛾

2 ∈ S .
As 𝐻𝑠+1 is an algebra, we may then bound

‖𝜕𝑛𝑥 𝛾‖𝐻 𝑠+1 (1 − ‖𝛾‖𝐻 𝑠+1 ) ≤
���𝜕𝑛𝑥 (

𝛾 + 1
2𝛾

2
)���
𝐻 𝑠+1

+
(
2𝑛−1 − 1

)
‖𝛾‖2

𝐻𝑛+𝑠 ,

‖𝑥𝑛𝛾‖𝐻 𝑠+1 (1 − ‖𝛾‖𝐻 𝑠+1 ) ≤
���𝑥𝑛 (

𝛾 + 1
2𝛾

2
)���
𝐻 𝑠+1

,

so using the estimate (3.27), we see that 𝛾(𝜅) ∈ S , provided 0 < 𝛿 � 1 is sufficiently small. �

Next, we consider local smoothing estimates for 𝑔12 = 𝑔12(𝜘) and 𝛾 = 𝛾(𝜘). We consider both (NLS)
and (mKdV) here, and so must allow two values for 𝜎, namely, 𝑠 + 1

2 and 𝑠 + 1. In fact, the proof below
works uniformly on the interval [𝑠 + 1

2 , 𝑠 + 1].

Lemma 3.4 (Local smoothing estimates for 𝑔12, 𝛾). Let 𝜎 ∈ {𝑠 + 1
2 , 𝑠 + 1}. Then there exists 𝛿 > 0, so

that for all real |𝜅 | ≥ 1, |𝜘| ≥ 1, and 𝑞 ∈ C ([−1, 1]; 𝐵𝛿) ∩ 𝑋𝜎
𝜅 , the functions 𝑔12 = 𝑔12 (𝜘) and 𝛾 = 𝛾(𝜘)

satisfy the estimates

|𝜘|‖𝑔12‖𝑋𝜎
𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅
� ‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 , (3.33)

|𝜘|‖𝑔 [≥3]
12 ‖𝑋𝜎

𝜅
+ ‖𝑔 [≥3]

12 ‖𝑋𝜎+1
𝜅
� |𝜘|−(2𝑠+1) ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠
𝜘

(
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠

)
, (3.34)

|𝜘|‖𝛾‖𝑋𝜎
𝜅
+ ‖𝛾‖𝑋𝜎+1

𝜅
� |𝜘|−(𝑠+

1
2 ) ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠
𝜘

(
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠

)
, (3.35)

where the implicit constants are independent of 𝜅, 𝜘.

Proof. Applying the product estimate (2.15) with the quadratic identity (3.31) and the symmetry relation
(3.15), we may bound

|𝜘|‖𝛾‖𝑋𝜎
𝜅
+ ‖𝛾‖𝑋𝜎+1

𝜅
� |𝜘|−(𝑠+

1
2 ) ‖𝛾‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘

(
|𝜘|‖𝛾‖𝑋𝜎

𝜅
+ ‖𝛾‖𝑋𝜎+1

𝜅

)
+ |𝜘|−(𝑠+

1
2 ) max

±𝜘
‖𝑔12‖𝐿∞

𝑡 𝐻
𝑠+1
𝜘

max
±𝜘

(
|𝜘|‖𝑔12‖𝑋𝜎

𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅

)
.

In view of (3.27), taking 0 < 𝛿 � 1 sufficiently small (independently of 𝜘) and using (3.24), we get

|𝜘|‖𝛾‖𝑋𝜎
𝜅
+ ‖𝛾‖𝑋𝜎+1

𝜅
� |𝜘|−(𝑠+

1
2 ) ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠
𝜘

max
±𝜘

(
|𝜘|‖𝑔12‖𝑋𝜎

𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅

)
. (3.36)
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As a consequence, the estimate (3.35) follows from the estimate (3.33).
To prove the estimate (3.33), we first apply the estimate (2.14) to obtain

|𝜘|‖𝑔12‖𝑋𝜎
𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅
� ‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + |𝜘|‖𝑔 [≥3]

12 ‖𝑋𝜎
𝜅
+ ‖𝑔 [≥3]

12 ‖𝑋𝜎+1
𝜅

. (3.37)

From the identity (3.12) for 𝑔12, we see that 𝑔 [≥3]
12 = −(2𝜘− 𝜕)−1(𝑞𝛾). Thus, employing (2.14), we find

|𝜘|‖𝑔 [≥3]
12 ‖𝑋𝜎

𝜅
+ ‖𝑔 [≥3]

12 ‖𝑋𝜎+1
𝜅
� ‖𝑞𝛾‖𝑋𝜎

𝜅
+ ‖𝑞𝛾‖𝐿∞

𝑡 𝐻
𝑠 .

To continue, we use (2.16) together with (3.27) and (3.36) for 𝛾 to obtain

‖𝑞𝛾‖𝑋𝜎
𝜅
� |𝜘|−(2𝑠+1) ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠
𝜘

[
‖𝑞‖𝑋𝜎

𝜅
+ max

±𝜘

(
|𝜘|‖𝑔12‖𝑋𝜎

𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅

) ]
.

Using (2.6) and (3.27), we may bound

‖𝑞𝛾‖𝐿∞
𝑡 𝐻

𝑠 � |𝜘|−(2𝑠+1) ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠 ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠
𝜘
.

As a consequence,

max
±𝜘

(
|𝜘|‖𝑔 [≥3]

12 ‖𝑋𝜎
𝜅
+ ‖𝑔 [≥3]

12 ‖𝑋𝜎+1
𝜅

)
� |𝜘|−(2𝑠+1) ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠
𝜘

[
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + max

±𝜘

(
|𝜘|‖𝑔12‖𝑋𝜎

𝜅
+ ‖𝑔12‖𝑋𝜎+1

𝜅

) ]
.

Combining this with (3.37) and choosing 0 < 𝛿 � 1 sufficiently small (independently of 𝜅, 𝜘), we
obtain (3.33) and so also (3.34). �

Due to the structure of our microscopic conservation law, the functions 𝑔12 and 𝛾 will frequently
occur in the combination 𝑔12 (𝜘)

2+𝛾 (𝜘) . Naturally, this may also be written as a power series in q and r, and we
adapt our square brackets notation accordingly:

𝑔12
2+𝛾 =

( 𝑔12
2+𝛾

) [1] + ( 𝑔12
2+𝛾

) [≥3] =
( 𝑔12

2+𝛾
) [1] + ( 𝑔12

2+𝛾
) [3] + ( 𝑔12

2+𝛾
) [≥5]

,

where the leading order terms are given by( 𝑔12
2+𝛾

) [1] = 1
2𝑔

[1]
12 and

( 𝑔12
2+𝛾

) [3] = 1
2𝑔

[3]
12 − 1

4𝑔
[1]
12 𝛾

[2] , (3.38)

and the remainders by ( 𝑔12
2+𝛾

) [≥3] = 1
2𝑔

[≥3]
12 − 𝑔12𝛾

2(2+𝛾) , (3.39)

( 𝑔12
2+𝛾

) [≥5] = 1
2𝑔

[≥5]
12 − 1

4𝑔
[1]
12 𝛾

[≥4] − 1
4𝑔

[≥3]
12 𝛾 + 𝑔12𝛾

2

4(2+𝛾) . (3.40)

Our earlier results yield the following information about these quantities:

Corollary 3.5. Let 𝜎 ∈ {𝑠 + 1
2 , 𝑠 + 1}. Then there exists 𝛿 > 0 so that for all real |𝜅 | ≥ 1 and |𝜘| ≥ 1,

we have the estimates

|𝜘|
�� 𝑔12 (𝜘)

2+𝛾 (𝜘)
��
𝐻 𝑠 +

�� 𝑔12 (𝜘)
2+𝛾 (𝜘)

��
𝐻 𝑠+1 � ‖𝑞‖𝐻 𝑠 , (3.41)

|𝜘|
��( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]��

𝐻 𝑠 +
��( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]��

𝐻 𝑠+1 � |𝜘|−(2𝑠+1) ‖𝑞‖2
𝐻 𝑠

𝜘
‖𝑞‖𝐻 𝑠 , (3.42)
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for any 𝑞 ∈ 𝐵𝛿 . Moreover, for 𝑞 ∈ C ([−1, 1]; 𝐵𝛿) ∩ 𝑋𝜎
𝜅 ,

|𝜘|
�� 𝑔12 (𝜘)

2+𝛾 (𝜘)
��
𝑋𝜎
𝜅
+
�� 𝑔12 (𝜘)

2+𝛾 (𝜘)
��
𝑋𝜎+1
𝜅
� ‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 , (3.43)

|𝜘|
��( 𝑔12

2+𝛾
) [≥3]��

𝑋𝜎
𝜅
+
��( 𝑔12

2+𝛾
) [≥3]��

𝑋𝜎+1
𝜅
� |𝜘|−(2𝑠+1) ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠
𝜘

(
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠

)
, (3.44)

|𝜘|
��( 𝑔12

2+𝛾
) [≥5]��

𝑋𝜎
𝜅
+
��( 𝑔12

2+𝛾
) [≥5]��

𝑋𝜎+1
𝜅
� |𝜘|−2(2𝑠+1) ‖𝑞‖4

𝐿∞
𝑡 𝐻

𝑠
𝜘

(
‖𝑞‖𝑋𝜎

𝜅
+ ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠

)
, (3.45)

where 𝑔12 = 𝑔12 (𝜘) and 𝛾 = 𝛾(𝜘).

Proof. From (3.20) and (3.38), we see that

|𝜘|
��( 𝑔12

2+𝛾
) [1]��

𝐻 𝑠 +
��( 𝑔12

2+𝛾
) [1]��

𝐻 𝑠+1 ≈
��(2𝜘 − 𝜕) ( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [1]��

𝐻 𝑠 ≈ ‖𝑞‖𝐻 𝑠 .

Thus, (3.41) will follow once we prove (3.42). Moreover, using also (3.12), we find

(2𝜘 − 𝜕)
( 𝑔12

2+𝛾
) [≥3] = − 𝛾

2(2+𝛾) 𝑞 +
𝑔12

(2+𝛾)2 𝛾
′

and thence

LHS(3.42) �
�� 𝛾

2+𝛾 𝑞
��
𝐻 𝑠 +

�� 𝑔12
(2+𝛾)2 𝛾

′��
𝐻 𝑠

� |𝜘|−(𝑠+
1
2 ) ‖𝑞‖𝐻 𝑠

�� 𝛾
2+𝛾

��
𝐻 𝑠+1

𝜘
+ |𝜘|−(2𝑠+1) ‖𝑞‖𝐻 𝑠 ‖𝑞‖𝐻 𝑠

𝜘

�� 𝑔12
(2+𝛾)2

��
𝐻 𝑠+1

𝜘
,

where the second step was an application of (2.6) and (3.27). To handle the remaining rational functions,
we expand as series and employ the algebra property (2.5), together with (3.24) and (3.27). This yields
(3.41) for 𝛿 > 0 sufficiently small.

Next, we prove (3.44), since (3.43) follows from this, (3.38), and (2.14).
In order to prove (3.44), we first employ (3.39). The requisite estimate for the first term was given

already in Lemma 3.4. The second summand can be treated by combining that lemma with the algebra
property (2.17).

It remains to prove (3.45). Recalling the expansion (3.40), the last two terms are easily controlled
using (3.34), (3.35), (3.43), and Lemma 2.4. To control the first two terms, we use (3.12) and (3.32). �

4. Conservation laws and dynamics

At a formal level, the logarithmic perturbation determinant log det(𝐿−1
0 𝐿) (multiplied by sgn(𝜅)) is

given by

sgn(𝜅)
∞∑
ℓ=1

(−1)ℓ−1

ℓ
tr
{(√

𝑅0 (𝐿 − 𝐿0)
√
𝑅0

)ℓ}
.

For ℓ > 1, the trace is well-defined because the operator is trace class. For ℓ = 1, this fails; however, in
view of (3.6), it is natural to regard the trace as being zero in this case. In fact, (3.6) implies that only
the even ℓ contribute to this sum.

With this in mind, we adopt the following as our rigorous definition of A:

𝐴(𝜅; 𝑞) := sgn(𝜅)
∞∑
𝑚=1

(−1)𝑚−1

𝑚 tr {(ΛΓ)𝑚} . (4.1)

We will prove the convergence of this series in Lemma 4.1 below, as well as deriving several other basic
properties.
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The quantity A is readily seen to be closely related to the quantity 𝛼(𝜅; 𝑞) that formed the center
point of the analysis in [38]. Concretely, for 𝜅 ≥ 1,

𝛼(𝜅; 𝑞) = ±Re 𝐴(𝜅; 𝑞) = ± 1
2
[
𝐴(𝜅; 𝑞) − 𝐴(−𝜅; 𝑞)

]
(4.2)

(see (4.3) below). In that paper, it was shown that 𝛼(𝑞) is preserved under the NLS and mKdV flows.
In fact, the argument given there even shows that 𝐴(𝜅; 𝑞) is conserved. However, for our purposes here,
we need several stronger assertions of a similar flavor.

First, we need that 𝐴(𝜅; 𝑞) is conserved under all flows generated by the real and imaginary parts of
𝐴(𝜘; 𝑞) for general 𝜘. This is proved in Lemma 4.3 below, and will yield the conservation of 𝛼 under
our regularized Hamiltonians. This allows us to obtain a priori bounds for these regularized flows.

Second, we rely on our discovery of a microscopic expression of the conservation of A; this will
be essential in our development of local smoothing estimates. The relevant density 𝜌 is introduced in
Lemma 4.1 (see (4.6)). The corresponding currents (for various flows) are collected in Corollary 4.14,
building on a number of intermediate results.
Lemma 4.1 (Properties of A). There exists 𝛿 > 0 so that for all 𝑞 ∈ 𝐵𝛿 and real |𝜅 | ≥ 1, the series (4.1)
defining A converges absolutely. Moreover,

𝐴(𝜅) = −𝐴̄(−𝜅), (4.3)

𝛿𝐴
𝛿𝑞 = 𝑔21,

𝛿𝐴
𝛿𝑟 = −𝑔12, 𝛾′ = 2

(
𝑞 𝛿𝐴
𝛿𝑞 − 𝑟 𝛿𝐴𝛿𝑟

)
, (4.4)

𝜕𝐴
𝜕𝜅 =

∫
𝛾(𝑥; 𝜅) 𝑑𝑥 and 𝐴(𝜅) = −

∫ sgn(𝜅)∞

𝜅

∫
𝛾(𝑥; 𝜘) 𝑑𝑥 𝑑𝜘, (4.5)

𝐴 =
∫

𝜌(𝑥; 𝜅) 𝑑𝑥, where 𝜌(𝜅) = 𝑞𝑔21 (𝜅) − 𝑟𝑔12(𝜅)
2 + 𝛾(𝜅) . (4.6)

Proof. First, we observe that the series (4.1) converges absolutely and uniformly for |𝜅 | ≥ 1 and 𝑞 ∈ 𝐵𝛿 ,
provided 0 < 𝛿 � 1. This follows from the estimate (3.7). In the same way, convergence holds for the
term-wise derivative of the series (4.1) with respect to 𝜅. The terms appearing are exactly those from
(3.18) and (3.19), and so we may deduce that

𝜕𝐴

𝜕𝜅
=
∫

𝛾(𝑥; 𝜅) 𝑑𝑥.

This proves the first assertion in (4.5) as well as justifying 1.10. The second assertion of (4.5) then
follows, since (3.7) guarantees that 𝐴(𝜅) → 0 uniformly on 𝐵𝛿 as |𝜅 | → ∞.

The conjugation symmetry (4.3) follows immediately from (3.15) and (4.5).
Differentiating the series (4.1) with respect to r yields the series (3.19) for 𝑔12 with an additional

minus sign, thus giving the second assertion in (4.4). The first assertion follows in a parallel manner, or
by invoking conjugation symmetry. The third part of (4.4) follows from the first two parts via (3.11).

We now turn our attention to (4.6). First, we must clarify what we mean by
∫
𝜌. When 𝑞 ∈ S , then

𝜌 also belongs to Schwartz class (for 𝛿 small enough), and so the integral can be taken in the classical
sense. For 𝑞 ∈ 𝐻𝑠 , however, we interpret this integral via the duality between 𝐻𝑠 and 𝐻−𝑠 , noting that

𝑞, 𝑟 ∈ 𝐻𝑠 (R) and 𝑔21 (𝜅)
2+𝛾 (𝜅) ,

𝑔12 (𝜅)
2+𝛾 (𝜅) ∈ 𝐻1+𝑠 (R) ↩→ 𝐻−𝑠 (R)

(see Corollary 3.5). By density and continuity, it suffices to verify (4.6) for 𝑞 ∈ S .
Differentiating (3.12), (3.13), and (3.31) with respect to 𝜅 and then combining these with the original

versions shows

𝜕𝑥

(
𝑔12

𝜕𝑔21
𝜕𝜅 − 𝜕𝑔12

𝜕𝜅 𝑔21

)
= −𝛾(2 + 𝛾) + (1 + 𝛾) 𝜕𝜕𝜅

(
𝑞𝑔21 − 𝑟𝑔12

)
−

(
𝑞𝑔21 − 𝑟𝑔12

) 𝜕𝛾
𝜕𝜅 .
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Using also (3.11), we obtain

−
(
𝑔12

𝜕𝑔21
𝜕𝜅 − 𝜕𝑔12

𝜕𝜅 𝑔21
)
𝛾′ = −𝛾(2 + 𝛾) 𝜕𝜕𝜅

(
𝑞𝑔21 − 𝑟𝑔12

)
+
(
𝑞𝑔21 − 𝑟𝑔12

)
(1 + 𝛾) 𝜕𝛾𝜕𝜅 .

These identities then combine to show

𝜕𝑥
𝑔12

𝜕𝑔21
𝜕𝜅 − 𝜕𝑔12

𝜕𝜅 𝑔21

2 + 𝛾 = −𝛾 + 𝜕

𝜕𝜅

𝑞𝑔21 − 𝑟𝑔12
2 + 𝛾 ,

which can then be integrated in x to yield

𝜕

𝜕𝜅

∫
𝑞𝑔21 − 𝑟𝑔12

2 + 𝛾 𝑑𝑥 =
∫

𝛾 𝑑𝑥 =
𝜕𝐴

𝜕𝜅
.

The veracity of (4.6) then follows by observing that both sides of (4.6) vanish in the limit |𝜅 | → ∞. �

Next, we show that our basic Hamiltonians arise as coefficients in the asymptotic expansion of 𝐴(𝜅)
as 𝜅 → ∞. This will also be important for introducing our renormalized flows later on.

Lemma 4.2. For 𝑞 ∈ 𝐵𝛿 ∩ S ,

𝐴(𝜅) = 1
2𝜅𝑀 + −𝑖

(2𝜅)2 𝑃 + (−𝑖)2

(2𝜅)3 𝐻NLS + (−𝑖)3

(2𝜅)4 𝐻mKdV +𝑂 (𝜅−5) (4.7)

as an asymptotic series on Schwartz class.

Proof. While the first few terms can readily be discovered by brute force, we follow a systematic method
based on the biHamiltonian relations

−2𝜅 𝛿𝐴𝛿𝑞 = 𝜕 𝛿𝐴
𝛿𝑞 − 𝑟

[
𝛾 + 1

]
= 𝜕 𝛿𝐴

𝛿𝑞 + 2𝑟𝜕−1 (𝑟 𝛿𝐴𝛿𝑟 − 𝑞 𝛿𝐴
𝛿𝑞

)
− 𝑟,

2𝜅 𝛿𝐴𝛿𝑟 = 𝜕 𝛿𝐴
𝛿𝑟 + 𝑞

[
𝛾 + 1

]
= 𝜕 𝛿𝐴

𝛿𝑟 − 2𝑞𝜕−1 (𝑟 𝛿𝐴𝛿𝑟 − 𝑞 𝛿𝐴
𝛿𝑞

)
+ 𝑞, (4.8)

which, in view of (4.4), are merely a recapitulation of (3.12) and (3.13).
By iterating (4.8), we find

𝛿𝐴
𝛿𝑟 = −𝑔12 = 𝑞

2𝜅 + 𝑞′

(2𝜅)2 + 𝑞′′−2𝑞2𝑟
(2𝜅)3 + 𝑞′′′−6𝑞𝑞′𝑟

(2𝜅)4 +𝑂 (𝜅−5),
𝛿𝐴
𝛿𝑞 = 𝑔21 = 𝑟

2𝜅 − 𝑟 ′

(2𝜅)2 + 𝑟 ′′−2𝑞𝑟2

(2𝜅)3 − 𝑟 ′′′−6𝑞𝑟𝑟 ′
(2𝜅)4 +𝑂 (𝜅−5), (4.9)

which can then be integrated to recover the series for A; indeed,

𝐴(𝑞) =
∫ 1

0
𝜕𝜃 𝐴(𝜃𝑞) 𝑑𝜃 =

∫ 1

0
〈𝑞, 𝛿𝐴𝛿𝑞 (𝜃𝑞)〉 + 〈𝑟, 𝛿𝐴𝛿𝑟 (𝜃𝑞)〉 𝑑𝜃.

In following this algorithm, we have found it convenient to successively update the asymptotic
expansion of 𝛾 using (3.31), rather than compute 𝜕−1(𝑟 𝛿𝐴𝛿𝑟 − 𝑞 𝛿𝐴

𝛿𝑞 ) by laboriously finding complete
derivatives. We record here the key result:

1
2𝛾 = − 𝑞𝑟

(2𝜅)2 − 𝑞′𝑟−𝑞𝑟 ′
(2𝜅)3 − 𝑞′′𝑟−𝑞′𝑟 ′+𝑞𝑟 ′′−3𝑞2𝑟2

(2𝜅)4

− 𝑞′′′𝑟−𝑞′′𝑟 ′+𝑞′𝑟 ′′−𝑞𝑟 ′′′−6𝑞𝑞′𝑟2+6𝑞2𝑟𝑟 ′

(2𝜅)5 +𝑂 (𝜅−6).

This technique is easily automated on a computer algebra system, which we have done as a check on
our hand computations. �
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Although the mechanical interpretation of the Poisson bracket (1.1) originates in real-valued ob-
servables F and G, the definition makes sense for complex-valued functions as well. In view of the
conjugation symmetry (4.3), the following guarantees the commutation of both the real and imaginary
parts of A:

Lemma 4.3 (Poisson brackets). There exists 𝛿 > 0 so that for all real |𝜅 |, |𝜘| ≥ 1 and 𝑞 ∈ 𝐵𝛿 ∩ S , we
have

{𝐴(𝜅), 𝐴(𝜘)} = 0. (4.10)

Proof. If 𝜅 = 𝜘, there is nothing to prove. Suppose now that 𝜅 ≠ 𝜘. From (4.4) and then (3.14), we
deduce that

{𝐴(𝜅), 𝐴(𝜘)} = 1
𝑖

∫
𝑔12 (𝜅)𝑔21(𝜘) − 𝑔21(𝜅)𝑔12 (𝜘) = 0. �

As shown already in [38], the conservation of 𝐴(𝜅) leads to global in time control on the 𝐻𝑠 norm.
Rather than simply recapitulate that argument, which was based on the series (4.1), we will present a
proof that brings the density 𝜌 to center stage. This approach will be essential later, when we introduce
localizations (see Lemmas 5.2 and 6.3).

Proposition 4.4 (A priori bound). There exists 𝛿 > 0 so that for all 𝑞 ∈ 𝐵𝛿 and 𝜅 ≥ 1, we have∫ ∞

𝜅
𝜘2𝑠+1𝛼(𝜘) 𝑑𝜘

𝜘
≈𝑠 ‖𝑞‖2

𝐻 𝑠
𝜅
. (4.11)

Choosing 𝛿 > 0 even smaller if necessary, we deduce the a priori estimate

‖𝑞(𝑡)‖𝐻 𝑠
𝜅
� ‖𝑞(0)‖𝐻 𝑠

𝜅
uniformly for 𝑞(0) ∈ 𝐵𝛿 ∩ S (4.12)

for any Hamiltonian flow that is continuous on Schwartz class and preserves 𝐴(𝜘) for all |𝜘| ≥ 1.

Proof. We first decompose 𝜌(𝜘) = 𝜌 [2] (𝜘) + 𝜌 [≥4] (𝜘) with

𝜌 [2] (𝜘) = 1
2
(
𝑞 · 𝑟

2𝜘+𝜕 + 𝑞
2𝜘−𝜕 · 𝑟

)
, (4.13)

𝜌 [≥4] (𝜘) = 𝑞 ·
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3] − 𝑟 · ( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]

. (4.14)

Inspired by (4.2), we compute

±
∫

1
2
[
𝜌 [2] (𝑥; 𝜘) − 𝜌 [2] (𝑥;−𝜘)

]
𝑑𝑥 = 2𝜘

∫ |𝑞(𝜉) |2 𝑑𝜉
4𝜘2 + 𝜉2 (4.15)

and so, invoking (2.7), deduce that

±
∫ ∞

𝜅

∫
1
2
[
𝜌 [2] (𝑥; 𝜘) − 𝜌 [2] (𝑥;−𝜘)

]
𝜘2𝑠 𝑑𝑥 𝑑𝜘 ≈ ‖𝑞‖2

𝐻 𝑠
𝜅
. (4.16)

On the other hand, interpolating the bounds in (3.42), we find��( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]��
𝐻−𝑠 � |𝜘|−2(1+2𝑠)𝛿‖𝑞‖2

𝐻 𝑠
𝜘

(4.17)
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and consequently,∫ ∞

𝜅

���� ∫ 1
2
[
𝜌 [≥4] (𝑥; 𝜘) − 𝜌 [≥4] (𝑥;−𝜘)

]
𝜘2𝑠 𝑑𝑥

����𝑑𝜘 � 𝜅−(1+2𝑠)𝛿2‖𝑞‖2
𝐻 𝑠

𝜅
. (4.18)

Thus, (4.11) follows by choosing 𝛿 > 0 sufficiently small.
To deduce (4.12), we exploit continuity in time. �

Proposition 4.4 is the key to proving equicontinuity of orbits. The proper extension of the notion of
equicontinuity from the setting of the Arzelà–Ascoli theorem to Sobolev spaces was discussed already
by M. Riesz [51].

Definition 4.5 (Equicontinuity). A set 𝑄 ⊂ 𝐻𝑠 is said to be equicontinuous if

lim sup
𝛿→0

sup
𝑞∈𝑄

sup
|𝑦 |<𝛿

‖𝑞(· + 𝑦) − 𝑞(·)‖𝐻 𝑠 = 0.

Beyond boundedness and equicontinuity, the other key ingredient needed for compactness is tightness
(see Definition 6.1).

Proposition 4.6 (Equicontinuity of orbits). Suppose that 𝑄 ⊂ 𝐵𝛿 ∩ S is equicontinuous in 𝐻𝑠 . Let
𝐻1, 𝐻2 be Hamiltonians with flows that are continuous on Schwartz class and preserve 𝐴(𝜘) for all
|𝜘| ≥ 1. Then the set

𝑄∗ =
{
𝑒𝐽∇(𝑡𝐻1+𝜏𝐻2)𝑞 : 𝑞 ∈ 𝑄, 𝑡, 𝜏 ∈ R, 𝜅 ≥ 1

}
is equicontinuous in 𝐻𝑠 .

Proof. By Plancherel (cf. [37, Section 4]), it is easy to show that a bounded set𝑄 ⊂ 𝐻𝑠 is equicontinuous
if and only if

lim
𝜅→+∞

sup
𝑞∈𝑄

‖𝑞‖𝐻 𝑠
𝜅
= 0.

The result then follows directly from the estimate (4.12). �

Next, we address the question of how 𝛾, 𝑔12, and 𝑔21 evolve when taking 𝐴(𝜅) as the Hamiltonian.
As a complex-valued function, 𝐴(𝜅) cannot be a true Hamiltonian. Nevertheless, there is a natural
vector field associated to it by Hamilton’s equations. We caution the reader that this vector field does
not respect the relation 𝑟 = ±𝑞. Ultimately, we would like to restrict to the real and imaginary parts
of 𝐴(𝜅); however, it is convenient to temporarily retain this illusory complex Hamiltonian and recover
the real and imaginary parts later using (4.3). This context is important for our next two results: the
evolution equations we derive for the 𝐴(𝜅) vector field really represent a complex linear combination
of the vector fields associated to the real and imaginary parts (taken separately).

Proposition 4.7 (Lax representation). For distinct 𝜅, 𝜘 ∈ R \ (−1, 1),

−2(𝜅 − 𝜘)
[

0 𝛿𝐴(𝜅)
𝛿𝑟

𝛿𝐴(𝜅)
𝛿𝑞 0

]
= 𝐿(𝜘)

[
0 𝛿𝐴(𝜅)

𝛿𝑟
𝛿𝐴(𝜅)
𝛿𝑞 0

]
+
[

0 𝛿𝐴(𝜅)
𝛿𝑟

𝛿𝐴(𝜅)
𝛿𝑞 0

]
𝐿(𝜘)

+ 1
2

[
𝐿(𝜘),

[
𝛾(𝜅) + 1 0

0 −𝛾(𝜅) − 1

] ]
.

Equivalently, under the 𝐴(𝜅) vector field, 𝑈 := [ 1 0
0 −1 ]𝐿(𝜘) obeys

𝑑

𝑑𝑡
𝑈 = [𝑃,𝑈] with 𝑃 = 1

2𝑖 (𝜅−𝜘)

[ 1
2 (𝛾(𝜅) + 1) −𝑔12 (𝜅)
𝑔21(𝜅) − 1

2 (𝛾(𝜅) + 1)

]
. (4.19)
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Proof. Both identities are elementary computations using (4.4) and (4.8). �

Corollary 4.8. Fix distinct 𝜅, 𝜘 ∈ R \ (−1, 1). Then under the 𝐴(𝜅) vector field,

𝑖
𝑑

𝑑𝑡
𝑞 = −𝑔12 (𝜅) and 𝑖

𝑑

𝑑𝑡
𝑟 = −𝑔21 (𝜅). (4.20)

Moreover,

𝑖
𝑑

𝑑𝑡
𝑔12 (𝜘) = 1

2(𝜅−𝜘)
{
[𝛾(𝜅) + 1]𝑔12 (𝜘) − 𝑔12 (𝜅) [𝛾(𝜘) + 1]

}
,

𝑖
𝑑

𝑑𝑡
𝑔21 (𝜘) = −1

2(𝜅−𝜘)
{
[𝛾(𝜅) + 1]𝑔21 (𝜘) − 𝑔21 (𝜅) [𝛾(𝜘) + 1]

}
, (4.21)

and 𝜕𝑡𝛾(𝜘) + 𝜕𝑥 𝑗𝛾 (𝜘, 𝜅) = 0, where

𝑗𝛾 (𝜘, 𝜅) := −𝑖
2(𝜅−𝜘)2

[
𝑔12 (𝜅)𝑔21 (𝜘) + 𝑔12 (𝜘)𝑔21(𝜅) − 𝛾 (𝜅)𝛾 (𝜘)+𝛾 (𝜘)+𝛾 (𝜅)

2

]
. (4.22)

Lastly, 𝜕𝑡 𝜌(𝜘) + 𝜕𝑥 𝑗 (𝜘, 𝜅) = 0 with

𝑗 (𝜘, 𝜅) := −𝑖 𝑔12(𝜅)𝑔21 (𝜘) + 𝑔21(𝜅)𝑔12 (𝜘)
2(𝜅 − 𝜘) (2 + 𝛾(𝜘)) + 𝑖 𝛾(𝜅)

4(𝜅 − 𝜘) . (4.23)

Proof. The identities (4.20) simply recapitulate (1.2) and (4.4).
Combining (1.2), the resolvent identity, and Proposition 4.7, we have

𝑖
𝑑

𝑑𝑡
𝐺 (𝑥, 𝑧; 𝜘) = −

∫
𝐺 (𝑥, 𝑦; 𝜘)

[
0 𝛿𝐴

𝛿𝑟 (𝑦)
𝛿𝐴
𝛿𝑞 (𝑦) 0

]
𝐺 (𝑦, 𝑧; 𝜘) 𝑑𝑦

= 1
2(𝜅−𝜘)

( [
0 𝛿𝐴

𝛿𝑟 (𝑥)
𝛿𝐴
𝛿𝑞 (𝑥) 0

]
𝐺 (𝑥, 𝑧; 𝜘) + 𝐺 (𝑥, 𝑧; 𝜘)

[
0 𝛿𝐴

𝛿𝑟 (𝑧)
𝛿𝐴
𝛿𝑞 (𝑧) 0

] )
+ 1

4(𝜅−𝜘) [𝛾(𝑥; 𝜅) + 1]
[
1 0
0 −1

]
𝐺 (𝑥, 𝑧; 𝜘)

− 1
4(𝜅−𝜘)𝐺 (𝑥, 𝑧; 𝜘) [𝛾(𝑧; 𝜅) + 1]

[
1 0
0 −1

]
.

This quantity is actually a continuous function of x and z (as can be seen from the middle expression),
and so we may restrict to 𝑧 = 𝑥. Thus, by (4.4),

𝑖 𝑑𝑑𝑡𝐺 (𝑥, 𝑥; 𝜘) = −1
2(𝜅−𝜘)

[
𝑔12 (𝜅)𝑔21 (𝜘) − 𝑔12(𝜘)𝑔21(𝜅) 𝑔12 (𝜅) [𝛾(𝜘) + 1]

−𝑔21 (𝜅) [𝛾(𝜘) + 1] 𝑔12(𝜅)𝑔21 (𝜘) − 𝑔12 (𝜘)𝑔21(𝜅)

]
+ 𝛾 (𝜅)+1

2(𝜅−𝜘)

[
0 𝑔12(𝜘)

−𝑔21 (𝜘) 0

]
.

This then yields (4.21) directly and (4.22) by invoking (3.14).
The claim (4.23) follows from a lengthy computation using (4.21), (4.22), (3.14), and (3.31). �

Corollary 4.8 shows that both 𝜌(𝜘) and 𝛾(𝜘) obey microscopic conservation laws. From Lemma 4.1,
we see that the corresponding macroscopic conservation laws are 𝐴(𝜘) and 𝜕𝜘𝐴(𝜘), respectively; thus,
these two microscopic conservation laws are closely related. In the analysis that follows, we shall rely
exclusively on the conservation law associated to 𝜌, rather than 𝛾. Let us explain why.
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As we saw already in (1.10), the quantity 𝛾 arises very naturally in the theory, and indeed, it was
the basis of our initial investigations of the problem. While it may be possible to build the entire theory
around 𝛾, we can attest that this approach rapidly becomes extremely tiresome. It took us a very long
time to discover the density 𝜌 that expresses the conservation of 𝐴(𝜘), and this innovation has immensely
simplified all that follows. A major virtue of 𝜌 compared to 𝛾 is coercivity.

The goal of our next lemma is to give a simple expression of this distinction, by looking only at
the quadratic terms in the currents associated to the basic Hamiltonians appearing as coefficients in the
expansion (4.7). In particular, Lemma 4.9 shows that the current 𝑗𝛾 associated with 𝛾 is not coercive
under the (mKdV) flow.

Note that the terms in the series (4.7) are alternately real and imaginary. Correspondingly, to exploit
the coercivity of Im 𝑗 exhibited below, we shall need to use Im 𝜌 when studying (NLS) and Re 𝜌 when
studying (mKdV). It is also instructive to remember that monotone observables must be odd (not even)
under time reversal.

The identities (4.24) and (4.25) appearing in the proof below also show us that neither Re 𝑗 nor Re 𝑗𝛾
possess any coercivity.

Lemma 4.9 (Coercivity of the current). The coefficients in the asymptotic series∫
Im 𝑗 [2] (𝜘, 𝜅) 𝑑𝑥 = ±

∞∑
ℓ=0

{
(−1)ℓ (2ℓ + 1)

(2𝜅)2ℓ+2 𝜘𝐶ℓ (𝜘) +
(−1)ℓ+1(ℓ + 1)

(2𝜅)2ℓ+3 𝐶ℓ+1 (𝜘)
}

are coercive; indeed,

𝐶ℓ =
∫

2𝜉2ℓ |𝑞(𝜉) |2

4𝜘2 + 𝜉2 𝑑𝜉.

The corresponding asymptotic series for 𝑗𝛾 is∫
Im 𝑗 [2]𝛾 (𝜘, 𝜅) 𝑑𝑥 = ±

∞∑
ℓ=0

{
(−1)ℓ (2ℓ + 1)

(2𝜅)2ℓ+2
𝜕 [𝜘𝐶ℓ (𝜘)]

𝜕𝜘
+ (−1)ℓ+1(ℓ + 1)

(2𝜅)2ℓ+3
𝜕𝐶ℓ+1 (𝜘)

𝜕𝜘

}
.

The coefficients appearing for even powers of 𝜅 are never sign definite; this undermines the utility of 𝛾.

Proof. From (4.23), we readily find∫
𝑗 [2] (𝜘, 𝜅) 𝑑𝑥 =

∫
2𝑖𝜘 − 𝜉

(2𝜅 − 𝑖𝜉)2
𝑞(𝜉)𝑟 (−𝜉)
4𝜘2 + 𝜉2 𝑑𝜉, (4.24)

from which the expansion is readily verified. The analogous formula for 𝑗𝛾 is∫
𝑗 [2]𝛾 (𝜘, 𝜅) 𝑑𝑥 = 2

∫
4𝜘𝜉 + 𝑖(𝜉2 − 4𝜘2)

(2𝜅 − 𝑖𝜉)2
𝑞(𝜉)𝑟 (−𝜉)
(4𝜘2 + 𝜉2)2 𝑑𝜉. (4.25)

The fact that this coincides with the 𝜘-derivative of (4.24) is not a coincidence; it reflects the first identity
in (4.5).

It is easy to verify that 𝜕𝜘 [𝜘𝐶ℓ (𝜘)] is never sign definite because it contains the factor 𝜉2 − 4𝜘2. �

In view of the asymptotic expansion (4.7), Corollary 4.8 provides an efficient method for deriving the
evolutions of 𝑔12 and 𝛾 under (NLS) and (mKdV), although they are also readily computable directly
from the definitions.

Corollary 4.10 (Induced flows). Fix 𝜘 ∈ R \ (−1, 1). Under the M flow (i.e., phase rotation),

𝑖
𝑑

𝑑𝑡
𝑔12 = 𝑔12 and 𝑖

𝑑

𝑑𝑡
𝛾 = 0. (4.26)

https://doi.org/10.1017/fmp.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.4


32 B. Harrop-Griffiths, R. Killip and M. Vişan

Under the P flow (i.e., spatial translation),

𝑑

𝑑𝑡
𝑔12 = 𝑔′12 and

𝑑

𝑑𝑡
𝛾 = 𝛾′. (4.27)

Under the 𝐻NLS flow (NLS),

𝑖
𝑑

𝑑𝑡
𝑔12 = −𝑔′′12 + 4𝑞𝑟𝑔12 + 2𝑞2𝑔21, (4.28)

𝑖
𝑑

𝑑𝑡
𝛾 =

{
2𝑟𝑔12 − 2𝑞𝑔21 − 4𝜘𝛾

} ′
. (4.29)

Under the 𝐻mKdV flow (mKdV),

𝑑

𝑑𝑡
𝑔12 = −𝑔′′′12 + 6𝑞𝑟𝑔′12 + 6𝑞𝑔21𝑞

′ + 6𝑔12𝑟𝑞
′, (4.30)

𝑑

𝑑𝑡
𝛾 = −𝛾′′′ +

{
12𝜘(𝑟𝑔12 − 𝑞𝑔21) − 12𝜘2𝛾 + 6𝑞𝑟 (1 + 𝛾)

} ′
. (4.31)

These expressions highlight two phenomena that are worthy of note. The first is that the evolution of
𝛾 has the structure of a microscopic conservation law. This has been discussed already, in the context
of (4.22).

Although rather less obvious, these formulas also show that 𝑔12 obeys the linearized equation around
the trajectory q. To explain why, let us first consider a generic one-parameter family of solutions 𝑞(𝑡; 𝜏)
to a given PDE, say (NLS). Here, 𝜏 is the parameter, while t is time. Evidently, the parametric derivative
of q obeys the linearized equation:

𝑖𝜕𝑡
𝜕𝑞
𝜕𝜏 = −𝜕2

𝑥
𝜕𝑞
𝜕𝜏 ± 4|𝑞 |2 𝜕𝑞𝜕𝜏 ± 2𝑞2 𝜕𝑞̄

𝜕𝜏 .

This should be compared to (4.28), noting the conjugation symmetry (3.15).
Finally, to apply this general reasoning to the case at hand, we define our parametric family of

solutions to the H-flow with initial data 𝑞0 via

𝑞(𝑡; 𝜏) = exp
{
𝑡𝐽∇𝐻 + 𝜏𝐽∇𝐴(𝜘)

}
𝑞0

and then apply (4.4).

4.1. Regularized and difference flows

As discussed in the Introduction, a key ingredient in our arguments is the decomposition of the full
evolution into two commuting parts. The first is a regularized part, that captures the dominant portion
of the dynamics, while being very tame at high frequencies. The second part, which we call the
difference flow, restores the proper evolution to the high frequencies, but otherwise is very close to the
identity.

The starting point for the corresponding decomposition of the Hamiltonian is (4.7), which we
essentially rearrange to isolate an approximation to the true Hamiltonian. While we wish to consider only
real-valued Hamiltonians and taking real and imaginary parts of (4.7) is a transparent way to do this, we
should also acknowledge a more subtle point: in order to obtain local smoothing for the difference flow,
it is essential that the regularized Hamiltonian retains the same conjugation/time-reversal symmetry as
the full Hamiltonian.
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Definition 4.11. Associated to each 𝜅 ≥ 1, we define regularized Hamiltonians

𝐻𝜅
NLS = −8𝜅3 Re 𝐴(𝜅) + 4𝜅2𝑀 = −4𝜅3 [𝐴(𝜅) − 𝐴(−𝜅)

]
+ 4𝜅2𝑀, (4.32)

𝐻𝜅
mKdV = 16𝜅4 Im 𝐴(𝜅) + 4𝜅2𝑃 = −8𝑖𝜅4 [𝐴(𝜅) + 𝐴(−𝜅)] + 4𝜅2𝑃, (4.33)

as functions on 𝐵𝛿 ∩ S , as well as difference Hamiltonians,

𝐻diff
NLS = 𝐻NLS − 𝐻𝜅

NLS and 𝐻diff
mKdV = 𝐻mKdV − 𝐻𝜅

mKdV. (4.34)

One of the key features of the regularized flows is that they are readily seen to be well-posed:

Proposition 4.12 (Global well-posedness of the regularized flows). There exists 𝛿 > 0 so that for all
𝜅 ≥ 1, the 𝐻𝜅

NLS and 𝐻𝜅
mKdV flows

𝑖
𝑑

𝑑𝑡
𝑞 = 4𝜅3 (𝑔12(𝜅) − 𝑔12 (−𝜅)) + 4𝜅2𝑞, (NLS𝜅 )

𝑑

𝑑𝑡
𝑞 = 8𝜅4 (𝑔12 (𝜅) + 𝑔12 (−𝜅)) + 4𝜅2𝑞′ (mKdV𝜅 )

are globally well-posed for initial data in 𝐵𝛿 . These solutions conserve 𝛼(𝜘) for every 𝜘 ≥ 1. Moreover,
if the initial data are Schwartz, then so are the corresponding solutions.

Proof. The evolution equations follow directly from (4.32) and (4.33) by applying (4.3) and (4.4).
Using the diffeomorphism property of the map 𝑞 ↦→ 𝑔12 (𝜅) proved in Proposition 3.2, we may view
the equations (NLS𝜅 ) and (mKdV𝜅 ) as ordinary differential equations in 𝐻𝑠 , the latter after making the
change of variables

(𝑡, 𝑥) ↦→ (𝑡, 𝑥 − 4𝜅2𝑡).

Local well-posedness then follows from the Picard-Lindelöf theorem. Further, as the map 𝑞 ↦→ 𝑔12 (𝜅)
preserves the Schwartz class, it is clear that if 𝑞(0) ∈ 𝐵𝛿 ∩ S , then the corresponding solution remains
Schwartz. Finally, to extend the solution globally in time, we first observe that for 𝑞(0) ∈ 𝐵𝛿 ∩ S , we
may apply Lemma 4.3 to deduce the conservation of 𝛼(𝜘) for all 𝜘 ≥ 1. Applying Proposition 4.4,
we may then extend the solution globally in time for 𝑞(0) ∈ 𝐵𝛿 ∩ S and then for all 𝑞(0) ∈ 𝐵𝛿 by
approximation. �

From Lemma 4.3, we see that the full and regularized Hamiltonian evolutions commute (at least on
Schwartz space). This allows us to obtain evolution equations for the difference Hamiltonians by simply
combining the corresponding vector fields. In this way, Proposition 4.12 together with Corollaries 4.8
and 4.10 yields the following:

Corollary 4.13 (Difference flows). Consider any 𝜅, 𝜘 ≥ 1 and any initial data in 𝐵𝛿 ∩ S . Under the
NLS difference flow,

𝑖
𝑑

𝑑𝑡
𝑞 = −𝑞′′ + 2𝑞2𝑟 − 4𝜅3 (𝑔12(𝜅) − 𝑔12 (−𝜅)) − 4𝜅2𝑞, (NLS-diff)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑖 𝑑𝑑𝑡 𝑔12(𝜘) = −𝑔12 (𝜘)′′ + 4𝑞𝑟𝑔12 (𝜘) + 2𝑞2𝑔21 (𝜘)

+ 2𝜅3

𝜅−𝜘
{
[𝛾(𝜅) + 1]𝑔12 (𝜘) − 𝑔12 (𝜅) [𝛾(𝜘) + 1]

}
+ 2𝜅3

𝜅+𝜘
{
[𝛾(−𝜅) + 1]𝑔12 (𝜘) − 𝑔12 (−𝜅) [𝛾(𝜘) + 1]

}
−4𝜅2𝑔12 (𝜘),

(4.35)
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and under the mKdV difference flow

𝑑

𝑑𝑡
𝑞 = −𝑞′′′ + 6𝑞𝑟𝑞′ − 8𝜅4 (𝑔12(𝜅) + 𝑔12(−𝜅)) − 4𝜅2𝑞′, (mKdV-diff)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑
𝑑𝑡 𝑔12 (𝜘) = −𝑔12(𝜘)′′′ + 6𝑞𝑟𝑔12 (𝜘)′ + 6𝑞𝑞′𝑔21 (𝜘) + 6𝑟𝑞′𝑔12(𝜘)

+ 4𝜅4

𝜅−𝜘
{
[𝛾(𝜅) + 1]𝑔12 (𝜘) − 𝑔12 (𝜅) [𝛾(𝜘) + 1]

}
− 4𝜅4

𝜅+𝜘
{
[𝛾(−𝜅) + 1]𝑔12 (𝜘) − 𝑔12 (−𝜅) [𝛾(𝜘) + 1]

}
−4𝜅2𝑔12(𝜘)′.

(4.36)

We end this section with the following result, which encapsulates the microscopic conservation law
attendant to 𝐴(𝜘) under the various flows considered in this paper.

Corollary 4.14. For 𝜅, 𝜘 ≥ 1 and initial data in 𝐵𝛿 ∩ S , we have

𝜕𝑡 𝜌(𝜘) + 𝜕𝑥 𝑗★ = 0, (4.37)

for each of the NLS, mKdV, and difference flows, the currents are given by

𝑗NLS (𝜘) = −𝑖
(
𝑞′ ·𝑔21 (𝜘)+𝑟 ′ ·𝑔12 (𝜘)

2+𝛾 (𝜘) − 𝑞𝑟 + 2𝜘𝜌(𝜘)
)
,

𝑗mKdV(𝜘) = (𝑞′′−2𝑞2𝑟 ) ·𝑔21 (𝜘)−(𝑟 ′′−2𝑟2𝑞) ·𝑔12 (𝜘)
2+𝛾 (𝜘) − 𝑞′𝑟 + 𝑞𝑟 ′ + 2𝑖𝜘 𝑗NLS (𝜘),

𝑗diff
NLS (𝜘, 𝜅) = 𝑗NLS (𝜘) + 4𝜅3 ( 𝑗 (𝜘, 𝜅) − 𝑗 (𝜘,−𝜅)) ,
𝑗diff
mKdV(𝜘, 𝜅) = 𝑗mKdV(𝜘) + 8𝑖𝜅4 ( 𝑗 (𝜘, 𝜅) + 𝑗 (𝜘,−𝜅)) + 4𝜅2𝜌(𝜘).

5. Local smoothing

The goal of this section is to prove local smoothing estimates, not only for the NLS and mKdV flows,
but also for the difference flows. To do this, we will be using an integrated form of the microscopic
conservation law (4.37) for 𝐴(𝜘):

∫ 1

−1

∫
R

𝑗★(𝑡, 𝑥; 𝜘) 𝜓12
ℎ (𝑥) 𝑑𝑥 𝑑𝑡 =

∫ [
𝜌(1, 𝑥; 𝜘) − 𝜌(−1, 𝑥; 𝜘)

]
Ψℎ (𝑥) 𝑑𝑥, (5.1)

where ℎ ∈ R is a translation parameter, 𝜓ℎ is as in (1.5),

Ψℎ (𝑥) :=
∫ 𝑥

−∞
𝜓12
ℎ (𝑦) 𝑑𝑦, (5.2)

and the currents are as recorded in Corollary 4.14.
Eventually, we will take a supremum over ℎ ∈ R as in (1.6). With this in mind, implicit constants in

this section are always to be interpreted as independent of h.
Control of the local smoothing norm will originate in the coercivity of the LHS(5.1) that we have

already hinted at in Lemma 4.9. The first result in this section, Lemma 5.1, shows that this coercivity of
the quadratic currents survives in the presence of localization. As noted already in Section 4, we will
need to take the real or imaginary part of (5.1), depending on the flow in question.
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To continue, we will show how to control the RHS(5.1) in Lemma 5.2. This leaves us to control
the higher order terms in the currents; this is the topic of Lemma 5.3. In estimating such terms, it is
convenient to combine the key norms:

|||𝑞 |||2NLS𝜅
:= ‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

+ ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠 and |||𝑞 |||2mKdV𝜅
:= ‖𝑞‖2

𝑋𝑠+1
𝜅

+ ‖𝑞‖2
𝐿∞
𝑡 𝐻

𝑠 ,

with the convention that a missing subscript means 𝜅 = 1.
The proofs of Lemmas 5.1 and 5.3 are both quite substantial. With this in mind, we delay presenting

these proofs until after giving the main results of this section, namely, Propositions 5.4, 5.5, 5.6, and 5.8.

Lemma 5.1 (Estimates for 𝑗 [2]★ ). Fix 𝛿 > 0 sufficiently small. Then

Im
∫

𝑗 [2]NLS (𝜘) 𝜓
12
ℎ 𝑑𝑥 = ±2‖(𝜓6

ℎ𝑞)
′‖2
𝐻−1

𝜘
+O

(
‖𝑞‖2

𝐻
− 1

2
𝜘

)
, (5.3)

Re
∫

𝑗 [2]mKdV(𝜘) 𝜓
12
ℎ 𝑑𝑥 = ∓6𝜘‖(𝜓6

ℎ𝑞)
′‖2
𝐻−1

𝜘
+O

(
‖(𝜓6

ℎ𝑞)
′‖
𝐻

− 1
2

𝜘

‖𝑞‖
𝐻

− 1
2

𝜘

+ ‖𝑞‖2

𝐻
− 1

2
𝜘

)
, (5.4)

uniformly for 𝑞 ∈ 𝐵𝛿 ∩ S , 𝜘 ≥ 1, and ℎ ∈ R. Analogously,

Im
∫

𝑗diff
NLS

[2] (𝜘, 𝜅) 𝜓12
ℎ 𝑑𝑥 = ±2

∫
𝜉4(8𝜅2 + 𝜉2) |𝜓6

ℎ𝑞(𝜉) |
2 𝑑𝜉

(4𝜘2 + 𝜉2) (4𝜅2 + 𝜉2)2 +O
(
‖𝑞‖2

𝐻
− 1

2
𝜘

)
, (5.5)

Re
∫

𝑗diff [2]
mKdV (𝜘, 𝜅) 𝜓12

ℎ 𝑑𝑥 = ∓2𝜘
∫ (20𝜅2 + 3𝜉2)𝜉4 |𝜓6

ℎ𝑞(𝜉) |
2 𝑑𝜉

(4𝜘2 + 𝜉2) (4𝜅2 + 𝜉2)2 (5.6)

+O
(
‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

𝐻
− 1

2
𝜘

‖𝑞‖
𝐻

− 1
2

𝜘

+ ‖𝑞‖2

𝐻
− 1

2
𝜘

)
,

uniformly for 𝑞 ∈ 𝐵𝛿 ∩ S , 𝜅, 𝜘 ≥ 1, and ℎ ∈ R.

Lemma 5.2 (Estimate for 𝜌). Let 𝑞 ∈ 𝐵𝛿 ∩ S and Ψℎ be defined as in (5.2). Then for 𝜘 ≥ 1, we have
the estimate ����∫ 𝜌(𝜘) Ψℎ 𝑑𝑥

���� � ‖𝑞‖2

𝐻
− 1

2
𝜘

+ 𝜘−2(2𝑠+1)𝛿2‖𝑞‖2
𝐻 𝑠 , (5.7)

where the implicit constant is independent of ℎ, 𝜘.

Proof. As in the proof of Proposition 4.4, we write 𝜌(𝜘) = 𝜌 [2] (𝜘) + 𝜌 [≥4] (𝜘). From (4.13), we bound����∫ 𝜌 [2] (𝜘) Ψℎ 𝑑𝑥

���� � ‖Ψℎ𝑞‖
𝐻

− 1
2

𝜘

‖𝑞‖
𝐻

− 1
2

𝜘

� ‖𝑞‖2

𝐻
− 1

2
𝜘

.

Using (4.14) and (4.17), we may bound����∫ 𝜌 [≥4] (𝜘) Ψℎ 𝑑𝑥

���� � 𝜘−2(2𝑠+1)𝛿2‖𝑞‖2
𝐻 𝑠 .

This completes the proof of the lemma. �

To control the contribution of the remaining part 𝑗 [≥4]
★ of the current, we use the following lemma.

The proof of this result will take up the majority of this section.
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Lemma 5.3 (Estimates for 𝑗 [≥4]
★ ). Let 𝑞 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) with 𝛿 > 0 sufficiently small. For any

𝜘 ≥ 1, we have ����∫ 𝑗 [≥4]
NLS (𝜘) 𝜓12

ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−2(2𝑠+1)𝛿2 |||𝑞 |||2NLS, (5.8)

����∫ 𝑗 [≥4]
mKdV(𝜘) 𝜓

12
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[
𝜘−1 + 𝜘−2(2𝑠+1) log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV. (5.9)

Moreover, if 𝜅 ≥ 8 and 𝜘 ∈ [𝜅 2
3 , 1

2 𝜅] ∪ [2𝜅,∞), then����∫ 𝑗diff
NLS

[≥4] (𝜘, 𝜅) 𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[

𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1) + 𝜘−2(2𝑠+1) ]𝛿2 |||𝑞 |||2NLS𝜅

, (5.10)

whereas for 𝜘 ∈ [𝜅 1
2 , 1

2 𝜅] ∪ [2𝜅,∞), we have����∫ 𝑗diff [≥4]
mKdV (𝜘, 𝜅) 𝜓12

ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[

𝜅
𝜅+𝜘 𝜅

−(2𝑠+1) + 𝜘−2(2𝑠+1) log |2𝜘|
]
𝛿2 |||𝑞 |||2mKdV𝜅

. (5.11)

In all cases, the implicit constant is independent of h, 𝜘, and 𝜅.

The restriction 𝜅 ≥ 8 (rather than 𝜅 ≥ 1) appearing in this proposition is imposed to avoid confusion
in the meaning of the constraints on 𝜘. It guarantees that in both cases, the first interval is nonempty.

The fact that the 𝜅 = 1 case of (5.11) yields a better bound than (5.9) warrants explanation. Ultimately,
this is because LHS(5.11) requires a much more detailed analysis in order to achieve a satisfactory bound.
The bound (5.9) could be improved by a parallel analysis; however, this is not needed for what follows.

With these estimates in hand, we are now able to prove our local smoothing estimates:

Proposition 5.4 (Local smoothing for the NLS). There exists 𝛿 > 0 so that for any 𝑞(0) ∈ 𝐵𝛿 ∩ S , the
solution 𝑞(𝑡) of (NLS) satisfies the estimate

‖𝑞‖2
𝑋𝑠+ 1

2
� ‖𝑞(0)‖2

𝐻 𝑠 . (5.12)

Further, we have the high-frequency estimate��(𝜓6
ℎ𝑞)

′‖2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅

� ‖𝑞(0)‖2
𝐻 𝑠

𝜅
+ 𝜅−(2𝑠+1)𝛿2‖𝑞(0)‖2

𝐻 𝑠 , (5.13)

uniformly for 𝜅 ≥ 1.

Proof. Consider the imaginary part of (5.1). Applying the estimates (5.3) and (5.8) to the LHS and the
estimate (5.7) to the RHS, we obtain

‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� ‖𝑞‖2

𝐿∞
𝑡 𝐻

− 1
2

𝜘

+ 𝜘−2(2𝑠+1)𝛿2
(
‖𝑞‖2

𝑋𝑠+ 1
2
+ ‖𝑞‖2

𝐿∞
𝑡 𝐻

𝑠

)
,

where the implicit constant is independent of ℎ, 𝜘. We then choose − 1
2 < 𝑠′ < 𝑠 and apply the a priori

estimate (4.12) to obtain

‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜘−(2𝑠

′+1) ‖𝑞(0)‖2
𝐻 𝑠′

𝜘
+ 𝜘−2(2𝑠+1)𝛿2

(
‖𝑞‖2

𝑋𝑠+ 1
2
+ ‖𝑞(0)‖2

𝐻 𝑠

)
.
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Taking 𝜅 ≥ 1 and using (2.7), we obtain

‖(𝜓6
ℎ𝑞)

′‖2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅

≈
∫ ∞

𝜅
𝜘2𝑠+1‖(𝜓6

ℎ𝑞)
′‖2
𝐿2
𝑡 𝐻

−1
𝜘

𝑑𝜘
𝜘

� ‖𝑞(0)‖2
𝐻 𝑠

𝜅
+ 𝜅−(2𝑠+1)𝛿2

(
‖𝑞‖2

𝑋𝑠+ 1
2
+ ‖𝑞(0)‖2

𝐻 𝑠

)
. (5.14)

To complete the proof, we take 𝜅 = 1 to deduce

‖𝜓6
ℎ𝑞‖

2
𝐿2
𝑡 𝐻

𝑠+ 1
2
� ‖𝑃>1 (𝜓6

ℎ𝑞)
′‖2
𝐿2
𝑡 𝐻

𝑠− 1
2
+ ‖𝑃≤1 (𝜓6

ℎ𝑞)‖
2
𝐿∞
𝑡 𝐻

𝑠

� 𝛿2‖𝑞‖2
𝑋𝑠+ 1

2
+ ‖𝑞(0)‖2

𝐻 𝑠 .

Taking the supremum over ℎ ∈ R and choosing 0 < 𝛿 � 1 sufficiently small, we obtain the estimate
(5.12). The claim (5.13) then follows from (5.12) and (5.14). �

An essentially identical argument yields the corresponding result for the mKdV:
Proposition 5.5 (Local smoothing for the mKdV). There exists 𝛿 > 0 so that for any 𝑞(0) ∈ 𝐵𝛿 ∩ S ,
the solution 𝑞(𝑡) of (mKdV) satisfies the estimate

‖𝑞‖2
𝑋𝑠+1 � ‖𝑞(0)‖2

𝐻 𝑠 . (5.15)

Further, we have the high-frequency estimate��(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

𝑠
𝜅
� ‖𝑞(0)‖2

𝐻 𝑠
𝜅
+ 𝜅−(2𝑠+1) log4 |2𝜅 | 𝛿2‖𝑞(0)‖2

𝐻 𝑠 , (5.16)

uniformly for 𝜅 ≥ 1.
Proof. Consider the real part of (5.1). Applying (5.4) and (5.9) to the LHS and applying (5.7) to the
RHS, we deduce that

𝜘‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜀‖(𝜓6

ℎ𝑞)
′‖2

𝐿2
𝑡 𝐻

− 1
2

𝜘

+ (1 + 1
𝜀 )‖𝑞‖

2

𝐿∞
𝑡 𝐻

− 1
2

𝜘

+
[
𝜘−1 + 𝜘−2(2𝑠+1) log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV

for any 0 < 𝜀 < 1. Here, the implicit constant is independent of ℎ, 𝜘, 𝜀. Applying the a priori estimate
(4.12), for any − 1

2 < 𝑠′ < 𝑠, we obtain

𝜘‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜀‖(𝜓6

ℎ𝑞)
′‖2

𝐿2
𝑡 𝐻

− 1
2

𝜘

+ (1 + 1
𝜀 )𝜘

−(2𝑠′+1) ‖𝑞(0)‖2
𝐻 𝑠′

𝜘

+
[
𝜘−1 + 𝜘−2(2𝑠+1) log4 |2𝜘|

]
𝛿2

(
‖𝑞‖2

𝑋𝑠+1 + ‖𝑞(0)‖2
𝐻 𝑠

)
.

Using the estimate (2.7), we obtain

‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

𝑠
𝜅
≈

∫ ∞

𝜅
𝜘2𝑠+2‖(𝜓6

ℎ𝑞)
′‖2
𝐻−1

𝜘

𝑑𝜘
𝜘

� 𝜀‖(𝜓ℎ𝑞)′‖2
𝐿2
𝑡 𝐻

𝑠
𝜅
+ (1 + 1

𝜀 )‖𝑞(0)‖
2
𝐻 𝑠

𝜅

+
[
𝜅2𝑠 + 𝜅−(2𝑠+1) log4 |2𝜅 |

]
𝛿2

(
‖𝑞‖2

𝑋𝑠+1 + ‖𝑞(0)‖2
𝐻 𝑠

)
.

Choosing 0 < 𝜀 < 1 sufficiently small to defeat the implicit constant, we get

‖(𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

𝑠
𝜅
� ‖𝑞(0)‖2

𝐻 𝑠
𝜅
+
[
𝜅2𝑠 + 𝜅−(2𝑠+1) log4 |2𝜅 |

]
𝛿2

(
‖𝑞‖2

𝑋𝑠+1 + ‖𝑞(0)‖2
𝐻 𝑠

)
. (5.17)
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To complete the proof, we apply the estimate (5.17) with 𝜅 = 1 to bound

‖𝜓6
ℎ𝑞‖

2
𝐿2
𝑡 𝐻

𝑠+1 � ‖𝑃>1 (𝜓6
ℎ𝑞)

′‖2
𝐿2
𝑡 𝐻

𝑠 + ‖𝑃≤1 (𝜓6
ℎ𝑞)‖

2
𝐿∞
𝑡 𝐻

𝑠

� 𝛿2‖𝑞‖2
𝑋𝑠+1 + ‖𝑞(0)‖2

𝐻 𝑠 .

Taking the supremum over ℎ ∈ R and choosing 0 < 𝛿 � 1 sufficiently small, we obtain (5.15). The
estimate (5.16) then follows from (5.15), (5.17), and the observation that 𝜅2𝑠 ‖𝑞(0)‖2

𝐻 𝑠 � ‖𝑞(0)‖2
𝐻 𝑠

𝜅
. �

In Propositions 5.4 and 5.5, the parameter 𝜅 plays the role of a frequency threshold. The fact that
we obtain decay as 𝜅 → ∞ will be essential both for proving tightness and for proving that the data-to-
solution map is continuous in the local smoothing norm.

We now turn to proving local smoothing for the difference flows. In this context, 𝜅 takes on a new
meaning as the parameter appearing in the regularized Hamiltonians (see (4.34)). In this role, 𝜅 marks a
border (in frequency space): it is only for frequencies below 𝜅 that the regularized and full Hamiltonian
flows well-approximate one another. Correspondingly, it is only for frequencies above 𝜅 that we can
expect to recover the full local smoothing effects documented above for (NLS) and (mKdV).

Proposition 5.6 (Local smoothing for the NLS difference flow). There exists 𝛿 > 0 so that for any
𝑞(0) ∈ 𝐵𝛿 ∩ S and 𝜅 ≥ 8, the solution 𝑞(𝑡) of the NLS difference flow (NLS-diff) with parameter 𝜅
satisfies the estimate

‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

� ‖𝑞(0)‖2
𝐻 𝑠 , (5.18)

where the implicit constant is independent of 𝜅.

Proof. Let us write 𝐼 = [𝜅 2
3 , 1

2 𝜅] ∪ [2𝜅,∞), which is the region of 𝜘 over which the estimate (5.10) will
be proved.

Taking the imaginary part of (5.1) and applying (5.5), (5.10), and (5.7), we find

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘
� ‖𝑞‖2

𝐿∞
𝑡 𝐻

− 1
2

𝜘

+
[

𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1) + 𝜘−2(2𝑠+1) ]𝛿2 |||𝑞 |||2NLS𝜅

,

uniformly for 𝜘 ∈ 𝐼. Choosing − 1
2 < 𝑠′ < 𝑠 and employing the a priori estimate (4.12), we deduce that

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜘−(2𝑠

′+1) ‖𝑞(0)‖2
𝐻 𝑠′

𝜘
+
[

𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1) + 𝜘−2(2𝑠+1) ]𝛿2 |||𝑞 |||2NLS𝜅

,

uniformly for 𝜘 ∈ 𝐼. Next, we wish to integrate out 𝜘.
By Lemma 2.1, we have

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅2/3

≈
∫ ∞

𝜅
2
3
𝜘2𝑠+1‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘

𝑑𝜘
𝜘 ,

from which it follows that

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅2/3

≈
∫
𝐼
𝜘2𝑠+1‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘

𝑑𝜘
𝜘 , (5.19)

because the integrand on the interval [𝜅/2, 2𝜅] is comparable to that on [2𝜅, 4𝜅].
Proceeding in this way, we find that

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅2/3

� ‖𝑞(0)‖2
𝐻 𝑠 + 𝜅−

1
3 (1+2𝑠)𝛿2

(
‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

+ ‖𝑞(0)‖2
𝐻 𝑠

)
.
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To complete the proof, we decompose

‖ 𝜓6
ℎ
𝑞

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

𝑠+ 3
2
� ‖ 1√

4𝜅2−𝜕2 𝑃≤𝜅
2
3
(𝜓6

ℎ𝑞)‖
2
𝐿2
𝑡 𝐻

𝑠+ 3
2
+ ‖ 1√

4𝜅2−𝜕2 𝑃>𝜅
2
3
(𝜓6

ℎ𝑞)‖
2
𝐿2
𝑡 𝐻

𝑠+ 3
2

� ‖𝑞(0)‖2
𝐻 𝑠 + ‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅2/3

� ‖𝑞(0)‖2
𝐻 𝑠 + 𝛿2‖𝑞‖2

𝑋
𝑠+ 1

2
𝜅

.

Taking the supremum over ℎ ∈ R, we obtain the estimate (5.18) whenever 0 < 𝛿 � 1 is sufficiently
small, depending only on s. �

Next, we record a corollary of Proposition 5.6, which will be used in Section 7.

Corollary 5.7. There exists 𝛿 > 0 so that for any 𝑞(0) ∈ 𝐵𝛿 ∩ S and 𝜅 ≥ 8, the solution 𝑞(𝑡) of the
NLS difference flow (NLS-diff) with parameter 𝜅 satisfies

sup
ℎ∈R

‖𝑃𝑁 (𝜓6
ℎ𝑞)‖𝐿2

𝑡,𝑥
� ‖𝑞(0)‖𝐻 𝑠

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑁−𝑠 if 𝑁 ≤ 𝜅

2
3 ,

𝜅𝑁−( 3
2+𝑠) if 𝜅 2

3 ≤ 𝑁 ≤ 𝜅,

𝑁−( 1
2+𝑠) if 𝑁 ≥ 𝜅,

(5.20)

uniformly for 𝑁 ≥ 1 and 𝜅 ≥ 1. Consequently,

sup
ℎ∈R

��𝜓6
ℎ

𝜕ℓ𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡,𝑥

+ sup
ℎ∈R

�� 𝜕ℓ (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿2
𝑡,𝑥
� ‖𝑞(0)‖𝐻 𝑠

{
𝜅−2+ 2

3 (𝑙−𝑠) if ℓ = 0, 1,
𝜅−(

1
2+𝑠) if ℓ = 2,

(5.21)

uniformly for 𝜅 ≥ 1.

Proof. The claim (5.20) follows immediately from (5.18) and Bernstein inequalities. To obtain (5.21),
we decompose into Littlewood–Paley pieces, use (5.20) and Lemma 2.8, and then sum. �

Proposition 5.8 (Local smoothing for the mKdV difference flow). There exists 𝛿 > 0 so that for any
𝑞(0) ∈ 𝐵𝛿 ∩ S and 𝜅 ≥ 8, the solution 𝑞(𝑡) of the mKdV difference flow (mKdV-diff) with parameter 𝜅
satisfies

‖𝑞‖2
𝑋𝑠+1
𝜅
� ‖𝑞(0)‖2

𝐻 𝑠 , (5.22)

where the implicit constant is independent of 𝜅.

Proof. Consider the real part of (5.1). Applying the estimates (5.6), (5.11), and (5.7), we deduce that

𝜘‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜀‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

− 1
2

𝜘

+ (1 + 1
𝜀 )‖𝑞‖

2

𝐿∞
𝑡 𝐻

− 1
2

𝜘

+
[

𝜅
𝜅+𝜘 𝜅

−(2𝑠+1) + 𝜘−2(2𝑠+1) log |2𝜘|
]
𝛿2 |||𝑞 |||2mKdV𝜅

,

uniformly for 0 < 𝜀 < 1 and 𝜘 ∈ 𝐼 := [𝜅 1
2 , 1

2 𝜅] ∪ [2𝜅,∞).
Choosing − 1

2 < 𝑠′ < 𝑠 and applying the a priori estimate (4.12), this becomes

𝜘‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜀‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

− 1
2

𝜘

+ 𝜘−(2𝑠′+1) (1 + 1
𝜀 )‖𝑞(0)‖

2
𝐻 𝑠′

𝜘

+
[

𝜅
𝜅+𝜘 𝜅

−(2𝑠+1) + 𝜘−2(2𝑠+1) log |2𝜘|
]
𝛿2 |||𝑞 |||2mKdV𝜅

.
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Next, we wish to integrate over 𝜘 ∈ 𝐼. Using Lemma 2.1 as in the proof of Proposition 5.6, we obtain
the following analogues of (5.19):

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

𝑠

𝜅1/2
≈

∫
𝐼
𝜘2𝑠+2‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

−1
𝜘

𝑑𝜘
𝜘 ≈

∫
𝐼
𝜘2𝑠+1‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2

𝐿2
𝑡 𝐻

− 1
2

𝜘

𝑑𝜘
𝜘 .

Proceeding in this way, and choosing 0 < 𝜀 < 1 sufficiently small, we obtain

�� (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2

��2
𝐿2
𝑡 𝐻

𝑠

𝜅1/2
� ‖𝑞(0)‖2

𝐻 𝑠 + 𝛿2‖𝑞‖2
𝑋𝑠+1
𝜅
.

To complete the proof, we decompose

‖ 𝜓6
ℎ
𝑞

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

𝑠+2 � ‖ 1√
4𝜅2−𝜕2 𝑃≤𝜅

1
2
(𝜓6

ℎ𝑞)‖
2
𝐿2
𝑡 𝐻

𝑠+2 + ‖ 1√
4𝜅2−𝜕2 𝑃>𝜅

1
2
(𝜓6

ℎ𝑞)‖
2
𝐿2
𝑡 𝐻

𝑠+2

� ‖𝑞(0)‖2
𝐻 𝑠 + ‖ (𝜓6

ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

2
𝐿2
𝑡 𝐻

𝑠

𝜅1/2

� ‖𝑞(0)‖2
𝐻 𝑠 + 𝛿2‖𝑞‖2

𝑋𝑠+1
𝜅
.

Taking the supremum over ℎ ∈ R, we obtain the estimate (5.18) whenever 0 < 𝛿 � 1 is sufficiently
small, depending only on s. �

Proposition 5.8 directly yields the following analogue of Corollary 5.7:

Corollary 5.9. There exists 𝛿 > 0 so that for any 𝑞(0) ∈ 𝐵𝛿 ∩ S and 𝜅 ≥ 8, the solution 𝑞(𝑡) of the
mKdV difference flow (mKdV-diff) with parameter 𝜅 satisfies

sup
ℎ∈R

‖𝑃𝑁 (𝜓6
ℎ𝑞)‖𝐿2

𝑡,𝑥
� ‖𝑞(0)‖𝐻 𝑠

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑁−𝑠 if 𝑁 ≤ 𝜅

1
2 ,

𝜅𝑁−(2+𝑠) if 𝜅 1
2 ≤ 𝑁 ≤ 𝜅,

𝑁−(1+𝑠) if 𝑁 ≥ 𝜅,

uniformly for 𝑁 ≥ 1 and 𝜅 ≥ 8. Consequently,

sup
ℎ∈R

��𝜓6
ℎ

𝜕ℓ𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡,𝑥

+ sup
ℎ∈R

�� 𝜕ℓ (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿2
𝑡,𝑥
� ‖𝑞(0)‖𝐻 𝑠

{
𝜅−2+ 1

2 (𝑙−𝑠) if ℓ = 0, 1,
𝜅−(1+𝑠) if ℓ = 2,

uniformly for 𝜅 ≥ 2.

We now turn to the proof of Lemma 5.1:

Proof of Lemma 5.1. We introduce the paraproduct R[𝑞, 𝑟] with symbol

𝑅(𝜉, 𝜂) = 1
2(2𝜘−𝑖 𝜉 ) +

1
2(2𝜘+𝑖𝜂)

so that by (4.13), we may write

𝜌 [2] (𝑥; 𝜘) = R[𝑞, 𝑟] (𝑥) = 1
2𝜋

∫
𝑅(𝜉, 𝜂)𝑞(𝜉)𝑟 (𝜂)𝑒𝑖𝑥 ( 𝜉+𝜂) 𝑑𝜉 𝑑𝜂.

We then observe that the quadratic part of the current 𝑗 (𝜘, 𝜅) defined in (4.23) may be written as

𝑗 [2] (𝜘, 𝜅) = 𝑖R[ 𝑞
2𝜅−𝜕 ,

𝑟
2𝜅+𝜕 ] .
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Expanding in powers of 𝜅, we readily obtain the expressions

𝑗 [2]NLS(𝜘) = 𝑖
(
R[𝑞, 𝑟 ′] − R[𝑞′, 𝑟]

)
,

𝑗 [2]mKdV(𝜘) =
(
R[𝑞, 𝑟]

) ′′ − 3R[𝑞′, 𝑟 ′],

for the NLS and mKdV flows, as well as the expressions

𝑗diff
NLS

[2] (𝜘, 𝜅) = 𝑖
(
R[𝑞, 𝑟 ′] − R[𝑞′, 𝑟]

)
− 16𝜅4𝑖

(
R[ 𝑞

4𝜅2−𝜕2 ,
𝑟 ′

4𝜅2−𝜕2 ] − R[ 𝑞′

4𝜅2−𝜕2 ,
𝑟

4𝜅2−𝜕2 ]
)
,

𝑗diff
mKdV

[2] (𝜘, 𝜅) =
(
R[𝑞, 𝑟]

) ′′ − 3R[𝑞′, 𝑟 ′] − 16𝜅4 (R[ 𝑞
4𝜅2−𝜕2 ,

𝑟
4𝜅2−𝜕2 ]

) ′′ + 48𝜅4R[ 𝑞′

4𝜅2−𝜕2 ,
𝑟 ′

4𝜅2−𝜕2 ]

+ 4𝜅2R[ 𝑞′′

4𝜅2−𝜕2 ,
𝑟 ′′

4𝜅2−𝜕2 ]

for the corresponding difference flows. (Alternatively, we may use the definition of the currents from
Corollary 4.14 to compute the quadratic components directly.)

If we could simply replace 𝑞, 𝑟 by 𝜓6
ℎ𝑞, 𝜓

6
ℎ𝑟 in these expressions, rather than integrating them against

𝜓12
ℎ , then we would obtain the leading order terms in (5.3)–(5.6). Thus, the focal point of our analysis

will be bounding the various commutator terms that arise.
Proof of (5.3). Using the above expression, we may write

LHS(5.3) = ±2‖(𝜓6
ℎ𝑞)

′‖2
𝐻−1

𝜘
+ Re

∫ (
R[𝑞, 𝑟 ′] 𝜓12

ℎ − R[𝜓6
ℎ𝑞, (𝜓

6
ℎ𝑟)

′]
)
𝑑𝑥

− Re
∫ (

R[𝑞′, 𝑟] 𝜓12
ℎ − R[(𝜓6

ℎ𝑞)
′, 𝜓6

ℎ𝑟]
)
𝑑𝑥.

By symmetry, it suffices to bound∫ (
R[𝑞, 𝑟 ′] 𝜓12

ℎ − R[𝜓6
ℎ𝑞, (𝜓

6
ℎ𝑟)

′]
)
𝑑𝑥

=
∫

[𝜓6
ℎ ,

1
2(2𝜘−𝜕) ]𝑞 · 𝜓

6
ℎ𝑟

′ 𝑑𝑥 −
∫

1
2(2𝜘−𝜕) (𝜓

6
ℎ𝑞) · (𝜓

6
ℎ)

′𝑟 𝑑𝑥

+
∫

𝜓6
ℎ𝑞 · [𝜓

6
ℎ ,

𝜕
2(2𝜘+𝜕) ]𝑟 𝑑𝑥,

which may be bounded by����∫ (
R[𝑞, 𝑟 ′] 𝜓12

ℎ − R[𝜓6
ℎ𝑞, (𝜓

6
ℎ𝑟)

′]
)
𝑑𝑥

����
≤ ‖[𝜓6

ℎ ,
1

2(2𝜘−𝜕) ]𝑞‖
𝐻

3
2
𝜘

‖𝜓6
ℎ𝑟

′‖
𝐻

− 3
2

𝜘

+ ‖ 1
2(2𝜘−𝜕) (𝜓

6
ℎ𝑞)‖

𝐻
1
2
𝜘

‖(𝜓6
ℎ)

′𝑟 ‖
𝐻

− 1
2

𝜘

+ ‖𝜓6
ℎ𝑞‖

𝐻
− 1

2
𝜘

‖[𝜓6
ℎ ,

𝜕
2(2𝜘+𝜕) ]𝑟 ‖

𝐻
1
2
𝜘

� ‖𝑞‖2

𝐻
− 1

2
𝜘

,

as required.
Proof of (5.5). We observe that the difference 𝑗 [2]NLS − 𝑗diff

NLS
[2] has an identical expression to 𝑗 [2]NLS with

q replaced by 4𝜅2𝑞
4𝜅2−𝜕2 . The estimate (5.5) then follows from the estimate (5.3) and the estimates

‖ 4𝜅2

4𝜅2−𝜕2 𝑞‖
𝐻

− 1
2

𝜘

� ‖𝑞‖
𝐻

− 1
2

𝜘

and ‖𝜕 [𝜓6
ℎ ,

4𝜅2

4𝜅2−𝜕2 ]𝑞‖
𝐻

− 1
2

𝜘

� ‖𝑞‖
𝐻

− 1
2

𝜘

.
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Proof of (5.4). Integrating by parts, we find

LHS(5.4) = ∓6𝜘‖(𝜓6
ℎ𝑞)

′‖2
𝐻−1

𝜘
+ Re

∫
R[𝑞, 𝑟] (𝜓12

ℎ )′′ 𝑑𝑥

− 3 Re
∫ (

R[𝑞′, 𝑟 ′] 𝜓12
ℎ − R[(𝜓6

ℎ𝑞)
′, (𝜓6

ℎ𝑟)
′]
)
𝑑𝑥.

As in the proof of Lemma 5.2, the second term may be readily bounded by����∫ R[𝑞, 𝑟] (𝜓12
ℎ )′′ 𝑑𝑥

���� � ‖𝑞‖2

𝐻
− 1

2
𝜘

.

For the remaining term, we write∫ (
R[𝑞′, 𝑟 ′] 𝜓12

ℎ − R[(𝜓6
ℎ𝑞)

′, (𝜓6
ℎ𝑟)

′]
)
𝑑𝑥

=
∫

[𝜓6
ℎ ,

𝜕
2(2𝜘−𝜕) ]𝑞 · (𝜓

6
ℎ𝑟)

′ 𝑑𝑥 −
∫

𝜕
2(2𝜘−𝜕) (𝜓

6
ℎ𝑞) · (𝜓

6
ℎ)

′𝑟 𝑑𝑥

−
∫

[𝜓6
ℎ ,

𝜕
2(2𝜘−𝜕) ]𝑞 · (𝜓

6
ℎ)

′𝑟 𝑑𝑥 +
∫

(𝜓6
ℎ𝑞)

′ · [𝜓6
ℎ ,

𝜕
2(2𝜘+𝜕) ]𝑟 𝑑𝑥

−
∫

(𝜓6
ℎ)

′𝑞 · 𝜕
2(2𝜘+𝜕) (𝜓

6
ℎ𝑟) 𝑑𝑥 −

∫
(𝜓6

ℎ)
′𝑞 · [𝜓6

ℎ ,
𝜕

2(2𝜘+𝜕) ]𝑟 𝑑𝑥.

The first three summands, here, may be bounded in magnitude via

‖[𝜓6
ℎ ,

𝜕
2(2𝜘−𝜕) ]𝑞‖

𝐻
1
2
𝜘

‖(𝜓6
ℎ𝑟)

′‖
𝐻

− 1
2

𝜘

+ ‖ 𝜕
2(2𝜘−𝜕) (𝜓

6
ℎ𝑞)‖

𝐻
1
2
𝜘

‖(𝜓6
ℎ)

′𝑟 ‖
𝐻

− 1
2

𝜘

� ‖(𝜓6
ℎ𝑞)

′‖
𝐻

− 1
2

𝜘

‖𝑞‖
𝐻

− 1
2

𝜘

and

‖[𝜓6
ℎ ,

𝜕
2(2𝜘−𝜕) ]𝑞‖

𝐻
1
2
𝜘

‖(𝜓6
ℎ)

′𝑟 ‖
𝐻

− 1
2

𝜘

� ‖𝑞‖2

𝐻
− 1

2
𝜘

,

both of which are acceptable. The remaining three summands can then be estimated in a parallel fashion;
indeed, this is tantamount to replacing 𝜘 by −𝜘.

Proof of (5.6). Integrating by parts several times, we obtain the identity

LHS(5.6) = ∓2𝜘
∫

(20𝜅2+3𝜉 2) 𝜉 4

(4𝜘2+𝜉 2) (4𝜅2+𝜉 2)2 |𝜓6
ℎ𝑞 |

2 𝑑𝜉

− 3 Re
∫ (

R[ 𝑞′′′

4𝜅2−𝜕2 ,
𝑟 ′′′

4𝜅2−𝜕2 ] 𝜓12
ℎ − R[ (𝜓

6
ℎ
𝑞)′′′

4𝜅2−𝜕2 ,
(𝜓6

ℎ
𝑟 )′′′

4𝜅2−𝜕2 ]
)
𝑑𝑥

− 20𝜅2 Re
∫ (

R[ 𝑞′′

4𝜅2−𝜕2 ,
𝑟 ′′

4𝜅2−𝜕2 ] 𝜓12
ℎ − R[ (𝜓

6
ℎ
𝑞)′′

4𝜅2−𝜕2 ,
(𝜓6

ℎ
𝑟 )′′

4𝜅2−𝜕2 ]
)
𝑑𝑥

+ Re
∫

R[ 𝑞′′

4𝜅2−𝜕2 ,
𝑟 ′′

4𝜅2−𝜕2 ] (𝜓12
ℎ )′′ 𝑑𝑥

+ 20𝜅2 Re
∫

R[ 𝑞′

4𝜅2−𝜕2 ,
𝑟 ′

4𝜅2−𝜕2 ] (𝜓12
ℎ )′′ 𝑑𝑥

− 4𝜅2 Re
∫

R[ 𝑞
4𝜅2−𝜕2 ,

𝑟
4𝜅2−𝜕2 ] (𝜓12

ℎ )′′′′ 𝑑𝑥.
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The final three terms are lower order errors that may be bounded by����∫ R[ 𝑞′′

4𝜅2−𝜕2 ,
𝑟 ′′

4𝜅2−𝜕2 ] (𝜓12
ℎ )′′ 𝑑𝑥

���� � ‖ 𝑞′′

4𝜅2−𝜕2 ‖2

𝐻
− 1

2
𝜘

� ‖𝑞‖2

𝐻
− 1

2
𝜘����𝜅2

∫
R[ 𝑞′

4𝜅2−𝜕2 ,
𝑟 ′

4𝜅2−𝜕2 ] (𝜓12
ℎ )′′ 𝑑𝑥

���� � 𝜅2‖ 𝑞′

4𝜅2−𝜕2 ‖2

𝐻
− 1

2
𝜘

� ‖𝑞‖2

𝐻
− 1

2
𝜘

,����𝜅2
∫

R[ 𝑞
4𝜅2−𝜕2 ,

𝑟
4𝜅2−𝜕2 ] (𝜓12

ℎ )′′′′ 𝑑𝑥
���� � 𝜅2‖ 𝑞

4𝜅2−𝜕2 ‖2

𝐻
− 1

2
𝜘

� 𝜅−2‖𝑞‖2

𝐻
− 1

2
𝜘

.

For the first commutator term, we estimate����∫ (
R[ 𝑞′′′

4𝜅2−𝜕2 ,
𝑟 ′′′

4𝜅2−𝜕2 ] 𝜓12
ℎ − R[ (𝜓

6
ℎ
𝑞)′′′

4𝜅2−𝜕2 ,
(𝜓6

ℎ
𝑟 )′′′

4𝜅2−𝜕2 ]
)
𝑑𝑥

����
� ‖[𝜓6

ℎ ,
𝜕3

(2𝜘−𝜕) (4𝜅2−𝜕2) ]𝑞‖𝐻
1
2
𝜘

‖ 𝜕3

4𝜅2−𝜕2 (𝜓6
ℎ𝑞)‖

𝐻
− 1

2
𝜘

+
{
‖[𝜓6

ℎ ,
𝜕3

(2𝜘−𝜕) (4𝜅2−𝜕2) ]𝑞‖𝐻
1
2
𝜘

+ ‖ 𝜕3

4𝜅2−𝜕2 (𝜓6
ℎ𝑞)‖

𝐻
− 1

2
𝜘

}
‖[𝜓6

ℎ ,
𝜕3

4𝜅2−𝜕2 ]𝑞‖
𝐻

− 1
2

𝜘

� ‖𝑞‖
𝐻

− 1
2

𝜘

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

𝐻
− 1

2
𝜘

+ ‖𝑞‖2

𝐻
− 1

2
𝜘

.

The second commutator term is bounded similarly:����𝜅2
∫ (

R[ 𝑞′′

4𝜅2−𝜕2 ,
𝑟 ′′

4𝜅2−𝜕2 ] 𝜓12
ℎ − R[ (𝜓

6
ℎ
𝑞)′′

4𝜅2−𝜕2 ,
(𝜓6

ℎ
𝑟 )′′

4𝜅2−𝜕2 ]
)
𝑑𝑥

���� � ‖𝑞‖
𝐻

− 1
2

𝜘

‖ (𝜓6
ℎ
𝑞)′′

√
4𝜅2−𝜕2 ‖

𝐻
− 1

2
𝜘

+ ‖𝑞‖2

𝐻
− 1

2
𝜘

.

This completes the proof of the lemma. �

We now turn to the proof of Lemma 5.3. Here, we will use the estimates of Lemmas 2.6 and 2.7 to
obtain bounds for the tails of the series defining 𝑔12, 𝑔21, 𝛾. However, these estimates are not sufficient
to capture cancellations that occur for several quartic terms in the currents 𝑗diff

NLS and 𝑗diff
mKdV. For this

reason, we start by proving several quadrilinear estimates that are designed to capture the additional
smallness that arises from these cancellations.

For any 𝜅 ≥ 1 and multiindex 𝛽 ∈ {0, 1, 2}4, we introduce the class 𝑆(𝛽; 𝜅) of smooth symbols
𝑚 : R4 → C that may be written as

𝑚(𝜉; 𝜅) = 𝐶 𝜉
𝛽1
1 𝜉

𝛽2
2 𝜉

𝛽3
3 𝜉

𝛽4
4

(𝜅2+𝜉 2
1 ) (𝜅2+𝜉 2

2 ) (𝜅2+𝜉 2
3 ) (𝜅2+𝜉 2

4 )
, (5.23)

for a constant 𝐶 ∈ C. We write 𝑚 [ 𝑓1, . . . , 𝑓4] for the paraproduct with this symbol.
While it is often natural to consider paraproducts as multilinear operators, we shall only be applying

them to q and to objects subordinate to q, in the sense of (5.24). Thus, it is more natural to view these
paraproducts as polynomial-like functions of q. When it comes to estimating these nonlinear expressions,
the first step will always be to isolate the two highest frequency terms and use local smoothing to control
them (integrability in time forbids using local smoothing for more than two factors). Correspondingly,
a multilinear point of view would lead to right-hand sides containing a sum over all permutations of the
arguments. Here, we see the virtue of phrasing them as nonlinear estimates and of subordinating their
arguments to q.

For the NLS, we have the following lemma:

Lemma 5.10 (Quartic estimate for the NLS). Let |𝜘| ≥ 𝜅
2
3 ≥ 1 and the Schwartz functions 𝑞, 𝑓 ∈

C ([−1, 1]; 𝐵𝛿 ∩ S) satisfy

||| 𝑓 |||NLS𝜅
� |||𝑞 |||NLS𝜅

. (5.24)
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Let 𝑚 ∈ 𝑆(𝛽; 𝜅), where 1 ≤ |𝛽 | ≤ 5 and at most one 𝛽 𝑗 = 2. Then we have the paraproduct estimate��𝑚 [𝑞, 𝑟, 𝑞, 𝜓12
ℎ

𝑓
2𝜘+𝜕 ]

��
𝐿1
𝑡,𝑥
� 𝜅 |𝛽 |−7− 4

3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅
, (5.25)

where the implicit constant is independent of 𝜅, 𝜘, and ℎ ∈ R, and 𝜓 is as in (1.5).
Proof. By space-translation invariance, we may assume ℎ = 0.

By Bernstein’s inequality, for 0 ≤ 𝑗 ≤ 2, we may bound

𝑁 𝑗

(𝜅+𝑁 )2 ‖(𝜓3𝑞)𝑁 ‖𝐿2
𝑡,𝑥
� 𝜅−2𝑁 𝑗−𝑠− 5

2 min{𝑁
5
2 , 𝜅𝑁, 𝜅2}|||𝑞 |||NLS𝜅

𝑁 𝑗

(𝜅+𝑁 )2 ‖
(
𝜓3 𝑓

2𝜘+𝜕
)
𝑁 ‖𝐿2

𝑡,𝑥
� |𝜘|−(𝑠+

1
2 ) ( |𝜘| + 𝑁)𝑠−

1
2 𝜅−2𝑁 𝑗−𝑠− 5

2 min{𝑁
5
2 , 𝜅𝑁, 𝜅2}|||𝑞 |||NLS𝜅

,

which we will use to estimate high-frequency terms. Using Bernstein’s inequality again, we also find
that for 0 ≤ 𝑗 ≤ 2,∑

𝑀 ≤𝑁

𝑀 𝑗

(𝜅+𝑀 )2 ‖(𝜓3𝑞)𝑀 ‖𝐿∞
𝑡,𝑥
� 𝜅−2𝑁

1
2−𝑠 min{𝑁 𝑗 , 𝜅 𝑗 }𝛿,∑

𝑀 ≤𝑁

𝑀 𝑗

(𝜅+𝑀 )2 ‖
(
𝜓3 𝑓

2𝜘+𝜕
)
𝑀 ‖𝐿∞

𝑡,𝑥
� |𝜘|−(𝑠+

1
2 ) ( |𝜘| + 𝑁)𝑠−

1
2 𝜅−2𝑁

1
2−𝑠 min{𝑁 𝑗 , 𝜅 𝑗 }𝛿,

which we will use to estimate low frequency terms.
For dyadic 𝑁 𝑗 ≥ 1, we write

𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4 := 𝑚
[
𝜓−3 (𝜓3𝑞)𝑁1 , 𝜓

−3 (𝜓3𝑟)𝑁2 , 𝜓
−3 (𝜓3𝑞)𝑁3 , 𝜓

9 (𝜓3 𝑓
2𝜘+𝜕 )𝑁4

]
,

so that ��𝑚 [𝑞, 𝑟, 𝑞, 𝜓12 𝑓
2𝜘+𝜕 ]

��
𝐿1
𝑡,𝑥

≤
∑
𝑁 𝑗 ≥1

��𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4

��
𝐿1
𝑡,𝑥
.

As the estimates will be symmetric in the first three terms, we may assume that 𝑁1 ≥ 𝑁2 ≥ 𝑁3.
Our strategy will be to bound the two highest frequency terms in 𝐿2

𝑡 ,𝑥 to take advantage of the local
smoothing norms, and the two lowest frequencies in 𝐿∞𝑡 ,𝑥 . Concretely, when 𝑁4 ≤ 𝑁2, we apply Lemma
2.8, to obtain��𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4

��
𝐿1
𝑡,𝑥
� ‖𝜓3 𝜕𝛽1

4𝜅2−𝜕2𝜓
−3(𝜓3𝑞)𝑁1 ‖𝐿2

𝑡,𝑥
‖𝜓3 𝜕𝛽2

4𝜅2−𝜕2𝜓
−3(𝜓3𝑞)𝑁2 ‖𝐿2

𝑡,𝑥

× ‖𝜓3 𝜕𝛽3
4𝜅2−𝜕2𝜓

−3 (𝜓3𝑞)𝑁3 ‖𝐿∞
𝑡,𝑥
‖𝜓−9 𝜕𝛽4

4𝜅2−𝜕2𝜓
9 (𝜓3 𝑓

2𝜘+𝜕 )𝑁4 ‖𝐿∞
𝑡,𝑥

�
𝑁

𝛽1
1 𝑁

𝛽2
2 𝑁

𝛽3
3 𝑁

𝛽4
4

(𝜅+𝑁1)2 (𝜅+𝑁2)2 (𝜅+𝑁3)2 (𝜅+𝑁4)2 ‖(𝜓3𝑞)𝑁1 ‖𝐿2
𝑡,𝑥
‖(𝜓3𝑞)𝑁2 ‖𝐿2

𝑡,𝑥

× ‖(𝜓3𝑞)𝑁3 ‖𝐿∞
𝑡,𝑥
‖(𝜓3 𝑓

2𝜘+𝜕 )𝑁4 ‖𝐿∞
𝑡,𝑥
,

whereas, when 𝑁4 > 𝑁2, we obtain instead��𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4

��
𝐿1
𝑡,𝑥
�

𝑁
𝛽1

1 𝑁
𝛽2

2 𝑁
𝛽3

3 𝑁
𝛽4

4
(𝜅+𝑁1)2 (𝜅+𝑁2)2 (𝜅+𝑁3)2 (𝜅+𝑁4)2 ‖(𝜓3𝑞)𝑁1 ‖𝐿2

𝑡,𝑥
‖(𝜓3𝑞)𝑁2 ‖𝐿∞

𝑡,𝑥

× ‖(𝜓3𝑞)𝑁3 ‖𝐿∞
𝑡,𝑥
‖
(
𝜓3 𝑓

2𝜘+𝜕
)
𝑁4
‖𝐿2

𝑡,𝑥
.

We then sum over the lowest two frequencies and invoke the estimates laid out above. When 𝑁4 ≤ 𝑁2,
this leads to a bound of the form ∑

𝑁1≥𝑁2

Γ𝑁1 ,𝑁2𝛿
2 |||𝑞 |||2NLS𝜅

,
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where Γ is the matrix

Γ𝑁1 ,𝑁2 := |𝜘|−(𝑠+
1
2 ) ( |𝜘| + 𝑁2)𝑠−

1
2 𝜅−8𝑁

𝛽1− 5
2−𝑠

1 𝑁
𝛽2− 3

2−3𝑠
2

× min{𝑁
5
2
1 , 𝜅𝑁1, 𝜅

2} min{𝑁𝛽3+𝛽4+ 5
2

2 , 𝜅𝑁
𝛽3+𝛽4+1
2 , 𝜅𝛽3+𝛽4+2}.

When on the other hand 𝑁4 > 𝑁2, we are led to a bound of the form

∑
𝑁1≥𝑁4

Γ𝑁1 ,𝑁4𝛿
2 |||𝑞 |||2NLS𝜅

+
∑

𝑁4≥𝑁1

[
|𝜘 |+𝑁4
|𝜘 |+𝑁1

] 𝑠− 1
2
Γ𝑁4 ,𝑁1𝛿

2 |||𝑞 |||2NLS𝜅
,

with corresponding permutations of the indices 𝛽.
In this way, we see that the proof can be completed by proving∑

𝑁 ≥𝑀
Γ𝑁 ,𝑀 � 𝜅 |𝛽 |−7− 8

3 (𝑠+
1
2 ) .

As the matrix entries are monotone in |𝜘|, it suffices to prove the bound when |𝜘| = 𝜅2/3. Summing first
in N, we are left to estimate∑

𝑀 ≥1
𝜅−8− 1

3 (2𝑠+1) (𝜅
2
3 + 𝑀)𝑠−

1
2 𝑀𝛽2− 3

2 (2𝑠+1) min
{
𝑀𝛽3+𝛽4+ 5

2 [𝜅𝛽1− 1
2−𝑠 + 𝜅

2
3 (𝛽1−𝑠) ],

𝜅2𝑀𝛽3+𝛽4+1 [𝜅𝛽1− 3
2−𝑠 + 𝑀𝛽1− 3

2−𝑠], 𝜅𝛽3+𝛽4+4𝑀𝛽1− 5
2−𝑠

}
. (5.26)

From here, one need only consider the cases 𝑀 ≤ 𝜅
2
3 , 𝜅 2

3 ≤ 𝑀 ≤ 𝜅, and 𝑀 ≥ 𝜅. �

For the mKdV, we have the following variation:

Lemma 5.11 (Quartic estimates for the mKdV). Let𝑚 ∈ 𝑆(𝛽; 𝜅) with 1 ≤ |𝛽 | ≤ 8. For any |𝜘| ≥
√
𝜅 ≥ 1

and any Schwartz functions 𝑞, 𝑓 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) satisfying

||| 𝑓 |||mKdV𝜅
� |||𝑞 |||mKdV𝜅

,

we have the paraproduct estimate��𝑚 [𝑞, 𝑟, 𝑞, 𝜓12
ℎ

𝑓
2𝜘+𝜕 ]

��
𝐿1
𝑡,𝑥

+
��𝑚 [𝑞, 𝑟, 𝑞, 𝑓

2𝜘+𝜕 ] 𝜓
12
ℎ

��
𝐿1
𝑡,𝑥

�
[
𝜅−2𝑠

|𝜘 | + |𝜘|−2(2𝑠+1) log
�� 4𝜘2

𝜅

��]𝜅 |𝛽 |−8𝛿2 |||𝑞 |||2mKdV𝜅
, (5.27)

where the implicit constant is independent of 𝜅, 𝜘, and ℎ ∈ R. Moreover, if |𝛽 | ≥ 2,����∬ 𝑚
[
𝑞, 𝑟, 𝑞, 𝜓12

ℎ
𝑓

2𝜘+𝜕
]
𝑑𝑥 𝑑𝑡

���� � 𝜅 |𝛽 |−9−2𝑠𝛿2 |||𝑞 |||2mKdV𝜅
. (5.28)

Remark 5.12. As we will see in the proof, it is not essential that the first three entries in the paraproduct
are exactly q, r, and q. Rather, we only require that they obey the same estimates as q, in the manner
that f does. As we shall seldom need this extra generality, we have chosen to present the lemma in this
more representative form.

Proof. The proof is essentially identical to that of Lemma 5.10. By space-translation symmetry, we
may assume ℎ = 0.
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We will reuse the 𝐿∞𝑡 ,𝑥 bounds appearing in the proof of Lemma 5.10; however, the 𝐿2
𝑡 ,𝑥 local

smoothing bounds used to treat the high-frequency terms must be adapted to the mKdV setting.
Specifically, we will use

𝑁 𝑗

(𝜅+𝑁 )2 ‖(𝜓3𝑞)𝑁 ‖𝐿2
𝑡,𝑥
� 𝜅−2𝑁 𝑗−3−𝑠 min{𝑁3, 𝜅𝑁, 𝜅2}|||𝑞 |||mKdV𝜅

,

𝑁 𝑗

(𝜅+𝑁 )2 ‖
(
𝜓3 𝑓

2𝜘+𝜕
)
𝑁 ‖𝐿2

𝑡,𝑥
� |𝜘|−(𝑠+

1
2 ) ( |𝜘| + 𝑁)𝑠−

1
2 𝜅−2𝑁 𝑗−3−𝑠 min{𝑁3, 𝜅𝑁, 𝜅2}|||𝑞 |||mKdV𝜅

.

Proceeding as in the proof of (5.25), we take

𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4 := 𝑚
[
𝜓−3 (𝜓3𝑞)𝑁1 , 𝜓

−3 (𝜓3𝑟)𝑁2 , 𝜓
−3 (𝜓3𝑞)𝑁3 , 𝜓

9 (𝜓3 𝑓
2𝜘+𝜕 )𝑁4

]
,

so that

‖𝑚 [𝑞, 𝑟, 𝑞, 𝜓12 𝑓
2𝜘+𝜕 ]‖𝐿1

𝑡,𝑥
≤

∑
𝑁 𝑗 ≥1

‖𝑚𝑁1 ,𝑁2 ,𝑁3 ,𝑁4 ‖𝐿1
𝑡,𝑥
,

or

𝑚̃𝑁1 ,𝑁2 ,𝑁3 ,𝑁4 := 𝑚
[
𝜓−3 (𝜓3𝑞)𝑁1 , 𝜓

−3 (𝜓3𝑟)𝑁2 , 𝜓
−3 (𝜓3𝑞)𝑁3 , 𝜓

−3 (𝜓3 𝑓
2𝜘+𝜕 )𝑁4

]
,

‖𝑚 [𝑞, 𝑟, 𝑞, 𝑓
2𝜘+𝜕 ] 𝜓

12‖𝐿1
𝑡,𝑥

≤
∑
𝑁 𝑗 ≥1

‖𝑚̃𝑁1 ,𝑁2 ,𝑁3 ,𝑁4 𝜓
12‖𝐿1

𝑡,𝑥
.

As in the proof of (5.25), it suffices to restrict our attention to the case 𝑁1 ≥ 𝑁2 ≥ 𝑁3 ≥ 𝑁4. With
ℓ = 3, 9, we may bound

LHS(5.27) �
∑

𝑁1≥𝑁2≥𝑁3≥𝑁4

‖𝜓3 𝜕𝛽1
4𝜅2−𝜕2𝜓

−3(𝜓3𝑞)𝑁1 ‖𝐿2
𝑡,𝑥
‖𝜓3 𝜕𝛽2

4𝜅2−𝜕2𝜓
−3(𝜓3𝑞)𝑁2 ‖𝐿2

𝑡,𝑥

× ‖𝜓3 𝜕𝛽3
4𝜅2−𝜕2𝜓

−3 (𝜓3𝑞)𝑁3 ‖𝐿∞
𝑡,𝑥
‖𝜓−ℓ 𝜕𝛽4

4𝜅2−𝜕2𝜓
ℓ (𝜓3 𝑓

2𝜘+𝜕 )𝑁4 ‖𝐿∞
𝑡,𝑥

�
∑

𝑁1≥𝑁2≥𝑁3≥𝑁4

𝑁
𝛽1

1 𝑁
𝛽2

2 𝑁
𝛽3

3 𝑁
𝛽4

4
(𝜅+𝑁1)2 (𝜅+𝑁2)2 (𝜅+𝑁3)2 (𝜅+𝑁4)2 ‖(𝜓3𝑞)𝑁1 ‖𝐿2

𝑡,𝑥
‖(𝜓3𝑞)𝑁2 ‖𝐿2

𝑡,𝑥

× ‖(𝜓3𝑞)𝑁3 ‖𝐿∞
𝑡,𝑥
‖(𝜓3 𝑓

2𝜘+𝜕 )𝑁4 ‖𝐿∞
𝑡,𝑥
.

Summing in 𝑁3 ≥ 𝑁4 ≥ 1 we obtain a bound of a constant multiple of∑
𝑁1≥𝑁2

|𝜘|−(𝑠+
1
2 ) ( |𝜘| + 𝑁2)𝑠−

1
2 𝜅−8𝑁

𝛽1−3−𝑠
1 𝑁

𝛽2−2−3𝑠
2 min{𝑁3

1 , 𝜅𝑁1, 𝜅
2}

× min{𝑁𝛽3+𝛽4+3
2 , 𝜅𝑁

𝛽3+𝛽4+1
2 , 𝜅𝛽3+𝛽4+2}𝛿2 |||𝑞 |||2mKdV𝜅

.

Proceeding as in Lemma 5.10 and summing in 𝑁1, we are led to control the following analogue of (5.26):∑
𝑀 ≥1

𝜅−8 |𝜘|−(𝑠+
1
2 ) ( |𝜘| + 𝑀)𝑠−

1
2 𝑀𝛽2−2−3𝑠 min

{
𝑀𝛽3+𝛽4+3 [𝜅𝛽1−1−𝑠 + 𝜅

1
2 (𝛽1−𝑠) ],

𝜅2𝑀𝛽3+𝛽4+1 [𝜅𝛽1−2−𝑠 + 𝑀𝛽1−2−𝑠], 𝜅𝛽3+𝛽4+4𝑀𝛽1−3−𝑠
}
.

Once again, this requires consideration of individual cases. Unlike in Lemma 5.10, the final bound
depends upon |𝜘| and so we cannot exploit monotonicity; thus, we need to treat separately 𝜅 1

2 ≤ |𝜘| ≤ 𝜅
and |𝜘| ≥ 𝜅. Evaluating these sums carefully reveals that (5.27) can be improved to

LHS(5.27) �
[
𝜅−2𝑠

𝜅+|𝜘 | + |𝜘|−2(2𝑠+1) log
�� 4𝜘2

𝜅

��]𝜅 |𝛽 |−8𝛿2 |||𝑞 |||2mKdV𝜅
(5.29)
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in two cases: (i) if |𝛽 | ≥ 3 or (ii) if |𝛽 | = 2 and no individual 𝛽 𝑗 = 2. These bounds suffice to prove
(5.28) because if |𝛽 | = 2 and some factor has two derivatives (i.e., some 𝛽 𝑗 = 2), then we may integrate
by parts to redistribute one of the derivatives and recover case (ii). �

Next, we prove another pair of lemmas that will act as replacements for Lemmas 2.6, 2.7 in certain
situations:

Lemma 5.13. Let |𝜘| ≥ 𝜅
2
3 ≥ 1 and 𝑓1, 𝑓2 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) satisfy������ 𝑓 𝑗 ������NLS𝜅

� |||𝑞 |||NLS𝜅
.

Then we have the estimate

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ 𝑓1 · 𝜓ℎ 𝑓2

2𝜘−𝜕 ) (𝜘 + 𝜕)
− 1

2 ‖2
𝐿2
𝑡 ℑ2
� |𝜘|−3 [𝜅 2

3−
8𝑠
3 + |𝜘|−4𝑠]𝛿2 |||𝑞 |||2NLS𝜅

. (5.30)

Proof. By translation invariance, we may take ℎ = 0. Decomposing dyadically and using (2.22) yields

LHS(5.30) �
∑
𝑁 ≥1

(|𝜘| + 𝑁)−1 log
(
4 + 𝑁 2

|𝜘 |2
)��𝑃𝑁 (𝜓 𝑓1 · 𝜓 𝑓2

2𝜘−𝜕
)��2
𝐿2
𝑡,𝑥
,

in which we then substitute the bound��𝑃𝑁 (𝜓 𝑓1 · 𝜓 𝑓2
2𝜘−𝜕

)��
𝐿2
𝑡,𝑥

≤
���� ∑
𝑁1 ,𝑁2≥1

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

)��
𝐿2

����
𝐿2
𝑡

.

We then proceed using the Littlewood–Paley trichotomy:

Case 1: 𝑁2 � 𝑁1 ≈ 𝑁 . Applying Bernstein’s inequality, we bound��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

)��
𝐿2
𝑡,𝑥
� ‖(𝜓 𝑓1)𝑁1 ‖𝐿2

𝑡,𝑥
‖
(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2
‖𝐿∞

𝑡,𝑥

� 𝑁
−𝑠− 3

2
1 min{𝑁

3
2
1 , 𝜅 + 𝑁1}𝑁

1
2−𝑠
2 (|𝜘| + 𝑁2)−1𝛿 |||𝑞 |||NLS𝜅

.

Observing that for fixed 𝑁 ≥ 1, we have∑
1≤𝑁2�𝑁

𝑁
1
2−𝑠
2 (|𝜘| + 𝑁2)−1 � |𝜘|−1 (𝑁 ∧ |𝜘|)

1
2−𝑠 ,

we are led to estimate∑
𝑁 ≥1

|𝜘|−2 (𝑁 ∧ |𝜘|)1−2𝑠 (|𝜘| + 𝑁)−1 log(4 + 𝑁 2

|𝜘 |2 )𝑁
−2𝑠−3 min{𝑁3, (𝜅 + 𝑁)2}

� |𝜘|−3 [𝜅 2
3−

8𝑠
3 + |𝜘|−4𝑠] .

Case 2: 𝑁1 � 𝑁2 ≈ 𝑁 . A similar argument yields the estimate

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

)��
𝐿2
𝑡,𝑥
� 𝑁

1
2−𝑠
1 (|𝜘| + 𝑁2)−1𝑁

−𝑠− 3
2

2 min{𝑁
3
2
2 , 𝜅 + 𝑁2}𝛿 |||𝑞 |||NLS𝜅

.

This then leads us to evaluate∑
𝑁 ≥1

(|𝜘| + 𝑁)−3 log(4 + 𝑁 2

𝜘2 )𝑁−2(1+2𝑠) min{𝑁3, (𝜅 + 𝑁)2},

which yields the same bound as in Case 1.
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Case 3: 𝑁1 ≈ 𝑁2 � 𝑁 . Bernstein’s inequality implies��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

��
𝐿2

� 𝑁
1
2
��(𝜓 𝑓1)𝑁1

��
𝐿2 · 𝑁−𝑠

1 (|𝜘| + 𝑁1)−1��(2𝜘 − 𝜕) (𝜓 𝑓2
2𝜘−𝜕

)
𝑁2

��
𝐻 𝑠 .

Thus, applying Cauchy–Schwarz to the sum, we obtain���� ∑
𝑁1≈𝑁2�𝑁

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

)��
𝐿2

����2

𝐿2
𝑡

� 𝑁
∑
𝑁1�𝑁

𝑁−4𝑠−3
1 (|𝜘| + 𝑁1)−2 min{𝑁3

1 , (𝜅 + 𝑁1)2}𝛿2 |||𝑞 |||2NLS𝜅
.

We are then left to evaluate the sum∑
𝑁 ≥1

∑
𝑁1�𝑁

𝑁
|𝜘 |+𝑁 log

(
4 + 𝑁 2

|𝜘 |2
)
𝑁−4𝑠−3

1 (|𝜘| + 𝑁1)−2 min{𝑁3
1 , (𝜅 + 𝑁1)2}

�
∑
𝑁1≥1

|𝜘|−1 (|𝜘| + 𝑁1)−2𝑁−4𝑠−2
1 min{𝑁3

1 , (𝜅 + 𝑁1)2},

which ultimately yields a contribution identical to that of Cases 1 and 2. �

In the case of the mKdV, we have the following analogue:

Lemma 5.14. Let |𝜘| ≥ 𝜅
1
2 ≥ 1 and 𝑓1, 𝑓2, 𝑓3 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) satisfy������ 𝑓 𝑗 ������mKdV𝜅

� |||𝑞 |||mKdV𝜅
.

Then we have the estimates

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ 𝑓1 · 𝜓ℎ 𝑓2

2𝜘−𝜕 ) (𝜘 + 𝜕)
− 1

2 ‖2
𝐿2
𝑡 ℑ2

(5.31)

� |𝜘|−3 [𝜅 1
2−2𝑠 + |𝜘|−1−4𝑠 log |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV𝜅

,

‖(𝜘 − 𝜕)−
1
2 (𝜓ℎ 𝑓1 · 𝜓ℎ 𝑓2

2𝜘−𝜕 · 𝜓ℎ 𝑓3
2𝜘+𝜕 ) (𝜘 + 𝜕)

− 1
2 ‖2

𝐿2
𝑡 ℑ2

(5.32)

� |𝜘|−5 [𝜅1−3𝑠 +
(
1 + 𝜅2

𝜘2

)
|𝜘|−6𝑠 log |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

.

Proof. The estimate (5.31) follows from the same argument used to prove (5.30); all that changes are
the specific powers inside the sums.

Thus, it remains to consider the estimate (5.32). Proceeding as in the proof of (5.30), we may assume
that ℎ = 0 and bound

LHS(5.32) �
∑
𝑁 ≥1

(|𝜘| + 𝑁)−1 log
(
4 + 𝑁 2

𝜘2

)��𝑃𝑁 (
𝜓 𝑓1 · 𝜓 𝑓2

2𝜘−𝜕 · 𝜓 𝑓3
2𝜘+𝜕

)��2
𝐿2
𝑡,𝑥
.

We then decompose further by frequency, using��𝑃𝑁 (
𝜓 𝑓1 · 𝜓 𝑓2

2𝜘−𝜕 · 𝜓 𝑓3
2𝜘+𝑝

)��
𝐿2
𝑡,𝑥

≤
���� ∑
𝑁1 ,𝑁2 ,𝑁3≥1

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

·
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3

)��
𝐿2

����
𝐿2
𝑡

.

As everything is symmetric under the 𝑁2 ↔ 𝑁3 interchange, we may reduce matters to four possible
cases:
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Case 1: min{𝑁1, 𝑁} ≥ max{𝑁2, 𝑁3}. Here, we apply Bernstein’s inequality to bound

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

·
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3

)��
𝐿2
𝑡,𝑥

≤ ‖(𝜓 𝑓1)𝑁1 ‖𝐿2
𝑡,𝑥
‖
(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2
‖𝐿∞

𝑡,𝑥
‖
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3
‖𝐿∞

𝑡,𝑥

� 𝑁−𝑠−2
1 min{𝑁2

1 , 𝜅 + 𝑁1}𝑁
1
2−𝑠
2 (|𝜘| + 𝑁2)−1𝑁

1
2−𝑠
3 (|𝜘| + 𝑁3)−1𝛿2 |||𝑞 |||mKdV𝜅

.

Summing in 𝑁2, 𝑁3 and then in 𝑁1 ≈ 𝑁 using the Cauchy-Schwarz inequality, we obtain a contribution
to RHS (5.32) that is

�
∑
𝑁 ≥1

|𝜘|−4 (𝑁 ∧ |𝜘|)2−4𝑠 (|𝜘| + 𝑁)−1 log
(
4 + 𝑁 2

𝜘2

)
𝑁−2𝑠−4 min{𝑁4, (𝜅 + 𝑁)2}𝛿4 |||𝑞 |||2mKdV𝜅

� |𝜘|−5 [𝜅1−3𝑠 +
(
1 + 𝜅2

𝜘2

)
|𝜘|−6𝑠 log |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

.

Case 1: min{𝑁2, 𝑁} ≥ max{𝑁1, 𝑁3}. A similar argument, this time placing 𝜓 𝑓2
2𝜘−𝜕 in 𝐿2

𝑡 ,𝑥 yields the
estimate ��𝑃𝑁 (

(𝜓 𝑓1)𝑁1 ·
(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

·
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3

)��
𝐿2
𝑡,𝑥

� 𝑁
1
2−𝑠
1 (|𝜘| + 𝑁2)−1𝑁−𝑠−2

2 min{𝑁2
2 , 𝜅 + 𝑁2}𝑁

1
2−𝑠
3 (|𝜘| + 𝑁3)−1𝛿2 |||𝑞 |||mKdV𝜅

,

which yields a contribution to RHS (5.32) of

�
∑
𝑁 ≥1

|𝜘|−2 (𝑁 ∧ |𝜘|)1−2𝑠 (|𝜘| + 𝑁)−3 log
(
4 + 𝑁 2

𝜘2

)
𝑁−4𝑠−3 min{𝑁4, (𝜅 + 𝑁)2}𝛿4 |||𝑞 |||2mKdV𝜅

,

which yields an identical contribution to Case 1.

Case 3: min{𝑁1, 𝑁2} ≥ max{𝑁3, 𝑁}. Here, we apply Bernstein’s inequality at the output frequency
and sum using the Cauchy-Schwarz inequality in 𝑁1 ≈ 𝑁2 so that for fixed 𝑁 ≥ 1, we obtain����� ∑

𝑁1≈𝑁2�𝑁3 ,𝑁

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

·
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3

)��
𝐿2

�����
2

𝐿2
𝑡

� 𝑁

����� ∑
𝑁1≈𝑁2�𝑁3 ,𝑁

‖(𝜓 𝑓1)𝑁1 ‖𝐿2 ‖
(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2
‖𝐿2 ‖

(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3
‖𝐿∞

�����
2

𝐿2
𝑡

� 𝑁
∑
𝑁1�𝑁

𝑁−4𝑠−4
1 min{𝑁4

1 , (𝜅 + 𝑁1)2}(|𝜘| + 𝑁1)−2 |𝜘|−2 (𝑁1 ∧ |𝜘|)1−2𝑠𝛿4 |||𝑞 |||2mKdV𝜅
.

We then obtain a contribution to RHS (5.32) of

�
∑
𝑁 ≥1

𝑁
|𝜘 |+𝑁 log

(
4 + 𝑁 2

𝜘2

) ∑
𝑁1�𝑁

𝑁−4𝑠−4
1 min{𝑁4

1 , (𝜅 + 𝑁1)2}

× (|𝜘| + 𝑁1)−2 |𝜘|−2 (𝑁1 ∧ |𝜘|)1−2𝑠𝛿4 |||𝑞 |||2mKdV𝜅

�
∑
𝑁1≥1

|𝜘|−3𝑁−4𝑠−3
1 min{𝑁4

1 , (𝜅 + 𝑁1)2}(|𝜘| + 𝑁1)−2(𝑁1 ∧ |𝜘|)1−2𝑠𝛿4 |||𝑞 |||2mKdV𝜅
,

which gives an identical contribution to Cases 1 and 2.
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Case 4: min{𝑁2, 𝑁3} ≥ max{𝑁1, 𝑁}. Arguing as in Case 3, for fixed 𝑁 ≥ 1, we may bound����� ∑
𝑁2≈𝑁3�𝑁1 ,𝑁

��𝑃𝑁 (
(𝜓 𝑓1)𝑁1 ·

(
𝜓 𝑓2

2𝜘−𝜕
)
𝑁2

·
(
𝜓 𝑓3

2𝜘+𝜕
)
𝑁3

)��
𝐿2

�����
2

𝐿2
𝑡

� 𝑁
∑
𝑁2�𝑁

𝑁−6𝑠−3
2 min{𝑁4

2 , (𝜅 + 𝑁2)2}(|𝜘| + 𝑁2)−4𝛿4 |||𝑞 |||2mKdV𝜅
,

which yields a contribution to RHS (5.32) of∑
𝑁2≥1

|𝜘|−1𝑁−6𝑠−2
2 min{𝑁4

2 , (𝜅 + 𝑁2)2}(|𝜘| + 𝑁2)−4𝛿4 |||𝑞 |||2mKdV𝜅
.

This gives an identical contribution to the previous cases. �

We are now in a position to prove our main error estimates for the NLS:

Lemma 5.15 (Error estimates for the NLS). There exists 𝛿 > 0 so that for all real |𝜘| ≥ 𝜅
2
3 ≥ 1,

Schwartz functions 𝑞, 𝑓 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) satisfying

||| 𝑓 |||NLS𝜅
� |||𝑞 |||NLS𝜅

,

and 𝜒 ∈ {(𝜓ℓ) ( 𝑗) : 6 ≤ ℓ ≤ 12, 𝑗 = 0, 1}, we have the estimates����∫ 𝑓
2𝜘+𝜕 𝑔

[≥3]
12 (±𝜅) 𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−1𝜅−1− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

, (5.33)����∫ 𝑓
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−3 [𝜅 2
3−

8𝑠
3 + |𝜘|−4𝑠]𝛿2 |||𝑞 |||2NLS𝜅

, (5.34)���𝛾(±𝜅) [≥4] 𝜒ℎ

���
𝐿1
𝑡,𝑥

� 𝜅−2− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

, (5.35)����∫ 𝑓
2𝜘+𝜕

(
𝑔 [≥3]

12 (𝜅) + 𝑔 [≥3]
12 (−𝜅)

)
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−2− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

, (5.36)

which are uniform in 𝜅, 𝜘, and ℎ ∈ R. As ever, 𝜒ℎ (𝑥) := 𝜒(𝑥 − ℎ).

Proof. By translation invariance, it suffices to consider the case ℎ = 0. Our basic technique, here, is to
expand using the series (3.19), commute copies of 𝜓, and then use Hölder’s inequality in trace ideals.
We first exhibit this technique to prove the auxiliary result (5.37) before turning our attention to the
principal claims.

Given a test function 𝐹 ∈ C ([−1, 1];S), using (3.19), we may write

sgn(𝜘)
∫

𝐹 𝑔12(𝜘) [≥3]𝜓4 𝑑𝑥 =
∞∑
ℓ=1

(−1)ℓ−1 tr
{
Λ(ΓΛ)ℓ (𝜘 + 𝜕)−

1
2𝜓4𝐹 (𝜘 − 𝜕)−

1
2

}
.

Applying Lemma 2.8 followed by the operator estimates (3.7) and (2.25), we obtain���tr
{
Λ(ΓΛ)ℓ (𝜘 + 𝜕)−

1
2𝜓4𝐹 (𝜘 − 𝜕)−

1
2

}���
𝐿1
𝑡

� ‖Λ‖2ℓ−2
𝐿∞
𝑡 ℑ2

‖(𝜘 − 𝜕)−
1
2 (𝜓𝑞) (𝜘 + 𝜕)−

1
2 ‖3

𝐿4
𝑡 ℑ4

‖(𝜘 + 𝜕)−
1
2 (𝜓𝐹) (𝜘 − 𝜕)−

1
2 ‖𝐿4

𝑡 ℑ4

� 𝐶ℓ |𝜘|−(2𝑠+1) (ℓ−1)−3 [𝜅 2
3−

8𝑠
3 + |𝜘|−4𝑠]𝛿2(ℓ−1)

× ‖𝑞‖
3
2
𝐿∞
𝑡 𝐻

𝑠 |||𝑞 |||
3
2
NLS𝜅

‖𝐹‖
1
2
𝐿∞
𝑡 𝐻

𝑠 |||𝐹 |||
1
2
NLS𝜅

,
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where the implicit constant is independent of ℓ. Summing in ℓ and applying Young’s inequality, we
obtain��� ∫ 𝐹 𝑔 [≥3]

12 (𝜘) 𝜓4 𝑑𝑥
���
𝐿1
𝑡

� |𝜘|−3 [𝜅 2
3−

8𝑠
3 + |𝜘|−4𝑠]𝛿 |||𝑞 |||NLS𝜅

(
‖𝐹‖𝐿∞

𝑡 𝐻
𝑠 |||𝑞 |||NLS𝜅

+ 𝛿 |||𝐹 |||NLS𝜅

)
.

(5.37)

The estimate (5.33) follows immediately from (5.37) by setting 𝜘 = ±𝜅, 𝐹 = 𝜒
𝜓4

𝑓
2𝜘+𝜕 and using (2.8)

and (2.14) to bound |||𝐹 |||NLS𝜅
� |𝜘|−1 |||𝑞 |||NLS𝜅

.
We turn now to (5.34) and recall that( 𝑔12

2+𝛾
) [≥3] = 1

2𝑔
[≥3]
12 − 𝑔12𝛾

2(2+𝛾) . (5.38)

By (5.37), the contribution of the first term to the left-hand side of (5.34) is easily seen to be acceptable.
To estimate the contribution of the second term on the right-hand side of (5.38), we take 𝑓1 = 𝜒 𝑓 /𝜓4

and 𝑓2 = (2𝜘 − 𝜕) 𝑔12 (𝜘)
2+𝛾 (𝜘) and apply the estimate (5.30) to bound

‖(𝜘 ± 𝜕)−
1
2 (𝜓2 𝑓1

𝑓2
2𝜘−𝜕 ) (𝜘 ± 𝜕)

− 1
2 ‖𝐿2

𝑡 ℑ2
� |𝜘|−

3
2
[
𝜅

1
3−

4𝑠
3 + |𝜘|−2𝑠]𝛿 |||𝑞 |||NLS𝜅

,

where we have used (2.14) with the estimates (3.41), (3.43) to bound

||| 𝑓2 |||NLS𝜅
=
���������(2𝜘 − 𝜕) 𝑔12 (𝜘)

2+𝛾 (𝜘)

���������
NLS𝜅

� |||𝑞 |||NLS𝜅
.

We then use (3.19) to write∫
𝜒 𝑓 𝑔12 (𝜘)
2(2+𝛾 (𝜘)) 𝛾 𝑑𝑥 = sgn(𝜘)

∞∑
ℓ=1

(−1)ℓ
[

tr
{
(ΛΓ)ℓ (𝜘 − 𝜕)−

1
2 (𝜓4 𝑓1

𝑓2
2𝜘−𝜕 ) (𝜘 − 𝜕)

− 1
2

}
+ tr

{
(ΓΛ)ℓ (𝜘 + 𝜕)−

1
2 (𝜓4 𝑓1

𝑓2
2𝜘−𝜕 ) (𝜘 + 𝜕)

− 1
2

} ]
.

Repeating our basic technique using (2.25), we obtain����∫ 𝑓1
𝑓2

2𝜘−𝜕 𝛾(𝜘) 𝜓
4 𝑑𝑥

����
𝐿1
𝑡

� ‖(𝜘 − 𝜕)−
1
2 (𝜓𝑞) (𝜘 + 𝜕)−

1
2 ‖2

𝐿4
𝑡 ℑ4

‖(𝜘 − 𝜕)−
1
2 (𝜓2 𝑓1

𝑓2
2𝜘−𝜕 ) (𝜘 − 𝜕)

− 1
2 ‖𝐿2

𝑡 ℑ2

� |𝜘|−3 [𝜅 2
3−

8𝑠
3 + |𝜘|−4𝑠]𝛿2 |||𝑞 |||2NLS𝜅

, (5.39)

which completes the proof of (5.34). The estimate (5.35) follows analogously using (2.25) with 𝜘 = 𝜅:���� ∫ 𝐹 𝛾 [≥4] (𝜅) 𝜒 𝑑𝑥
����
𝐿1
𝑡

� ‖(𝜅 − 𝜕)−
1
2 (𝜓𝑞) (𝜅 + 𝜕)−

1
2 ‖4

𝐿4
𝑡 ℑ4

‖(𝜅 ± 𝜕)−
1
2 ‖2

op‖𝜒𝐹𝜓−4‖𝐿∞
𝑡,𝑥

� 𝜅−2− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

‖𝐹‖𝐿∞
𝑡,𝑥
. (5.40)

Finally, we consider (5.36). Arguing in the same style, we bound����∫ 𝑔 [≥5]
12 (𝜅) 𝑓

2𝜘+𝜕𝜓
12 𝑑𝑥

����
𝐿1
𝑡

� ‖Λ‖𝐿∞
𝑡 ℑ2 ‖(𝜅 − 𝜕)−

1
2 (𝜓𝑞) (𝜅 + 𝜕)−

1
2 ‖4

𝐿4
𝑡 ℑ4

‖(𝜅 − 𝜕)−
1
2 (𝜓8 𝑓

2𝜘+𝜕 ) (𝜅 + 𝜕)
− 1

2 ‖𝐿∞
𝑡 op

� 𝜅−2− 11
6 (2𝑠+1)𝛿3 |||𝑞 |||2NLS𝜅

‖ 𝑓
2𝜘+𝜕 ‖𝐿∞

𝑡,𝑥

� 𝜅−2− 13
6 (2𝑠+1)𝛿4 |||𝑞 |||2NLS𝜅

,
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where we have used that |𝜘| ≥ 𝜅
2
3 to estimate ‖ 𝑓

2𝜘+𝜕 ‖𝐿∞
𝑡,𝑥
� 𝜅−

1
3 (2𝑠+1)𝛿. For the remaining term, we

observe that integrating by parts we may write∫
𝑔 [3]12 (𝜅) 𝑓

2𝜘+𝜕 𝜓
12 𝑑𝑥 =

∫
𝑚 [𝑞, 𝑟, 𝑞, 𝜓12 𝑓

2𝜘+𝜕 ] 𝑑𝑥,

where the symbol

𝑚(𝜉1, 𝜉2, 𝜉3, 𝜉4) = 2
(2𝜅+𝑖 𝜉2) (2𝜅−𝑖 𝜉3) (2𝜅+𝑖 𝜉4)

is a sum of terms in 𝜅5−|𝛽 |𝑆(𝛽; 2𝜅) for 0 ≤ |𝛽 | ≤ 5, where at most one 𝛽 𝑗 = 2. In particular, when
considering the sum 𝑔 [3]12 (𝜅) + 𝑔 [3]12 (−𝜅), we see that the terms with even |𝛽 | cancel, and hence∫ (

𝑔 [3]12 (𝜅) + 𝑔 [3]12 (−𝜅)
)

𝑓
2𝜘+𝜕 𝜓

12 𝑑𝑥 =
∫

𝑚 [𝑞, 𝑟, 𝑞, 𝜓12 𝑓
2𝜘+𝜕 ] 𝑑𝑥,

where the symbol of 𝑚 is given by a sum of terms in 𝜅5−|𝛽 |𝑆(𝛽; 2𝜅) for |𝛽 | = 1, 3, 5 and at most one
𝛽 𝑗 = 2. Applying the estimate (5.25), we then obtain����∫ (

𝑔 [3]12 (𝜅) + 𝑔 [3]12 (−𝜅)
)

𝑓
2𝜘+𝜕 𝜓

12 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−2− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

,

which completes the proof of (5.36). �

Similar arguments yield the following error estimates for the mKdV:

Lemma 5.16 (Error estimates for the mKdV). There exists 𝛿 > 0 so that for all real |𝜘| ≥ 𝜅
1
2 ≥ 1,

𝑞, 𝑓 ∈ C ([−1, 1]; 𝐵𝛿 ∩ S) satisfying

||| 𝑓 |||mKdV𝜅
� |||𝑞 |||mKdV𝜅

,

and 𝜒 ∈ {(𝜓ℓ) ( 𝑗) : 6 ≤ ℓ ≤ 12, 𝑗 = 0, 1, 2}, we have the estimates���� ∫ 𝑓 𝑔 [3]12 (𝜘) 𝜒ℎ 𝑑𝑥
����
𝐿1
𝑡

+
���� ∫ 𝑓

( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−3 [𝜅 1
2−2𝑠 + |𝜘|−1−4𝑠 log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV𝜅

, (5.41)

����∫ 𝑓
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥5]

𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−4−(𝑠+ 1
2 )
[
𝜅

3
4−

5𝑠
2 + |𝜘|−

1
2−5𝑠 log6 |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

, (5.42)

���� ∫ 𝑔 [3]21 (±𝜘)
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−5 [𝜅1−2𝑠 + |𝜘|−4𝑠]𝛿4 |||𝑞 |||2mKdV𝜅
, (5.43)

����∫ 𝑓
2𝜘+𝜕

(
𝑔 [≥3]

12 (𝜅) + 𝑔 [≥3]
12 (−𝜅)

)
𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[
𝜅−1 + |𝜘|−1]𝜅−2−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅

, (5.44)

����∫ 𝑓
2𝜘+𝜕

(
𝑔 [≥3]

12 (𝜅) − 𝑔 [≥3]
12 (−𝜅) − 1

2𝜅3 𝑞
2𝑟
)
𝜒ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−3−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
, (5.45)

���𝛾(±𝜅) [≥4] 𝜒ℎ

���
𝐿1
𝑡,𝑥

� 𝜅−
5
2−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅

, (5.46)
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����∫ (
𝛾(𝜅) [≥4] − 𝛾(−𝜅) [≥4]

)
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−3−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
, (5.47)����∫ (

𝛾(𝜅) [≥4] + 𝛾(−𝜅) [≥4] − 3
2𝜅2 𝑞𝑟

(
𝑞 · 𝑟

4𝜅2−𝜕2 + 𝑞
4𝜅2−𝜕2 · 𝑟

) )
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−3−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
,

(5.48)

where the implicit constants are independent of 𝜅, 𝜘, and ℎ ∈ R.
Proof. The basic technique is that used to prove Lemma 5.15; however, new cancellations need to be
exhibited. We begin with the estimates on 𝛾.

Mimicking (5.40) but using Lemma 2.7 with 𝑝 = 4 yields (5.46). When taking 𝑝 = 6, we obtain
instead ��𝛾(±𝜅) [≥6] 𝜒

��
𝐿1
𝑡,𝑥
� [𝜅−5−3𝑠 + 𝜅−6−6𝑠 log(2𝜅)]𝛿4 |||𝑞 |||2mKdV𝜅

(5.49)

� 𝜅−4−2𝑠𝛿4 |||𝑞 |||2mKdV𝜅
.

This estimate reduces (5.47) and (5.48) to consideration of the quartic terms, for which we turn to
(3.23). Evidently, every term in (5.47) and (5.48) can be written as a sum of paraproducts with symbols
conforming to (5.23); however, by forming these particular linear combinations, we eliminate all terms
with |𝛽 | = 0. Thus, we may apply Lemma 5.11 (with 𝜘 = 𝜅) and so deduce (5.47) and (5.48).

Applying our basic technique to 𝑔12 using Lemma 2.7 with 𝑝 = 4 yields���� ∫ 𝑓 𝑔 [3]12 (𝜘) 𝜒ℎ 𝑑𝑥
����
𝐿1
𝑡

+
���� ∫ 𝑓 𝑔 [≥3]

12 (𝜘) 𝜒 𝑑𝑥
����
𝐿1
𝑡

� RHS(5.41).

Taking 𝑝 = 5 and using also (3.7) yields���� ∫ 𝑓 𝑔 [≥5]
12 (𝜘) 𝜒 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.42),

These constitute a significant step toward proving (5.41) and (5.42). In view of (5.38), the proof of
(5.41) is completed by the following:���� ∫ 𝑓 𝑔12

2+𝛾 𝛾 𝜒 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−3 [𝜅 1
2−2𝑠 + |𝜘|−1−4𝑠 log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV𝜅

, (5.50)

which is a consequence of the argument used in (5.39) but using Lemma 2.7 and (5.31) in place of their
NLS analogues.

To prove (5.42), we use (3.32) and 𝛾 [2] = 2𝑔 [1]12 𝑔
[1]
21 to rewrite (3.40) as( 𝑔12

2+𝛾
) [≥5] = 1

2𝑔
[≥5]
12 − 𝑔12 (4+𝛾)

4(2+𝛾) 𝛾
[≥4] + 𝑔12𝑔21

2+𝛾 𝑔 [≥3]
12 − 1

2𝑔
[1]
12 𝑔

[1]
21 𝑔

[≥3]
12 + 𝑔12

2+𝛾 𝑔
[1]
12 𝑔

[≥3]
21 . (5.51)

The contribution of the first term was handled already.
Consider, now, the second term in (5.51). Applying Lemma 2.4 together with the estimates (3.27),

(3.35), (3.41), and (3.43), we find that

𝐹 = 𝜒 𝑓 𝑔12 (4+𝛾)
2(2+𝛾)𝜓5 satisfies |||𝐹 |||mKdV𝜅

� |𝜘|−(𝑠+
1
2 )𝛿 |||𝑞 |||mKdV𝜅

.

Thus, applying the basic technique and using Lemma 2.7 with 𝑝 = 5 shows����∫ 𝑔12 (4+𝛾)
2(2+𝛾) 𝛾

[≥4] 𝜒 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.42).
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The remaining three terms in (5.51) are handled in a parallel fashion, which we demonstrate using
the first term. Set 𝐹 = 𝑓1

𝑓2
2𝜘−𝜕

𝑓3
2𝜘+𝜕 with 𝑓1 = 𝜒 𝑓 /𝜓6, 𝑓2 = (2𝜘 − 𝜕) 𝑔12

2+𝛾 , and 𝑓3 = (2𝜘 + 𝜕)𝑔21. Then
(5.32) implies

‖(𝜘 − 𝜕)−
1
2𝜓3𝐹 (𝜘 + 𝜕)−

1
2 ‖2

𝐿2
𝑡 ℑ2

� |𝜘|−5 [𝜅1−3𝑠 +
(
1 + 𝜅2

𝜘2

)
|𝜘|−6𝑠 log |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

.

Thus, applying Lemma 2.7 with 𝑝 = 6, we find����∫ 𝐹 𝑔 [≥3]
12 (𝜘) 𝜓6 𝑑𝑥

����
𝐿1
𝑡

� |𝜘|−5 [𝜅1−3𝑠 +
(
1 + 𝜅2

𝜘2

)
|𝜘|−6𝑠 log6 |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

,

which is no larger than RHS(5.42). This completes the proof of (5.42).
We turn now to (5.43). Combining (5.42) with (3.21) and Lemma 2.4 yields���� ∫ 𝑔 [3]21 (±𝜘)

( 𝑔12
2+𝛾

) [≥5] (𝜘) 𝜒 𝑑𝑥
����
𝐿1
𝑡

� |𝜘|−1−(1+2𝑠) · RHS(5.42) � RHS(5.43).

To continue, we employ (3.38). From Lemma 2.7 and (2.20), we find that����∬ 𝑔 [3]21 𝐹𝜓3 𝑑𝑥 𝑑𝑡

���� � ‖(𝜘 − 𝜕)−
1
2𝜓𝑞(𝜘 + 𝜕)−

1
2 ‖3

𝐿6
𝑡 ℑ6

‖(𝜘 − 𝜕)−
1
2 𝐹 (𝜘 + 𝜕)−

1
2 ‖𝐿2

𝑡 ℑ2

� |𝜘|−3 [𝜅 1
2−

3𝑠
2 + (1 + 𝜅

|𝜘 |
)
|𝜘|−3𝑠 log3 |2𝜘|

]
𝛿2 |||𝑞 |||mKdV𝜅

‖𝐹‖𝐿2
𝑡,𝑥

and consequently, that���� ∫ 𝑔 [3]21 (±𝜘) 𝑔 [3]12 (𝜘) 𝜒 𝑑𝑥
����
𝐿1
𝑡

�
��𝑔 [3]21 (±𝜘)𝜓3��2

𝐿2
𝑡,𝑥
� RHS(5.43).

On the other hand, using Lemma 2.7, (3.22), and (5.32), we get���� ∫ 𝑔 [3]21 (±𝜘) 𝑔 [1]12 (𝜘)𝛾 [2] (𝜘) 𝜒 𝑑𝑥
����
𝐿1
𝑡

� ‖(𝜘 − 𝜕)−
1
2 (𝜓𝑞) (𝜘 + 𝜕)−

1
2 ‖3

𝐿6
𝑡 ℑ6

‖(𝜘 − 𝜕)−
1
2𝜓3𝑔 [1]12 (𝜘)𝛾 [2] (𝜘) (𝜘 + 𝜕)−

1
2 ‖𝐿2

𝑡 ℑ2

� |𝜘|−6 [𝜅1−3𝑠 +
(
1 + 𝜅2

𝜘2

)
|𝜘|−6𝑠 log6 |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

� RHS(5.43).

This completes the proof of (5.43).
It remains to prove (5.44) and (5.45). We begin by reducing matters to the quartic terms. As |𝜘| ≥

√
𝜅,

so ‖ 𝑓
2𝜘+𝜕 ‖𝐿∞

𝑡,𝑥
� 𝜅−

1
2 (𝑠+

1
2 )𝛿. Thus, we find����∫ 𝑓

2𝜘+𝜕 · 𝑔 [≥5]
12 (±𝜅) 𝜒 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−
9
2−3𝑠𝛿4 |||𝑞 |||2mKdV𝜅

,

by applying Lemma 2.7 with 𝑝 = 5.
Regarding the quartic terms, we observe that∫

𝑓
2𝜘+𝜕 ·

(
𝑔 [3]12 (𝜅) − 1

4𝜅3 𝑞
2𝑟
)
𝜒 𝑑𝑥 =

∫
𝑚 [𝑞, 𝑟, 𝑞, 𝜒 𝑓

2𝜘+𝜕 ] 𝑑𝑥,
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where the lowest order terms cancel to give a symbol m that is a sum of terms in 𝜅5−|𝛽 |𝑆(𝛽; 2𝜅) for
1 ≤ |𝛽 | ≤ 8. Thus, (5.27) may be applied, which then yields (5.44). To obtain (5.45), we use (5.28)
instead. This is possible due to the absence of any |𝛽 | = 1 terms in the multiplier. �

We are finally in a position to undertake the proof of Lemma 5.3:

Proof of Lemma 5.3. We consider each of the currents in turn.
Proof of (5.8). From Corollary 4.14 and (4.14),

𝑗 [≥4]
NLS = −𝑖(2𝜘 + 𝜕)𝑞 ·

( 𝑔21
2+𝛾

) [≥3] + 𝑖(2𝜘 − 𝜕)𝑟 ·
( 𝑔12

2+𝛾
) [≥3]

.

Writing

𝜓6
ℎ (2𝜘 + 𝜕)𝑞 = 2𝜘(𝜓6

ℎ𝑞) − (𝜓6
ℎ)

′𝑞 + (𝜓6
ℎ𝑞)

′
≤𝜘 + (𝜓6

ℎ𝑞)
′
>𝜘

and invoking (5.34) and (3.44), we estimate����∫ 𝑗 [≥4]
NLS (𝜘) 𝜓12

ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−2(2𝑠+1)𝛿2 |||𝑞 |||2NLS + ‖(𝜓6
ℎ𝑞)

′
>𝜘‖𝐿2

𝑡 𝐻
−(𝑠+ 3

2 )

��𝜓6
ℎ

( 𝑔21
2+𝛾

) [≥3]��
𝐿2
𝑡 𝐻

𝑠+ 3
2

� 𝜘−2(2𝑠+1)𝛿2 |||𝑞 |||2NLS,

which completes the proof of (5.8).
Proof of (5.9). From Corollary 4.14, we compute

𝑗 [≥4]
mKdV = (4𝜘2 + 2𝜘𝜕 + 𝜕2)𝑞 ·

( 𝑔21
2+𝛾

) [≥3] − (4𝜘2 − 2𝜘𝜕 + 𝜕2)𝑟 ·
( 𝑔12

2+𝛾
) [≥3]

− 2𝑞2𝑟 𝑔21
2+𝛾 + 2𝑟2𝑞 𝑔12

2+𝛾 .

Focusing on the first line in our expression for 𝑗 [≥4]
mKdV, we write

𝜓3
ℎ (4𝜘

2 + 2𝜘𝜕 + 𝜕2)𝑞 = 4𝜘2(𝜓3
ℎ𝑞) + 2𝜘(𝜓3

ℎ𝑞)
′ + (𝜓3

ℎ𝑞)
′′ − 2𝜘(𝜓3

ℎ)
′𝑞 + (𝜓3

ℎ)
′′𝑞 − 2[(𝜓3

ℎ)
′𝑞] ′. (5.52)

Thus, using Bernstein’s inequality and (3.44), we estimate����∫ 𝑃>𝜘
[
𝜓3
ℎ (4𝜘

2 + 2𝜘𝜕 + 𝜕2)𝑞
]
·
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−(1+2𝑠) ‖𝜓ℎ𝑞‖𝐿2
𝑡 𝐻

𝑠+1

��( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]��
𝑋𝑠+2 � 𝜘

−2(2𝑠+1)𝛿2 |||𝑞 |||2mKdV.

On the other hand, an application of (5.41) yields����∫ 𝑃≤𝜘
[
𝜓3
ℎ (4𝜘

2 + 2𝜘𝜕 + 𝜕2)𝑞
]
·
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[
𝜘−1 + 𝜘−2(2𝑠+1) log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV.

We now demonstrate how to estimate the contribution of the final two terms in our expression for
𝑗 [≥4]
mKdV, using the former as our example. We first decompose into frequencies, as follows:����∫ 𝑞2𝑟 𝑔21 (𝜘)

2+𝛾 (𝜘) 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
∑
𝑁 𝑗 ≥1

����∫ (𝜓3
ℎ𝑞)𝑁1 (𝜓3

ℎ𝑟)𝑁2 (𝜓3
ℎ𝑞)𝑁3

(
𝜓3
ℎ
𝑔21
2+𝛾

)
𝑁4
𝑑𝑥

����
𝐿1
𝑡

,

where the two highest frequencies must be comparable. By exploiting symmetries, we may reduce
consideration to two cases, namely, 𝑁1 ∼ 𝑁2 ≥ 𝑁3 ∨ 𝑁4 and 𝑁1 ∼ 𝑁4 � 𝑁2 ≥ 𝑁3.
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To estimate the low frequencies, we use

‖(𝜓3
ℎ𝑞)𝑁

��
𝐿∞
𝑡,𝑥
� 𝑁

1
2−𝑠𝛿, (5.53)

��(𝜓3
ℎ
𝑔21
2+𝛾

)
𝑁

��
𝐿∞
𝑡,𝑥
� (𝜘 + 𝑁)−1𝑁

1
2−𝑠𝛿, (5.54)

which follow from Bernstein’s inequality and (3.41). To estimate the high frequencies, we use

‖(𝜓3
ℎ𝑞)𝑁 ‖𝐿2

𝑡,𝑥
� 𝑁−1−𝑠 |||𝑞 |||mKdV,��(𝜓3

ℎ
𝑔21
2+𝛾

)
𝑁

��
𝐿2
𝑡,𝑥
� (𝜘 + 𝑁)−1𝑁−1−𝑠 |||𝑞 |||mKdV,

which follow from Bernstein’s inequality and (3.43). Estimating the two lowest frequency terms in 𝐿∞𝑡 ,𝑥
and the two highest frequency terms in 𝐿2

𝑡 ,𝑥 , we obtain����∫ 𝑞2𝑟 𝑔21 (𝜘)
2+𝛾 (𝜘) 𝜓

12
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[
𝜘−1 + 𝜘−2(2𝑠+1) log |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV.

This completes the proof of (5.9).
Proof of (5.10). Recall that 𝜘 ∈ [𝜅 2

3 , 1
2 𝜅] ∪ [2𝜅,∞). We decompose

𝑗diff
NLS

[≥4] = −𝑖
(
1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2

)
(2𝜘 + 𝜕)𝑞 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]︸�����������������������������������������������������︷︷�����������������������������������������������������︸
err1

+𝑖
(
1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2

)
(2𝜘 − 𝜕)𝑟 ·

( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3]︸�����������������������������������������������������︷︷�����������������������������������������������������︸
err2

−
(

2𝑖𝜅3

𝜅−𝜘 𝑔12(𝜅) [≥3] + 2𝑖𝜅3

𝜅+𝜘 𝑔12 (−𝜅) [≥3]
)
· 𝑔21 (𝜘)

2+𝛾 (𝜘)︸�������������������������������������������������������︷︷�������������������������������������������������������︸
err3

−
(

2𝑖𝜅3

𝜅−𝜘 𝑔21(𝜅) [≥3] + 2𝑖𝜅3

𝜅+𝜘 𝑔21 (−𝜅) [≥3]
)
· 𝑔12 (𝜘)

2+𝛾 (𝜘)︸�������������������������������������������������������︷︷�������������������������������������������������������︸
err4

+ 𝑖𝜅3

𝜅−𝜘𝛾(𝜅)
[≥4] + 𝑖𝜅3

𝜅+𝜘𝛾(−𝜅)
[≥4]︸����������������������������������︷︷����������������������������������︸

err5

and note that by symmetry, it suffices to consider the contributions of the terms err 𝑗 with 𝑗 = 1, 3, 5.
For err1, we first write(

1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2

)
(2𝜘 + 𝜕)𝑞 = − 4𝜅2𝜘2

𝜅2−𝜘2
2𝜘+𝜕

4𝜅2−𝜕2 𝑞 − (2𝜘+𝜕)𝜕2

4𝜅2−𝜕2 𝑞.

Using Lemma 2.8 together with (3.44), we estimate the contribution of the high frequencies as
follows:

𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ

2𝜘+𝜕
2𝜅−𝜕𝑞

)
>𝜘 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅2𝜘2

𝜅2+𝜘2

��(𝜓3
ℎ

2𝜘+𝜕
2𝜅−𝜕𝑞

)
>𝜘

��
𝐿2
𝑡 𝐻

− 5
2 −𝑠𝜘

−(1+2𝑠)𝛿2 |||𝑞 |||NLS𝜅
� 𝜘−2(1+2𝑠)𝛿2 |||𝑞 |||2NLS𝜅

,����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕2

2𝜅−𝜕 𝑞
)
>𝜘 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
��(𝜓3

ℎ
(2𝜘+𝜕)𝜕2

2𝜅−𝜕 𝑞
)
>𝜘

��
𝐿2
𝑡 𝐻

− 5
2 −𝑠𝜘

−(1+2𝑠)𝛿2 |||𝑞 |||NLS𝜅
� 𝜘−2(1+2𝑠)𝛿2 |||𝑞 |||2NLS𝜅

.
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The two low-frequency terms are estimated using Lemma 2.8 and (5.34):

𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ

2𝜘+𝜕
2𝜅−𝜕𝑞

)
≤𝜘 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅2𝜘2

𝜅2+𝜘2 · 𝜘
𝜅2 · |𝜘|−3 [𝜅 2

3−
8𝑠
3 + |𝜘|−4𝑠]𝛿2 |||𝑞 |||2NLS𝜅

and similarly, ����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕2

2𝜅−𝜕 𝑞
)
≤𝜘 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� min
{
𝜘3

𝜅2 , 𝜘
}
· |𝜘|−3 [𝜅 2

3−
8𝑠
3 + |𝜘|−4𝑠]𝛿2 |||𝑞 |||2NLS𝜅

.

Collecting these estimates, we deduce that����∫ err1 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
[

𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1) + 𝜘−2(2𝑠+1) ]𝛿2 |||𝑞 |||2NLS𝜅

.

To estimate the contribution of err3, we define 𝑓 = (2𝜘 + 𝜕)
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
)
, and apply the estimates (3.41)

and (3.43) to see that

‖ 𝑓 ‖𝐿∞
𝑡 𝐻

𝑠 � 𝛿 and ||| 𝑓 |||NLS𝜅
� |||𝑞 |||NLS𝜅

.

We then write

err3 = − 2𝑖𝜅3𝜘
𝜅2−𝜘2

(
𝑔12(𝜅) [≥3] − 𝑔12 (−𝜅) [≥3]

)
· 𝑓

2𝜘+𝜕

− 2𝑖𝜅4

𝜅2−𝜘2

(
𝑔12(𝜅) [≥3] + 𝑔12 (−𝜅) [≥3]

)
· 𝑓

2𝜘+𝜕 .

Applying the estimate (5.33) to the first term and the estimate (5.36) to the second, we obtain����∫ err3 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

.

Finally, using (5.35), we estimate the contribution of err5 by����∫ err5 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅
𝜅+𝜘 𝜅

− 4
3 (2𝑠+1)𝛿2 |||𝑞 |||2NLS𝜅

,

which completes the proof of (5.10).
Proof of (5.11). Recall that 𝜘 ∈ [𝜅 1

2 , 1
2 𝜅] ∪ [2𝜅,∞). We decompose

𝑗diff [≥4]
mKdV = (1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2 ) (2𝜘 + 𝜕)𝑞′ ·
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]︸���������������������������������������������������︷︷���������������������������������������������������︸

err1

+(1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2 ) (2𝜘 − 𝜕)𝑟 ′ ·
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3]︸�����������������������������������������������������︷︷�����������������������������������������������������︸

err2

+
( 4𝜅4

𝜅−𝜘𝑔
[≥3]
12 (𝜅) − 4𝜅4

𝜅+𝜘𝑔
[≥3]
12 (−𝜅) − 2𝜅2

𝜅2−𝜘2 𝑞
2𝑟
)
· 𝑔21 (𝜘)

2+𝛾 (𝜘)︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸
err3
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+
( 4𝜅4

𝜅−𝜘𝑔
[≥3]
21 (𝜅) − 4𝜅4

𝜅+𝜘𝑔
[≥3]
21 (−𝜅) + 2𝜅2

𝜅2−𝜘2 𝑟
2𝑞

)
· 𝑔12 (𝜘)

2+𝛾 (𝜘)︸����������������������������������������������������������������︷︷����������������������������������������������������������������︸
err4

−
[

2𝜅4

𝜅−𝜘𝛾
[≥4] (𝜅) − 2𝜅4

𝜅+𝜘𝛾
[≥4] (−𝜅) − 3𝜅2𝜘

𝜅2−𝜘2 𝑞𝑟
(
𝑞 𝑟

4𝜅2−𝜕2 + 𝑟 𝑞
4𝜅2−𝜕2

) ]
︸���������������������������������������������������������������������������������︷︷���������������������������������������������������������������������������������︸

err5

+ 4𝜘4

𝜅2−𝜘2 𝑟 ·
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥5] + 2𝜘2

𝜅2−𝜘2 𝑞
2𝑟 ·

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]︸����������������������������������������������������������︷︷����������������������������������������������������������︸
err6

− 3𝜅2𝜘
𝜅2−𝜘2 𝑞

2𝑟 𝑟
4𝜅2−𝜕2 − 𝜘4

𝜅2−𝜘2 𝑟𝑔
[1]
12 (𝜘)𝛾 [2] (𝜘) − 2𝜘4

𝜅2−𝜘2 𝑞𝑔
[3]
21 (𝜘) + 𝜘2

𝜅2−𝜘2 𝑞
2𝑟𝑔 [1]21 (𝜘)︸��������������������������������������������������������������������������������������������������︷︷��������������������������������������������������������������������������������������������������︸

err7

− 4𝜘4

𝜅2−𝜘2 𝑞 ·
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥5] − 2𝜘2

𝜅2−𝜘2 𝑟
2𝑞 ·

( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3]︸�����������������������������������������������������������︷︷�����������������������������������������������������������︸
err8

− 3𝜅2𝜘
𝜅2−𝜘2 𝑟

2𝑞 𝑞
4𝜅2−𝜕2 + 𝜘4

𝜅2−𝜘2 𝑞𝑔
[1]
21 (𝜘)𝛾 [2] (𝜘) + 2𝜘4

𝜅2−𝜘2 𝑟 · 𝑔
[3]
12 (𝜘) − 𝜘2

𝜅2−𝜘2 𝑟
2𝑞𝑔 [1]12 (𝜘)︸�����������������������������������������������������������������������������������������������������︷︷�����������������������������������������������������������������������������������������������������︸

err9

.

While the validity of this equality is, of course, elementary, the particular grouping of terms (and the
addition of an extra term in err5 that is then subtracted in err7 and err9) represents a very delicate
accounting for numerous cancellations.

As we will see, each term in this expansion individually yields an acceptable contribution to (5.11).
We will treat err1, err3, err5, err6, and err7 in turn. The remaining terms are covered by this analysis
and conjugation symmetry.

For err1, we first write

(1 − 𝜅2

𝜅2−𝜘2
4𝜅2

4𝜅2−𝜕2 ) (2𝜘 + 𝜕)𝑞′ = − 4𝜅2𝜘2

𝜅2−𝜘2
(2𝜘+𝜕)𝜕
4𝜅2−𝜕2 𝑞 − (2𝜘+𝜕)𝜕3

4𝜅2−𝜕2 𝑞.

Proceeding as in the proof of (5.10) and using (3.44), we estimate the contribution of the second term
as follows: ����∫ 𝜓3

ℎ
1

2𝜅+𝜕𝜓
−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕3

2𝜅−𝜕 𝑞
)
>𝜘

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
��(𝜓3

ℎ
(2𝜘+𝜕)𝜕3

2𝜅−𝜕 𝑞
)
>𝜘

��
𝐿2
𝑡 𝐻

−(3+𝑠)

��( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3]��
𝑋2+𝑠
𝜅
� 𝜘−2(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅

,����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕3

2𝜅−𝜕 𝑞
)
≤𝜘

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

�
��(𝜓3

ℎ
(2𝜘+𝜕)𝜕3

2𝜅−𝜕 𝑞
)
≤𝜘

��
𝐿2
𝑡 𝐻

−(2+𝑠)

��( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3]��
𝑋1+𝑠
𝜅
� 𝜘−2(1+2𝑠)𝛿2 |||𝑞 |||2mKdV𝜅

.

To estimate the term with fewer derivatives, we write
( 𝑔21

2+𝛾
) [≥3] =

( 𝑔21
2+𝛾

) [≥5] +
( 𝑔21

2+𝛾
) [3] . Arguing as

above and using (3.45) in place of (3.44), we get

𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕

2𝜅−𝜕 𝑞
)
>𝜘

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥5]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅2𝜘2

𝜅2+𝜘2

��(𝜓3
ℎ
(2𝜘+𝜕)𝜕

2𝜅−𝜕 𝑞
)
>𝜘

��
𝐿2
𝑡 𝐻

−(3+𝑠)

��( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥5]��
𝑋2+𝑠
𝜅

� 𝜘−3(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
,
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while using (5.42), we estimate

𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝜓3
ℎ

1
2𝜅+𝜕𝜓

−3
ℎ

(
𝜓3
ℎ
(2𝜘+𝜕)𝜕

2𝜅−𝜕 𝑞
)
≤𝜘

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥5]
𝜓9
ℎ 𝑑𝑥

����
𝐿1
𝑡

� |𝜘 |−(𝑠+
1
2 )

𝜅2+𝜘2

[
𝜅

3
4−

5𝑠
2 + |𝜘|−(

1
2+5𝑠) log6 |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

� RHS(5.11).

It remains to estimate the contribution of the quartic terms, which we expand using (3.38) and treat
the two parts separately.

Setting 𝑚1 = 𝑖 𝜉1
4𝜅2+𝜉 2

1
and 𝑚2 =

−𝜉 2
1

4𝜅2+𝜉 2
1

and using (3.21) and (3.22), we have

(2𝜘+𝜕)𝜕𝑞
4𝜅2−𝜕2 𝑔 [1]21 (𝜘)𝛾 [2] (𝜘) = − 4

𝜘𝑚1
[
𝑞, 𝜘 𝑟

2𝜘+𝜕 ,
𝜘 𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
− 2

𝜘2𝑚2
[
𝑞, 𝜘 𝑟

2𝜘+𝜕 ,
𝜘 𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
.

Applying both (5.27) and (5.28) from Lemma 5.11, we deduce that

𝜅2𝜘2

𝜅2+𝜘2

����∫ (2𝜘+𝜕)𝜕
4𝜅2−𝜕2 𝑞

[
𝑔 [1]21 𝛾

[2] ] (𝜘) 𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.11).

For the remaining quartic term, we first use (3.13) to write

𝜓12
ℎ 𝑔

[3]
21 (𝜘) = 1

2𝜘+𝜕
[
𝑟𝛾 [2] (𝜘)𝜓12

ℎ

]
+ 1

2𝜘+𝜕
[
(𝜓12

ℎ )′𝑔 [3]21 (𝜘)
]

= 1
2𝜘+𝜕

[
𝑟𝛾 [2] (𝜘)𝜓12

ℎ

]
+ 1

(2𝜘+𝜕)2

[
𝑟𝛾 [2] (𝜘) (𝜓12

ℎ )′
]
+ 1

(2𝜘+𝜕)2

[
(𝜓12

ℎ )′′𝑔 [3]21 (𝜘)
]

and so ����∫ (2𝜘+𝜕)𝜕𝑞
4𝜅2−𝜕2 𝑔 [3]21 (𝜘)𝜓12

ℎ 𝑑𝑥

����
𝐿1
𝑡

≤
����∫ (2𝜘+𝜕)𝜕𝑞

(2𝜘−𝜕) (4𝜅2−𝜕2) 𝑟𝛾
[2] (𝜘)𝜓12

ℎ 𝑑𝑥

����
𝐿1
𝑡

+
����∫ (2𝜘+𝜕)𝜕𝑞

(2𝜘−𝜕)2 (4𝜅2−𝜕2) 𝑟𝛾
[2] (𝜘) (𝜓12

ℎ )′ 𝑑𝑥
����
𝐿1
𝑡

+
����∫ (2𝜘+𝜕)𝜕𝑞

(2𝜘−𝜕)2 (4𝜅2−𝜕2) 𝑔
[3]
21 (𝜘) (𝜓12

ℎ )′′ 𝑑𝑥
����
𝐿1
𝑡

.

Using (5.27) again, we see that the contribution arising from the first two terms above is acceptable. For
the last term, we estimate

𝜅2𝜘2

𝜅2+𝜘2

����∫ (2𝜘+𝜕)𝜕𝑞
(2𝜘−𝜕)2 (4𝜅2−𝜕2) 𝑔

[3]
21 (𝜘) (𝜓12

ℎ )′′ 𝑑𝑥
����
𝐿1
𝑡

� 𝜅2𝜘2

𝜅2+𝜘2

�� (2𝜘+𝜕)𝜕
(2𝜘−𝜕)2 (4𝜅2−𝜕2) 𝑞

��
𝐿∞
𝑡 𝐻

−(1+𝑠)

��𝑔 [3]21 (𝜘)
��
𝐿∞
𝑡 𝐻

1+𝑠 � |𝜘|−2(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
.

Collecting the estimates above, we obtain����∫ err1 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.11).

For err3, we start by writing

err3 = 4𝜅5

𝜅2−𝜘2

(
𝑔12 (𝜅) [≥3] − 𝑔12 (−𝜅) [≥3] − 1

2𝜅3 𝑞
2𝑟
) 𝑔21 (𝜘)

2+𝛾 (𝜘)

+ 4𝜅4𝜘
𝜅2−𝜘2

(
𝑔12 (𝜅) [≥3] + 𝑔12(−𝜅) [≥3] ) 𝑔21 (𝜘)

2+𝛾 (𝜘) .
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We then apply the estimates (5.44) and (5.45) with 𝑓 = (2𝜘 + 𝜕) 𝑔21 (𝜘)
2+𝛾 (𝜘) together with (3.41) and (3.43)

to bound ����∫ err3 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅
𝜅+𝜘 𝜅

−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
.

For err5, we may write

err5 = − 2𝜅5

𝜅2−𝜘2

(
𝛾(𝜅) [≥4] − 𝛾(−𝜅) [≥4]

)
− 2𝜅4𝜘

𝜅2−𝜘2

(
𝛾(𝜅) [≥4] + 𝛾(−𝜅) [≥4] − 3

2𝜅2 𝑞𝑟
(
𝑞 · 𝑟

4𝜅2−𝜕2 + 𝑟 · 𝑞
4𝜅2−𝜕2

) )
and then use (5.47) and (5.48) to bound����∫ err5 𝜓

12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅
𝜅+𝜘 𝜅

−(2𝑠+1)𝛿2 |||𝑞 |||2mKdV𝜅
.

For err6, we first apply the estimate (5.42) to bound����∫ 4𝜘4

𝜅2−𝜘2 𝑟 ·
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥5]

𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−(𝑠+
1
2 )

𝜅2+𝜘2

[
𝜅

3
4−

5𝑠
2 + 𝜘−(

1
2+5𝑠) log6 |2𝜘|

]
𝛿4 |||𝑞 |||2mKdV𝜅

� RHS(5.11).

Next, we use (3.20) and [𝜓12
ℎ ,

𝜕
2𝜘−𝜕 ] = − 2𝜘

2𝜘−𝜕 (𝜓
12
ℎ )′ 1

2𝜘−𝜕 to write

𝜓12
ℎ 𝑞2𝑟 = 𝜓12

ℎ 4𝜘3𝑔 [3]12 (𝜘) + 4𝜘3

2𝜘−𝜕
[
(𝜓12

ℎ )′𝑔 [3]12 (𝜘)
]

− 𝜕
2𝜘−𝜕

[
𝜓12
ℎ 𝑞

2𝜘𝑟
2𝜘+𝜕

2𝜘𝑞
2𝜘−𝜕

]
+ 𝜓12

ℎ 𝑞 𝑟 ′

2𝜘+𝜕
2𝜘𝑞

2𝜘−𝜕 − 𝜓12
ℎ 𝑞𝑟 𝑞′

2𝜘−𝜕 .

From Corollary 3.5 and elementary manipulations, we have��������� 1
2𝜘+𝜕

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
���������

mKdV𝜅

� 𝜘−3−2𝑠𝛿2 |||𝑞 |||mKdV𝜅
.

Thus, by taking 𝑚1(𝜉) = 𝑖 𝜉2
2𝜅+𝑖 𝜉2

, 𝑚2 (𝜉) = 𝑖 𝜉3
2𝜅−𝑖 𝜉3

, and applying (5.43) to the first term, (5.41) to the
second, and (5.27), (3.42), and (3.44) to the remaining terms, we have����∫ 2𝜘2

𝜅2−𝜘2 𝑞
2𝑟

( 𝑔21 (𝜘)
2+𝛾 (𝜘)

) [≥3]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘5

𝜅2+𝜘2

����∫ 𝑔 [3]12 (𝜘)
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜘5

𝜅2+𝜘2

����∫ (𝜓12
ℎ )′𝑔 [3]12 (𝜘) · 1

2𝜘+𝜕
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]

𝑑𝑥

����
𝐿1
𝑡

+ 𝜘3

𝜅2+𝜘2

����∫ 𝑚1

[
𝑞, 2𝜅+𝜕

2𝜘+𝜕
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]

, 2𝜘𝑞
2𝜘−𝜕 ,

𝑟
2𝜘+𝜕

]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜘2

𝜅2+𝜘2

����∫ 𝑚1

[
𝑞, 2𝜅+𝜕

2𝜘+𝜕𝑟,
2𝜘𝑞

2𝜘−𝜕 ,
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]

]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜘2

𝜅2+𝜘2

����∫ 𝑚2

[
𝑞, 𝑟, 2𝜅−𝜕

2𝜘−𝜕𝑞,
( 𝑔21 (𝜘)

2+𝛾 (𝜘)
) [≥3]

]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.11).
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For err7, we first observe that

− 2𝜘4

𝜅2−𝜘2

∫
𝑞𝑔 [3]21 (𝜘) 𝜓12

ℎ 𝑑𝑥

= 4𝜘4

𝜅2−𝜘2

∫
𝑞

2𝜘−𝜕
𝑟

2𝜘+𝜕
𝑞

2𝜘−𝜕 𝑟 𝜓
12
ℎ 𝑑𝑥 − 2𝜘4

𝜅2−𝜘2

∫
𝑞

2𝜘−𝜕𝑔
[3]
21 (𝜘) (𝜓12

ℎ )′ 𝑑𝑥.

Applying (5.41), the second integral contributes a constant multiple of

1
𝜅2+𝜘2

[
𝜅

1
2−2𝑠 + 𝜘−(1+4𝑠) log4 |2𝜘|

]
𝛿2 |||𝑞 |||2mKdV𝜅

� RHS(5.11).

Thus, the remaining quartic terms are

− 3𝜅2𝜘
𝜅2−𝜘2 𝑞

2𝑟 𝑟
4𝜅2−𝜕2 + 2𝜘4

𝜅2−𝜘2
𝑞

2𝜘−𝜕
𝑟

2𝜘+𝜕
𝑞

2𝜘−𝜕 𝑟 +
𝜘2

𝜅2−𝜘2 𝑞
2𝑟 𝑟

2𝜘+𝜕 .

A quick computation shows that

− 3𝜅2𝜘
𝜅2−𝜘2 𝑞

2𝑟 𝑟
4𝜅2−𝜕2 + 𝜘2

𝜅2−𝜘2 𝑞
2𝑟 𝑟

2𝜘+𝜕

= − 2𝜅2𝜘2

𝜅2−𝜘2 𝑞
2 𝑟

4𝜅2−𝜕2
𝑟

2𝜘+𝜕 − 6𝜅2𝜘2

𝜅2−𝜘2𝑚1
[
𝑞, 2𝜅+𝜕

2𝜘+𝜕𝑟, 𝑞,
𝑟

2𝜘+𝜕
]

− 3𝜅2𝜘
𝜅2−𝜘2𝑚2

[
𝑞, 𝑟 ′

2𝜘+𝜕 , 𝑞,
𝑟

2𝜘+𝜕
]
− 𝜘2

𝜅2−𝜘2𝑚3
[
𝑞, 𝑟, 𝑞, 𝑟

2𝜘+𝜕
]
,

where 𝑚1 (𝜉) = 𝑖 𝜉2
2𝜅+𝑖 𝜉2

1
4𝜅2+𝜉 2

4
, 𝑚2(𝜉) = 𝑖 𝜉4

4𝜅2+𝜉 2
4

and 𝑚3 (𝜉) = (𝑖 𝜉2)2

4𝜅2+𝜉 2
2

. To continue, we observe that

− 2𝜅2𝜘2

𝜅2−𝜘2 𝑞
2 𝑟

4𝜅2−𝜕2
𝑟

2𝜘+𝜕 + 2𝜘4

𝜅2−𝜘2
𝑞

2𝜘−𝜕
𝑟

2𝜘+𝜕
𝑞

2𝜘−𝜕 𝑟

= 4𝜅2𝜘2

𝜅2−𝜘2𝑚4
[ 2𝜅−𝜕

2𝜘−𝜕𝑞, 𝑟,
2𝜘𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
− 2𝜅2𝜘2

𝜅2−𝜘2𝑚4
[ 2𝜅−𝜕

2𝜘−𝜕𝑞, 𝑟,
𝑞′

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]

− 𝜘2

2(𝜅2−𝜘2)𝑚3
[ 2𝜘𝑞

2𝜘−𝜕 , 𝑟,
2𝜘𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
,

where 𝑚4 (𝜉) = 𝑖 𝜉1
2𝜅−𝑖 𝜉1

1
4𝜅2+𝜉 2

2
. Applying the estimate (5.27), we obtain

𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝑚1
[
𝑞, 2𝜅+𝜕

2𝜘+𝜕𝑟, 𝑞,
𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜅2𝜘
𝜅2+𝜘2

����∫ 𝑚2
[
𝑞, 𝑟 ′

2𝜘+𝜕 , 𝑞,
𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜘2

𝜅2+𝜘2

����∫ 𝑚3
[
𝑞, 𝑟, 𝑞, 𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜘2

𝜅2+𝜘2

����∫ 𝑚3
[ 𝜘𝑞

2𝜘−𝜕 , 𝑟,
𝜘𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝑚4
[ 2𝜅−𝜕

2𝜘−𝜕𝑞, 𝑟,
𝜘𝑞

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+ 𝜅2𝜘2

𝜅2+𝜘2

����∫ 𝑚4
[ 2𝜅−𝜕

2𝜘−𝜕𝑞, 𝑟,
𝑞′

2𝜘−𝜕 ,
𝑟

2𝜘+𝜕
]
𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� RHS(5.11).

Collecting all our bounds, we obtain the estimate (5.11). �
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6. Tightness

Let 𝜒 ∈ C∞
𝑐 be an even nonnegative function supported in {|𝑥 | ≤ 1} with ‖𝜒‖𝐿1 = 1, and define

𝜙(𝑥) =
∫ |𝑥 |

0
𝜒(𝑦 − 2) 𝑑𝑦.

For 𝑅 ≥ 1, we define the rescaled function 𝜙𝑅 (𝑥) = 𝜙( 𝑥𝑅 ). Notice that 𝜙𝑅 plays the role of a smooth
cut-off to large |𝑥 | and so leads naturally to the following formulation of tightness:
Definition 6.1. A bounded subset 𝑄 ⊂ 𝐻𝑠 is tight in 𝐻𝑠 if

𝜙𝑅𝑞 → 0 in 𝐻𝑠 as 𝑅 → ∞, uniformly for 𝑞 ∈ 𝑄.

We first prove that tightness of q implies tightness of 𝑔12:
Lemma 6.2. For 𝛿 > 0 sufficiently small,

‖𝜙𝑅𝑔12‖𝐻 𝑠+1
𝜘
� ‖𝜙𝑅𝑞‖𝐻 𝑠

𝜘
+ (|𝜘|𝑅)−1‖𝑞‖𝐻 𝑠

𝜘
, (6.1)

‖𝜙𝑅𝑔 [≥3]
12 ‖𝐻 𝑠+1

𝜘
� |𝜘|−(2𝑠+1)𝛿2

(
‖𝜙𝑅𝑞‖𝐻 𝑠

𝜘
+ (|𝜘|𝑅)−1‖𝑞‖𝐻 𝑠

𝜘

)
, (6.2)

‖𝜙𝑅
( 𝑔12

2+𝛾
) [≥3] ‖𝐻 𝑠+1

𝜘
� |𝜘|−(2𝑠+1)𝛿2

(
‖𝜙𝑅𝑞‖𝐻 𝑠

𝜘
+ (|𝜘|𝑅)−1‖𝑞‖𝐻 𝑠

𝜘

)
, (6.3)

uniformly for |𝜘| ≥ 1, 𝑅 ≥ 1, and 𝑞 ∈ 𝐵𝛿 . Here, 𝑔12 = 𝑔12 (𝜘) and 𝛾 = 𝛾(𝜘).
Proof. Using the identity (3.12), we write

𝜙𝑅𝑔12 = − 1
2𝜘−𝜕

(
𝜙𝑅𝑞(1 + 𝛾)

)
− 1

2𝜘−𝜕
(
𝜙′𝑅𝑔12

)
,

so the estimate (6.1) follows from the estimates (3.24) and (3.27).
Similarly, the estimate (6.2) follows from the identity

𝜙𝑅𝑔
[≥3]
12 = − 1

2𝜘−𝜕
(
𝜙𝑅𝑞𝛾

)
− 1

2𝜘−𝜕
(
𝜙′𝑅𝑔

[≥3]
12

)
and the estimates (3.25) and (3.27). The estimate (6.3) is then a corollary of the estimates (6.1), (6.2),
(2.5), and (3.39). �

We will prove tightness for solutions of (NLS) and (mKdV) by considering the equation satisfied by
Re 𝜌(𝜘). Our next lemma shows that this is a suitable quantity to consider. The utility of this density
should not be conflated with that of the currents used to prove the local smoothing effect. In particular,
in the (NLS) setting, it is the imaginary part of 𝜌 that is used to prove local smoothing.
Lemma 6.3. For 𝛿 sufficiently small, we have

‖𝜙𝑅𝑞‖2
𝐻 𝑠 ≈

∫ 𝜅

1
𝜘2𝑠+1

(
± Re

∫
𝜌 𝜙2

𝑅 𝑑𝑥
)
𝑑𝜘
𝜘 +O

(
𝑅−2‖𝑞‖2

𝐻 𝑠 + ‖𝑞‖2
𝐻 𝑠

𝜅

)
, (6.4)

uniformly for 𝑞 ∈ 𝐵𝛿 ∩ S , 𝑅 ≥ 1, and 𝜅 ≥ 1.
Proof. As in the proof of Lemma 5.1, we write

𝜌 [2] = R[𝑞, 𝑟] = 1
2
(
𝑞 · 𝑟

2𝜘+𝜕 + 𝑞
2𝜘−𝜕 · 𝑟

)
and compute that

Re
∫

R[𝜙𝑅𝑞, 𝜙𝑅𝑟] 𝑑𝑥 = ±2𝜘‖𝜙𝑅𝑞‖2
𝐻−1

𝜘
.
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Applying Lemma 2.1, we then obtain

‖𝜙𝑅𝑞‖2
𝐻 𝑠 ≈

∫ 𝜅

1
𝜘2𝑠+1

(
± Re

∫
R[𝜙𝑅𝑞, 𝜙𝑅𝑟] 𝑑𝑥

)
𝑑𝜘
𝜘 +O

(
‖𝑞‖2

𝐻 𝑠
𝜅

)
.

It remains to bound the contribution of the difference∫
𝜌 𝜙2

𝑅 𝑑𝑥 −
∫

R[𝜙𝑅𝑞, 𝜙𝑅𝑟] 𝑑𝑥 =
∫ (

R[𝑞, 𝑟] 𝜙2
𝑅 − R[𝜙𝑅𝑞, 𝜙𝑅𝑟]

)
𝑑𝑥

+
∫ (

𝑞 ·
( 𝑔21

2+𝛾
) [≥3] − 𝑟 ·

( 𝑔12
2+𝛾

) [≥3]
)
𝜙2
𝑅 𝑑𝑥.

For the first term, we bound����∫ (
R[𝑞, 𝑟] 𝜙2

𝑅 − R[𝜙𝑅𝑞, 𝜙𝑅𝑟]
)
𝑑𝑥

���� � ‖𝜙𝑅𝑞‖𝐻 𝑠
𝜘

��[𝜙𝑅, 1
2𝜘−𝜕

]
𝑞
��
𝐻−𝑠

𝜘

� 𝜘−(1+2𝑠) (𝜘𝑅)−1‖𝜙𝑅𝑞‖𝐻 𝑠
𝜘
‖𝑞‖𝐻 𝑠

𝜘
.

For the second term, we apply the estimate (6.3) and Young’s inequality to bound����∫ 𝑞
( 𝑔21

2+𝛾
) [≥3]

𝜙2
𝑅 𝑑𝑥

���� � 𝜘−(2𝑠+1) ‖𝜙𝑅𝑞‖𝐻 𝑠
𝜘
‖𝜙𝑅

( 𝑔21
2+𝛾

) [≥3] ‖𝐻 𝑠+1
𝜘

� 𝜘−2(2𝑠+1)𝛿2‖𝜙𝑅𝑞‖2
𝐻 𝑠

𝜘
+ 𝜘−2(2𝑠+1) (𝜘𝑅)−2𝛿2‖𝑞‖2

𝐻 𝑠
𝜘
.

As a consequence, we may integrate to obtain∫ 𝜅

1
𝜘2𝑠+1

����∫ 𝜌 𝜙2
𝑅 𝑑𝑥 − Re

∫
R[𝜙𝑅𝑞, 𝜙𝑅𝑟] 𝑑𝑥

���� 𝑑𝜘
𝜘

� 𝑅−1‖𝜙𝑅𝑞‖𝐻 𝑠 ‖𝑞‖𝐻 𝑠 + 𝛿2‖𝜙𝑅𝑞‖2
𝐻 𝑠 + 𝛿2𝑅−2‖𝑞‖2

𝐻 𝑠 ,

from which we derive the estimate (6.4) by taking 𝛿 sufficiently small. �

We now arrive at the center piece of this section:

Proposition 6.4 (Tightness of the flows). For 𝛿 > 0 sufficiently small, the following holds: If𝑄 ⊂ 𝐵𝛿∩S
is tight and equicontinuous in 𝐻𝑠 , then{

𝑞(𝑡) = 𝑒𝑡 𝐽∇𝐻★𝑞 : 𝑞 ∈ 𝑄, 𝑡 ∈ [−1, 1]
}

is tight in𝐻𝑠 .

Here, ★ = NLS,mKdV.

We will prove this result for each of the two flows separately. One element common to both is the
following: For 𝜎 = 𝑠 + 1

2 or 𝜎 = 𝑠 + 1, we have

‖𝜓6
ℎ (𝜙

2
𝑅)

′𝐹‖𝐿1
ℎ
𝐿2
𝑡 𝐻

𝜎 � ‖𝜓3
ℎ (𝜙

2
𝑅)

′‖𝐿1
ℎ
𝐻 1 ‖𝜓3

ℎ𝐹‖𝐿∞
ℎ
𝐿2
𝑡 𝐻

𝜎 � ‖𝐹‖𝑋𝜎 . (6.5)

Proof of Proposition 6.4 for (NLS). Taking 𝑡 ∈ [−1, 1] and 𝑅 ≥ 1, we multiply the equation (4.37) by
𝜙2
𝑅, take the real part, and integrate by parts to obtain

Re
∫ [

𝜌(𝑡) − 𝜌(0)
]
𝜙2
𝑅 𝑑𝑥 = Re

∫ 𝑡

0

∫
𝑗NLS (𝜙2

𝑅)
′ 𝑑𝑥 𝑑𝜏. (6.6)
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Choosing 𝜅 ≥ 1 and applying the estimate (6.4) and the a priori estimate (4.12), we obtain

‖𝜙𝑅𝑞‖2
𝐿∞
𝑡 𝐻

𝑠 � ‖𝜙𝑅𝑞(0)‖2
𝐻 𝑠 + 𝑅−2‖𝑞(0)‖2

𝐻 𝑠 + ‖𝑞(0)‖2
𝐻 𝑠

𝜅

+
∫ 𝜅

1
𝜘2𝑠+1

���� ∫ 𝑗NLS (𝜙2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡

𝑑𝜘
𝜘 .

Integrating by parts and using (3.11), we may write∫
𝑗NLS (𝜙2

𝑅)
′ 𝑑𝑥 = −𝑖

∫
𝑞
(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

+ 𝑖
∫

𝑟
(
(2𝜘 + 𝜕) 𝑔12

2+𝛾 + 1
2𝑞

)
(𝜙2

𝑅)
′ 𝑑𝑥

− 𝑖
2

∫
log[2 + 𝛾] (𝜙2

𝑅)
′′′ 𝑑𝑥.

For the final term, we may apply (3.28) and (4.12) to obtain���� ∫ log[2 + 𝛾] (𝜙2
𝑅)

′′′ 𝑑𝑥

����
𝐿1
𝑡

� 𝑅−2.

The remaining two terms are treated identically, so it suffices to consider the first. We decompose

𝑞 = 4𝜅2𝑞
4𝜅2−𝜕2 − 𝜕2𝑞

4𝜅2−𝜕2 (6.7)

and estimate the contribution of the low frequency term via���� ∫ 4𝜅2𝑞
4𝜅2−𝜕2

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡

�
�� 𝜅2𝑞

4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

−𝑠

��(𝜙2
𝑅)

′ ((2𝜘 − 𝜕) 𝑔21
2+𝛾 − 1

2𝑟
)��
𝐿∞
𝑡 𝐻

𝑠

� 𝜅−2𝑠 ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠

��(𝜙2
𝑅)

′��
𝐻 1

(
‖(2𝜘 − 𝜕) 𝑔21

2+𝛾 ‖𝐿∞
𝑡 𝐻

𝑠 + ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠

)
� 𝑅− 1

2 𝜅−2𝑠 ‖𝑞(0)‖2
𝐻 𝑠 .

To continue, we use (2.3) to express the high-frequency term via∫
𝜕2𝑞

4𝜅2−𝜕2

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

= 7
512

∬ ([
𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 + 𝜕2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

)
𝜓6
ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥 𝑑ℎ.

For the commutator term, we apply the local smoothing estimates (3.43) and (5.12), together with (2.11)
and (6.5) to bound���� ∫ [

𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 𝜓6

ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

�
��[𝜓6

ℎ ,
𝜕2

4𝜅2−𝜕2

]
𝑞
��
𝐿∞
𝑡,ℎ
𝐻−(𝑠+ 1

2 )

��𝜓6
ℎ (𝜙

2
𝑅)

′ ((2𝜘 − 𝜕) 𝑔21
2+𝛾 − 1

2𝑟
)��
𝐿1
ℎ
𝐿2
𝑡 𝐻

𝑠+ 1
2

� 𝜅−(2𝑠+
3
2 ) ‖𝑞(0)‖𝐻 𝑠

(��(2𝜘 − 𝜕) 𝑔21
2+𝛾

��
𝑋𝑠+ 1

2
+ ‖𝑞‖

𝑋𝑠+ 1
2

)
� 𝜅−(2𝑠+

3
2 ) ‖𝑞(0)‖2

𝐻 𝑠 .
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For the remaining term, we use (3.43), (5.12), (5.13), and (6.5), as follows:���� ∫ 𝜕2 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2 𝜓6
ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

�
�� 𝜕2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿∞
ℎ
𝐿2
𝑡 𝐻

−(𝑠+ 1
2 )

��𝜓6
ℎ (𝜙

2
𝑅)

′ ((2𝜘 − 𝜕) 𝑔21
2+𝛾 − 1

2𝑟
)��
𝐿1
ℎ
𝐿2
𝑡 𝐻

𝑠+ 1
2

� 𝜅−(2𝑠+1) ‖ (𝜓6
ℎ𝑞)

′‖
𝐿∞
ℎ
𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅

(��(2𝜘 − 𝜕) 𝑔21
2+𝛾

��
𝑋𝑠+ 1

2
+ ‖𝑞‖

𝑋𝑠+ 1
2

)
� 𝜅−(2𝑠+1) ‖𝑞(0)‖𝐻 𝑠

𝜅
‖𝑞(0)‖𝐻 𝑠 + 𝜅−

3
2 (2𝑠+1)𝛿‖𝑞(0)‖2

𝐻 𝑠 .

Combining these bounds, we see that for any 𝜅 ≥ 1 we have the estimate

‖𝜙𝑅𝑞‖2
𝐿∞
𝑡 𝐻

𝑠 � ‖𝜙𝑅𝑞(0)‖2
𝐻 𝑠 + ‖𝑞(0)‖2

𝐻 𝑠
𝜅
+ 𝛿‖𝑞(0)‖𝐻 𝑠

𝜅

+ 𝜅2𝑠+1𝑅−2 +
(
𝜅𝑅− 1

2 + 𝜅−(𝑠+
1
2 )
)
𝛿2.

Taking the supremum over 𝑞(0) ∈ 𝑄 and using that Q is tight, we obtain

lim sup
𝑅→∞

sup
𝑞 (0) ∈𝑄

‖𝜙𝑅𝑞‖2
𝐿∞
𝑡 𝐻

𝑠 � sup
𝑞 (0) ∈𝑄

𝛿‖𝑞(0)‖𝐻 𝑠
𝜅
+ 𝜅−(𝑠+

1
2 )𝛿2.

Using that Q is equicontinuous, the result follows by sending 𝜅 → ∞. �

Proof of Proposition 6.4 for (mKdV). Mimicking the argument given in the (NLS) case reduces matters
to proving a suitable 𝐿1

𝑡 estimate for∫
𝑗mKdV (𝜙2

𝑅)
′ 𝑑𝑥 (6.8)

=
∫

𝑞′
(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 𝑟
)
(𝜙2

𝑅)
′ 𝑑𝑥 +

∫
𝑟 ′

(
(2𝜘 + 𝜕) 𝑔12

2+𝛾 + 𝑞
)
(𝜙2

𝑅)
′ 𝑑𝑥

+
∫

𝑞
( 𝑔21

2+𝛾
) ′(𝜙2

𝑅)
′′ 𝑑𝑥 −

∫
𝑟
( 𝑔12

2+𝛾
) ′(𝜙2

𝑅)
′′ 𝑑𝑥 − 2𝜘

∫
𝑞𝑟 (𝜙2

𝑅)
′ 𝑑𝑥

− 2
∫

𝜌 𝑞𝑟 (𝜙2
𝑅)

′ 𝑑𝑥 +
∫

𝜌 (4𝜘2 + 𝜕2) (𝜙2
𝑅)

′ 𝑑𝑥.

From Corollary 3.5, (2.16), (4.12), and (5.15), we have

‖𝜌‖𝐿∞
𝑡 𝐻

𝑠 + ‖𝜌‖𝑋𝑠+1 � ‖𝑞(0)‖2
𝐻 𝑠 . (6.9)

Thus, we may estimate the final term in (6.8) as follows:���� ∫ 𝜌 (4𝜘2 + 𝜕2) (𝜙2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡

�
(
𝜘2𝑅− 1

2 + 𝑅− 5
2
)
‖𝑞(0)‖2

𝐻 𝑠 .

To estimate the contribution of the remaining terms, we rely on the decomposition (6.7). We first
bound the low-frequency contribution to each of the terms in (6.8), before treating the high-frequency
terms. From (3.41) and (4.12), we have���� ∫ 4𝜅2𝑞′

4𝜅2−𝜕2

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 𝑟
)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡

�
�� 𝜅2𝑞′

4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

−𝑠

��(𝜙2
𝑅)

′��
𝐻 1

��(2𝜘 − 𝜕) 𝑔21
2+𝛾 − 𝑟

��
𝐿∞
𝑡 𝐻

𝑠 � 𝜅
1−2𝑠𝑅− 1

2 ‖𝑞(0)‖2
𝐻 𝑠 .
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Arguing similarly, we also obtain���� ∫ 4𝜅2𝑞
4𝜅2−𝜕2

( 𝑔21
2+𝛾

) ′ (𝜙2
𝑅)

′′ 𝑑𝑥

����
𝐿1
𝑡

� 𝜅−2𝑠𝑅− 3
2 ‖𝑞(0)‖2

𝐻 𝑠 ,

𝜘

���� ∫ 4𝜅2𝑞
4𝜅2−𝜕2 𝑟 (𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘𝜅−2𝑠𝑅− 1
2 ‖𝑞(0)‖2

𝐻 𝑠 .

For the penultimate term in (6.8), we decompose both q and r according to (6.7):���� ∫ 4𝜅2𝑞
4𝜅2−𝜕2

4𝜅2𝑟
4𝜅2−𝜕2 𝜌(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡

�
�� 𝜅2𝑞

4𝜅2−𝜕2

��2
𝐿∞
𝑡 𝐻

𝑠+1

��𝜌��
𝐿∞
𝑡 𝐻

𝑠

��(𝜙2
𝑅)

′��
𝐻 1

� 𝜅2𝑅− 1
2 ‖𝑞(0)‖4

𝐻 𝑠 .

To estimate the contribution of the high-frequency term in the decomposition (6.7), we use (2.3). For
example, we write���� ∫ 𝜕3𝑞

4𝜅2−𝜕2

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡

�

���� ∫ ([
𝜓6
ℎ ,

𝜕3

4𝜅2−𝜕2

]
𝑞 + 𝜕3 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

)
𝜓6
ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 1
2𝑟

)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

.

Using (3.43), (5.15), (6.5), and (2.11), we get���� ∫ [
𝜓6
ℎ ,

𝜕3

4𝜅2−𝜕2

]
𝑞 𝜓6

ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 𝑟
)
(𝜙2

𝑅)
′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

�
��[𝜓6

ℎ ,
𝜕3

4𝜅2−𝜕2

]
𝑞
��
𝐿∞
ℎ
𝐿∞
𝑡 𝐻

−(𝑠+1)

��𝜓6
ℎ (𝜙

2
𝑅)

′ ((2𝜘 − 𝜕) 𝑔21
2+𝛾 − 1

2𝑟
)��
𝐿1
ℎ
𝐿2
𝑡 𝐻

𝑠+1

� 𝜅−(2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 ‖𝑞(0)‖𝐻 𝑠
𝜅
.

Using also (5.16), we estimate����∫ ∫ 𝑡

0

∫
𝜕3 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2 𝜓6
ℎ

(
(2𝜘 − 𝜕) 𝑔21

2+𝛾 − 𝑟
)
(𝜙2

𝑅)
′ 𝑑𝑥 𝑑𝜏 𝑑ℎ

����
�

�� 𝜕3 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿∞
ℎ
𝐿2
𝑡 𝐻

−(𝑠+1)

��𝜓6
ℎ (𝜙

2
𝑅)

′ ((2𝜘 − 𝜕) 𝑔21
2+𝛾 − 𝑟

)��
𝐿1
ℎ
𝐿2
𝑡 𝐻

𝑠+1

� 𝜅−(2𝑠+1) ‖ (𝜓6
ℎ𝑞)

′‖𝐿∞
ℎ
𝐿2
𝑡 𝐻

𝑠
𝜅
‖𝑞(0)‖𝐻 𝑠

� 𝜅−(2𝑠+1) ‖𝑞(0)‖𝐻 𝑠
𝜅
‖𝑞(0)‖𝐻 𝑠 + 𝜅−

3
2 (1+2𝑠) log2 (2𝜅)‖𝑞(0)‖3

𝐻 𝑠 .

Arguing similarly, we also obtain���� ∫ [
𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 𝜓6

ℎ

( 𝑔21
2+𝛾

) ′ (𝜙2
𝑅)

′′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

� 𝑅−1𝜅−2(1+𝑠) ‖𝑞(0)‖𝐻 𝑠 ‖𝑞(0)‖𝐻 𝑠
𝜅
,

𝜘

���� ∫ [
𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 𝜓6

ℎ 𝑟 (𝜙
2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

� 𝜘𝜅−2(1+𝑠) ‖𝑞(0)‖𝐻 𝑠 ‖𝑞(0)‖𝐻 𝑠
𝜅
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and ���� ∫ 𝜕2 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2 𝜓6
ℎ

( 𝑔21
2+𝛾

) ′ (𝜙2
𝑅)

′′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

� 𝑅−1𝜅−2(1+𝑠) ‖𝑞(0)‖𝐻 𝑠
𝜅
‖𝑞(0)‖𝐻 𝑠 + 𝑅−1𝜅−(

5
2+3𝑠) log2 (2𝜅)‖𝑞(0)‖3

𝐻 𝑠 ,

𝜘

���� ∫ ∫ 𝑡

0

∫
𝜕2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2 𝜓6
ℎ 𝑟 (𝜙

2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

� 𝜘𝜅−2(1+𝑠) ‖𝑞(0)‖𝐻 𝑠
𝜅
‖𝑞(0)‖𝐻 𝑠 + 𝜘𝜅−(

5
2+3𝑠) log2 (2𝜅)‖𝑞(0)‖3

𝐻 𝑠 .

This leaves us to handle the high-frequency contribution to the penultimate term in (6.8), which
involves the combination

4𝜅2𝑞
4𝜅2−𝜕2 ·

( [
𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑟 + 𝜕2 (𝜓6

ℎ
𝑟 )

4𝜅2−𝜕2

)
𝜓6
ℎ +

( [
𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 + 𝜕2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

)
· 𝑟 𝜓6

ℎ .

We illustrate the estimation of these contributions using the latter summand. Using (2.11), (6.5), and
(6.9), we get���� ∫ [

𝜓6
ℎ ,

𝜕2

4𝜅2−𝜕2

]
𝑞 · 𝑟 𝜓6

ℎ 𝜌 (𝜙
2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

�
��[𝜓6

ℎ ,
𝜕2

4𝜅2−𝜕2

]
𝑞
��
𝐿∞
𝑡,ℎ
𝐻−𝑠 ‖𝑟 ‖𝐿∞

𝑡 𝐻
𝑠

��𝜓6
ℎ (𝜙

2
𝑅)

′𝜌
��
𝐿1
ℎ
𝐿2
𝑡 𝐻

𝑠+1

� 𝜅−(1+2𝑠) ‖𝑞(0)‖𝐻 𝑠
𝜅
‖𝑞(0)‖3

𝐻 𝑠 ,���� ∫ 𝜕2 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2 𝑟 𝜌 𝜓6
ℎ (𝜙

2
𝑅)

′ 𝑑𝑥

����
𝐿1
𝑡,ℎ

�
�� 𝜕2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿∞
ℎ
𝐿2
𝑡 𝐻

−𝑠 ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠 ‖𝜌‖𝑋𝑠+1

� 𝜅−(1+2𝑠) ‖𝑞(0)‖𝐻 𝑠
𝜅
‖𝑞(0)‖3

𝐻 𝑠 + 𝜅−
3
2 (1+2𝑠) log2(2𝜅)‖𝑞(0)‖5

𝐻 𝑠 .

The proof may now be completed exactly as in the NLS case. �

7. Convergence of the difference flows

Our main goal in this section is to prove the following:

Proposition 7.1 (Difference flow approximates the identity). Let 𝛿 > 0 be sufficiently small and fix
★ ∈ {NLS,mKdV}. Given 𝑄 ⊂ 𝐵𝛿 ∩ S that is equicontinuous in 𝐻𝑠 and 𝜘 ≥ 4, we have

𝜓12
ℎ 𝑔12

(
𝜘; 𝑒𝑡 𝐽∇(𝐻★−𝐻 𝜅

★ )𝑞
)
→ 𝜓12

ℎ 𝑔12 (𝜘; 𝑞) in C ([−1, 1];𝐻𝑠+1) as 𝜅 → ∞,

uniformly for 𝑞 ∈ 𝑄 and ℎ ∈ R.

Proof for (NLS-diff). Applying Proposition 4.6, we see that

𝑄∗ = {𝑒𝑡 𝐽∇(𝐻NLS−𝐻 𝜅
NLS)𝑞 : 𝑞 ∈ 𝑄, 𝑡 ∈ R}

is equicontinuous in 𝐻𝑠 . By Proposition 3.2, for any 𝜘 ≥ 1, the map 𝑞 ↦→ 𝑔12 (𝜘) is a diffeomorphism
from 𝐵𝛿 → 𝐻𝑠+1; moreover, this map commutes with spatial translations. Thus, the set

{𝑔12(𝜘; 𝑞) : 𝑞 ∈ 𝑄∗} and so also {𝜓12
ℎ 𝑔12(𝜘; 𝑞) : 𝑞 ∈ 𝑄∗, ℎ ∈ R}

is equicontinuous in 𝐻𝑠+1. As a consequence, it suffices to show that

lim
𝜅→∞

sup
𝑞∈𝑄

sup
ℎ∈R

����𝑖 𝑑𝑑𝑡 (𝜓12
ℎ 𝑔12 (𝜘; 𝑒𝑡 𝐽∇(𝐻NLS−𝐻 𝜅

NLS)𝑞)
)����
𝐿1
𝑡 𝐻

−4
= 0. (7.1)
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Using the identities (3.12) for 𝑔12 and (3.11) for 𝛾, we may write

−𝑔12 (𝜘)′′ + 2𝑞𝑟𝑔12 (𝜘) + 2𝑞2𝑔21(𝜘) = −4𝜘2𝑔12(𝜘) − [1 + 𝛾(𝜘)] (2𝜘 + 𝜕)𝑞.

Thus, we may rewrite (4.35) as

𝑖
𝑑

𝑑𝑡
𝑔12 (𝜘) =

11∑
𝑗=1

err 𝑗 ,

where we define

err1 = 4𝜘4

𝜅2−𝜘2 𝑔12 (𝜘), err2 = 4𝜅2𝜘2

𝜅2−𝜘2 [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝑞4𝜅2−𝜕2 ,

err3 = [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕
2𝑞

4𝜅2−𝜕2 , err4 = − 32𝜅4𝜘2

𝜅2−𝜘2 𝑔12 (𝜘) 𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2 ,

err5 = 16𝜅4𝜘
𝜅2−𝜘2 𝑔12 (𝜘)

[
𝑞

4𝜅2−𝜕2
𝜕𝑟

4𝜅2−𝜕2 − 𝜕𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]
,

err6 =
[ 8𝜅4

𝜅2−𝜘2 + 16𝜅2]𝑔12(𝜘) 𝜕𝑞
4𝜅2−𝜕2

𝜕𝑟
4𝜅2−𝜕2 ,

err7 = −8𝜅2𝑔12 (𝜘)𝜕2
[

𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]
,

err8 = 2𝑔12 (𝜘) 𝜕2𝑞
4𝜅2−𝜕2

𝜕2𝑟
4𝜅2−𝜕2 ,

err9 = 2𝜅3𝜘
𝜅2−𝜘2 [1 + 𝛾(𝜘)]

[
− 𝑔 [≥3]

12 (𝜅) + 𝑔 [≥3]
12 (−𝜅)

]
,

err10 = − 2𝜅4

𝜅2−𝜘2 [1 + 𝛾(𝜘)]
[
𝑔 [≥3]

12 (𝜅) + 𝑔 [≥3]
12 (−𝜅)

]
,

err11 = 𝑔12 (𝜘)
[

2𝜅3

𝜅−𝜘𝛾(𝜅)
[≥4] + 2𝜅3

𝜅+𝜘𝛾(−𝜅)
[≥4]

]
.

It remains to bound each of the terms err 𝑗 . We will rely on the a priori estimate (4.12) and the local
smoothing estimate (5.18), which yield

|||𝑞 |||NLS𝜅
= ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + ‖𝑞‖

𝑋
𝑠+ 1

2
𝜅

� ‖𝑞(0)‖𝐻 𝑠 . (7.2)

We will also employ the estimates recorded in Corollary 5.7, as well as the bounds

‖𝑞‖
𝑋

−(𝑠+ 1
2 )

𝜅

� 𝜅−
2
3 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 , (7.3)

‖𝑔12 (𝜘)‖
𝑋

𝑠+ 3
2

𝜅

� ‖𝑞(0)‖𝐻 𝑠 and ‖𝛾(𝜘)‖
𝑋

𝑠+ 3
2

𝜅

� ‖𝑞(0)‖2
𝐻 𝑠 , (7.4)

which follow from (2.9), (7.2), (3.33), and (3.35).
As 𝜘 is fixed, we allow implicit constants to depend on this parameter. Throughout the proof, we will

take 𝜅 ≥ 2𝜘. When it is convenient to argue by duality, we will write 𝜙 for a generic function in 𝐿∞𝑡 𝐻4

of unit norm.
Estimate for err1. We apply the estimate (3.24) to bound��𝜓12

ℎ err1
��
𝐿1
𝑡 𝐻

−4 � 𝜅
−2‖𝑔12 (𝜘)‖𝐿∞

𝑡 𝐻
𝑠+1 � 𝜅−2‖𝑞(0)‖𝐻 𝑠 .

Estimate for err2. Similarly, using duality and (3.27), we may bound��𝜓12
ℎ err2

��
𝐿1
𝑡 𝐻

−4 �
��𝜓12

ℎ [1 + 𝛾(𝜘)]
��
𝐿∞
𝑡 𝐻

𝑠+1

�� (2𝜘+𝜕)𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

−(𝑠+1) � 𝜅
−2(1+𝑠) ‖𝑞(0)‖𝐻 𝑠 .
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Estimate for err3. We estimate

��𝜓12
ℎ [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕

2𝑞
4𝜅2−𝜕2

��
𝐿1
𝑡 𝐻

−4 �
��𝜓6

ℎ [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕
2 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿1
𝑡 𝐻

−4

+
��𝜓6

ℎ [1 + 𝛾(𝜘)] [𝜓6
ℎ ,

(2𝜘+𝜕)𝜕2

4𝜅2−𝜕2 ]𝑞
��
𝐿1
𝑡 𝐻

−4 .

We will bound both of these terms using duality. Using (7.3) and (7.4), we get

��𝜓6
ℎ [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕

2 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿1
𝑡 𝐻

−4 � sup
𝜙

‖𝜙[1 + 𝛾(𝜘)]‖
𝑋

𝑠+ 3
2

𝜅

‖𝑞‖
𝑋

−(𝑠+ 1
2 )

𝜅

�
[
𝜅−1 + ‖𝑞(0)‖2

𝐻 𝑠

]
𝜅−

2
3 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠

� 𝜅−
2
3 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 .

Using instead (3.27) and (2.11), we may bound��𝜓6
ℎ [1 + 𝛾(𝜘)] [𝜓6

ℎ ,
(2𝜘+𝜕)𝜕2

4𝜅2−𝜕2 ]𝑞
��
𝐿1
𝑡 𝐻

−4

� sup
𝜙

‖𝜓6
ℎ𝜙[1 + 𝛾(𝜘)]‖𝐿∞

𝑡 𝐻
𝑠+1

��[𝜓6
ℎ ,

(2𝜘+𝜕)𝜕2

4𝜅2−𝜕2 ]𝑞
��
𝐿∞
𝑡 𝐻

−(𝑠+1) � 𝜅
−(2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 .

Estimate for err4. Using 𝐿1 ⊂ 𝐻−4 and 𝐻𝑠+1 ⊂ 𝐿∞ together with (3.24), we get

‖𝜓12
ℎ err4‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��2
𝐿∞
𝑡 𝐿

2 � 𝜅
−2(1+𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err5. Arguing as for err4, we may bound

‖𝜓12
ℎ err5‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2

�� 𝜕𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2 � 𝜅
−(1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err6. Using that 𝐿1 ⊂ 𝐻−4 and Corollary 5.7, we may bound

‖𝜓12
ℎ err6‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

��𝜓6
ℎ

𝜕𝑞
4𝜅2−𝜕2

��2
𝐿2
𝑡,𝑥
� 𝜅−

2
3 (2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err7. We estimate

‖𝜓12
ℎ err7‖𝐿1

𝑡 𝐻
−4 � 𝜅2��𝜓6

ℎ𝑔12 (𝜘)𝜕2 [𝜓6
ℎ

𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]��
𝐿1
𝑡 𝐻

−4

+ 𝜅2��𝜓6
ℎ𝑔12 (𝜘) [𝜓6

ℎ , 𝜕
2]

[ 𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]��
𝐿1
𝑡 𝐻

−4 .

Using that 𝐿1 ⊂ 𝐻−4, we estimate the commutator term by

𝜅2��𝜓6
ℎ𝑔12 (𝜘) [𝜓6

ℎ , 𝜕
2]

[ 𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]��
𝐿1
𝑡 𝐻

−4

� 𝜅2‖𝑔12 (𝜘)‖𝐿∞
𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

1

�� 𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2 � 𝜅
−(1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

To estimate the remaining term, we argue by duality. Using (7.4), we have

𝜅2��𝜓6
ℎ𝑔12 (𝜘)𝜕2 [𝜓6

ℎ
𝑞

4𝜅2−𝜕2
𝑟

4𝜅2−𝜕2

]��
𝐿1
𝑡 𝐻

−4 (7.5)

� 𝜅2‖𝑞(0)‖𝐻 𝑠

��√4𝜅2 − 𝜕2
[
𝜓6
ℎ

𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2

]��
𝐿2
𝑡 𝐻

−(𝑠+ 1
2 )
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Employing Lemma 2.8, breaking into Littlewood–Paley pieces and using Bernstein’s inequality, we
deduce that

LHS(7.5) � ‖𝑞(0)‖𝐻 𝑠

∑
𝑁2≤𝑁1

𝜅2 (𝜅+𝑁1+𝑁2)
(𝜅+𝑁1)2 (𝜅+𝑁2)2 ‖(𝜓3

ℎ𝑞)𝑁1 ‖𝐿2
𝑡,𝑥
𝑁

1
2−𝑠
2 ‖(𝜓3

ℎ𝑞)𝑁2 ‖𝐿∞
𝑡 𝐻

𝑠 .

Invoking Corollary 5.7 and evaluating the resulting sum, we ultimately find

err7 � 𝜅−
2
3 (1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err8. Using 𝐿1 ⊂ 𝐻−4 and Corollary 5.7, we bound

‖𝜓12
ℎ err8‖𝐿1

𝑡 𝐻
−4 � ‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

��𝜓6
ℎ

𝜕2𝑞
4𝜅2−𝜕2

��2
𝐿2
𝑡,𝑥
� 𝜅−(2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err9. Using (3.27), (3.35), and (5.33), we may bound

‖𝜓12
ℎ err9‖𝐿1

𝑡 𝐻
−4 � 𝜅−

4
3 (2𝑠+1) sup

𝜙

������(2𝜘 + 𝜕) (𝜙[1 + 𝛾(𝜘)]
) ������

NLS𝜅
‖𝑞(0)‖3

𝐻 𝑠

� 𝜅−
4
3 (2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err10. Arguing as for err9 and using (5.36) in place of (5.33), we find

‖𝜓12
ℎ err10‖𝐿1

𝑡 𝐻
−4 � 𝜅−

4
3 (2𝑠+1) sup

𝜙

������(2𝜘 + 𝜕) (𝜙[1 + 𝛾(𝜘)]
) ������

NLS𝜅
‖𝑞(0)‖3

𝐻 𝑠

� 𝜅−
4
3 (2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err11. Using (3.24) and (5.35), we obtain

‖𝜓12
ℎ err11‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12‖𝐿∞

𝑡,𝑥

��𝛾(±𝜅) [≥4]𝜓12
ℎ

��
𝐿1
𝑡,𝑥
� 𝜅−

4
3 (2𝑠+1) ‖𝑞(0)‖5

𝐻 𝑠 .

Collecting all our estimates for the error terms yields (7.1). �

Proof for (mKdV-diff). It suffices to show the following analogue of (7.1):

lim
𝜅→∞

sup
𝑞∈𝑄

sup
ℎ∈R

���� 𝑑𝑑𝑡 (𝜓12
ℎ 𝑔12 (𝜘; 𝑒𝑡 𝐽∇(𝐻mKdV−𝐻 𝜅

mKdV)𝑞)
)����
𝐿1
𝑡 𝐻

−4
= 0. (7.6)

Using the identities (3.12) for 𝑔12 and (3.11) for 𝛾, we may write

− 𝑔12 (𝜘)′′′ + 6𝑞𝑟𝑔12 (𝜘)′ + 6𝑞𝑞′𝑔21(𝜘) + 6𝑟𝑞′𝑔12 (𝜘) − 4𝜅2𝑔12(𝜘)′ + 8𝜅4𝜘
𝜅2−𝜘2 𝑔12(𝜘)

= 𝑔12 (𝜘)
[ 8𝜘5

𝜅2−𝜘2 + 4𝜘𝑞𝑟 + 2𝑟𝑞′ − 2𝑞𝑟 ′
]
− [1 + 𝛾(𝜘)]

[
𝑞′′ + 2𝜘𝑞′ + 4(𝜅2 + 𝜘2)𝑞 − 2𝑞2𝑟

]
.

As a consequence, we may write (4.36) as

𝑑

𝑑𝑡
𝑔12 (𝜘) =

16∑
𝑗=1

err 𝑗 ,

where we define

err1 = 8𝜘5

𝜅2−𝜘2 𝑔12 (𝜘), err2 = 8𝜅2𝜘3

𝜅2−𝜘2 [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝑞4𝜅2−𝜕2 + 4𝜘2 [1 + 𝛾(𝜘)] 𝜕2𝑞
4𝜅2−𝜕2 ,

err3 = [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕
3𝑞

4𝜅2−𝜕2 , err4 = − 64𝜅4𝜘3

𝜅2−𝜘2 𝑔12 (𝜘) 𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2 ,
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err5 = 32𝜅4𝜘2

𝜅2−𝜘2 𝑔12 (𝜘)
[

𝑞
4𝜅2−𝜕2

𝜕𝑟
4𝜅2−𝜕2 − 𝜕𝑞

4𝜅2−𝜕2
𝑟

4𝜅2−𝜕2

]
,

err6 = 16𝜅4𝜘
𝜅2−𝜘2 𝑔12 (𝜘) 𝜕𝑞

4𝜅2−𝜕2
𝜕𝑟

4𝜅2−𝜕2 ,

err7 = −16𝜅2𝜘𝑔12(𝜘)
[

𝜕2𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2 + 𝑞

4𝜅2−𝜕2
𝜕2𝑟

4𝜅2−𝜕2

]
,

err8 = 4𝜘𝑔12 (𝜘) 𝜕2𝑞
4𝜅2−𝜕2

𝜕2𝑟
4𝜅2−𝜕2 ,

err9 = 16𝜅2𝑔12(𝜘)
[

𝜕2𝑞
4𝜅2−𝜕2

𝜕𝑟
4𝜅2−𝜕2 − 𝜕𝑞

4𝜅2−𝜕2
𝜕2𝑟

4𝜅2−𝜕2

]
,

err10 = −8𝜅2𝑔12 (𝜘)𝜕
[

𝜕2𝑞
4𝜅2−𝜕2

𝑟
4𝜅2−𝜕2 − 𝑞

4𝜅2−𝜕2
𝜕2𝑟

4𝜅2−𝜕2

]
,

err11 = 2𝑔12 (𝜘)
[

𝜕3𝑞
4𝜅2−𝜕2

𝜕2𝑟
4𝜅2−𝜕2 − 𝜕2𝑞

4𝜅2−𝜕2
𝜕3𝑟

4𝜅2−𝜕2

]
,

err12 = − 4𝜅5

𝜅2−𝜘2 [1 + 𝛾(𝜘)]
[
𝑔12 (𝜅) [≥3] − 𝑔12 (−𝜅) [≥3] − 1

2𝜅3 𝑞
2𝑟
]
,

err13 = − 4𝜅4𝜘
𝜅2−𝜘2 [1 + 𝛾(𝜘)]

[
𝑔12 (𝜅) [≥3] + 𝑔12(−𝜅) [≥3]

]
,

err14 = 4𝜅4𝜘
𝜅2−𝜘2 𝑔12 (𝜘)

[
𝛾(𝜅) [≥4] + 𝛾(−𝜅) [≥4]

]
,

err15 = 4𝜅5

𝜅2−𝜘2 𝑔12 (𝜘)
[
𝛾(𝜅) [≥4] − 𝛾(−𝜅) [≥4]

]
,

err16 = − 2𝜘2

𝜅2−𝜘2 [1 + 𝛾(𝜘)]𝑞2𝑟.

To bound the error terms, we will rely on the a priori estimate (4.12) and the local smoothing estimate
(5.22), which yield

|||𝑞 |||mKdV𝜅
= ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + ‖𝑞‖𝑋𝑠+1

𝜅
� ‖𝑞(0)‖𝐻 𝑠 . (7.7)

We will also employ the estimates recorded in Corollary 5.9, as well as the bounds

‖𝑞‖𝑋−𝑠
𝜅
� 𝜅−

1
2 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 , (7.8)

‖𝑔12 (𝜘)‖𝑋𝑠+2
𝜅
� ‖𝑞(0)‖𝐻 𝑠 and ‖𝛾(𝜘)‖𝑋𝑠+2

𝜅
� ‖𝑞(0)‖2

𝐻 𝑠 , (7.9)

which follow from (2.9), (7.7), (3.33), and (3.35).
We will allow implicit constants to depend on 𝜘. Throughout the proof, we will take 𝜅 ≥ 2𝜘. As

before, when arguing by duality, we write 𝜙 for a function in 𝐿∞𝑡 𝐻4 of unit norm.
Estimate for err1. We apply the estimate (3.24) to bound

��𝜓12
ℎ err1

��
𝐿1
𝑡 𝐻

−4 � 𝜅
−2‖𝑔12 (𝜘)‖𝐿∞

𝑡 𝐻
𝑠+1 � 𝜅−2‖𝑞(0)‖𝐻 𝑠 .

Estimate for err2. Similarly, using duality and (3.27), we may bound

��𝜓12
ℎ err2

��
𝐿1
𝑡 𝐻

−4

�
��𝜓12

ℎ [1 + 𝛾(𝜘)]
��
𝐿∞
𝑡 𝐻

𝑠+1

[�� (2𝜘+𝜕)𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

−(𝑠+1) +
�� 𝜕2𝑞

4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐻

−(𝑠+1)

]
� 𝜅−(1+2𝑠) ‖𝑞(0)‖𝐻 𝑠 .
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Estimate for err3. We estimate

��𝜓12
ℎ err3

��
𝐿1
𝑡 𝐻

−4 �
��𝜓6

ℎ [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕
3 (𝜓6

ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿1
𝑡 𝐻

−4

+
��𝜓6

ℎ [1 + 𝛾(𝜘)] [𝜓6
ℎ ,

(2𝜘+𝜕)𝜕3

4𝜅2−𝜕2 ]𝑞
��
𝐿1
𝑡 𝐻

−4 .

We will bound both of these terms using duality. Using (7.8) and (7.9), we get��𝜓6
ℎ [1 + 𝛾(𝜘)] (2𝜘+𝜕)𝜕

3 (𝜓6
ℎ
𝑞)

4𝜅2−𝜕2

��
𝐿1
𝑡 𝐻

−4 � sup
𝜙

‖𝜙[1 + 𝛾(𝜘)]‖𝑋𝑠+2
𝜅

‖𝑞‖𝑋−𝑠
𝜅

�
[
𝜅−1 + ‖𝑞(0)‖2

𝐻 𝑠

]
𝜅−

1
2 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠

� 𝜅−
1
2 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 .

To estimate the commutator term, we use (2.12) and (3.27), as follows:��𝜓6
ℎ [1 + 𝛾(𝜘)] [𝜓6

ℎ ,
(2𝜘+𝜕)𝜕3

4𝜅2−𝜕2 ]𝑞
��
𝐿1
𝑡 𝐻

−4

� sup
𝜙

‖𝜓6
ℎ𝜙[1 + 𝛾(𝜘)]‖𝐿∞

𝑡 𝐻
𝑠+1

��[𝜓6
ℎ ,

(2𝜘+𝜕)𝜕3

4𝜅2−𝜕2 ]𝑞
��
𝐿2
𝑡 𝐻

−(𝑠+1) � 𝜅
− 1

2 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 .

Collecting our estimates, we obtain

‖𝜓12
ℎ err3‖𝐿1

𝑡 𝐻
−4 � 𝜅−

1
2 (2𝑠+1) ‖𝑞(0)‖𝐻 𝑠 .

Estimate for err4. Using 𝐿1 ⊂ 𝐻−4 and 𝐻𝑠+1 ⊂ 𝐿∞ together with (3.24), we get

‖𝜓12
ℎ err4‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��2
𝐿∞
𝑡 𝐿

2 � 𝜅
−2(1+𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err5. Arguing as for err4, we may bound

‖𝜓12
ℎ err5‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2

�� 𝜕𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2 � 𝜅
−(1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err6. Using 𝐿1 ⊂ 𝐻−4 and Corollary 5.9, we may bound

‖𝜓12
ℎ err6‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

��𝜓6
ℎ

𝜕
4𝜅2−𝜕2 𝑞

��2
𝐿2
𝑡,𝑥
� 𝜅−(1+𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err7. Arguing as for err6, we may bound

‖𝜓12
ℎ err7‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

�� 𝑞
4𝜅2−𝜕2

��
𝐿∞
𝑡 𝐿

2

��𝜓6
ℎ

𝜕2

4𝜅2−𝜕2 𝑞
��
𝐿2
𝑡,𝑥

� 𝜅−(1+2𝑠) ‖𝑞(0)‖3
𝐻 𝑠 .

Estimate for err8. Arguing as for err6 again, we bound

‖𝜓12
ℎ err8‖𝐿1

𝑡 𝐻
−4 � ‖𝑔12 (𝜘)‖𝐿∞

𝑡,𝑥

��𝜓6
ℎ

𝜕2𝑞
4𝜅2−𝜕2

��2
𝐿2
𝑡,𝑥
� 𝜅−2(1+𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err9. Using (2.11) and then (7.7) yields

��𝜓6
ℎ

𝜕𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝑠+1 � 𝜅
−1‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + 𝜅−1�� 𝜓6𝑞√

4𝜅2−𝜕2 ‖𝐿2
𝑡 𝐻

𝑠+2 � 𝜅−1‖𝑞(0)‖𝐻 𝑠 . (7.10)
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Analogously, but also breaking at frequency 𝑁 =
√
𝜅, we find��𝜓6

ℎ
𝜕2𝑞

4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

−1−𝑠 � 𝜅
−2−2𝑠 ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + 𝜅−2𝑁1−2𝑠 ‖(𝜓6

ℎ𝑞)≤𝑁 ‖𝐿∞
𝑡 𝐻

𝑠

+ 𝜅−1𝑁−(1+2𝑠) ‖ (𝜓6
ℎ𝑞)>𝑁 ‖𝑋𝑠+1

𝜅
(7.11)

� 𝜅−1− 1
2 (1+2𝑠) ‖𝑞(0)‖𝐻 𝑠 .

Combining these bounds, we deduce that

‖𝜓12
ℎ err9‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12‖𝐿∞

𝑡 𝐻
𝑠+1

��𝜓6
ℎ

𝜕𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝑠+1

��𝜓6
ℎ

𝜕2𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

−1−𝑠

� 𝜅−
1
2 (1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err10. Our goal, here, is to employ (5.28). Given 𝜙 ∈ 𝐿∞𝑡 𝐻4, we have

[𝜙𝜓12
ℎ 𝑔12] ′ 𝜕2𝑞

4𝜅2−𝜕2
𝑟

4𝜅2−𝜕2 = 𝑚
[
𝑞, 𝑟,

(𝜓12
ℎ 𝜙)′

𝜓12
ℎ

, 𝜓12
ℎ

(2𝜘+𝜕)𝑔12
2𝜘+𝜕

]
+ 𝑚

[
𝑞, 𝑟, 𝑔′12, 𝜓

12
ℎ

(2𝜘+𝜕)𝜙
2𝜘+𝜕

]
,

where the paraproduct m has symbol

𝑚(𝜉1, . . . , 𝜉4) =
𝜉 2

1
(4𝜅2+𝜉 2

1 ) (4𝜅2+𝜉 2
2 )
.

In this way, we see that

𝜅2
���� ∫ 𝜙𝜓12

ℎ 𝑔12 · 𝜕
[ 𝜕2𝑞

4𝜅2−𝜕2
𝑟

4𝜅2−𝜕2

]
𝑑𝑥

����
𝐿1
𝑡

� 𝜅−(1+2𝑠) ‖𝜙‖𝐿∞
𝑡 𝐻

4 ‖𝑞(0)‖3
𝐻 𝑠

and thence that

‖𝜓12
ℎ err10‖𝐿1

𝑡 𝐻
−4 � 𝜅−(1+2𝑠) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err11. Arguing as for (7.10), we first use (2.11) and (7.7) to see that��𝜓6
ℎ

𝜕2𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝑠+1 � ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠 + ‖𝑞‖𝑋𝑠+1
𝜅
� ‖𝑞(0)‖𝐻 𝑠

and ��𝜓6
ℎ

𝜕3𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

−(𝑠+1) � 𝜅
−(1+2𝑠) ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + 𝜅−(1+2𝑠) ‖𝑞‖𝑋𝑠+1

𝜅
� 𝜅−(1+2𝑠) ‖𝑞(0)‖𝐻 𝑠 .

Thus,

‖𝜓12
ℎ err11‖𝐿1

𝑡 𝐻
−4 � ‖𝑔12 (𝜘)‖𝐿∞

𝑡 𝐻
𝑠+1

��𝜓6
ℎ

𝜕2𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

𝑠+1

��𝜓6
ℎ

𝜕3𝑞
4𝜅2−𝜕2

��
𝐿2
𝑡 𝐻

−(𝑠+1)

� 𝜅−(1+2𝑠) ‖𝑞(0)‖3
𝐻 𝑠 .

Estimate for err12. We first note that (3.27) and (3.35) imply������(2𝜘 + 𝜕) (𝜙[1 + 𝛾(𝜘)]
) ������

mKdV𝜅
� 1 + |||𝑞 |||mKdV𝜅

� 1

for any 𝜙 ∈ 𝐿∞𝑡 𝐻4 of unit norm. Thus, it follows from (5.45) that

‖𝜓12
ℎ err12‖𝐿1

𝑡 𝐻
−4 � 𝜅−(2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .
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Estimate for err13. Arguing as for err12 and using (5.44) in place of (5.45), we get

‖𝜓12
ℎ err13‖𝐿1

𝑡 𝐻
−4 � 𝜅−(2𝑠+1) ‖𝑞(0)‖3

𝐻 𝑠 .

Estimate for err14. Using 𝐿1 ⊂ 𝐻−4 together with (3.24) and (5.46), we get

‖𝜓12
ℎ err14‖𝐿1

𝑡 𝐻
−4 � 𝜅2‖𝑔12‖𝐿∞

𝑡,𝑥

��𝛾(±𝜅) [≥4]𝜓12
ℎ

��
𝐿1
𝑡,𝑥
� 𝜅−

1
2−(2𝑠+1) ‖𝑞(0)‖5

𝐻 𝑠 .

Estimate for err15. The argument, here, is essentially a recapitulation of the proof of (5.47). For
example, from (5.49), we have

𝜅3��𝜓12
ℎ 𝑔12 (𝜘)𝛾 [≥6] (±𝜅)

��
𝐿1
𝑡 𝐻

−4 � 𝜅
−(1+2𝑠) ‖𝑔12‖𝐿∞

𝑡,𝑥
‖𝑞(0)‖6

𝐻 𝑠 � 𝜅−(1+2𝑠) ‖𝑞(0)‖7
𝐻 𝑠 .

In order to repeat the treatment of the 𝛾 [4] terms given previously, we need one additional piece of
information, namely, that f defined by

𝑓
2𝜅−𝜕 = 𝜙 𝑔12 (𝜘) 𝑞

2𝜅−𝜕

satisfies

‖ 𝑓 ‖𝐿∞
𝑡 𝐻

𝑠 � ‖𝑞‖𝐿∞
𝑡 𝐻

𝑠 and ||| 𝑓 |||mKdV𝜅
� |||𝑞 |||mKdV𝜅

for every 𝜙 ∈ 𝐿∞𝑡 𝐻4 of unit norm. These assertions follow readily from (2.16), (3.24), and (3.33). Thus,
we may conclude that

‖𝜓12
ℎ err15‖𝐿1

𝑡 𝐻
−4 � 𝜅−(2𝑠+1) ‖𝑞(0)‖5

𝐻 𝑠 .

Estimate for err16. Breaking at frequency 𝑁 =
√
𝜅 and using (7.7), we find

‖𝜓6
ℎ𝑞‖𝐿2

𝑡 𝐻
𝑠+1 � 𝑁 ‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 + 𝜅

𝑁 ‖𝑞‖𝑋𝑠+1
𝜅
� 𝜅

1
2 ‖𝑞(0)‖𝐻 𝑠 .

Thus, arguing by duality and using (3.24), we estimate

‖𝜓12
ℎ err16‖𝐿1

𝑡 𝐻
−4 � 𝜅−2‖𝑞‖𝐿∞

𝑡 𝐻
𝑠 ‖𝜓6

ℎ𝑞‖
2
𝐿2
𝑡 𝐻

𝑠+1 sup
𝜙

‖𝜙[1 + 𝛾(𝜘)]‖𝐿∞
𝑡 𝐻

𝑠+1

� 𝜅−1‖𝑞(0)‖3
𝐻 𝑠 .

Combining our estimates for all the error terms, we deduce (7.1), which then completes the proof of
the mKdV case of Proposition 7.1. �

8. Well-posedness

In this section, we prove Theorem 1.1. While we have already established the necessary prerequisites
to obtain global well-posedness in 𝐻𝑠 for − 1

2 < 𝑠 < 0, we begin this section with one additional
equicontinuity result that will be applied to yield well-posedness at higher regularity.

This equicontinuity relies on a certain macroscopic conservation law, which we introduce through
its density

𝜌̃(𝜘) := 𝑞𝑟 − 2𝜘𝜌(𝜘).
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That this density satisfies a conservation law follows readily from Corollary 4.14 and the conservation
of mass. The associated microscopic conservation law will be essential for proving local smoothing
estimates at positive regularity in the next section.

For later reference, we note that

𝜌̃ [2] (𝜘) = 1
2

(
𝑞 · 𝑟 ′

2𝜘+𝜕 − 𝑞′

2𝜘−𝜕 · 𝑟
)
. (8.1)

Using 𝜌̃, we prove the following analogue of Proposition 4.4:

Proposition 8.1. Let 0 ≤ 𝜎 < 1
2 . Then there exists 𝛿 > 0 so that for any 𝑞(0) ∈ S satisfying

‖𝑞(0)‖𝐿2 ≤ 𝛿, the solution 𝑞(𝑡) of (NLS) or (mKdV) satisfies

‖𝑞(𝑡)′‖2
𝐻 𝜎−1

𝜅
� ‖𝑞(0)′‖2

𝐻 𝜎−1
𝜅

+ 𝜅2𝜎−1𝛿2‖𝑞(0)‖2
𝐿2 , (8.2)

uniformly for 𝑡 ∈ R and 𝜅 ≥ 1.

Proof. Using (3.24), (3.25), and (3.28), we get

‖𝑔12 (𝜘)‖𝐿2 � 𝜘−1‖𝑞‖𝐿2 , ‖𝑔 [≥3]
12 (𝜘)‖𝐿2 � 𝜘−2‖𝑞‖3

𝐿2 , ‖𝛾(𝜘)‖𝐿∞ ≤ 𝜘−1‖𝑞‖2
𝐿2 .

Consequently, using (3.39) and (4.14), we obtain

‖
( 𝑔12 (𝜘)

2+𝛾 (𝜘)
) [≥3] ‖𝐿2 � 𝜘−2𝛿2‖𝑞‖𝐿2 , and so ‖ 𝜌̃ [≥4] (𝜘)‖𝐿1 � 𝜘−1𝛿2‖𝑞‖2

𝐿2 (8.3)

whenever 0 < 𝛿 � 1 is sufficiently small. Employing (8.1) and (8.3), we get

±Re
∫

𝜌̃(𝑥; 𝜘) 𝑑𝑥 = ‖𝑞′‖2
𝐻−1

𝜘
+O

(
𝜘−1𝛿2‖𝑞‖2

𝐿2

)
.

If 𝜎 = 0, we simply set 𝜘 = 𝜅. If 0 < 𝜎 < 1
2 , we apply the estimate (2.7) to obtain

∫ ∞

𝜅
𝜘2𝜎

(
± Re

∫
𝜌̃(𝑥; 𝜘) 𝑑𝑥

)
𝑑𝜘
𝜘 ≈ ‖𝑞′‖2

𝐻 𝜎−1
𝜅

+O
(
𝜅2𝜎−1𝛿2‖𝑞‖2

𝐿2

)
.

As the mass and left-hand sides in these estimates are conserved under both (NLS) and (mKdV), the
claim (8.2) now follows. �

Proof of Theorem 1.1. In view of the history discussed in the Introduction, it suffices to treat regularities
− 1

2 < 𝑠 < 0 for (NLS) and − 1
2 < 𝑠 < 1

4 for (mKdV). With the tools at our disposal, we are able to give
a uniform treatment of both equations over the range (− 1

2 ,
1
2 ), so this is what we do. As the arguments

for (NLS) and (mKdV) are identical, we provide details in the case of (NLS).
We first consider initial data 𝑞 ∈ 𝐻𝑠 , where − 1

2 < 𝑠 < 0. Let 0 < 𝛿 � 1 be sufficiently small and,
rescaling according to (1.3), assume that 𝑞 ∈ 𝐵𝛿 . Let {𝑞𝑛}𝑛≥1 ⊂ 𝐵𝛿∩S so that 𝑞𝑛 → 𝑞 in𝐻𝑠 as 𝑛 → ∞.

In view of Propositions 4.6 and 6.4, the set

𝑄 :=
{
𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛 : 𝑛 ≥ 1, 𝑡 ∈ [−1, 1]

}
is equicontinuous and tight in 𝐻𝑠 . Further, by Proposition 4.4, we may find some 𝐶 = 𝐶 (𝑠) ≥ 1 so that
𝑄 ⊂ 𝐵𝐶𝛿 ∩ S .
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For fixed 𝜘 ≥ 4, let 𝑔12(·) = 𝑔12(𝜘; ·) and 𝜅 ≥ 2𝜘. Let 𝑅 ≥ 1, 𝜙𝑅 be as in Section 6, and 𝜒𝑅 ∈ S be a
nonnegative function so that 1 ≤ 𝜙2

𝑅 + 𝜒2
𝑅. We then bound

‖𝑔12 (𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛) − 𝑔12(𝑒𝑡 𝐽∇𝐻NLS𝑞𝑚)‖𝐿∞
𝑡 𝐻

𝑠+1

� ‖𝑔12 (𝑒𝑡 𝐽∇𝐻
𝜅
NLS𝑞𝑛) − 𝑔12 (𝑒𝑡 𝐽∇𝐻

𝜅
NLS𝑞𝑚)‖𝐿∞

𝑡 𝐻
𝑠+1

+ sup
𝑞∈𝑄∗

‖𝜒𝑅𝑔12 (𝑒𝑡 𝐽∇(𝐻NLS−𝐻 𝜅
NLS)𝑞) − 𝜒𝑅𝑔12 (𝑞)‖𝐿∞

𝑡 𝐻
𝑠+1

+ sup
𝑛≥1

‖𝜙𝑅𝑔12(𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛)‖𝐿∞
𝑡 𝐻

𝑠+1 ,

where the set

𝑄∗ :=
{
𝑒𝐽∇(𝑡𝐻NLS+𝑠𝐻 𝜅

NLS)𝑞𝑛 : 𝑛 ≥ 1, 𝜅 ≥ 2𝜘, 𝑡, 𝑠 ∈ [−1, 1]
}
.

By Propositions 4.4 and 4.12, we have 𝑄∗ ⊂ 𝐵𝐶𝛿 ∩ S , while by Proposition 4.6, 𝑄∗ is equicontinuous
in 𝐻𝑠 .

By Proposition 4.12 and the diffeomorphism property of Proposition 3.2, we have

lim
𝑛,𝑚→∞

‖𝑔12 (𝑒𝑡 𝐽∇𝐻
𝜅
NLS𝑞𝑛) − 𝑔12 (𝑒𝑡 𝐽∇𝐻

𝜅
NLS𝑞𝑚)‖𝐿∞

𝑡 𝐻
𝑠+1 = 0.

Using Proposition 7.1, we obtain

lim
𝜅→∞

sup
𝑞∈𝑄∗

‖𝜒𝑅𝑔12 (𝑒𝑡 𝐽∇(𝐻NLS−𝐻 𝜅
NLS)𝑞) − 𝜒𝑅𝑔12(𝑞)‖𝐿∞

𝑡 𝐻
𝑠+1

�𝑅 lim
𝜅→∞

sup
𝑞∈𝑄∗

sup
ℎ∈R

‖𝜓12
ℎ 𝑔12 (𝑒𝑡 𝐽∇(𝐻NLS−𝐻 𝜅

NLS)𝑞) − 𝜓12
ℎ 𝑔12(𝑞)‖𝐿∞

𝑡 𝐻
𝑠+1 = 0.

Finally, from the estimate (6.1) and the fact that 𝑄 ⊂ 𝐵𝐶𝛿 ∩ S is tight, we have

lim
𝑅→∞

sup
𝑛≥1

‖𝜙𝑅𝑔12 (𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛)‖𝐿∞
𝑡 𝐻

𝑠+1 = 0.

Thus, {𝑔12(𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛)} is Cauchy in C ([−1, 1];𝐻𝑠+1) and from the diffeomorphism property, we
conclude that {𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛} is Cauchy in C ([−1, 1];𝐻𝑠). This yields local well-posedness of (NLS) in
𝐻𝑠 on the time interval [−1, 1].

From the estimate (4.12) with 𝜅 = 1, we obtain the estimate

‖𝑒𝑡 𝐽∇𝐻NLS𝑞‖𝐻 𝑠 ≤ 𝐶‖𝑞‖𝐻 𝑠 ,

uniformly for 𝑡 ∈ R and 𝑞 ∈ 𝐵𝛿∩S . Using this bound, we may iterate the local well-posedness argument
to complete the proof of global well-posedness in 𝐻𝑠 .

Now, consider initial data 𝑞 ∈ 𝐻𝜎 , where 0 ≤ 𝜎 < 1
2 . Let 0 < 𝛿 � 1 be sufficiently small and

{𝑞𝑛}𝑛≥1 be a sequence of Schwartz functions so that 𝑞𝑛 → 𝑞 in 𝐻𝜎 as 𝑛 → ∞. After possibly rescaling,
assume that ‖𝑞𝑛‖𝐿2 ≤ 𝛿 for all 𝑛 ≥ 1.

Applying our well-posedness result with 𝑠 = − 1
4 , the sequence of solutions {𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛} is Cauchy

in C ([−1, 1];𝐻− 1
4 ). Applying the estimate (8.2), we see that the corresponding set Q is equicontinuous

in 𝐻𝜎 , and hence the sequence {𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛} is also Cauchy in C ([−1, 1];𝐻𝜎). This gives local well-
posedness in 𝐻𝜎 .

Employing the estimate (8.2) with 𝜅 = 1, and the conservation of mass, we obtain the estimate

‖𝑒𝑡 𝐽∇𝐻NLS𝑞‖𝐻 𝜎 � ‖𝑞‖𝐻 𝜎 ,
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uniformly for 𝑡 ∈ R and 𝑞 ∈ S satisfying ‖𝑞‖𝐿2 ≤ 𝛿. This suffices to complete the proof of global
well-posedness in 𝐻𝜎 . �

9. Proof of Theorems 1.2 and 1.3

In this section, we prove Theorems 1.2 and 1.3. We start by considering (NLS):

Proof of Theorem 1.2. The estimate (1.7) follows from (5.12) and rescaling. It remains to prove the
continuity statement in Theorem 1.2.

Let 0 < 𝛿 � 1 be sufficiently small and, by rescaling, assume the initial data 𝑞(0) ∈ 𝐵𝛿 . Let
{𝑞𝑛 (0)}𝑛≥1 ⊆ 𝐵𝛿 ∩ S so that 𝑞𝑛 (0) → 𝑞(0) in 𝐻𝑠 as 𝑛 → ∞, and denote the corresponding solutions
by 𝑞(𝑡) = 𝑒𝑡 𝐽∇𝐻NLS𝑞(0) and 𝑞𝑛 (𝑡) = 𝑒𝑡 𝐽∇𝐻NLS𝑞𝑛 (0). It suffices to prove that 𝑞𝑛 → 𝑞 in 𝑋𝑠+ 1

2 as 𝑛 → ∞.
Decomposing into low and high frequencies, we may bound

‖𝑞𝑛 − 𝑞𝑚‖
𝑋𝑠+ 1

2
≤ ‖𝑃≤𝜅 (𝑞𝑛 − 𝑞𝑚)‖

𝐿∞
𝑡 𝐻

𝑠+ 1
2
+ 2 sup

𝑛≥1
sup
ℎ∈R

‖𝑃>𝜅 (𝜓6
ℎ𝑞𝑛)‖𝐿2

𝑡 𝐻
𝑠+ 1

2

�
√
𝜅‖𝑞𝑛 − 𝑞𝑚‖𝐿∞

𝑡 𝐻
𝑠 + sup

𝑛≥1
sup
ℎ∈R

‖(𝜓6
ℎ𝑞𝑛)

′‖
𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅

.

As the set {𝑞𝑛 (0)}𝑛≥1 is equicontinuous in 𝐻𝑠 , we may apply (5.13) from Proposition 5.4 to obtain

lim
𝜅→∞

sup
𝑛≥1

sup
ℎ∈R

‖(𝜓6
ℎ𝑞𝑛)

′‖
𝐿2
𝑡 𝐻

𝑠− 1
2

𝜅

= 0.

Finally, from Theorem 1.1, we have 𝑞𝑛 → 𝑞 in C ([−1, 1];𝐻𝑠) as 𝑛 → ∞, which completes the proof
that 𝑞𝑛 → 𝑞 in 𝑋𝑠+ 1

2 . �

The corresponding result for (mKdV), Theorem 1.3, is proved almost identically: When − 1
2 < 𝑠 < 0,

we replace Proposition 5.4 by Proposition 5.5, whereas at higher regularity we use the following:

Proposition 9.1. Let 0 ≤ 𝜎 < 1
2 . Then there exists 𝛿 > 0 so that for any 𝑞(0) ∈ S satisfying

‖𝑞(0)‖𝐿2 ≤ 𝛿, the solution 𝑞(𝑡) of (mKdV) satisfies the estimate

‖𝑞‖𝑋𝜎+1 � ‖𝑞(0)‖𝐻 𝜎 . (9.1)

Further, we have the high-frequency estimate

‖(𝜓6
ℎ𝑞)

′′‖2
𝐿2
𝑡 𝐻

𝜎−1
𝜅
� ‖𝑞(0)′‖2

𝐻 𝜎−1
𝜅

+ 𝜅2𝜎−1‖𝑞(0)‖2
𝐿2 , (9.2)

uniformly for ℎ ∈ R and 𝜅 ≥ 1.

To prove Proposition 9.1, we use the microscopic conservation law for 𝜌̃(𝜘),

𝜕𝑡 𝜌̃ + 𝜕𝑥 𝑗̃mKdV = 0,

where the current

𝑗̃mKdV(𝜘) := (𝑞𝑟)′′ − 3(𝑞′𝑟 ′ + 𝑞2𝑟2) − 2𝜘 𝑗mKdV(𝜘).

We will first establish analogues of (5.4), (5.7), and (5.9). We then use these as in the proof of Proposition
5.5 to derive (9.1) and (9.2).
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We start with the analogues of the estimates (5.4) and (5.7).

Lemma 9.2. Let 𝑞 ∈ S satisfy ‖𝑞‖𝐿2 ≤ 𝛿, and let Ψℎ be as in (5.2). Then����Re
∫

𝜌̃(𝑥; 𝜘) Ψℎ (𝑥) 𝑑𝑥
���� � ‖𝑞′‖2

𝐻−1
𝜘

+ 𝜘−1‖𝑞‖2
𝐿2 , (9.3)

Re
∫

𝑗̃ [2]mKdV(𝑥; 𝜘) 𝜓12
ℎ (𝑥) 𝑑𝑥 = ∓3‖(𝜓6

ℎ𝑞)
′′‖2

𝐻−1
𝜘

+O
(
‖𝑞′‖2

𝐻−1
𝜘

+ 𝜘−2‖𝑞‖2
𝐿2

)
(9.4)

+O
(
‖(𝜓6

ℎ𝑞)
′′‖𝐻−1

𝜘

(
‖𝑞′‖𝐻−1

𝜘
+ 𝜘−1‖𝑞‖𝐿2

) )
,

uniformly for 𝜘 ≥ 1 and ℎ ∈ R.

Proof. Using (8.1), we estimate����Re
∫

𝜌̃ [2] (𝑥; 𝜘) Ψℎ (𝑥) 𝑑𝑥
���� = ����Re

∫
𝜉 2

4𝜘2+𝜉 2 𝑞(𝜉)𝑞Ψℎ (𝜉) 𝑑𝜉
����

� ‖𝑞′‖𝐻−1
𝜘
‖(Ψℎ𝑞)′‖𝐻−1

𝜘
� ‖𝑞′‖2

𝐻−1
𝜘

+ 𝜘−1‖𝑞′‖𝐻−1
𝜘
‖𝑞‖𝐿2 .

Combining this with (8.3) yields (9.3).
We turn now to (9.4). The quadratic part of the current satisfies

𝑗̃ [2]mKdV(𝜘) =
(
R̃[𝑞, 𝑟]

) ′′ − 3R̃[𝑞′, 𝑟 ′],

where the paraproduct R̃[𝑞, 𝑟] has symbol

𝑅(𝜉, 𝜂) := −𝑖 𝜉
2(2𝜘−𝑖 𝜉 ) +

𝑖𝜂
2(2𝜘+𝑖𝜂) .

Notice also that (8.1) shows

𝜌̃ [2] (𝑥; 𝜘) = R̃[𝑞, 𝑟] (𝑥) = 1
2𝜋

∫
𝑅(𝜉, 𝜂)𝑞(𝜉)𝑟 (𝜂)𝑒𝑖𝑥 ( 𝜉+𝜂) 𝑑𝜉 𝑑𝜂.

Taking the real part, we have

Re
∫

R̃[(𝜓6
ℎ𝑞)

′, (𝜓6
ℎ𝑟)

′] 𝑑𝑥 = ±‖(𝜓6
ℎ𝑞)

′′‖2
𝐻−1

𝜘
,

and hence, we may write

Re
∫

𝑗̃ [2]mKdV(𝜘) 𝜓
12
ℎ 𝑑𝑥 = ∓3‖(𝜓6

ℎ𝑞)
′′‖2

𝐻−1
𝜘

+ Re
∫

R̃[𝑞, 𝑟] (𝜓12
ℎ )′′ 𝑑𝑥 (9.5)

− 3 Re
∫ (

𝜓12
ℎ R̃[𝑞′, 𝑟 ′] − R̃[(𝜓6

ℎ𝑞)
′, (𝜓6

ℎ𝑟)
′]
)
𝑑𝑥.

Proceeding as in the proof of (9.3), we may bound the second term on RHS (9.5) by����Re
∫

𝜌̃ [2] (𝑥; 𝜘) (𝜓12
ℎ )′′(𝑥) 𝑑𝑥

���� � ‖𝑞′‖2
𝐻−1

𝜘
+ 𝜘−2‖𝑞‖2

𝐿2 .
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The remaining term on RHS (9.5) is given by

− 3 Re
∫ (

𝜓12
ℎ R̃[𝑞′, 𝑟 ′] − R̃[(𝜓6

ℎ𝑞)
′, (𝜓6

ℎ𝑟)
′]
)
𝑑𝑥

= 3 Re
∫ (

[𝜓6
ℎ ,

𝜕3

4𝜘2−𝜕2 ]𝑞 · (𝜓6
ℎ𝑟)

′ − [𝜓6
ℎ ,

𝜕3

4𝜘2−𝜕2 ]𝑞 · (𝜓6
ℎ)

′𝑟 − (𝜓6
ℎ
𝑞)′′′

4𝜘2−𝜕2 (𝜓6
ℎ)

′𝑟
)
𝑑𝑥.

Integrating by parts, we may bound����Re
∫ (

𝜓12
ℎ R̃[𝑞′, 𝑟 ′] − R̃[(𝜓6

ℎ𝑞)
′, (𝜓6

ℎ𝑟)
′]
)
𝑑𝑥

����
� ‖(𝜓6

ℎ𝑞)
′′‖𝐻−1

𝜘

(
‖𝑞′‖𝐻−1

𝜘
+ 𝜘−1‖𝑞‖𝐿2

)
+ ‖𝑞′‖2

𝐻−1
𝜘

+ 𝜘−2‖𝑞‖2
𝐿2 ,

which completes the proof of (9.4). �

It remains to prove an analogue of the estimate (5.9). To this end, we denote

|||𝑞 |||2mKdV := ‖𝑞‖2
𝑋1 + ‖𝑞‖2

𝐿∞
𝑡 𝐿

2 ,

which corresponds to the local smoothing norm in the case 𝑠 = 0.

Lemma 9.3. Let 𝑞 ∈ C ([−1, 1];S) satisfy ‖𝑞(0)‖𝐿2 ≤ 𝛿. We have����Re
∫

𝑗̃ [≥4]
mKdV(𝜘) 𝜓

12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−1𝛿2 |||𝑞 |||2mKdV, (9.6)

uniformly for 𝜘 ≥ 1 and ℎ ∈ R.

Proof. We first establish several variants of the estimates in Corollary 3.5, inspired by the decomposition
(9.12) below. Using that

‖ 𝑓 ‖𝐿∞ � ‖ 𝑓 ′‖
1
2
𝐿2 ‖ 𝑓 ‖

1
2
𝐿2 , (9.7)

we obtain

‖𝜓3
ℎ𝑞‖𝐿4

𝑡 𝐿
∞
𝑥
� ‖(𝜓3

ℎ𝑞)
′‖

1
2
𝐿2
𝑡,𝑥

‖𝜓3
ℎ𝑞‖

1
2
𝐿∞
𝑡 𝐿

2
𝑥
� 𝛿

1
2 |||𝑞 |||

1
2
mKdV. (9.8)

Thus, using (2.31) and (3.20), we may bound

‖𝜓3
ℎ𝑔

[1]
12 (𝜘)‖𝐿4

𝑡 𝐿
∞ � 𝜘−1𝛿

1
2 |||𝑞 |||

1
2
mKdV.

From (3.28), we get

‖𝛾(𝜘)‖𝐿∞
𝑡,𝑥
� 𝜘−1𝛿2, (9.9)

and thence using (2.31) again, we find

‖𝜓3
ℎ𝑔

[≥3]
12 (𝜘)‖𝐿4

𝑡 𝐿
∞ � 𝜘−1‖𝜓3

ℎ𝑞‖𝐿4
𝑡 𝐿

∞
𝑥
‖𝛾(𝜘)‖𝐿∞

𝑡,𝑥
� 𝜘−2𝛿

5
2 |||𝑞 |||

1
2
mKdV.

From the identity (3.31) and the estimate (9.9), taking 0 < 𝛿 � 1 sufficiently small, we obtain

‖𝜓6
ℎ𝛾(𝜘)‖𝐿2

𝑡 𝐿
∞ � ‖𝜓3

ℎ𝑔12‖𝐿4
𝑡 𝐿

∞ ‖𝜓3
ℎ𝑔21‖𝐿4

𝑡 𝐿
∞ � 𝜘−2𝛿 |||𝑞 |||mKdV.
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Consequently, using (3.12), we get

‖𝜓6
ℎ𝑔

[≥3]
12 (𝜘)‖𝐿2

𝑡 𝐻
1
𝜘
� ‖𝑞‖𝐿∞

𝑡 𝐿
2 ‖𝜓6

ℎ𝛾(𝜘)‖𝐿2
𝑡 𝐿

∞ +
��(𝜓6

ℎ)
′ 𝑞𝛾 (𝜘)

2𝜘−𝜕
��
𝐿2
𝑡,𝑥

� 𝜘−2𝛿2 |||𝑞 |||mKdV + 𝜘−1‖𝑞‖𝐿∞
𝑡 𝐿

2 ‖𝛾(𝜘)‖𝐿∞
𝑡,𝑥
� 𝜘−2𝛿2 |||𝑞 |||mKdV.

Recalling the identity (3.39) and using (3.11) to write 𝛾′ in terms of 𝑞, 𝑟, 𝑔12, 𝑔21, we may apply these
estimates to obtain

‖𝜓6
ℎ

( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥3] ‖𝐿2
𝑡 𝐻

1
𝜘
� 𝜘−2𝛿2 |||𝑞 |||mKdV. (9.10)

Using (2.31) and (3.12) again, we may bound

‖𝜓9
ℎ𝑔

[≥3]
12 (𝜘)‖

𝐿
4
3
𝑡 𝐿

∞
� 𝜘−1‖𝜓3

ℎ𝑞‖𝐿4
𝑡 𝐿

∞ ‖𝜓6
ℎ𝛾(𝜘)‖𝐿2

𝑡 𝐿
∞ � 𝜘−3𝛿

3
2 |||𝑞 |||

3
2
mKdV,

Using the identity (3.32), we estimate

‖𝜓12
ℎ 𝛾

[≥4] ‖𝐿1
𝑡 𝐿

∞ � ‖𝜓6
ℎ𝛾‖

2
𝐿2
𝑡 𝐿

∞ + ‖𝜓9
ℎ𝑔

[≥3]
12 ‖

𝐿
4
3
𝑡 𝐿

∞
‖𝜓3

ℎ𝑔21‖𝐿4
𝑡 𝐿

∞ + ‖𝜓3
ℎ𝑔

[1]
12 ‖𝐿4

𝑡 𝐿
∞ ‖𝜓9

ℎ𝑔
[≥3]
21 ‖

𝐿
4
3
𝑡 𝐿

∞

� 𝜘−4𝛿2 |||𝑞 |||2mKdV.

Applying (3.12) once again, we obtain

‖𝜓12
ℎ 𝑔

[≥5]
12 (𝜘)‖𝐿1

𝑡 𝐻
1
𝜘
� ‖𝑞‖𝐿∞

𝑡 𝐿
2 ‖𝜓12

ℎ 𝛾
[≥4] (𝜘)‖𝐿1

𝑡 𝐿
∞ � 𝜘−4𝛿3 |||𝑞 |||2mKdV.

Finally, we use the identity (3.40) with the above estimates, as well as (3.11) to replace 𝛾′, to obtain

‖𝜓12
ℎ

( 𝑔12 (𝜘)
2+𝛾 (𝜘)

) [≥5] ‖𝐿1
𝑡 𝐻

1
𝜘
� 𝜘−4𝛿3 |||𝑞 |||2mKdV. (9.11)

We turn now to estimating the current. Using Corollary 4.14, we have

𝑗̃ [≥4]
mKdV(𝜘) = −2𝜘𝑞′′ ·

( 𝑔21
2+𝛾

) [≥3] + 2𝜘𝑟 ′′ ·
( 𝑔12

2+𝛾
) [≥3] (9.12)

− 4𝜘2 (2𝜘 + 𝜕)𝑞 ·
( 𝑔21

2+𝛾
) [≥3] + 4𝜘2 (2𝜘 − 𝜕)𝑟 ·

( 𝑔12
2+𝛾

) [≥3]

+ 4𝜘𝑞2𝑟 𝑔21
2+𝛾 − 4𝜘𝑟2𝑞 𝑔12

2+𝛾 − 3𝑞2𝑟2.

For the first two terms, we apply the estimate (9.10) to bound����∫ 2𝜘𝑞′′ ·
( 𝑔21

2+𝛾
) [≥3]

𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘‖𝜓6
ℎ𝑞

′′‖𝐿2
𝑡 𝐻

−1
𝜘
‖𝜓6

ℎ

( 𝑔21
2+𝛾

) [≥3] ‖𝐿2
𝑡 𝐻

1
𝜘

� 𝜘−1𝛿2 |||𝑞 |||mKdV
(
‖(𝜓6

ℎ𝑞)
′′‖𝐿2

𝑡 𝐻
−1
𝜘

+ ‖𝑞′‖𝐿∞
𝑡 𝐻

−1
𝜘

+ 𝜘−1‖𝑞‖𝐿∞
𝑡 𝐿

2
)
,

which is acceptable.
We bound the sextic and higher order contributions of the remaining terms using (9.10) and (9.11),

as follows:����∫ 4𝜘2 (2𝜘 + 𝜕)𝑞 ·
( 𝑔21

2+𝛾
) [≥5]

𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘2‖𝑞‖𝐿∞
𝑡 𝐿

2 ‖𝜓12
ℎ

( 𝑔12
2+𝛾

) [≥5] ‖𝐿1
𝑡 𝐻

1
𝜘

� 𝜘−2𝛿4 |||𝑞 |||2mKdV,
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����∫ 4𝜘𝑞2𝑟 ·
( 𝑔21

2+𝛾
) [≥3]

𝜓12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘‖𝑞‖𝐿∞
𝑡 𝐿

2 ‖𝜓3
ℎ𝑞‖

2
𝐿4
𝑡 𝐿

∞ ‖𝜓6
ℎ

( 𝑔12
2+𝛾

) [≥3] ‖𝐿2
𝑡,𝑥

� 𝜘−2𝛿4 |||𝑞 |||2mKdV.

It remains to consider the contributions of

err1 := 4𝜘𝑞2𝑟 ·
( 𝑔21

2+𝛾
) [1] − 4𝜘𝑟2𝑞 ·

( 𝑔12
2+𝛾

) [1] − 2𝑞2𝑟2,

err2 := −4𝜘2 (2𝜘 + 𝜕)𝑞 ·
( 𝑔21

2+𝛾
) [3] + 4𝜘2 (2𝜘 − 𝜕)𝑟 ·

( 𝑔12
2+𝛾

) [3] − 𝑞2𝑟2.

For err1, we use the identity (3.38) to write

Re err1 = 𝑞2𝑟 𝑟 ′′

4𝜘2−𝜕2 + 𝑞𝑟2 𝑞′′

4𝜘2−𝜕2 ,

so we may bound

����Re
∫

err1 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� ‖𝑞‖𝐿∞
𝑡 𝐿

2 ‖𝜓3
ℎ𝑞‖

2
𝐿4
𝑡 𝐿

∞

(
𝜘−1‖(𝜓6

ℎ𝑞)
′′‖𝐿2

𝑡 𝐻
−1
𝜘

+
��[𝜓6

ℎ ,
𝜕2

4𝜘2−𝜕2 ]𝑞
��
𝐿2
𝑡,𝑥

)
� 𝛿2 |||𝑞 |||mKdV

(
𝜘−1‖(𝜓6

ℎ𝑞)
′′‖𝐻−1

𝜘
+ 𝜘−2 |||𝑞 |||mKdV

)
,

which is acceptable.
Recalling the identities (3.20), (3.21), (3.22), and (3.38), we may integrate by parts to obtain

∫
err2 𝜓

12
ℎ 𝑑𝑥 =

∫
4𝜘2 (2𝜘 + 𝜕)𝑞 · [𝜓12

ℎ ,
1

2𝜘+𝜕 ]
(
𝑟 · 𝑞

2𝜘−𝜕 · 𝑟
2𝜘+𝜕

)
𝑑𝑥

+
∫

4𝜘2 (2𝜘 − 𝜕)𝑟 · [𝜓12
ℎ ,

1
2𝜘−𝜕 ]

(
𝑞 · 𝑟

2𝜘+𝜕 · 𝑞
2𝜘−𝜕

)
𝑑𝑥

+
∫

6𝜘2
(

𝑞′

2𝜘−𝜕 · 𝑟 − 𝑟 ′

2𝜘+𝜕 · 𝑞
)

𝑟
2𝜘+𝜕 · 𝑞

2𝜘−𝜕 𝜓
12
ℎ 𝑑𝑥

+
∫

2𝜘𝑞𝑟
(

𝑞′

2𝜘−𝜕 · 𝑟
2𝜘+𝜕 − 𝑞

2𝜘−𝜕 · 𝑟 ′

2𝜘+𝜕

)
𝜓12
ℎ 𝑑𝑥

−
∫

2𝜘2
(
𝑞′ · 𝑟

2𝜘+𝜕 − 𝑟 ′ · 𝑞
2𝜘−𝜕

)
𝑟

2𝜘+𝜕 · 𝑞
2𝜘−𝜕 𝜓

12
ℎ 𝑑𝑥

+
∫

𝑞𝑟 · 𝑞′

2𝜘−𝜕 · 𝑟 ′

2𝜘+𝜕 𝜓
12
ℎ 𝑑𝑥.

We then bound each of these terms by applying (2.31) with (9.8) as follows:

����∫ 4𝜘2 (2𝜘 + 𝜕)𝑞 · [𝜓12
ℎ ,

1
2𝜘+𝜕 ]

(
𝑟 · 𝑞

2𝜘−𝜕 · 𝑟
2𝜘+𝜕

)
𝑑𝑥

����
𝐿1
𝑡

� 𝜘2‖(2𝜘 + 𝜕)𝑞‖𝐿∞
𝑡 𝐻

−1
𝜘
‖[𝜓12

ℎ ,
1

2𝜘+𝜕 ]
(
𝑟 𝑞

2𝜘−𝜕
𝑟

2𝜘+𝜕
)
‖𝐿2

𝑡 𝐻
1
𝜘

� 𝜘−1‖𝑞‖2
𝐿∞
𝑡 𝐿

2 ‖𝜓3
ℎ𝑞‖

2
𝐿4
𝑡 𝐿

∞ � 𝜘
−1𝛿2 |||𝑞 |||2mKdV,
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����∫ 6𝜘2 𝑞′

2𝜘−𝜕 · 𝑟 · 𝑞
2𝜘−𝜕 · 𝑟

2𝜘+𝜕 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

+
����∫ 2𝜘𝑞𝑟 𝑞′

2𝜘−𝜕
𝑟

2𝜘+𝜕 𝜓
12
ℎ 𝑑𝑥

����
𝐿1

1

+
����∫ 2𝜘2𝑞′ · 𝑟

2𝜘+𝜕 · 𝑞
2𝜘−𝜕 · 𝑟

2𝜘+𝜕 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−1‖𝜓3
ℎ𝑞‖

2
𝐿4
𝑡 𝐿

∞ ‖𝜓6
ℎ𝑞

′‖𝐿2
𝑡,𝑥
‖𝑞‖𝐿∞

𝑡 𝐿
2 � 𝜘−1𝛿2 |||𝑞 |||2mKdV,����∫ 𝑞𝑟 𝑞′

2𝜘−𝜕
𝑟 ′

2𝜘+𝜕 𝜓
12
ℎ 𝑑𝑥

����
𝐿1
𝑡

� 𝜘−1‖𝜓3𝑞‖2
𝐿4
𝑡 𝐿

∞ ‖𝜓6
ℎ𝑞

′‖𝐿2
𝑡,𝑥
‖ 𝑞′

2𝜘−𝜕 ‖𝐿∞
𝑡 𝐿

2 � 𝜘−1𝛿2 |||𝑞 |||2mKdV,

with identical estimates for the symmetric terms.
Combining the estimates for 𝑗̃ [≥4]

mKdV, we obtain the estimate (9.6). �

Proof of Proposition 9.1. We now argue as in the proof of Proposition 5.5, with 𝜌, 𝑗mKdV replaced by
𝜌̃, 𝑗̃mKdV, respectively, and the estimates (5.7), (5.4), (5.9) replaced by the estimates (9.3), (9.4), (9.6),
respectively, to obtain

‖(𝜓6
ℎ𝑞)

′′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� 𝜀‖(𝜓6

ℎ𝑞)
′′‖2

𝐿2
𝑡 𝐻

−1
𝜘

+ (1 + 1
𝜀 )

(
‖𝑞′‖2

𝐿∞
𝑡 𝐻

−1
𝜘

+ 𝜘−1‖𝑞‖2
𝐿∞
𝑡 𝐿

2

)
+ 𝜘−1𝛿2 |||𝑞 |||2mKdV,

where the implicit constant is independent of ℎ, 𝜘, 𝜀. Taking 𝜀 sufficiently small to defeat the implicit
constant above and using (8.2) and the conservation of mass, we may bound

‖(𝜓6
ℎ𝑞)

′′‖2
𝐿2
𝑡 𝐻

−1
𝜘
� ‖𝑞(0)′‖2

𝐻−1
𝜘

+ 𝜘−1‖𝑞(0)‖2
𝐿2 + 𝛿2𝜘−1‖𝑞‖2

𝑋1 .

Arguing as in Proposition 5.5 and using the conservation of mass to bound the low frequencies, we
obtain the estimates (9.1) and (9.2) in the case 𝜎 = 0.

If 0 < 𝜎 < 1
2 , we first use (9.1) with 𝜎 = 0 to bound ‖𝑞‖𝑋1 and then integrate using (2.7) to obtain

‖(𝜓6
ℎ𝑞)

′′‖2
𝐿2
𝑡 𝐻

𝜎−1
𝜅

≈
∫ ∞

𝜅
𝜘2𝜎 ‖(𝜓6

ℎ𝑞)
′′‖2

𝐿2
𝑡 𝐻

−1
𝜘

𝑑𝜘
𝜘 � ‖𝑞(0)′‖2

𝐻 𝜎−1
𝜅

+ 𝜅2𝜎−1‖𝑞(0)‖2
𝐿2 ,

and the proof of the estimates (9.1) and (9.2) is completed similarly. �

A. Ill-posedness

The key observation that drives everything in this section is the following:
Lemma A.1. If 𝜓 : R→ C is a Schwartz function and 𝜓𝜆 (𝑥) := 𝜆𝜓(𝜆𝑥), then∫

𝜓(𝑥) 𝑑𝑥 = 0 implies ‖𝜓𝜆‖2
𝐻 𝜎 (R) �𝜓

{
1 : 𝜎 = − 1

2
𝜆−1 + 𝜆1+2𝜎 : 𝜎 < − 1

2
, (A.1)

whereas ∫
𝜓(𝑥) 𝑑𝑥 ≠ 0 implies ‖𝜓𝜆‖2

𝐻 𝜎 (R) �𝜓

{
log𝜆 : 𝜎 = − 1

2
1 : 𝜎 < − 1

2
(A.2)

uniformly for 𝜆 ≥ 2.
This follows from direct computation. Better bounds are possible in the 𝜎 < − 1

2 case of (A.1), but
simplicity is preferable.

In order to exploit Lemma A.1, we need solutions for our flows that initially have mean zero but
later have nonzero mean. For just (NLS) or (mKdV), this is trivial. However, we wish to consider all
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evolutions in the hierarchy simultaneously (excepting translation and phase rotation). For this reason, it
is convenient to work with the generating function 𝐴(𝜅) for the Hamiltonians and then expand in inverse
powers of 𝜅. Under the 𝐴(𝜅) flow,

𝑑
𝑑𝑡

∫
𝑞 𝑑𝑥 = 𝑖

∫
𝑔12(𝑥; 𝜅) 𝑑𝑥. Moreover,

∫
𝑔 [1]12 (𝑥; 𝜅) 𝑑𝑥 = − 1

2𝜅

∫
𝑞 𝑑𝑥. (A.3)

These assertions follow from (4.20) and (3.20), respectively. Delving further, shows∫
𝑔 [3]12 (𝑥; 𝜅) 𝑑𝑥 = ±1

4𝜅3
√

2𝜋

∞∑
ℓ=0

∫ (
𝑖

2𝜅
)ℓ
𝑞(𝜂 − 𝜉)𝑞(𝜉)𝑞(𝜂) 𝜉 ℓ+1−𝜂ℓ+1

𝜉−𝜂 𝑑𝜉 𝑑𝜂. (A.4)

Proposition A.2. Both (NLS) and (mKdV) exhibit instantaneous inflation of the 𝐻𝜎 norm, in the sense
of (1.4), for every 𝜎 ≤ − 1

2 . Indeed, this also holds for all higher flows in the hierarchy (focusing or
defocusing).
Proof. We first consider a fixed Schwartz solution 𝑢 : R × R → C of our chosen equation. For even
numbered Hamiltonians of the hierarchy, such as (NLS), we choose initial data 𝑢0(𝜉) = 𝑎𝜉2𝑒−𝜉

2 , where
𝑎 > 0 will be chosen small shortly. For odd numbered Hamiltonians, such as (mKdV), we choose
𝑢0 (𝜉) = 𝑎[𝜉2 + 𝜉3]𝑒−𝜉 2 . The key criterion for selecting these initial data and for choosing 𝑎 > 0 is that∫

𝑢(0, 𝑥) 𝑑𝑥 = 0 but
∫

𝑢(𝑡1, 𝑥) 𝑑𝑥 ≠ 0 (A.5)

for some 𝑡1 > 0 and any sufficiently small 𝑎 > 0. The existence of such a 𝑡1 will follow if we show
nonvanishing of the cubic terms in the time derivative of

∫
𝑢 at time 𝑡 = 0. This is precisely the role of

(A.4).
For even numbered Hamiltonians (i.e., ℓ even), the integrand in (A.4) is sign definite, and so (A.5) is

clear. For odd numbered Hamiltonians, we first symmetrize under 𝜂 ↔ 𝜉 and then under simultaneous
inversion in 𝜂 and 𝜉; this then leads to an integrand with a sign-definite imaginary part.

In the case 𝜎 = − 1
2 , we choose 𝑞 = 𝑎𝑢𝜆 using the rescaling of u given by (1.3): One chooses a small

to guarantee that the initial data have size 𝜀 and then 𝜆 large to guarantee that 𝜆−𝑚𝑡1 < 𝜀 and that the
norm exceeds 𝜀−1 at this time.

When 𝜎 < − 1
2 , we need an extra idea: Consider the solution q with initial data

𝑞(0, 𝑥) =
𝑁∑
𝑛=1

𝑎𝑢𝜆 (0, 𝑥 + 𝑛𝐿).

Note that
∑
𝑎𝑢𝜆 (𝑡, 𝑥 + 𝑛𝐿) is almost a solution and becomes more so as 𝐿 → ∞. As all equations in

the hierarchy are known to admit a perturbation theory in high regularity spaces [20, 34], we know
that the approximate solution differs little from 𝑞(𝑡, 𝑥) uniformly for 𝑡 ∈ [0, 𝜆−𝑚𝑡1] provided we take
L large enough. The ill-posedness result now follows by choosing N and L large enough to guarantee
large norm at time 𝜆−𝑚𝑡1 and ensuring that 𝜆 is large enough to place this time in [0, 𝜀] and to make
the norm small at time 𝑡 = 0. �

Evidently, this argument cannot be applied to (mKdVR), because
∫
𝑞 is conserved. Nevertheless, we

are able to show the following form of norm inflation in the focusing case:
Proposition A.3. For any sequence of times 𝑡𝑛 → 0, there is a sequence of (real-valued) Schwartz-class
solutions 𝑞𝑛 to focusing (mKdVR) that satisfy

‖𝑞𝑛 (0)‖ �𝐻− 1
2
� 1 and ‖𝑞𝑛 (𝑡𝑛)‖

𝐻− 1
2
→ ∞. (A.6)

Moreover, instantaneous norm inflation in the sense of (1.4) holds when 𝜎 < − 1
2 .
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Note that at time zero, these solutions belong to the homogeneous Sobolev space; this is a stronger
requirement than belonging to 𝐻−1/2(R) and enforces that

∫
𝑞𝑛 (0, 𝑥) 𝑑𝑥 = 0. (Unlike for (NLS) and

(mKdV), this mean-zero property is preserved by (mKdVR).) Nevertheless, the (weaker) inhomogeneous
norm diverges.

For 𝜎 = − 1
2 , we show norm inflation for initial data of size one, rather than for arbitrarily small initial

data. It is only in this sense that the result is weaker than (1.4).

Proof. All that is required is a careful inspection of the two-soliton solutions

𝑢(𝑡, 𝑥) := 6
2 cosh(𝑥 − 𝑡) − cosh(2𝑥 − 8𝑡)

cosh(3𝑥 − 9𝑡) + 9 cosh(𝑥 − 7𝑡) − 8
and 𝑢𝜆(𝑡, 𝑥) = 𝜆𝑢(𝜆3𝑡, 𝜆𝑥).

Fix 𝜎 < − 1
2 . As rescalings of a single mean-zero Schwartz function,

‖𝑢𝜆 (0)‖2
�𝐻− 1

2 (R)
≈ 1 and ‖𝑢𝜆 (0)‖2

𝐻 𝜎 (R) � 𝜆
−1 + 𝜆1+2𝜎

uniformly for 𝜆 ≥ 1. On the other hand, for 𝜆2
𝑛𝑡𝑛 � 1, we see that the solution resolves into two sign-

definite Schwartz solitons (each of width ≈ 𝜆−1
𝑛 ) separated by a distance ≈ 𝜆2

𝑛𝑡𝑛. In this way, one readily
shows that

‖𝑢𝜆𝑛 (𝑡𝑛)‖2
𝐻− 1

2 (R)
≈ log(𝜆𝑛) and ‖𝑢𝜆𝑛 (𝑡𝑛)‖2

𝐻 𝜎 (R) � 1.

The claim (A.6) follows at once by choosing 𝜆𝑛 appropriately. Norm inflation in 𝐻𝜎 (R) follows via the
same summation device employed in the proof Proposition A.2. �
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