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Abstract

We prove that the cubic nonlinear Schrodinger equation (both focusing and defocusing) is globally well-posed in
H* (R) for any regularity s > —%. Well-posedness has long been known for s > 0, see [55], but not previously for
any s < 0. The scaling-critical value s = —% is necessarily excluded here, since instantaneous norm inflation is
known to occur [11, 40, 48].

We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg—de
Vries equations in H* (R) for any s > —%. The best regularity achieved previously was s > % (see [15, 24, 33, 39]).
To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting
flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is
the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-
posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local
nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing
and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that
remain meaningful at this low regularity.
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1. Introduction
We consider solutions g: R X R — C of the nonlinear Schrédinger equation

. d 7"
i—a=-q"+2lqlq, (NLS)

and the (complex Hirota) modified Korteweg—de Vries equation

diq =-q"" +6lql’¢’, (mKdV)
t

with initial data ¢(0) € H®(R). The upper choice of signs yields the defocusing cases of these equations,
while the lower signs correspond to the focusing cases. In this paper, the symbols + and F will only be
used in the context of this dichotomy. By restricting (mKdV) to the case of real initial data, we recover
the classical mKdV equation of Miura [46]:

d 4 ’
—a=-4"£2q")" (mKdVz)

To treat both the defocusing and focusing versions of (NLS) and (mKdV) within the same framework,
throughout this paper, we adopt the notation

ri=zq.
With this convention, both (NLS) and (mKdV) are Hamiltonian equations with respect to the following

Poisson structure on Schwartz space: Given F,G: S — C,

1 SF 6G _ 6F 6G
{F,G} =7 qu—wé—qu, (11)
where our notation for functional derivatives is the classical one (see (2.2)). Correspondingly, any
Hamiltonian H: S — R generates a flow, which we denote by e’/ V¥ | via the equation

d 6H . .d oH
i—q = —, orequivalently, i—r =

-— 1.2
dt or dt oq (1.2

In particular, since Hamiltonians are real-valued, the relations g = +7 are preserved by any such flow.
With these conventions, the equations (NLS) and (mKdV) are the Hamiltonian flows associated to

Hnis = / qg'r' +¢*?dx and Hpgav = %/q'r” +3q°%rr dx,

respectively. Two other important Hamiltonians are the mass and momentum,

M::/qrdx and Pz%/qr’dx,

which generate phase rotations and spatial translations, respectively. While our names for the basic
conserved quantities agree with the usual parlance in the defocusing case, their signs are reversed in the
focusing case; in particular, the mass becomes negative definite. However, this sign change is offset by a
corresponding sign change in the Poisson structure, so the dynamics remains those given in (NLS) and
(mKdV).
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All four functions M, P, Hnis, and Hygqv Poisson commute. While commutation with M and P
merely represent gauge and translation invariance, the commutativity of Axrs and Hpyggqv is surprising
and a first sign of a very profound property of these equations: they are completely integrable.

One expression of this complete integrability is the existence of an infinite family of commuting flows.
Taken together, these form the AKNS—ZS hierarchy. This name honors the authors of the seminal papers
[1, 56]. For an authoritative introduction to this hierarchy, with particular attention to the Hamiltonian
structure, we recommend [16].

The odd and even numbered Hamiltonian flows in the AKNS—ZS hierarchy behave differently under
(q,r) ¥ (g,7). In particular, conjugation acts as a time-reversal operator for M and Hyps but leaves
the P and Hykqv flows unchanged. This leads to a number of significant differences in our treatment of
(NLS) and (mKdV).

As we will discuss more fully below, it has been known for a long time that both (NLS) and (mKdV)
are globally well-posed for sufficiently regular initial data. In fact, the question of what constitutes
sufficiently regular initial data has occupied several generations of researchers. We are now able to give
a definitive answer:

Theorem 1.1 (Global well-posedness of the NLS and mKdV). Let s > —%. Then the equations (NLS)
and (mKdV) are globally well-posed for all initial data in H*(R) in the sense that the solution map ®
extends uniquely from Schwartz space to a jointly continuous map ®©: R x H*(R) — H*(R).

Here, we are evidently taking the well-posedness of (NLS) and (mKdV) on Schwartz space for
granted. This has been known for a long time [30, 54].

The threshold s = —% appearing in Theorem 1.1 is both sharp and necessarily excluded. It is also the
scaling-critical regularity. Indeed, each evolution in the AKNS-ZS hierarchy admits a scaling symmetry
of the form

qga(t,x) = Aq(A"t, Ax), or, equivalently, g.(¢,&) = G(A"t,&/2), (1.3)

where m denotes the ordinal position of the Hamiltonian. For example, m = 0 for M, while (NLS)
corresponds to m = 2 and (mKdV) tom = 3.

While a great many dispersive equations have recently been shown to be well-posed at the scaling-
critical regularity, this fails for (NLS) and (mKdV). In fact, one has instantaneous norm inflation: For
every s < —% and & > 0, there is a Schwartz solution ¢(¢) to (NLS) satisfying

llg(O)llas <& and  sup llg(D)llas > &7 1.4)

lt|l<e

This was shown for (NLS) in [11, 40, 48]. In Appendix A, we revisit this work, giving a simplified
presentation and showing that the same norm inflation holds also for (mKdV), as well as other members
of the hierarchy. This ill-posedness effect does not seem to have been noticed before.

This norm inflation argument does not extend to (mKdVy). Nevertheless, in the appendix, we show
(seemingly for the first time) that a slightly weaker form of ill-posedness holds in the focusing case (see
Proposition A.3). Previously, [2] showed that the data-to-solution map cannot be extended continuously
to the delta-function initial data in the focusing case. The analogous assertion for NLS (both focusing
and defocusing) was proved in [35].

Let us turn our attention to the existing well-posedness theory. The advent of Strichartz estimates
[53] had a transformative effect on the study of nonlinear dispersive equations. These estimates provide
an elegant and efficient expression of the dispersive effect and allowed researchers to pass beyond the
regularity required to make sense of the nonlinearity pointwise in time. In [55], Tsutsumi used this new
tool to prove global well-posedness of (NLS) in L?(R).

We know of no further progress in the scale of H*® spaces since that time. Here is one reason: No
ingenious harmonic analysis estimate, nor clever choice of metric, can reduce matters to a contraction
mapping argument. Such constructions lead to solutions that depend analytically on the initial data;
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however, in [10, 11, 35], it is shown that the data-to-solution map cannot even be uniformly continuous
on bounded subsets of H*(R) when s < 0.

Due to the derivative in the nonlinearity, Strichartz estimates alone do not suffice to understand the
behavior of (mKdV). By bringing in local-smoothing and maximal-function estimates, Kenig—Ponce—
Vega [33], were able to prove that (mKdV) is locally well-posed in H*(R) for all s > %. The solution
they construct depends analytically on the initial data. Moreover, the threshold s = i is sharp if one
seeks solutions that depend uniformly continuously on the initial data. This was shown in [10, 35]. In the
case of (NLS), the critical threshold for analytic well-posedness coincides with an exact conservation
law, namely, that of M(q). Thus, Tsutsumi’s result is automatically global in time [55]. Due to the
absence of any obvious conservation law at regularity s = }‘, it was unclear at that time whether the
Kenig—Ponce—Vega solutions to (mKdV) are, in fact, global in time. This was subsequently shown
for (mKdVy) through the construction of suitable almost conserved quantities. For s > i, this was
proved by Colliander—Keel-Staffilani—-Takaoka—Tao [15] with the endpoint added later by Guo and
Kishimoto [24, 39].

With the exact threshold for analytic (or even uniformly continuous) dependence settled, the question
immediately arises as to what happens at lower regularity: What lies in the sizable gap remaining
between these well-posedness results and the known breakdown of continuity at s = —%? This gap
corresponds to regularities —% < s < 0for (NLS) and —% <s< % for (mKdV).

For typical Schrodinger equations in RY with polynomial nonlinearities, there is no gap between
analytic local well-posedness and the onset of ill-posedness [11]. Thus, it is all the more remarkable to
discover a region of nonperturbative well-posedness in this setting. This phenomenon appears to be a
remarkable feature of completely integrable systems, and investigating it necessitates methods that take
advantage of this integrability.

A natural first step toward understanding solutions in this delicate region is to seek a priori H* bounds.
While boundedness of solutions would obviously follow from well-posedness, proving boundedness is
typically a first step. It is also the principal challenge in the construction of weak solutions. On the other
hand, showing impossibility of such bounds would give ill-posedness.

Early successes in this direction include [13, 41, 42] for (NLS) and [14] for (mKdV). Recently,
the definitive result in this direction was obtained in [38, 43], where exact conservation laws were
constructed that control the H* norm of solutions all the way down to s > —%. Given the norm inflation
discussed earlier, one cannot go any lower. The macroscopic conservation laws constructed in [38, 43]
interact with the scaling symmetry in a useful way; indeed, this was already employed in [38] to connect
differing regularities and to obtain bounds in Besov spaces. Another important consequence of this
interaction is that when s < 0, it guarantees equicontinuity of orbits (cf. Definition 4.5 and Proposition
4.6 below). This seems to have been first noted explicitly in [37] and will play several important roles
in what follows.

One example of the significance of equicontinuity is that it connects well-posedness at different
regularities: If o > s, then existence and uniqueness of solutions with initial data in H*® automatically
guarantees the same for initial data in H?. That the H*-solution remains in H? at later times follows
from the existence of a priori bounds. However, continuity of the data-to-solution map in H? requires
more; convergence at low regularity together with boundedness at higher regularity does not guarantee
convergence at the higher regularity. Equicontinuity in H“ is the simple necessary and sufficient
condition for convergence in H“ under these circumstances. There are two further aspects of the history
we wish to discuss before describing the methods we employ: well-posedness results outside the scale
of H* spaces and for these partial differential equations (PDEs) posed on the torus.

By working in Fourier-Lebesgue and modulation spaces, several researchers succeeded in studying
well-posedness questions outside the scale of H® spaces. For (NLS), for example, analytic local well-
posedness was shown in almost-critical spaces by Griinrock [19] and Guo [23]. For (mKdV), analogous
almost-critical results in Fourier-Lebesgue spaces were obtained in [18, 22]. The threshold for analytic
well-posedness of (mKdV) in modulation spaces was determined in [8, 50]; however, this still does not
coincide with scaling criticality.
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Each of the three types of spaces (Fourier—Lebesgue, modulation, and Sobolev) has a very different
character; nevertheless, each of the spaces just described can be enveloped by H*® provided one takes
s > —% sufficiently close to —%. Conversely, both Fourier-Lebesgue and modulation spaces suppress
high frequencies more strongly than negative regularity H® spaces; this substantially reduces the dangers
of high-high-low interactions, which are the dominant source of instability in these models.

We are not aware of any global well-posedness results in Fourier—Lebesgue spaces close to criticality.
However, by ingeniously exploiting the way Galilei boosts interact with the conservation laws constructed
in [38], Oh and Wang [49] obtained global bounds in modulation spaces, which then yield global well-
posedness in these spaces.

In order to construct solutions via a contraction mapping argument, one must employ an array of
subtle norms expressing the dispersive effect. The question arises whether there might be other solutions
that are continuous in H* but lie outside the auxiliary space. This is the question of unconditional
uniqueness, pioneered by Kato [31, 32]. For the latest advances in this direction, see [25, 44]. We now
give a quick review of what is known for (NLS) and (mKdV) posed on the circle (i.e., for periodic initial
data). In the Euclidean setting, dispersion causes solutions to spread out. This is impossible on the circle,
there is nowhere to spread to. Nevertheless, Bourgain [3, 4] proved that select Strichartz estimates do
hold (expressing a form of decoherence). As an application, these new estimates were used to prove
global well-posedness of (NLS) in L2(T) and local well-posedness of (mKdV) in H'/?(T). Global well-
posedness of (mKdVy) in H 1/ 2(T) was subsequently proved in [15]. Moreover, [10] showed that these
results match the threshold for analytic (or uniformly continuous) dependence on the initial data.

For (NLS) on the circle, this L? threshold also marks the boundary for even continuous dependence
on the initial data. This was shown in [6, 12, 26] and represents a sharp distinction from the line case.
This “premature” breakdown of well-posedness is now understood as arising from an infinite phase
rotation, which, in turn, suggests a suitable renormalization, namely, Wick ordering the nonlinearity.
This point of view has been confirmed in [9, 21, 49], where Wick-ordered NLS is shown to be globally
well-posed in (almost-critical) Fourier-Lebesgue spaces where the traditional (NLS) is ill-posed.

For (mKdVy) on the circle, H'/2 is not the threshold for continuous dependence. In [29], Kappeler and
Topalov proved well-posedness in L*(T); this was shown to be sharp by Molinet [47]. By renormalizing
the nonlinearity (to remove an infinite transport term), well-posedness was then shown in [28] for a
larger Fourier—Lebesgue class of initial data (see also [52]). The recent work [7] dramatically clarifies
the situation regarding the full complex equation (mKdV): It is shown that H'/? is the threshold for
continuous dependence in this setting; moreover, it is shown that to go below this threshold (even in
Fourier-Lebesgue spaces), a second renormalization is required.

Given the known thresholds for continuous dependence on the circle, the proof of Theorem 1.1 must
employ some property of our equations that distinguishes the line and the circle cases! This will be the
local smoothing effect, that is, a gain of regularity locally in space on average in time. This constitutes
a significant point of departure from [37], where the arguments developed do not distinguish between
the two geometries.

The local smoothing estimates that are relevant to us involve fractional numbers of derivatives.
Correspondingly, some prudence is required in selecting the proper way to localize in space. We do so
by choosing a fixed family of Schwartz cutoff functions

Y(x) :=sech(gg) and yYp(x) =y (x - h), (1.5)

whose particular properties will allow it to be used throughout the analysis. Corresponding to this cut-
off, we define local smoothing norms by

1
lglZo := sup / WS qIE, o dr. (16)
heR J -1

In Lemma 2.2, we will see that this norm is strong enough to control any other choice of Schwartz-class
cut-off function.
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The restriction of time to the interval [—1, 1] in (1.6) was a rather arbitrary choice; however, we see
little advantage to introducing additional time parameters. Results for alternate time intervals (or indeed
other spatial intervals) can be achieved by a simple covering argument, using time- and space-translation
invariance.

We are now ready to state the local smoothing estimates we prove for the solutions constructed in
Theorem 1.1. As the gain in regularity differs between the two evolutions, it is easier to state our results
separately:

Theorem 1.2 (Local smoothing: NLS). Fix —% < s < 0. Given initial data qy € H*(R), the corre-
sponding solution q(t) to NLS constructed in Theorem 1.1 satisfies

8

T+2s
lal ey < (1+ ligollirs) ™ Nlgollss (1.7

. . . ‘ "l
moreover, qo V> q(t) is a continuous mapping from H® to X**z.

Theorem 1.3 (Local smoothing: mKdV). Fix —% <s< % The solution q(t) to mKdV with initial data
qo € HS(R) constructed in Theorem 1.1 satisfies

11

1+2s
gl < (1+lgolls )™ ol (1.8)

moreover, qo — q(t) is a continuous mapping from H® to X**!.

Estimates of this type are well-known for the underlying linear equations and readily proven either
by Fourier-analytic techniques, or by explicit monotonicity identities. In the special cases where one
has a suitable microscopic conservation law, the latter technique can be adapted to nonlinear problems.
Indeed, the original local smoothing effect was the case s = 0 of (1.8), which was proven in [30] by
employing the microscopic conservation law

(19 +87(1q1%) = 30: (I = 1qI*) =0
satisfied by solutions of (mKdV). The analogous microscopic conservation law for (NLS) is
8,21m(gq") - 8 (1q1*) + 0+ (4lq'1” + 2Igl*) = 0,

which yields (1.7) with s = %

When the sought-after regularity does not match a known conservation law, local smoothing results
for nonlinear PDE have traditionally been proven perturbatively, building on the corresponding estimates
for the underlying linear equation. In particular, the arguments of [55] can be used to show that (1.7)
continues to hold for s > 0. That (1.8) continues to hold for s > % was proved in [33]; indeed, there the
local smoothing effect was crucial to even constructing solutions.

Due to the breakdown in uniform continuity of the data-to-solution map at low regularity, we cannot
expect the nonlinear flow to be well modeled by a linear flow, and so some truly nonlinear technique is
needed to prove Theorems 1.2 and 1.3. It is the discovery of a new one-parameter family of microscopic
conservation laws for these equations that will allow us to achieve such low regularity. As local smoothing
is a linear effect, it is surprising that the loss of uniform continuity is not accompanied by any lessening
of this effect — the estimates we obtain exhibit the same derivative gain as seen for the linear equation.

As we shall see, the proof of Theorem 1.1 relies crucially on the local smoothing effect (though in a
rather stronger form than presented in Theorems 1.2 and 1.3). With this in mind, it is natural to begin our
discussion of the methods employed in this paper by describing how local smoothing is to be proved.
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Local smoothing estimates also allow us to make better sense of the nonlinearity. Note that Theorem
1.1 already allows us to make sense of the nonlinearity taken holistically: If g,, are Schwartz solutions
converging to ¢ in L;°H¥, then directly from the equation, we see that the corresponding sequence of
nonlinearities converge, for example, as spacetime distributions. By contrast, one may seek to make
sense of the individual factors in the nonlinearity in a way that allows them to be multiplied; this is
where local smoothing helps.

For example, our results show that for any s > —1/2, solutions of (mKdVy) with initial data in H*(R)
belong to Lt3’ . on all compact regions of spacetime. Analogously, we see that solutions to (NLS) are
locally L , whenever s > —1/6.

1.1. Outline of the proof

As we have mentioned earlier, (NLS) and (mKdV) belong to an infinite hierarchy of evolution equations
whose Hamiltonians Poisson commute. Among PDEs, this phenomenology was first discovered in the
case of the Korteweg—de Vries equation [17]. And it was these discoveries that Lax [45] elegantly
codified by introducing the Lax pair formalism (the monograph [16] employs a parallel approach based
around the zero-curvature condition).

As noted above, Lax pairs for (NLS) and (mKdV) were introduced in [1, 56]. Several different (but
equivalent) choices of these operators exist in the literature. Our convention will be to use Lax operators

x—0 0
0 x+0

®—0 (¢

-r x+0 ) (1.9)

L(x) = [

aswellas Lo(x) := [

Here, x denotes the spectral parameter (which will always be real in this paper). The second member of
the Lax pair (traditionally denoted P) can be taken to be

20% —qr —qd - dq
rd+0r =20%+qr

! 39 +30r  —403 +3qrd +3dqr

—4A3 ’ ’
and [ 40° +3qrd +3dqr 3q’0 +3dq ]’

for (NLS) and (mKdV), respectively.

The Lax equation d;L = [P, L] guarantees that the Lax operators at different times are conjugate. In
the setting of finite matrices, this would guarantee that the characteristic polynomial of L is independent
of time. In the case of (1.9), renormalization is required — indeed, L is not even bounded, let alone trace-
class. Such a renormalization was presented in [38] based on the renormalized Fredholm determinant
dety(1+ A) = det(1 + A)e~ "4 Concretely, it was shown in [38] that

+log det, [Lg(%)_lL(%; q)]

is well-defined, conserved for Schwartz solutions, and coercive. This was the origin of the coercive
macroscopic conservation laws constructed in that paper. The regularities of these laws were adjusted
by integrating against a suitable measure in x.

Unfortunately, such macroscopic conservation laws are of no use in proving local smoothing. We
need not only microscopic conservation laws but coercive microscopic conservation laws. In Section 4,
we present our discovery of just such a density p and its attendant currents j. We feel that this is an
important contribution to the much-studied algebraic theory of these hierarchies. Moreover, it is the
driver of all that follows.

We do not have a systematic way of finding microscopic conservation laws attendant to the conserva-
tion of the perturbation determinant. If we compare the answer for KdV from [37] with that developed
in this paper, it is tempting to predict that it should always be a rational function of components of the
diagonal Green’s function. However, we have also found the corresponding quantity for the Toda lattice
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[27], and, in that case, it is a transcendental function of entries in the Green’s matrix. On the other hand,
the closely related one-parameter family of macroscopic conservation laws

9 togdetrlLo() ' LG )] =t {LGx )" - Lo} (1.10)

are easily seen to admit a microscopic representation based on the diagonal of the Green’s function. The
associated density y turns out to be far inferior for what we need to do here. Indeed, in Lemma 4.9, we
will show that, unfortunately, the current corresponding to y is not adequately coercive. This undermines
its utility for proving local smoothing. In principle, one could recover a p-like object by integrating
v in energy. (Of course, this need only agree with p up to a mean-zero function.) In fact, we pursued
this approach for a long time while still seeking the true form of p. We can attest that this approach is
extremely painful and dramatically increases the number of subtle cancellations that need to be exhibited
later in the argument.

The proof of local smoothing is far and away the most lengthy and complicated part of the paper,
comprising the entirety of Section 5 and employing crucially all of the preceding analysis. One reason
is that we actually need a two-parameter family of estimates that go far beyond the simple a priori
bounds (1.7) and (1.8). The role of the first of these two parameters is easy to explain at this time: it
acts as a frequency threshold in the local smoothing norm. This refinement will allow us to prove that
the high-frequency contribution to the local-smoothing norm is controlled (in a very quantitative way)
by the high-frequency portion of the initial data. This is the essential ingredient in the continuity claims
made in Theorems 1.2 and 1.3. (The basic question of whether such continuity holds for Kato’s original
estimate [30] seems to have been open up until now.)

This extra frequency parameter also plays a major role in Section 6, where it is used to show that an
H?®-precompact set of Schwartz-class initial data leads to a collection of solutions that is H*-precompact
at later times. In view of the equicontinuity of orbits mentioned earlier, this is a question of tightness.

As local smoothing estimates control the flow of the H®* norm through compact regions of spacetime,
it is natural to attempt to employ them to prove tightness in H®. However, it is precisely the fact that
the transport of H®* norm cannot exceed the total H* norm available that is used to prove Theorems
1.2 and 1.3; thus, these results do not provide sufficient control to yield tightness! Our tightness result
relies crucially on the extra frequency parameter to demonstrate that there is little local smoothing norm
residing at high frequencies and, consequently, little high-speed transport of H*-norm.

The compactness result just enunciated guarantees the existence of weak solutions. To obtain well-
posedness, we must verify uniqueness (i.e., that different subsequences do not lead to different solutions),
as well as continuous dependence on the initial data. To achieve that, we will rely crucially on ideas
introduced in [37] and further developed in [5, 36].

While these papers provide a useful precedent on overall strategy, they provide no guidance on how
to implement it. The first triumph of this paper is to construct the algebraic and analytic framework
needed for this type of analysis in the AKNS-ZS hierarchy. We will see that even though the two
equations belong to the same hierarchy, the fundamental monotonicity laws for (NLS) and (mKdV) are
different; moreover, neither equation provides significant guidance in finding the numerous cancellations
necessary to treat the other.

The first step in this strategy is the introduction of regularized Hamiltonians indexed by a scalar
parameter . The flows induced by these Hamiltonians should (a) be readily seen to be well-posed, (b)
commute with the full flows, and (c) converge to the full flows as k — oco. Such flows are introduced in
Section 4 where they are easily proven to have properties (a) and (b). That they enjoy property (c) in the
desired topology, however, is highly nontrivial. This is the subject of Section 7, which is the climax of
this paper.

Due to their commutativity, the problem of controlling the difference between the full and regularized
flows can be reduced to controlling the evolution under the difference Hamiltonian (that is, the difference
of the full and regularized Hamiltonians). In fact, this is the key insight of the commuting flow paradigm
introduced in [37]: instead of needing to estimate the distance between two solutions (which is rendered
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intractable by the breakdown of uniformly continuous dependence), one need only study a single
evolution, albeit under a much more complicated flow.

The difference flow retains all the bad behavior of the original PDE; indeed, the regularized flows are
(by construction) relatively harmless. All obstacles that prevented previous researchers from successfully
analyzing solutions in this nonperturbative regime are retained. To succeed, we will need to rely on a
number of new insights; these include the new two-parameter local smoothing estimates, a novel change
of unknown, and the demonstration of myriad cancellations between the full flow and its regularized
counterpart.

The necessity of employing a (diffeomorphic) change of variables is common also to [5, 37]. In
those works, the new variable is the diagonal Green’s function. The fact that this originates from a
microscopic conservation law places one derivative in a favorable position. Alas, all conservation laws
for the NLS/mKdV hierarchy are quadratic in g, and so none can offer a diffeomorphic change of
variables.

In place of the diagonal Green’s function that proved so successful in the treatment of the KdV
hierarchy, we adopt an off-diagonal entry g, (x) of the Green’s function as our new variable. Among its
merits are the following: it has a relatively accessible time evolution; as an integral part of the definition
of p, it is something for which we need to develop extensive estimates anyway; the mapping g — g2 is
a diffeomorphism; and, lastly, it gains one degree of regularity, which aids in estimating nonlinear terms.

Nevertheless, this change of variables comes with significant shortcomings. Foremost, it is not
possible to control the evolution of g1, without employing local smoothing (or some other manifestation
of the underlying geometry). For, otherwise, one would obtain results for the circle that are known to
be false!

At this moment, it is important to remember that we are discussing the difference flow and that
our ambition is to prove that it converges to the identity as xk — oco. Concomitant with this, the local
smoothing effect deteriorates rapidly as k — co. This inherent deterioration in the local smoothing
estimates means that in order to treat all regularities s > -1 we must discover every cancellation
available between the full and regularized flows. This, in turn, necessitates the carefully premeditated
decomposition of error terms in Section 7 and the stringent estimation of paraproducts in Section 5.

Due to the need for local smoothing estimates, we will only be able to verify convergence locally in
space. The tightness results of Section 6 are therefore essential for overcoming this deficiency.

In Section 8, we prove Theorem 1.1. The tools we develop in the first seven sections allow us to prove
Theorem 1.1 in the range —% < 5 < 0. This suffices for (NLS) but leaves the gap [0, %) for (mKdV).
To close this gap, we construct suitable macroscopic conservation laws for both equations that allow us
to prove the equicontinuity of orbits in H® for 0 < s < % and so deduce well-posedness from that at
lower regularity. This is interesting even for (NLS), where, for example, global in time equicontinuity of
orbits in L? does not seem to have been shown previously (nor is it trivially derivable from the standard
techniques).

Section 9 is devoted to proving Theorems 1.2 and 1.3. All the ingredients we need for the range
—% < s < 0 are presented already in Section 5. Thus, the majority of Section 9 is devoted to proving local
smoothing for (mKdV) over the range 0 < s < % by using a new underlying microscopic conservation
law.

In closing, let us quickly recapitulate the structure of the paper that follows. Section 2 discusses
myriad preliminaries: settling notation, verifying basic properties of the local smoothing spaces, and
proving a variety of commutator estimates. In Section 3, we discuss the (matrix-valued) Green’s function
of the Lax operator, with particular emphasis at the confluence of the two spatial coordinates. Section 4
introduces the conserved density p and derives equations for the time evolution of this and other
important quantities. Section 5 proves local smoothing estimates, not only for (NLS) and (mKdV),
but also for the associated difference flows. It is essential for what follows that these local smoothing
estimates contain an additional frequency cut-off parameter. The freedom to vary this parameter plays
a crucial role, for example, in Section 6, where these local smoothing estimates are used to control the
transport of H*-norm. Section 7 uses local smoothing to demonstrate the convergence of the regularized
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flows to the full PDEs by proving that the difference flow approximates the identity. In Section 8, we

prove Theorem 1.1. Section 9 addresses Theorems 1.2 and 1.3. Appendix A gives a new presentation
of existing ill-posedness results for (NLS), extending them to other members of the hierarchy, including
(mKdV).

2. Some notation and preliminary estimates

For the remainder of the paper, we constrain
s € (—%, 0)

and all implicit constants are permitted to depend on s. In view of the scaling (1.3), it will suffice to
prove all our theorems under a small-data hypothesis. For this purpose, we introduce the notation

Bs:={q € H® : ||lq|lus < 6}. 2.1

We use angle brackets to represent the pairing:
(.9)= [ Tole ax.

In addition to being the natural inner product on (complex) L?(R), this also informs our notions of dual
space (the dual of H*(R) is H~*(R)) and of functional derivatives: If F : S — C is C!, then

d _(F SF SF

&l Fla+op = (7. 55) = (1. 55). 22)
For real-valued F, the functions % and ‘;—g = J_r% are complex conjugates. These are functional
analogues of the (Wirtinger) directional derivatives of complex analysis — ¢ and ¢ are not independent

variables!

We write J,, for the ¥ Schatten class over the Hilbert space L*(R). For most of our analysis, the
Hilbert—Schmidt class I, will suffice.

Commensurate with our choice of time interval in (1.6), all spacetime norms will also be taken
over this time interval (unless the contrary is indicated explicitly). Thus, for any Banach space Z and
1 < p < oo, we define

lallerz = Mgzl Lo arior.1p-

Our convention for the Fourier transform is
7 _ 1 —iéx N _ 1 rf.5
7O = [ rwan whene Fe(e)= 17+ gl(©).

We shall repeatedly employ a “continuum partition of unity” device based on the cut-off zﬁ}f.
Specifically, as

Jue-nPan= s se0=ds [ reuleodn 23)
R R
in H? (R) sense, for any f € H? (R) and any o € R.
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2.1. Sobolev spaces

Forreal |k| > 1 and o € R, we define the norm

lalfy = [ (4 +£) 7 laoP e

and write H? = Hfr.

For —% < s < 0, elementary considerations yield

v+1

1l < NF N < 1 Nggsn | UEP + 4375 |2 s 167D 1 £l Q2.4
Consequently, we have the following algebra property:
—(4
178l < KTl gl pggn (25)

Arguing by duality and using the fractional product rule, Sobolev embedding, and (2.4), we may
bound

llaflers < llgllezs 11l U1
_ 1 1
< gl [1 (”Z)IIfIIH;n SV fl2] 2.6)
_ 1
< Ikl D gl [l o1

Lemma 2.1. If s’ < s, |k| = 1, and q € H®, then

gl ~o.v /| 2 gl % @7
K

Proof. By scaling, it suffices to consider the case xk = 1. We may then write
/ %2(3—5') (4%2 +§:2)s’ % — |§|2s /1 %Z(S—s’) (4%2 + 1)s' ¢i_7-:
! el
By considering the cases |£| < 2 and || > 2 separately, we may bound
6P [ RO @) s )
T€l

and the estimate (2.7) then follows from the Fubini-Tonelli theorem. ]

2.2. Local smoothing spaces

It will be important to consider a one-parameter family of local smoothing norms, generalizing that
presented in the Introduction. To this end, given « > 1 and o € R, we define the local smoothing space
gl o= sup | L P

q X7 1% Ak2—52 L?H‘”’l’

heR
6

¢,2,q = (4k* - 9%) 3 (¢hq) At this moment, placing the inverse

dlfferentlal operators under their arguments (rather than in front of them) may seem clumsy; however,

the mere act of writing out (3.23) in traditional form will quickly convince the reader of the virtue of
this approach.

so that X| 9 = X7, where we write
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To ease dimensional analysis, the X spaces have been defined to scale the same as H“ spaces.
Our next lemma allows us to understand the effect of changing the localizing function ¢ or the
regularity o in the definition of the local smoothing norm:

Lemma 2.2. Givenk > 1,0 € R, and ¢ € S,

2 |2t S0 llalixe (2.8)
Moreover, if s — 1 < o’ < o, then
lallge < 575 (lallxe + llgllepns) - 2.9)

Proof. We begin by discussing (2.8). Let T}, : L> — L? denote the operator with integral kernel

o+l

@+ — (@)
(4K2 + gz)% ¢wh(§ 77) (4 + nz)g—Tﬂ .

By applying Schur’s test, we find that

Tillop < 160S lgioe  and so /R Tillop dh <o 1.

Moreover, this bound holds uniformly in «. Thus, by employing (2.3), we find

12
Il < [ IG5l gy dh < [ Wlepllalis dh 5 s

which settles (2.8).
Turning to (2.9), and setting N = « 1+(lrfs, we have

¢6q 14 oltls 6 o-o lﬂ()q
”ﬁ”L}H‘T'” S KT TR ||(l//hCI)sN||L§°HS + Kl+o=s P>NﬁHLZHLH1-

Taking the supremum over 4, we obtain the estimate (2.9). O

Next, we record several commutator-type estimates that we will use in the later sections.

Lemma 2.3. Fix k > 1. Then
I[wn 2z lallye < 6 llgluy for —1<0 <3+s, (2.10)

| [wn, %]q”l_ﬁ S KT gl for 1< o+0<3+s,£=1,2,3, (2.11)

uniformly for h € R. Moreover, for { =2,3,4and2+s <o +{ <4+s5,

1 5214l < €723 [lglen + gl . (2.12)

uniformly for h € R.
Proof. The estimate (2.10) follows from the observation that
[Wn: oz = 72 (U1 = 200}) 12 (2.13)

The lower bound on o expresses that the maximum possible decay in « is k™*7%.
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To handle ¢ = 1, 2, 3, we also use the fact that

[lﬁh’ %] = [lﬁh’ 41(21—62]6[ + 4K21—(92 [lﬁh’ 6[]5

from which we see that the maximum possible decay in & is x™27.

We now turn to (2.12) and write

[wh, Ax2— 62] (41(2 62)2 (w;{ zalﬁ;,l) 4K2 92 [w;;, 261ﬁh, Ax2— 62]
-1
+ ﬁ Z Cmamlﬁ([ m)

m=0
Using (2.8), this readily yields
4
|| [l!/h’ 4K?——62] q”L?H” < ||q||X,§T+f’3
and (2.12) follows from an application of (2.9). ]

We also have the following estimates:

Lemma24. Letro >0,k > 1, and f,g € C([-1,1];S). If || > 1, then

2% = 0) flixe < 1l fllxe + 11 fllxesr < (2% = ) fllxe + 1 fllpme- (2.14)

Further, we have the product estimates

—(s+1
1 lxg < b= (Il gl rger + 1 gz gl ) 2.15)
—(s+1
1£8lxe < b= [l gl mge + 1l (ellglixe + ligle) |, @16)
—(1
||fg||x,5rmL;>oH;+l < x| (2+S)||f”x,§meth;+l||g||x,5rmL;°H;+1‘ (2.17)

All estimates are uniform in k and x.

Proof. By translation invariance, it suffices to prove the estimates for a fixed choice of i, on the left-
hand side. For simplicity, we take & = 0.
We start with (2.14). By Plancherel, we have

(2%=0) (W f) |2

6
4%2“\/4%”L2H”+‘ Hm”Lfomz' Nrpempl ”L,?Hml'

On the other hand, (2% — 8) (¥®f) = y(2x% — 3) f — (¥®)’ f. Thus, the first inequality in (2.14) follows
from (2.8); the second is elementary.
For the product estimates (2.16) and (2.15), we first decompose dyadically to obtain

2
2w @ hm @ om]l.z

Ni,N;

wﬁfg 2 ~ N2(7'+2
=g ez = Z R 2.18)

For the high-low interactions, where N, << N| ~ N, we use Bernstein’s inequality at low frequency to
bound
1PN [ v @ Iz < 16 Pz 1@ 8wy,

1
S N3 (1 + N2~ D@ o, Nz llglp g
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After summing in N, Ny, N», we obtain a contribution to RHS (2.18) that is
(g4l
< DN f I g

For the high-high interactions where N < N; = N, we use Bernstein’s inequality at the output
frequency to bound

1
1PN [ v @ llz < NI O (WP Nz
1 (s
S N2 (Il + ND)™ N w8l g
After summation, we again obtain a contribution to RHS (2.18) that is
o(sel
< || 2(”2)IIfII;zgkaIIgIIZ;mH;H-

For the low-high interactions, where N; <« N, = N, we proceed similarly to the case of the high-low
interactions, using Bernstein’s inequality at low frequency to bound

1PN [ om0 iz < 162 Fm e N0 9wl
1 :
S NE (Il + ND) ™ DN fll o 1@ na 2
In this case, we obtain a contribution to RHS (2.18) that is
—2(s+4) 2 2
S TP NFIR s el

This completes the proof of (2.15). Alternatively, we may bound

1PN [ D Pz < N (el + N I e | Pl

to obtain a contribution to RHS (2.18) of

o(s4d 2
< b2 DS g (1l + gl )
which completes the proof of (2.16).
The bound (2.17) follows from (2.5) and (2.15). O

2.3. Operator estimates

For 0 < o < 1 and |«| > 1, we define the operator (x ¥ )~ using the Fourier multiplier (kx F i£)™7,
where, for arg 7 € (—m, 7], we define

777 = |z e o MEE, (2.19)
We observe that with this convention, for all || > 1, we have
(kF0)"7)" =(xkx0)"7,
and readily obtain the estimate

(& F )" llop < K77
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We will make frequent use of the following Hilbert—Schmidt estimates:

Lemma 2.5. For all g € H{(R),

s_1 s_1
(k= 8)7"7q(k+0)37713, < llglls» (2.20)
Ik = 0)*q(k +8) 332 < k229 g 12, (2.21)
_1 1l &2 |qA(§)|2
||(K—a) 2q(K+(9) 2”52 ~/10g (4+7)\/T7+§2d§ (222)
Moreover, for any real |k| > 1,
106 = 0) ) £ e+ ) lop < k722 L1 (2.23)

Proof. By scaling, it suffices to consider k = 1. By Plancherel’s theorem, we have

I(1-8)""g(1+8)P|3, =t {(1-0%)""q(1-0*)Fg}
// |4(¢ —m)I? dndg
(1+&)" (1+7n )
For the particular choices of @ and g relevant to (2.20) and (2.21), we have

1
d < 4 Zs’
/(1+(§+n)2)a(1+n2)’3 ns@+&)

from which we obtain (2.20). The estimate (2.22) can be proved in a parallel manner (see [38, Lemma
4.1]).
Arguing by duality, the key observation to prove (2.23) is that

‘/fghdx

which combines the duality of H. and H,/“ with the algebra property (2.5). m}

_1
< |K| 2(1+25)||f||HK,(1+s)||g||H’!+s||h||HK1+s,

Our next two lemmas are devoted to similar bounds, but employing the local smoothing norm on the
right-hand side. The former employs the local smoothing norm pertinent to (NLS), while the latter is
relevant to (mKdV).

By introducing spatial localization, we obtain the following improvements:

Lemma 2.6. We have the estimates
16e= ) W) e+ ) APy, 5 el %(uqnz o+l ). (2.24)

_1 _1 8s _4s
| = 8)"2 (Ynq) (% + 0) 2||44<~ < =™ 3[K3 5+ x| 4‘]IIqIILoahn(IIqII2 ||CI||LmHs), (2.25)

uniformly for |%| > ki1, qgeC(-1,11;H*) N XS+2 and h € R.

Proof. By translation invariance, it suffices to consider the case 4 = 0. Given a dyadic number N > 1,
we define

An = (x=8) 2 (Wg)n (x+8) 7,
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presaging the notation (3.5). Employing (2.22), we may bound

10g(4 + ’;’—22)

A [ —

(k + N)2
in {lgl3s e 5Nl ., | (2.26)
XK

The estimate (2.24) now follows by taking a square root and summing over N € 2%,
From Bernstein’s inequality, we have

-1 “1ari—g
IANlILzop S 2 MW N e, S 1l N2 lgllie s,

which combined with the first part of (2.26) yields
IAN lop < N7 min {l ™ NE, (bl + )~ [log(d + 25)] g lone. 2.27)

Thus, we may prove (2.25) via first interpolating between (2.26) and (2.27), and then summing over
N e 2V This is most easily accomplished by breaking the sum at «3 and |]. O

Lemma 2.7. Fix2 < p < co. Then

Il — a)*%whq)(warﬂv’pﬁ

o[ P(l_g_1L
< |%|1 P[Kz(z $)—3 +( )|%|P(2 5)— 310g |4x |] [”qnx”‘ +||q||LmH3],

uniformly for x| > Kkt > 1, g € C([-1,1]; Bs) N XY, and h € R. Moreover, the factor (1 + Z—i) may
be deleted if p < 5.
Proof. We mimic the proof of Lemma 2.6, replacing (2.26) with

log(4+ )

min {13, SN
NE (4 Ny e

AN, < il (2.28)

and reusmg (2.27). We simply interpolate and then sum. Note that the logarithmic factor is only necessary
when P(E —s) € {3, 5} When p < 5, the extra factor can be neglected due to the other summand and
the constraint |»| > K3 O

In order to apply Lemmas 2.6 and 2.7, we will need to bring some power of the localizing function
¢ adjacent to copies of g and r. This is the role of the following:

Lemma 2.8 (Multiplicative commutators). For |x|, |x| > 1, o € R, and any integer |£| < 12, we have
the following estimate uniformly for h €e R and u € S,

s, (e = 0) ", ullg <o (¢ = 0)ullg (2.29)
Further, if N > 1 is a dyadic integer, | < p < oo, and n > 0, we have
W 720 PN Lo e Sn (Kf—;)z (2.30)
Proof. By translation invariance, it suffices to consider the case i = 0.
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Using Schur’s test and the explicit kernel (3.3), we find
== 0) "W Nr e < %7 2.31)

We will need this shortly. It is important, here, that the exponential decay of the convolution kernel is
faster than that of the function . This is a reason both for the large constant 99 appearing in (1.5) and
for requiring a bound on the size of ¢.

We first consider the estimate (2.29). By duality, it suffices to consider the case o > 0. For z € C,
we write

Be(2) = (46 = %) 2yl (= ) "'y (- 0) (4> = 07) 77,

with the intention of using complex interpolation to prove ||B¢(0)|| So.¢ 1, which implies (2.29). As
imaginary powers of k> — &> are unitary, we find

IBe()llop < 1IBe(O)ISh= "™ 1B (m) 115

for any integer m > o. For concreteness, we choose the least such integer.
Combining |¢’| < ¢ and (2.31) with the rewriting

Be(0) =1+ (x =)™ [y (0y™)]. yields [Be(0)llop < 1
Turning our attention now to B¢ (m), we notice that
Be(m) = (2k+9)"B(0)(2c +9)™™  satisfies || B¢ (m)llop = ||Be (m) lops

moreover, we may expand B, (m) as

L4 D Gy ) [0 (@) [0 G = 0) Ty~ [0 (0" ~) ] | D52

where the sum is over all decompositions m = m| + my + m3 + m4 using nonnegative integers. The key
observation that finishes the proof is that each operator in square brackets is bounded; indeed, for every
n > 0, we have

10"y (x)| $n ¥(x), whence [y (")l i 1 (2.32)

for any integers € and n > 0.
The proof of (2.30) employs similar ideas: We first write

n

W o2y P = D () g (M) (4K - ) g Py

m=0
which shows that we need only prove
(4% = %)™ ™) g W™ g v e S 1. (2.33)
This is easily verified, by commuting the derivatives and employing (2.31) and (2.32). m}

3. The diagonal Green’s functions

The role of this section is to introduce three central characters in the analysis, namely, g12, g21, and vy,
and to develop some basic estimates for them. What unifies these objects is that they all arise from the
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Green’s function associated to the Lax operator L(«) introduced in (1.9). Recall

B 0 ¢ k=0 0
L(k) = Lo(k) + _y 0] , where Ly(k):= [ 0 x+dl 3.1
We shall only consider « € R with |k| > 1. Note that
. —L(—«k) in the defocusing caser = g,
LW =3 Lon . ‘ (3.2)
—[o 1 1L(=6) [y 21 in the focusing caser = —4.

Evidently, both identities hold for L, since then g = r = 0.
We will be constructing the Green’s function, which is matrix valued, perturbatively from the case
q = r = 0. By direct computation, one finds that

— o [k=a)! 0
RO(K) = LO(K) - [ 0 (K+6)—l
admits the integral kernel
Go(x,y; &) = e <Pl [1{““ 0 for k > 0. (3.3)
Liy<x)

For k < 0, we may use Go(x, y; —«x) = —=Go(y, x; k), which follows from (3.2).
Formally, at least, the resolvent identity indicates that R(«) := L(«x)~! can be expressed as

R=Ro+Z(—1)€\/R_0(\/R_0(L—Lo)\/R_0)Z\/R_0~ (3.4)
=1

Here, and below, fractional powers of Ry are defined via (2.19). This series forms the foundation of
everything in this section; its convergence will be verified shortly as part of proving Proposition 3.1.
With a view to this, we adopt the following notations:

A= (k- 8)_%q(/< + 6)_% and T :=(«k+ 6)_%r(K - 8)_%, (3.5)

whose significance is that

VRi(L - LovRa= [ 5 o] G6)

These operators also satisfy

(s+)
IAlls, = ITlls, < 1€17* 2 llg]lg, (3.7
as is easily deduced from either (2.20) or (2.22).

Proposition 3.1 (Existence of the Green’s function). There exists 6 > 0 so that L(k) is invertible, as an
operator on L*(R), for all ¢ € Bs and all real |k| > 1. The inverse R(k) := L(x)™" admits an integral
kernel G(x,y; k) so that

qg— G -Gy 3.8)
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_3_s 3.5
is a continuous mapping from H} (R) to the space of Hilbert-Schmidt operators from H,* * to H; 2,
Moreover, G — G is continuous as a function of (x,y) € R2. Lastly,
o= | K aW) . —-6(x-y) 0
0xG(x,y;k) = () —k G(x,y; k) + 0 SGe—y)|” 3.9
) = | K a)| [dx=y) 0
dyG(x,y; k) = G(x,y; ) [r(y) . ] + [ 0 —5(x-y)|° (3.10)

in the sense of distributions.

Proof. From (3.7), we have

IWRo(L ~ Lo)VRo |5, < V2IIAll, < llglg < 6

uniformly for |«| > 1. Thus, for § > O sufficiently small, the series (3.4) converges in operator norm
uniformly for |«| > 1. It is elementary to then verify that the sum acts as a (two-sided) inverse to L(«).
This argument also yields that R — Ry € 5. In particular, it admits an integral kernel in L?(R?). To

prove (3.8) is continuous, we only need to verify that the series defining R — Ry converges in the sense
3_s

of Hilbert—Schmidt operators from H,* * to H ,%Jr%. This follows readily from (2.20).

The continuity of G — G as a function of (x, y) follows from the Hilbert—-Schmidt bound on (3.8)
because 2 + 5 > 1.

For regular g, the identities (3.9) and (3.10) precisely express the fact that G is an integral kernel for
R(x). The issue of how to make sense of them for irregular ¢ is settled by (3.8). O

From the jump discontinuities evident in (3.3), we see that one cannot expect to restrict G (x, y; k) to
the x = y diagonal in a meaningful way. However, as we have just shown, G — Gy is continuous. This
allows us to unambiguously define the continuous functions

y(x; k) = sgn(k) [G11(x,x;4) + G (x,x;4)| - 1,
g12(x; k) = sgn(k) G 12(x, x; K),
g21(x; k) :=sgn(k)Go1(x, x; k).
Here, subscripts indicate matrix entries. While the inclusion of the factor sgn(«) may seem unnecessary,
it has the esthetical virtue of eliminating corresponding factors in many subsequent formulas, such as

(3.12)—(3.14) below.
If ¢ € Bs NS, we may use the identities (3.9) and (3.10) for G to obtain

Y =2(qg21 +rg12), (3.11)
81, = 2kgra+qly + 1, (3.12)
85 = —2kga +r[y +1], (3.13)

in the sense of distributions. Combining (3.11), (3.12), and (3.13) yields the further identity

2(k — %) [g12(K)g21 (%) — 821 (K)g12(%) |
= 0x{812(K)821 (%) + g21 (K)g 12 () — LTI (3.14)

which recurs several times in our analysis. From (3.2), we also have

v(k) =7(-«) and gia(k) = £321(—k). (3.15)
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From the series representation (3.4) of the resolvent, we naturally can deduce corresponding series
representations of g», g21, and y. These are effectively power-series in terms of ¢ and r, albeit with
each term being a paraproduct, rather than a monomial. In what follows, we shall often need to discuss
individual terms in these series so, being sensitive to the order of such terms in g and r, we adopt the
following notations:

g1 (1) 1= sgn(0 (=) (8, (k=) AT (k+8) 45, (3.16)
g (0 1= sgn(0 (=" (80, (k4TI (AD" (x - 0) 16, ), (3.17)
with gl[gm] (k) = ggml (k) := 0, and similarly, y!?"*11 (k) := 0 and

Y2 (k) 1= (1) sgn() (8, (k= 0) 7AD" (x = 0) 16, )

+ (=)™ sgn(1<)<5x, (k+8)" 3 (TA)™ (k + a)-%5x>. (3.18)
In this way, we see that
g12(k) = Z g, gu) = Z 2w, and y) = Z v (). (3.19)
=1 =1 =2

In particular, we note that the expansion of gj» contains only terms with ¢ appearing once more than r,
while the expansion of y contains only terms of even order, with g and r appearing equally. Analogous
to our notation for individual terms, we write tails of these series as

21y (k) —Zg.[?m

We also extend these “square bracket” notations to algebraic combinations of these series (see, for
example, (3.38)).

For small indices, it is possible to find explicit representations of the individual paraproducts via the
explicit form of G(; however, this quickly becomes overwhelming. A more systematic approach can be
based on iteration of the identities

2=-2«k-0)"[g+vql, g1 =Q2k+8) ' [r+yr], and y=2gpgn -3y’

which follow from (3.12), (3.13), and (3.3 1), respectively. Pursuing either method, one is led to

0 =5l e (0= 55500 55 5k), (3.20)
g21 Y = prent g21](") (7 2s  3ea): (3.21)
as well as
7[2](,() -2 ﬁ et (3.22)
(K):ﬁ-ﬁ(r@[’—a'ﬁhﬁ(q'm'm)'zéa (3.23)
9.4 . _r . 4 ., _r_

Here, dots emphasize occurrences of pointwise multiplication.
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With these preliminaries out of the way, we are now ready to present some basic estimates on g1,
g21, and y. Propositions 3.2 and 3.3 focus on properties that hold pointwise in time; later in Lemma 3.4
and Corollary 3.5, we employ local smoothing spaces.

Proposition 3.2 (Properties of gj» and g»1). There exists § > 0 so that for all real |k| > 1, the maps
q — g12(k) and g — g2 (k) are (real analytic) diffeomorphisms of B 5 into H*! satisfying the estimates

g2 llggs+ + 11821 ()l ggs+1 < llgllmg - (3.24)

Further, the remainders satisfy the estimate

3] >3 —(2s
[ O [P 2 Py 3 [P P el [ 798 (3.25)
uniformly in k. Finally, if q is Schwartz, then so are g13(k) and g1 (k).

Proof. 1t suffices to consider the case k > 1, as the case k < —1 is similar; moreover, by (3.15), it
suffices to consider g1, («). Recalling (3.20), we obtain

g ts! () llpgor = ez (3.26)

To bound the remaining terms in the series, we employ duality and Lemma 2.5:

(£ 8137 )] < Nk +0)0) Fie = 0)™ ) [lop I (k = 0) g (ke +0)"F+D |3,

Dk = 0) g+ 0) B D02
=1

—(2s+1 3
< KN fll 0o gl

provided ¢ > O is sufficiently small. This proves (3.25) and completes the proof of (3.24).
We wish to apply the inverse function theorem to obtain the diffeomorphism property. At the
linearized level, we already have

6212( )|q 0= =—(2k—0)" ' and 6g12( )|q o=

which is an isomorphism, as noted already in (3.26). At the nonlinear level, we apply the resolvent
identity, which shows that for any test function f € S, we have

d
4 cagren=- [Gura | 4, T cvzaw.

&=0

Repeating the analysis used to prove (3.25), we find

%2 o)

' s 62|K|—(2S+1) S 62

e 0812 (1) 4 (2k — §)~

S+
HK

and so deduce that the diffeomorphism property holds for 6 > 0 sufficiently small, which can be chosen
independent of || > 1.

Next, we seek to show g1, € S whenever g € Bs NS, beginning with a consideration of derivatives.
For any & € R, we have

gr2(x+h;q) = gra(x;q(- + h)).
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In particular, differentiating n times with respect to 4 and evaluating at 27 = 0, we may use duality to
bound

) 26+1
n —
10582l < D (a)'K' @ DT 107 gl

=0 o eN20+! m=1
|o|=n
o0
< e+ D) @V g3 102 glms < 11921k,
=0

where the constant C = C(s) > 0 may be chosen independent of «x. To handle spatial weights, we
observe that

(k- 9)7" = Z( D" T

(K _ a)—m—lxn—m.

)v
In particular, by duality, we may bound

!

2{1 n: —m—2s+1)€ || .n— 20

lIx"g12 ()| st < § § c= IKI ML g s gl e
£=0 m=0

<n II(X>”q||Hs-
Combining these, we see that if ¢ € Bs NS, then g12(x) € S. O

Proposition 3.3 (Properties of y). There exists 6 > 0 so that for all real |k| > 1, the map q +— y(x) is
bounded from B s to L' N H**') and we have the estimates

Iy (Ol < 1672 gl (3.27)

Iy ()l < k=D ig|I2,. (3.28)

Iy Ol < gl + 1623+ gl (3.29)
Iy =l < k2D gl (3.30)

uniformly in k. Further, we have the quadratic identity
Y +37% = 28081, (3.31)
and if q is Schwartz, then so is y (k).
Proof. Once again, it suffices to consider the case k > 1. Using (2.5) and (3.22), we obtain
Iy Pl < 676Dl

To handle y[>*], we use the series representation (3.19) and the same duality argument used to prove
(3.25). The estimate (3.28) then follows from (3.27) via (2.4).
Setting x = « in (3.14), we find that

0x{2812(x; K)g21 (x:6) — 3y (x: )% — y(x:6)} = 0.

From (3.24) and (3.27), we see that the term in braces vanishes as [x| — co. Thus, the quadratic identity
(3.31) follows by integration.
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By using this quadratic identity, we may write

>3 1 >3
Y = —ly? 42010 o 4 2g15) - gl (3-32)

By Proposition 3.2 and (3.27), we have

>3 >3 - >3 >3 -
gy Mz + 1183 e < kO (g5 Mgpe + 185 ] < 16173539 1gll3;,

—(1+s —(1
lgiallze +llgaillze < 1™ (lguallgan + Ngatllgza) < k17 ligll;
—(1+s _(3 2s 2
Ilize < k™ Myl < 17 Ngll, -
Thus

>3 1 >3 -
= s 12 + Nl e llgarllze + gl ez llgly iz < k179 g,
which yields the estimate (3.30). The estimate (3.29) then follows from applying the Cauchy-Schwarz
inequality to (3.22).
If g € Bs NS, then from Proposition 3.2 and the quadratic identity (3.31), we see that y + %yz eS.
As H*! is an algebra, we may then bound

o o)

o)

10 e (1= ¥l < (27 = 1) e,

Hs+l

" Y s (1= ¥ llzsn) <

Hs+l ’
so using the estimate (3.27), we see that y(x) € S, provided 0 < § < 1 is sufficiently small. O
Next, we consider local smoothing estimates for g15 = g12(x) and y = y(x). We consider both (NLS)

and (mKdV) here, and so must allow two values for o, namely, s + % and s + 1. In fact, the proof below
works uniformly on the interval [s + 4, s + 1].

Lemma 3.4 (Local smoothing estimates for g2, y). Let o € {s + %, s+ 1}. Then there exists 6 > 0, so
that for all real || > 1, |#| =2 1, and g € C([-1,1]; Bs) N X7, the functions g12 = g12(x) and y = y(x)
satisfy the estimates

ellignallxy +lgialixer < llglxe + gl (3.33)
>3 >3 —(2s
elliel lixe + lgts Ml < b=V llal oy (Nl + Nallims ), (3.34)
—(s+4
il g + il < b= Nl g (lalixe + gl ) (3.35)

where the implicit constants are independent of «, x.

Proof. Applying the product estimate (2.15) with the quadratic identity (3.31) and the symmetry relation
(3.15), we may bound

—(s+1
iyl + 17l < B oo (11l + 1Yl |

_(S+l) S+ ( 14 T+ )
+ e max||gaall g max { llllg2llxg + lgiallxgs |-
In view of (3.27), taking 0 < ¢ < 1 sufficiently small (independently of x) and using (3.24), we get

|—(s+

1
elllylle + Illxger < bl lgllepmg max (iellgilixe + lgnlxgn) . (336)
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As a consequence, the estimate (3.35) follows from the estimate (3.33).
To prove the estimate (3.33), we first apply the estimate (2.14) to obtain

3 >3]
llllgi2llxe + llgillyen < lalxg + lgllzas + xlligly  lxe + gl

o (3.37)

From the identity (3.12) for g1», we see that g1>3] = —(2%—0)"'(gy). Thus, employing (2.14), we find

gl 2 lIxe + l1gls ||xa+I llgylixge + llgyllLems-

To continue, we use (2.16) together with (3.27) and (3.36) for y to obtain

—(2s5+1 2
layllxg < b~ Dllgl7ops | llalxe +max ([llg1zllxg + ||gl2||x,§f+')]'

Using (2.6) and (3.27), we may bound
lgyllepms < el gl ms g7 s -
As a consequence,

3 3
max (Felllg s lxg + 11815 ™ lxg1)

—(2s+1) || 112
< |n|” 35+ )||61||L;<>H; [||6I||X;' +lgllLems + max (I=lllgi2llxe + ||g12||x;r+1)]-

Combining this with (3.37) and choosing 0 < § < 1 sufficiently small (independently of «, %), we

obtain (3.33) and so also (3.34).

O

Due to the structure of our microscopic conservation law, the functions gi» and y will frequently

occur in the combination £2%)

adapt our square brackets notation accordingly:

where the leading order terms are given by

[1] [1] 3] _ [31 1 (1]
(i_uy) 2312 and (2g+_1§/) = g g127[]

and the remainders by

(&)[23] 1,023] _ gy

2+y =281 2024y
g12 \[25] [25] _ 1 [1] [>3] g1y?
(ﬁ) 2g12 ~ 1812 = 4g12 Y+ 4(2+7)'

Our earlier results yield the following information about these quantities:

Corollary 3.5. Let o € {s+ 1,5+ 1}. Then there exists 6 > 0 so that for all real || >

we have the estimates

S s + 1255 s < Nl
e[| (£ B0 [ (2293 B < e D gl D s
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for any q € Bs. Moreover, for g € C([-1,1]; Bs) N X7,

812(%)

£ < lallx +llallzne, (3.43)
N2 S e +182) 5 s Bl Dl gy (ol +llalzns ), 344)
Il(52) 5 e +11(82) 5 o < 2 lgl o (Il + s, (3.45)

where g12 = g12(x) and y = y(x).
Proof. From (3.20) and (3.38), we see that

|%|H glz |

glz [1]|
2+7

) o ~ -0 256"

2+y (%)

0

s = lallas.

Thus, (3.41) will follow once we prove (3.42). Moreover, using also (3.12), we find

g2 \[23] _ Y g
2% =) (35) " = —mmm et aayr?

and thence

LHS(3.42) < ||l55 4l + 153527 [l

22 Y

i
2+y

S Jxl” (‘+2)IIqIIHs

2s+1
g+ 1 gl Nl | 325 [ s

where the second step was an application of (2.6) and (3.27). To handle the remaining rational functions,
we expand as series and employ the algebra property (2.5), together with (3.24) and (3.27). This yields
(3.41) for § > 0O sufficiently small.

Next, we prove (3.44), since (3.43) follows from this, (3.38), and (2.14).

In order to prove (3.44), we first employ (3.39). The requisite estimate for the first term was given
already in Lemma 3.4. The second summand can be treated by combining that lemma with the algebra
property (2.17).

It remains to prove (3.45). Recalling the expansion (3.40), the last two terms are easily controlled
using (3.34), (3.35), (3.43), and Lemma 2.4. To control the first two terms, we use (3.12) and (3.32). O

4. Conservation laws and dynamics

At a formal level, the logarithmic perturbation determinant log det(LalL) (multiplied by sgn(x)) is
given by

o -]
sen) > T {(\/R_o (L - Lo) \/R_o)f} .
=1

For ¢ > 1, the trace is well-defined because the operator is trace class. For € = 1, this fails; however, in
view of (3.6), it is natural to regard the trace as being zero in this case. In fact, (3.6) implies that only
the even ¢ contribute to this sum.

With this in mind, we adopt the following as our rigorous definition of A:

A(x; q) -sgn(x)Z( DTt {(AD)"}. @.1)

m=1

We will prove the convergence of this series in Lemma 4.1 below, as well as deriving several other basic
properties.
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The quantity A is readily seen to be closely related to the quantity a(«;g) that formed the center
point of the analysis in [38]. Concretely, for x > 1,

a(k;q) = £Re A(k; q) = £3[A(k:q) — A(=k;9) 4.2)

(see (4.3) below). In that paper, it was shown that @(q) is preserved under the NLS and mKdV flows.
In fact, the argument given there even shows that A(«k; ¢) is conserved. However, for our purposes here,
we need several stronger assertions of a similar flavor.

First, we need that A(k; g) is conserved under all flows generated by the real and imaginary parts of
A(x; q) for general x. This is proved in Lemma 4.3 below, and will yield the conservation of @ under
our regularized Hamiltonians. This allows us to obtain a priori bounds for these regularized flows.

Second, we rely on our discovery of a microscopic expression of the conservation of A; this will
be essential in our development of local smoothing estimates. The relevant density p is introduced in
Lemma 4.1 (see (4.60)). The corresponding currents (for various flows) are collected in Corollary 4.14,
building on a number of intermediate results.

Lemma 4.1 (Properties of A). There exists 6 > 0 so that for all g € Bs and real |k| > 1, the series (4.1)
defining A converges absolutely. Moreover,

A(k) = —A(—x), 4.3)
§—2=821, o4 = gy, y’=2(q‘§—2—r%)’ “4.4)
sgn(k)oo
g—‘l‘(‘ :/7(x;/<) dx and A(k) = —/ /Y(X;%) dx dx, 4.5)
K
A= /p(x;K) dx, where p(k)= 9821 (k) ~ rg12(x) 4.6)
2+ y(k)

Proof. First, we observe that the series (4.1) converges absolutely and uniformly for || > 1 and ¢ € By,
provided 0 < § < 1. This follows from the estimate (3.7). In the same way, convergence holds for the
term-wise derivative of the series (4.1) with respect to «. The terms appearing are exactly those from
(3.18) and (3.19), and so we may deduce that

a—A=/)/(x;/<) dx.
ok

This proves the first assertion in (4.5) as well as justifying 1.10. The second assertion of (4.5) then
follows, since (3.7) guarantees that A(kx) — 0 uniformly on B as |k| — oo.

The conjugation symmetry (4.3) follows immediately from (3.15) and (4.5).

Differentiating the series (4.1) with respect to r yields the series (3.19) for gi, with an additional
minus sign, thus giving the second assertion in (4.4). The first assertion follows in a parallel manner, or
by invoking conjugation symmetry. The third part of (4.4) follows from the first two parts via (3.11).

We now turn our attention to (4.6). First, we must clarify what we mean by / p. When g € S, then
p also belongs to Schwartz class (for § small enough), and so the integral can be taken in the classical
sense. For g € H®, however, we interpret this integral via the duality between H®* and H~*, noting that

g.r € H'(R) and 0 2209 ¢ HI*(R) — H™*(R)

(see Corollary 3.5). By density and continuity, it suffices to verify (4.6) for g € S.
Differentiating (3.12), (3.13), and (3.31) with respect to x and then combining these with the original
versions shows

P P P
5x(g12 . %821) =—y(2+y)+ (1 +y) 9 (9821 — r812) — (9821 — rg12) 5=
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Using also (3.11), we obtain

dg  Og 3
—(g12%% - SE20r1)y = —y(2+¥) % (q821 — 7812) + (q821 — rg12) (1 +¥) 5%

These identities then combine to show

d F;)

P g — Glga 0 qg21 —1812

o — K -y
2+y ok 2+y

which can then be integrated in x to yield

5_/61821—Vg1zdx=/ P
Ok 2+7y 4 Ok’

The veracity of (4.6) then follows by observing that both sides of (4.6) vanish in the limit |x| — co. O

Next, we show that our basic Hamiltonians arise as coefficients in the asymptotic expansion of A(«)
as k — oo. This will also be important for introducing our renormalized flows later on.

Lemma 4.2. Forg € Bs NS,

. _2 3 _
A(K) = 3o M + 555 P+ S5 Hys + 5o Hnkay + O(K7°) .7

as an asymptotic series on Schwartz class.

Proof. While the first few terms can readily be discovered by brute force, we follow a systematic method
based on the biHamiltonian relations

SA _ 58A _ 90A -1(,.6A 5A
—2K6—q—66—q—r[7+1]—66—q+2r6 (rﬁ—qé—q)—r,

2k88 =994 + gy +1] :8%—2qa_1(r2—f—qg—2)+q, 4.8)

which, in view of (4.4), are merely a recapitulation of (3.12) and (3.13).
By iterating (4.8), we find

ﬁ _ _ i ql q/r_2q2r q"'—6qq'r -5

5r — “812= 3¢+ (2102 + 20)3 207 +0(k™),

SA _ _r _ _r r”—2qr2 _ r""—6qrr’ -5

5q 821 = ¢ (2x)2 + (2x)3 (2x)* +O(K )’ (49)

which can then be integrated to recover the series for A; indeed,

1 1
A = [ d0r©a a0 = [ (.3 00) + 7. 5 00 do.

In following this algorithm, we have found it convenient to successively update the asymptotic
expansion of y using (3.31), rather than compute 9! (r% - q‘g—?) by laboriously finding complete

derivatives. We record here the key result:

1. _ _ _qr _ gr-ar _ &g’ +qr’-3q2r?
2V T TR0 T ) (26)°

g g

2

PP RS N B
6qq'r-+6q-rr +0(K 6).

This technique is easily automated on a computer algebra system, which we have done as a check on
our hand computations. m}
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Although the mechanical interpretation of the Poisson bracket (1.1) originates in real-valued ob-
servables F and G, the definition makes sense for complex-valued functions as well. In view of the
conjugation symmetry (4.3), the following guarantees the commutation of both the real and imaginary
parts of A:

Lemma 4.3 (Poisson brackets). There exists § > 0 so that for all real |k|,|x| > 1 and g € Bs NS, we
have

{A(x), A(%)} = 0. (4.10)

Proof. If k = x, there is nothing to prove. Suppose now that x # x». From (4.4) and then (3.14), we
deduce that

(A, AG)} = 1 / 12()g21 (%) — g21 (K)g12(4) = O. o

As shown already in [38], the conservation of A(k) leads to global in time control on the H® norm.
Rather than simply recapitulate that argument, which was based on the series (4.1), we will present a
proof that brings the density p to center stage. This approach will be essential later, when we introduce
localizations (see Lemmas 5.2 and 6.3).

Proposition 4.4 (A priori bound). There exists § > 0 so that for all g € Bs and k > 1, we have

. dx
[0 5~ lally @.11)
K % «
Choosing 6 > 0 even smaller if necessary, we deduce the a priori estimate

lg(Olla; < 1lg(O)l|lag  uniformly for  q(0) € Bs NS (4.12)
for any Hamiltonian flow that is continuous on Schwartz class and preserves A(x) for all |x| > 1.

Proof. We first decompose p(x) = p[?1 () + p[=*](x) with

p[zl(z)z%(q-ﬁ+2%q—_5-r), (4.13)
>3 >3
P00 = - (£53) ™ - - (i55) . .14

Inspired by (4.2), we compute

i—/ %[pm (x;%) — pl?! (x;—%)] dx = 2x % (4.15)
and so, invoking (2.7), deduce that
+ / ) / P o) = pPV (s =) |2 dx die ~ gl - (4.16)
K
On the other hand, interpolating the bounds in (3.42), we find
[ PO i T @.17)
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and consequently,
/

Thus, (4.11) follows by choosing ¢ > 0 sufficiently small.
To deduce (4.12), we exploit continuity in time. O

/ HpEH () = pl2H (s =) |37 il < k6% Igl17, (4.18)

Proposition 4.4 is the key to proving equicontinuity of orbits. The proper extension of the notion of
equicontinuity from the setting of the Arzela—Ascoli theorem to Sobolev spaces was discussed already
by M. Riesz [51].

Definition 4.5 (Equicontinuity). A set Q ¢ H® is said to be equicontinuous it

limsup sup sup ||g(-+y) —g(-)|lgs = 0.
-0 gqe€Q |y|<é

Beyond boundedness and equicontinuity, the other key ingredient needed for compactness is tightness
(see Definition 6.1).

Proposition 4.6 (Equicontinuity of orbits). Suppose that Q C Bs N S is equicontinuous in H®. Let
H\, H, be Hamiltonians with flows that are continuous on Schwartz class and preserve A(x) for all
|#| > 1. Then the set

o= {eJV(’H‘”HZ)q iqeQ, t,TeER, k> 1}

is equicontinuous in H®.

Proof. By Plancherel (cf. [37, Section 4]), it is easy to show that a bounded set Q c H* is equicontinuous

if and only if
lim sup ||g||gs = 0.
K—+00 q EQ
The result then follows directly from the estimate (4.12). ]

Next, we address the question of how 7y, g12, and g»; evolve when taking A (k) as the Hamiltonian.
As a complex-valued function, A(kx) cannot be a true Hamiltonian. Nevertheless, there is a natural
vector field associated to it by Hamilton’s equations. We caution the reader that this vector field does
not respect the relation r = +g. Ultimately, we would like to restrict to the real and imaginary parts
of A(k); however, it is convenient to temporarily retain this illusory complex Hamiltonian and recover
the real and imaginary parts later using (4.3). This context is important for our next two results: the
evolution equations we derive for the A (k) vector field really represent a complex linear combination
of the vector fields associated to the real and imaginary parts (taken separately).

Proposition 4.7 (Lax representation). For distinct k,x € R\ (-1, 1),

0 SA(K) 0 SA(K) 0 SA(k)
—2(k = %) | sA(x) ‘6’ =L (%) | 5ax) ‘g + | s5A(k) L(2)
oq 6q 6q
1 v(k)+1 0
+5 | L(%), [ 0 Sy -1||"
Equivalently, under the A(k) vector field, U := [(1) _01 |L(x) obeys
d . _ ~ _ 1 [30+1) gk
dtU =[P,U] with P= v [ 221 (8) —%(y(/() NE (4.19)
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Proof. Both identities are elementary computations using (4.4) and (4.8). O

Corollary 4.8. Fix distinct k,x € R\ (=1, 1). Then under the A(k) vector field,

d d
iEq =—gp(k) and iar = —g21(x). (4.20)

Moreover,

i%gu(%) = —Z(Kl_x) {ly (k) + 11g12(%) = g12(K) [y (%) + 11},

’%821(”) = s { [y () + 1g21 () = g1 () [y () + 11} 421)

and Oyy () + Ox j (%, k) = 0, where

Jy (%, k) = m [glz(K)g21(%) +g12(%)g21 (k) — W] (4.22)

Lastly, 0;p (%) + 0y j (%, k) = 0 with

k) = _;812(K)g1 (%) + 821 (K)g1a (%) . (k)
J K= 2k —2)(2+y(%)) Ak —n)

Proof. The identities (4.20) simply recapitulate (1.2) and (4.4).
Combining (1.2), the resolvent identity, and Proposition 4.7, we have

(4.23)

S (y)
50 0
0 Fx . N B ()
:ﬁ([g_?(x) 50 ]G(x,z,%)+G(x,z,%) [%(Z) 60

d
iEG(x,z;%) = —/ G(x,y;%) ] G(y,z;%) dy

|

G(x,z;%)
10
0-1|"

This quantity is actually a continuous function of x and z (as can be seen from the middle expression),
and so we may restrict to z = x. Thus, by (4.4),

10
0-1

+ 3t [y (s k) + 1]

- ﬁG(x,z;}c)[y(z;K) +1]

d v =1 |812(6) 821 (%) — g12(%) 821 (k) g12(k) [y () + 1]
‘dfG("’x’”)‘2<”>[ —on (Y + 1] gia(K)gai () — g12(2)g21 (k)

y(x)+1 0 gi2(x)
o |

2(k=x) | —go1 (%)

This then yields (4.21) directly and (4.22) by invoking (3.14).
The claim (4.23) follows from a lengthy computation using (4.21), (4.22), (3.14), and (3.31). O

Corollary 4.8 shows that both p(x) and y(x) obey microscopic conservation laws. From Lemma 4.1,
we see that the corresponding macroscopic conservation laws are A(x) and d, A (x), respectively; thus,
these two microscopic conservation laws are closely related. In the analysis that follows, we shall rely
exclusively on the conservation law associated to p, rather than y. Let us explain why.
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As we saw already in (1.10), the quantity y arises very naturally in the theory, and indeed, it was
the basis of our initial investigations of the problem. While it may be possible to build the entire theory
around y, we can attest that this approach rapidly becomes extremely tiresome. It took us a very long
time to discover the density p that expresses the conservation of A(x), and this innovation has immensely
simplified all that follows. A major virtue of p compared to 7y is coercivity.

The goal of our next lemma is to give a simple expression of this distinction, by looking only at
the quadratic terms in the currents associated to the basic Hamiltonians appearing as coefficients in the
expansion (4.7). In particular, Lemma 4.9 shows that the current j, associated with y is not coercive
under the (mKdV) flow.

Note that the terms in the series (4.7) are alternately real and imaginary. Correspondingly, to exploit
the coercivity of Im j exhibited below, we shall need to use Im p when studying (NLS) and Re p when
studying (mKdV). It is also instructive to remember that monotone observables must be odd (not even)
under time reversal.

The identities (4.24) and (4.25) appearing in the proof below also show us that neither Re j nor Re j,,
possess any coercivity.

Lemma 4.9 (Coercivity of the current). The coefficients in the asymptotic series

) o [(-Df(2¢+1) (=D +1)
/Im][zl(%,K)d iZ{ (202" —————xCe(%) + (2k)20+3 Cevi (%)}

are coercive; indeed,

20 2
- [2EMOR

42 + £2

The corresponding asymptotic series for j, is

(=DQL+1) 8[xCe(x)] | (=D (€+1) 0Cp41 (%)
/Im] (%, &) dx =+Z{ 207 %ﬁi% + 2027 2; * }

The coefficients appearing for even powers of k are never sign definite; this undermines the utility of y.

Proof. From (4.23), we readily find

2 L[ 2in—& GOF=E)
/ J (e, k) dx = Ok — i) 42+ 2 dé¢, (4.24)

from which the expansion is readily verified. The analogous formula for j,, is

12] _ 4o +i(£2 — 4®) G(E)F(=€)
/ Jy (%, k) dx = 2/ 2k — i) @212 dé. (4.25)

The fact that this coincides with the x-derivative of (4.24) is not a coincidence; it reflects the first identity
in (4.5).

It is easy to verify that 8, [« C;(x)] is never sign definite because it contains the factor &> — 4.

]

In view of the asymptotic expansion (4.7), Corollary 4.8 provides an efficient method for deriving the
evolutions of gj» and y under (NLS) and (mKdV), although they are also readily computable directly
from the definitions.

Corollary 4.10 (Induced flows). Fix» € R\ (=1, 1). Under the M flow (i.e., phase rotation),

d d
Lo = i—vy = 0. 4.2
zdtglz g2 and ldty 0 (4.26)
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Under the P flow (i.e., spatial translation),

d , d ,
Eglz =g}, and Ey =y’ 4.27)
Under the Hnis flow (NLS),
d ’” 2
15812 = —gi, +4qrgin +2q° g, (4.28)
.d /
iy = {2rg1> — 29821 — 4xy} . (4.29)
Under the Hykay flow (mKdV),
d 1244 7’ 7 7
8= 8t 6qrgi, +6qg219" +6g12rq’, (4.30)
d 2 ’
E)f =—y"" + {12%(rg12 —qgo1) — 12"y + 6gr(1 +7)} . 4.31)

These expressions highlight two phenomena that are worthy of note. The first is that the evolution of
v has the structure of a microscopic conservation law. This has been discussed already, in the context
of (4.22).

Although rather less obvious, these formulas also show that g obeys the linearized equation around
the trajectory g. To explain why, let us first consider a generic one-parameter family of solutions ¢ (z; 7)
to a given PDE, say (NLS). Here, 7 is the parameter, while ¢ is time. Evidently, the parametric derivative
of g obeys the linearized equation:

0 g% = 07 g% + 4lqlP 5L + 247 5.
This should be compared to (4.28), noting the conjugation symmetry (3.15).

Finally, to apply this general reasoning to the case at hand, we define our parametric family of
solutions to the H-flow with initial data g¢ via

q(t;7) = exp {tJVH + TJVA(x) }q0

and then apply (4.4).

4.1. Regularized and difference flows

As discussed in the Introduction, a key ingredient in our arguments is the decomposition of the full
evolution into two commuting parts. The first is a regularized part, that captures the dominant portion
of the dynamics, while being very tame at high frequencies. The second part, which we call the
difference flow, restores the proper evolution to the high frequencies, but otherwise is very close to the
identity.

The starting point for the corresponding decomposition of the Hamiltonian is (4.7), which we
essentially rearrange to isolate an approximation to the true Hamiltonian. While we wish to consider only
real-valued Hamiltonians and taking real and imaginary parts of (4.7) is a transparent way to do this, we
should also acknowledge a more subtle point: in order to obtain local smoothing for the difference flow,
it is essential that the regularized Hamiltonian retains the same conjugation/time-reversal symmetry as
the full Hamiltonian.
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Definition 4.11. Associated to each « > 1, we define regularized Hamiltonians

HE s = —8K° Re A(k) +4K°M = —4i®[A(k) — A(=K)| +4K°M, (4.32)
H" oy = 1668 I A (k) + 467 P = =8ik*[A(k) + A(=k)| + 44> P, (4.33)

as functions on Bs N S, as well as difference Hamiltonians,

HUT = Hais — H g and  HYY = Hugav — HS pay- (4.34)

One of the key features of the regularized flows is that they are readily seen to be well-posed:

Proposition 4.12 (Global well-posedness of the regularized flows). There exists 6 > 0 so that for all

k> 1, the H{\}LS and HI’;KdVﬂows
2 = 47 (g12(k) — g12(—K)) + 4> NLS,)
779 =4 (812(6) = g (=K K~q, ( «
4 = 8k* (g12(k) + g12(—K)) + 4k*q’ (mKdV,)
dtq_ K (812(K) + 812(—K K~ q m P

are globally well-posed for initial data in Bs. These solutions conserve a(x) for every x > 1. Moreover,
if the initial data are Schwartz, then so are the corresponding solutions.

Proof. The evolution equations follow directly from (4.32) and (4.33) by applying (4.3) and (4.4).
Using the diffeomorphism property of the map g — g2(x) proved in Proposition 3.2, we may view
the equations (NLS,) and (mKdV,) as ordinary differential equations in H®, the latter after making the
change of variables

(t,x) — (1,x — 4K°1).

Local well-posedness then follows from the Picard-Lindelof theorem. Further, as the map g — g12(k)
preserves the Schwartz class, it is clear that if g(0) € Bs N S, then the corresponding solution remains
Schwartz. Finally, to extend the solution globally in time, we first observe that for g(0) € Bs NS, we
may apply Lemma 4.3 to deduce the conservation of a(x) for all x > 1. Applying Proposition 4.4,

we may then extend the solution globally in time for g(0) € Bs N'S and then for all g(0) € Bs by
approximation. m]

From Lemma 4.3, we see that the full and regularized Hamiltonian evolutions commute (at least on
Schwartz space). This allows us to obtain evolution equations for the difference Hamiltonians by simply
combining the corresponding vector fields. In this way, Proposition 4.12 together with Corollaries 4.8
and 4.10 yields the following:

Corollary 4.13 (Difference flows). Consider any x,»x > 1 and any initial data in Bs N S. Under the

NLS difference flow,
. d _ 2. 3 _ _ _ 2 :
I24=-9"+2q'r -4« (g12(k) — g12(=k)) — 4x7q, (NLS-diff)
i£e12(x) =-g12(%)" +4qrgia(x) +2q*gx ()

+2— [y(x) + 1]g12(%) = g12(6) [y () + 1]}
+ 2 {[y(=k) + 11g12(%) — g12(=6) [y (%) + 1]}
—4Kk2g12 (%),

(4.35)
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and under the mKdV difference flow

d
Eq =—q"" +6qrq’ - 8t (g12(k) + g12(—x)) — 4K2q', (mKdV-diff)

Lon(x) =-g12(x)" +6qrgia(x) +64q'g21 (%) + 6rq’gi2(x)
+3 L[y (1) + 1g12(2) — g12(K) [y () + 11}
— 3y (=k) + 1g12(%) — g12 (=) [y () + 11}
—4Kg12(%)".

(4.36)

We end this section with the following result, which encapsulates the microscopic conservation law
attendant to A(x) under the various flows considered in this paper.

Corollary 4.14. For x,x > 1 and initial data in Bs N S, we have
Orp() + O0x jx =0, (4.37)

for each of the NLS, mKdV, and difference flows, the currents are given by

s ) = i (L8R — g1 s 2up(x)
PN (P _or2gy. , S e
Jmkav (%) = (q"-2q7r) -g21 (2?1)7((7:) 2r°q)-g12(%) _ q'r +qr’ +2ixjnis (%),

IR (e ) = s () + 4 (e ) = it =0))

TSRy (6 K) = Jmkav () + 8ix* (j (¢, k) + j (%, =K)) + 4> p (50).

5. Local smoothing

The goal of this section is to prove local smoothing estimates, not only for the NLS and mKdV flows,
but also for the difference flows. To do this, we will be using an integrated form of the microscopic
conservation law (4.37) for A(x):

1
[ [ itsmueaar= [ (o - p-1m] o ax, (5.)
-1 JR

where / € R is a translation parameter, ¥, is as in (1.5),

Wy (x) o= / v2(y) dy, (5.2)

and the currents are as recorded in Corollary 4.14.

Eventually, we will take a supremum over /# € R as in (1.6). With this in mind, implicit constants in
this section are always to be interpreted as independent of &.

Control of the local smoothing norm will originate in the coercivity of the LHS(5.1) that we have
already hinted at in Lemma 4.9. The first result in this section, Lemma 5.1, shows that this coercivity of
the quadratic currents survives in the presence of localization. As noted already in Section 4, we will
need to take the real or imaginary part of (5.1), depending on the flow in question.
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To continue, we will show how to control the RHS(5.1) in Lemma 5.2. This leaves us to control
the higher order terms in the currents; this is the topic of Lemma 5.3. In estimating such terms, it is
convenient to combine the key norms:

2 2 2 2
lalixes, = llal’ ,, +llgll7sps  and lglikay, = gl oo + NGz prss

?
K

N\

with the convention that a missing subscript means « = 1.
The proofs of Lemmas 5.1 and 5.3 are both quite substantial. With this in mind, we delay presenting
these proofs until after giving the main results of this section, namely, Propositions 5.4, 5.5, 5.6, and 5.8.

Lemma 5.1 (Estimates for jiz]). Fix 6 > 0 sufficiently small. Then
tm [ 550002 ax = 20050 I+ O(lal? ). (53)
4 H%
Re/ JE G wi dx = 76| (w5 9) |12, it O(||(¢2q)’IIH;% IIqIIHﬁ +llgl® %) (5.4)

x

uniformly for g € Bs NS, x > 1, and h € R. Analogously,

482 + EVNGS a(EV2 d
tm [ P g ufae= 0 [ ECCTEIOLE o ). 69
H,?2

(4% + £7) (4K* + £2)?

(2062 +3¢2)¢ |y g (&) dé
(422 + £2) (4K2 + £2)2

Re / JO L ey i dx = %20 (5.6)

(¥,q)
Ol yllall, g + gl ).

uniformly forqg € Bs NS, k,x > 1, and h € R.

Lemma 5.2 (Estimate for p). Let ¢ € Bs NS and W), be defined as in (5.2). Then for x > 1, we have

the estimate

where the implicit constant is independent of h, x.

||q|I2 T Rt a1/ A (5.7)

2

Proof. As in the proof of Proposition 4.4, we write p(x) = p[?1 (x) + p!>*(x). From (4.13), we bound

‘/ o121 () W, dx

Using (4.14) and (4.17), we may bound

“/ p[24] () ¥ dx

This completes the proof of the lemma. O

2
< gl yllal -y s llal? -
H, H,

[N

HJ{

—2(2s+1) 2 2
< 2@ 2gl17,,

To control the contribution of the remaining part j,[f‘” of the current, we use the following lemma.

The proof of this result will take up the majority of this section.
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Lemma 5.3 (Estimates for 1124]). Let g € C([-1,1]; Bs N S) with 6 > 0 sufficiently small. For any
x> 1, we have

H [ifdeoa SR, (5:8)
H / JE G wi? dx S [7" + 572D 10g* 124]] 6 g 1 ay - (5.9)
Moreover, if k > 8 and x € [K%, %K] U [2k, 00), then
H‘/jglili‘fs[zﬂ(%’ «) t//1112 dx ; < [ﬁk—%(hﬂ) "‘”_2(2S+1)]52|||CI|||§L3K’ (5.10)
whereas for x € [K%, %K] U [2k, o0), we have
H / FIIEH ) a2 dx S [ k@D 4572254 Jog [24] ] 6% gl 2k gy, - (5.11)

In all cases, the implicit constant is independent of h, », and k.

The restriction k > 8 (rather than « > 1) appearing in this proposition is imposed to avoid confusion
in the meaning of the constraints on %. It guarantees that in both cases, the first interval is nonempty.
The fact that the ¥ = 1 case of (5.11) yields a better bound than (5.9) warrants explanation. Ultimately,
this is because LHS(5.11) requires a much more detailed analysis in order to achieve a satisfactory bound.
The bound (5.9) could be improved by a parallel analysis; however, this is not needed for what follows.
With these estimates in hand, we are now able to prove our local smoothing estimates:

Proposition 5.4 (Local smoothing for the NLS). There exists 6 > 0 so that for any q(0) € Bs NS, the
solution q(t) of (NLS) satisfies the estimate

gl ., < llg(O) 7. (5.12)
X2
Further, we have the high-frequency estimate

o S IO, + %06 q (01 (5.13)

S—

[wha) I
L2H,

t ik
uniformly for k > 1.

Proof. Consider the imaginary part of (5.1). Applying the estimates (5.3) and (5.8) to the LHS and the
estimate (5.7) to the RHS, we obtain

6 _N\7112 2
<
l(ya) IILtzHJI s llqll”

—-2(2s+1) <2 2 2
+x 235 (uqn o +||q||L,ooHs),
LY H, X2

=

where the implicit constant is independent of &, x. We then choose —% < s’ < s and apply the a priori

estimate (4.12) to obtain

6 2 —(25"+1 2 —-2(2s5+1) ¢2 2 2
1) 12y S % (2s"+ )||q(0)||H£_, +x 225t (Ilqulxﬁé + IIq(O)IIHs).
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Taking k > 1 and using (2.7), we obtain

WS P, = / ) Wy 2
L’H, 2 K

t

< Nlg(O)lI7; + x>0 IIqII2 +IIq(0)IIHs : (5.14)

To complete the proof, we take x = 1 to deduce
6 2 < P 6 2 + P 6 200 .
”whq”LtzH“% S I1P-1(¥,q) ”LIZHS’% I1P<1 (Do ps
< &lgll? ., +lg(0)13-.
X2

Taking the supremum over & € R and choosing 0 < ¢ < 1 sufficiently small, we obtain the estimate
(5.12). The claim (5.13) then follows from (5.12) and (5.14). m]

An essentially identical argument yields the corresponding result for the mKdV:

Proposition 5.5 (Local smoothing for the mKdV). There exists § > 0 so that for any q(0) € Bs N S,
the solution q(t) of (mKdV) satisfies the estimate

lglzen < g(O)I7ss- (5.15)
Further, we have the high-frequency estimate

H('ﬁ?ﬂ),“itzH: < g ()l + x>V 1og* 24| 6llg (0) 7. (5.16)

uniformly for k > 1.

Proof. Consider the real part of (5.1). Applying (5.4) and (5.9) to the LHS and applying (5.7) to the
RHS, we deduce that

xl(wha) ||L2H ' < el Whe) ||2 IR, Dlal? N
L7H,

+ [ +%—2(2S+') log*(2x/] 6 lllg I xav

for any 0 < ¢ < 1. Here, the implicit constant is independent of £, %, €. Applying the a priori estimate
(4.12), for any —% < s’ < s, we obtain

AW oy < ell@ha) 24+ (1 + DD g )12,
L H

+ [ 42 109121162 gl + 19 (O )-

Using the estimate (2.7), we obtain

IW§a) 1220 = / P2 Wa) 17 L
< ellWng) 12,5, + (1+ Dllg (Ol

+ [ 1@ 10gH 241|821 + 10O )-

Choosing 0 < € < 1 sufficiently small to defeat the implicit constant, we get
150 I, < 19O + [ + 672D log* 261[ (gl + g ). (517)
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To complete the proof, we apply the estimate (5.17) with x = 1 to bound

105122 e S NP1 (U5) s + 1P WD s
< gl + (O

Taking the supremum over # € R and choosing 0 < § < 1 sufficiently small, we obtain (5.15). The
estimate (5.16) then follows from (5.15), (5.17), and the observation that k2% ||g(0) ||%{S < |lg(0) ||12qs . O

In Propositions 5.4 and 5.5, the parameter « plays the role of a frequency threshold. The fact that
we obtain decay as k — oo will be essential both for proving tightness and for proving that the data-to-
solution map is continuous in the local smoothing norm.

We now turn to proving local smoothing for the difference flows. In this context, « takes on a new
meaning as the parameter appearing in the regularized Hamiltonians (see (4.34)). In this role, x marks a
border (in frequency space): it is only for frequencies below « that the regularized and full Hamiltonian
flows well-approximate one another. Correspondingly, it is only for frequencies above « that we can
expect to recover the full local smoothing effects documented above for (NLS) and (mKdV).

Proposition 5.6 (Local smoothing for the NLS difference flow). There exists 6 > 0 so that for any
q(0) € Bs NS and k > 8, the solution q(t) of the NLS difference flow (NLS-diff) with parameter k
satisfies the estimate

lgll® ., < g(0)lls. (5.18)
X, 2

where the implicit constant is independent of k.

Proof. Letus write I = [K%, 1 k] U [2«, ), which is the region of » over which the estimate (5.10) will

2
be proved.
Taking the imaginary part of (5.1) and applying (5.5), (5.10), and (5.7), we find

I Whq)”

2
a5 +
Vq;fjgj”LgH;l ”q”L?}L;% [K+H

) 202 2 alli?
305D L5200 821 13

uniformly for » € I. Choosing —% < s’ < s and employing the a priori estimate (4.12), we deduce that

(Whq)” - -
I 2, < % DO, + [ 422D |2l
uniformly for x € I. Next, we wish to integrate out x.
By Lemma 2.1, we have
N /M
Va2—5? Hs—‘ o3 Vax2-g? "L} H;, 5 EN
213
from which it follows that
Weq)” 2 - 25+1 (Wha)”
I, s [, (5.19)
K2/3
because the integrand on the interval [«x/2, 2«] is comparable to that on [2«, 4«].
Proceeding in this way, we find that
Wra)” |2 L(142s) c2 2
IIWII ) S < llg(O)li7s +x73 6 |Iq|| / +1lg(O)l7s )-
L2H

Kz/z
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To complete the proof, we decompose

[T
\/4,(2 52 LZH” ~

2 1 61
el O (‘”hq)” sz P g ndl

(i)
< llg(O) 13, + M%IIQ
L?H

1 K2/3

< lgO)llzs +6llall®
XK

Taking the supremum over 7 € R, we obtain the estimate (5.18) whenever 0 < § < 1 is sufficiently
small, depending only on s. m}

Next, we record a corollary of Proposition 5.6, which will be used in Section 7.
Corollary 5.7. There exists § > 0 so that for any q(0) € Bs NS and k > 8, the solution q(t) of the
NLS difference flow (NLS-diff) with parameter k satisfies
N if N <3,
sup [P (Wq) 2 < (Ol {eN=G) i k3 < N <, (5.20)
et NG N 2k

uniformly for N > 1 and « > 1. Consequently,

—2+2 5(l-s) : _
) K ift=0,1,
Sup”¢h4k2 62”L2 +sup” 41(2%[6‘]2 HL2 < llg(O)llas { —(1+s) ift=2,

(5.21)

uniformly for k > 1.

Proof. The claim (5.20) follows immediately from (5.18) and Bernstein inequalities. To obtain (5.21),
we decompose into Littlewood—Paley pieces, use (5.20) and Lemma 2.8, and then sum. )

Proposition 5.8 (Local smoothing for the mKdV difference flow). There exists § > 0 so that for any
q(0) € Bs NS and k > 8, the solution q(t) of the mKdV difference flow (mKdV-diff) with parameter k
satisfies

gl ger < 1l (O)l17s (5.22)

where the implicit constant is independent of k.

Proof. Consider the real part of (5.1). Applying the estimates (5.6), (5.11), and (5.7), we deduce that

(i) Wia)” 2 1 2
ik g < el e, (1 Dl

T 3

+ [ (2Y+1) + 3 —2(2s+1) log |2%|]62|”q|”mKdVK

K+%

uniformly forO <g<landx el := [K2 5k] U [2k, 00).
Choosing —5 < s’ < s and applying the a priori estimate (4.12), this becomes

(ypa)” Wha)” —(2s’
||W%HL2H s ||w%n2 ot S 1+ Dllg O,

%

+ [K+ (25+1) + % —2(2s+1) 10g |27’f|]62|”q”|mKdV :
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Next, we wish to integrate over » € . Using Lemma 2.1 as in the proof of Proposition 5.6, we obtain
the following analogues of (5.19):

” ('ﬁ,ﬂ) || ~ %2S+2” (whq) ” ~ %28+1|| (l/’hq) ”2 dx
Ve s, <), e Pl Nl I e

%

Proceeding in this way, and choosing 0 < & < 1 sufficiently small, we obtain

| 2, o 5 1a(O)llzs + 4l -
Va2 3 X

To complete the proof, we decompose

R | 1
||\/4K}2';_8”L2H5+2 ~ ”m <Ké (thI)”LzHﬁz ”W 7(lﬁhQ)”L2Hs+2

(Whq)”
< Nl + 155

S lg(O) s +6%llq1 -

Taking the supremum over i € R, we obtain the estimate (5.18) whenever 0 < § <« 1 is sufficiently
small, depending only on s. O

Proposition 5.8 directly yields the following analogue of Corollary 5.7:

Corollary 5.9. There exists § > 0 so that for any q(0) € Bs NS and k > 8, the solution ¢(t) of the
mKdV difference flow (mKdV-diff) with parameter k satisfies

NS if N <«2,
sup [|Pn (5 a)ll2 . < lg(O)las {kN-3) if k3 < N <&,
heR ’ N-(1+s) if N > «,

uniformly for N > 1 and k > 8. Consequently,

—2+1 (1-9) _
¢ ‘ (whq) K™2 ift=0,1,
Zgﬁg“lpg 41?2 82”L2 + Sllp ” 452 ’;; ||L2 HQ(O)”HA {K—(1+S) Uc‘ =2,

uniformly for k > 2.

We now turn to the proof of Lemma 5.1:

Proof of Lemma 5.1. We introduce the paraproduct R[g, r] with symbol

_ 1 1
R(£.1) = 5mm=8 * 30000

so that by (4.13), we may write

1 o ,
;%) = Rlg,rl(x) = / R(&mq(&)F (e £+ dé .
We then observe that the quadratic part of the current j(x, ) defined in (4.23) may be written as
2,10 = R[5, 5551
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Expanding in powers of «, we readily obtain the expressions

J4s6) = i(Rlg. '] ~Rlg".r1),
ity = (R[g,r])" = 3R[g’, "],

for the NLS and mKdV flows, as well as the expressions

S G, ) = (R, 7] = RIq',r]) = 16K (R e, 5] = Rl e, 58 02]),

]glllf(fdv (%’ K) = ( [q’r])” - SR[q/’r/] - 16K4(R[4K2q_62’ 4K2r_62])l +48K4R[4 2 327 4K_ 82]

+4R[ =, ]

K2 02 ? 4K2-02

for the corresponding difference flows. (Alternatively, we may use the definition of the currents from
Corollary 4.14 to compute the quadratic components directly.)
If we could simply replace g, r by :,l/gq, 1//2;’ in these expressions, rather than integrating them against

7/ }112, then we would obtain the leading order terms in (5.3)—(5.6). Thus, the focal point of our analysis
will be bounding the various commutator terms that arise.
Proof of (5.3). Using the above expression, we may write

LHS(5.3) = £21(0§a) I, + Re [ (Rlg.r'1ui - RIUGa. 1) ds
~Re [ (Rlg"r1 0 - RS0 1) as
By symmetry, it suffices to bound
[ (Ria.r162 - Rivga. i) ax
= [ Wb sla i - [l W) Wiy ax
+ / Uid - Wy gy 1 dx,
which may be bounded by

[ (Riar0i? - Rivga, i)
< 8. bl s 106 + by SN, NPy

6 6 9
+ Il 41 s,y

< lgll® .
H,?
as required.
Proof of (5. 5) We observe that the difference ]1£I2L]S nggs (2] has an identical expression to j1£12L]S with

q replaced by m. The estimate (5.5) then follows from the estimate (5.3) and the estimates

Il -y <l and 10105 525 all, s <l s
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Proof of (5.4). Integrating by parts, we find

LHS(5.4) = 76 (05) I, +Re [ Rlqur] )" v

-3Re [ (Rlg"r 102 - RIWGa)' )] v
As in the proof of Lemma 5.2, the second term may be readily bounded by

‘ / Rlq.r] (012)” dx

[

2
< gl

H%
For the remaining term, we write

[ (Riar10 - RS0 wiry1) ax
- [ Wb stgla- Wiy - [l i) Wiy ax
- Wb stgla - @iyravs [whe) Wi gl s

- [ e mmwina - [We- 5 ol v
The first three summands, here, may be bounded in magnitude via

2
%

15 sz ol IWRD Iy + g )l IRy < Il gl

and

)7l

6 _d < llali?
15 sl 3 ot SNy

both of which are acceptable. The remaining three summands can then be estimated in a parallel fashion;
indeed, this is tantamount to replacing x by —x.
Proof of (5.6). Integrating by parts several times, we obtain the identity

_ 20K24+3£2) £4 —
LHS(5.6) :+2x/ Tt W gl dé

" . (wﬁq)/// (wﬁr)///
-3Re [ (RIpLs ] 0f? - RIS 4500) ax

. . (Woq)" (9’/(; )
— 20«2 Re/ (R[4k‘21_—62’ 4[(;——62] lﬁ;llz - R[4K£{152’ 4K£_r62]) dx
+Re/R[4K§’—732,ﬁ] ()" dx
2 q’ r’ 12N 77
+ 20« RC/R[m,m] (lﬁh dx

—4K2RG/R[ﬁ,ﬁ] (lﬁ}llz ""dx.
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The final three terms are lower order errors that may be bounded by

2
Fg H%

1" 2 2
<=L P, < gl
H,

[S!

" " 12
J Rt i Wiy

2 ! 4 12 2
¢ [ Rigts sz W) < 2

2 / RILs, ] (012" | <

! 2 2
4K2q_(92|| _1 S ”51” _1
H. 2

% H}c

2 —2 2
S K ||4K2 62” -1 S ”‘I” _l

N

% x

For the first commutator term, we estimate

g " 12 (906,(1)'" (¢6r>m
’/ (RIGE . | 02 — RIS, S0 ) dx

3 3
< 1w, M?W]CIHH% ||éﬁ(l//;6,6m| ,

%

1
2

6 &
+{iws, Tl e vl i, 2 wilal,
(Woq)”
< lall, o nl ||

2
+
Vi gy ”‘f”H%
b4

The second commutator term is bounded similarly:

2 " " 12 Wia)” (wor)” (Woq)” 2
« / (R 5 vl? - RIS 51 sl < lall 1251,y + lal? .
This completes the proof of the lemma. O

We now turn to the proof of Lemma 5.3. Here, we will use the estimates of Lemmas 2.6 and 2.7 to
obtain bounds for the tails of the series defining g1, g21, ¥. However, these estimates are not sufficient
to capture cancellations that occur for several quartic terms in the currents Jgfs and ng‘g gv- For this
reason, we start by proving several quadrilinear estimates that are designed to capture the additional
smallness that arises from these cancellations.

For any x > 1 and multiindex 8 € {0, 1,2}*, we introduce the class S(8;«) of smooth symbols

m: R* — C that may be written as

‘,’-_«lﬁl ffz '5353 gfzt

m(&: k) = C o D (CreD D)

(5.23)

for a constant C € C. We write m|[ f1, ..., f4] for the paraproduct with this symbol.

While it is often natural to consider paraproducts as multilinear operators, we shall only be applying
them to g and to objects subordinate to g, in the sense of (5.24). Thus, it is more natural to view these
paraproducts as polynomial-like functions of g. When it comes to estimating these nonlinear expressions,
the first step will always be to isolate the two highest frequency terms and use local smoothing to control
them (integrability in time forbids using local smoothing for more than two factors). Correspondingly,
a multilinear point of view would lead to right-hand sides containing a sum over all permutations of the
arguments. Here, we see the virtue of phrasing them as nonlinear estimates and of subordinating their
arguments to g.

For the NLS, we have the following lemma:

Lemma 5.10 (Quartic estimate for the NLS). Ler |x| > &3 > 1 and the Schwartz functions q, f €

C([-1,1]; Bs N S) satisfy

7 nes, < llglines, - (5.24)
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Let m € S(B; «), where 1 < |B| < 5 and at most one B = 2. Then we have the paraproduct estimate

Inlg.r, q.0i2 sl < kBTN 2gIR (5.25)

where the implicit constant is independent of k, x, and h € R, and  is as in (1.5).

Proof. By space-translation invariance, we may assume & = 0.
By Bernstein’s inequality, for 0 < j < 2, we may bound

_ 5. 3
K 2NTS™3 min{N2, kN, K2}|||CI|”NLSK

l/\

T (A

?/\

_(exl S o3 . 5
N ) iz, S b (el + N NI mind N e, kg, -

which we will use to estimate high-frequency terms. Using Bernstein’s inequality again, we also find
that for0 < j < 2,

Z (K+M)2”(‘// Dumlleg, < KNI min{ N, k7 )6,
M <N

D R i) alles, < 17D (] + N2 AN min{NY, 7},
M<N

which we will use to estimate low frequency terms.
For dyadic N; > 1, we write

My NN N = MU QN U WP N 0 PN 0 (P L)
so that

(RPN S v
7Y Y

As the estimates will be symmetric in the first three terms, we may assume that N > N, > Nj.
Our strategy will be to bound the two highest frequency terms in L,z’x to take advantage of the local
smoothing norms, and the two lowest frequencies in L;”, . Concretely, when Ny < N, we apply Lemma
2.8, to obtain

3 -3 3 -3/,3
‘|mN1’N2’N3’N4“LtI,x pS ”lﬁ 4K(2ﬁ162l// (lﬁ LI)N1||L2 ||lﬁ 4,:2[12621” (lﬁ LI)NZHL%,x

103 22203 WP s e 10~ 7250° (P L, s,

NPUNP2NDS NP
< (K+N1)2(K+N2)2(K+N3)2(K+N4)2”(l’b q)N1||L2 ||(Q7l, Q)N2”L2

X (W Qs Il I (° m)mHL;’j’x,

whereas, when N4 > N,, we obtain instead

B1 A7B2 n7P3 ArB4
Ny N;“N;° Ny
||mN1,N2,N3,N4“Lt1’ N (K+N|)2(K+N2)2(K+Nz)2(K+N4)2”(l!/ q)N1||L2 ||('ﬁ CI)N2”L;’?X

XN s Nl N1 (9 2%+5)N4||Lf2’x'

We then sum over the lowest two frequencies and invoke the estimates laid out above. When N4 < N,
this leads to a bound of the form

2 2
> o laliRys,
N >N,
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where I is the matrix

Br—3-3s
NZ

_3_
Tpn, = ™D (] + No)* 2 SN 727

s s
X min{N},kNj, K>} min{Nfﬁﬁ4+2 , /<N§3+ﬁ4+l , KPPy

When on the other hand N4 > N,, we are led to a bound of the form
1
2010 1112 x|+Ns 572 2011112
> vl + Y [N Tvem 0l
N >Ny N4y>N,

with corresponding permutations of the indices S.
In this way, we see that the proof can be completed by proving

3 T s kP30,
N>M

As the matrix entries are monotone in ||, it suffices to prove the bound when |%| = ¥*/3. Summing first
in N, we are left to estimate

Z K—S—%(ZHI)(K% + M)S—%M,Bz—%(%“) min {Mﬁ3+ﬁ4+% [Kﬁl—%—s + K%(,Bl—s)]’
M=>1

K2 MP3Ba] [K,Bl—%—s + M,Bl—%—s]’ K’B3+'64+4M’B]_%_S}. (5.26)

. 2 2
From here, one need only consider the cases M < k3, k3 < M < k,and M > «. m]

For the mKdV, we have the following variation:

Lemma 5.11 (Quartic estimates for the mKdV). Letm € S(B; k) with1 < |B] < 8. Forany |%| > vk > 1
and any Schwartz functions q, f € C([-1,1]; Bs N S) satisfying

A Mmkav, S Nlalllmkav,

we have the paraproduct estimate

It r. 002550l + Imla.r.a. g1 vi2l

-2s _ s 2 _
< [+ 2D tog |42 |k 2112 gy, (5.27)

[2]

where the implicit constant is independent of k, %, and h € R. Moreover, if |5| = 2,

‘//m[q,r,q,d/}lzz%{ra] dx dt

Remark 5.12. As we will see in the proof, it is not essential that the first three entries in the paraproduct
are exactly g, r, and g. Rather, we only require that they obey the same estimates as ¢, in the manner
that f does. As we shall seldom need this extra generality, we have chosen to present the lemma in this
more representative form.

< kP19 82 g1 kv, - (5.28)

Proof. The proof is essentially identical to that of Lemma 5.10. By space-translation symmetry, we
may assume /1 = 0.
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We will reuse the L;°, bounds appearing in the proof of Lemma 5.10; however, the L2 local
smoothing bounds used to treat the high-frequency terms must be adapted to the mKdV setting.
Specifically, we will use

l/\

(Hmz I Dl s« 2N min{N°, &N, i}l g llmkay,

e~ (] + N)* 2k 2N9 7375 min{ N3, kN, Mgl miav, -

A

(K+N)2 ” (w 2u+B)N ”L, x

Proceeding as in the proof of (5.25), we take

My NN N = M PN W WP N 0 PN, 0 P L)

so that

Imlg.r, a0 555100 < D Imngnovs vl s
N;j>1

or

Ny NN N = MU WP ON U WP N 0 PN, v W LN,

12 ~ 12
Imlg.r,q, 52510 < D I venvens 'l -
Nj=1

As in the proof of (5.25), it suffices to restrict our attention to the case N > Ny > N3 > N4. With
¢ = 3,9, we may bound

LHS(2) s > I 5250 WPl 1P 52250 WP ol
Ni>N,>N3>N, ’

x 102 2220 WP s e I 32250 (P L, e,

By nB2 NP3 £ Ba

Ny Ny “ Ny Ny 3
3 (K+N1)2(K+N2)2(K+N3)2(K+N4)2 ”(d’ q)N1 ”fo”(lrb q)Ng”Lix
N >N>>N3>Ny

x |(¥*q)n, e, | w? 2%+3)N4 llee,

Summing in N3 > N4 > 1 we obtain a bound of a constant multiple of

D BT (e + o) RSN NS min V], k)
N >N>

xmln{NB”'B“S Nﬁ3+ﬁ4+1 ,Bz+,84+2}52|||q|”mKdV

Proceeding as in Lemma 5.10 and summing in Ny, we are led to control the following analogue of (5.26):
Z K—8|%|—(S+%)(|%| n M)A—*Mﬁz =2-35 (i {Mﬁs+ﬁ4+3 [KP1I1-s 4 K%(ﬁl_s)]’

M=>1
K2 MPHBH (P12 4 ppBi=2=5)  (BatBatd Mﬁl—3—5}_

Once again, this requires consideration of individual cases. Unlike in Lemma 5.10, the ﬁnal bound
depends upon |%| and so we cannot exploit monotonicity; thus, we need to treat separately Kt < %] <«
and |%| > k. Evaluating these sums carefully reveals that (5.27) can be improved to

LHS(5.27) < | &g + %I 2(2s+1) 1og|4L|] B8 52 gl kay., (5.29)

K+|%
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in two cases: (i) if |8] > 3 or (ii) if |8] = 2 and no individual §; = 2. These bounds suffice to prove
(5.28) because if || = 2 and some factor has two derivatives (i.e., some §; = 2), then we may integrate
by parts to redistribute one of the derivatives and recover case (ii). O

Next, we prove another pair of lemmas that will act as replacements for Lemmas 2.6, 2.7 in certain
situations:

Lemma 5.13. Let |#| > 3 > 1and f1, f2 € C([-1,1]; Bs N S) satisfy

“|fj|||NLSK < |||q|||NLSK'
Then we have the estimate
_1 _1 37 2_8s 4
| = 0)"Z(Wnfi - ¥nsy=g) (% +0) 2IIIF‘;Z32 < 176575 + 1274 6% Mgk, - (5.30)

Proof. By translation invariance, we may take 4 = 0. Decomposing dyadically and using (2.22) yields

LHS(5.30) 5 ) (j¢|+ M) log (4+ £5)[Pn w1 - w25)II2
N>1

in which we then substitute the bound

IPvsi-vs)ly, < | D) IPv(@fom - Waks)wllz|

Ni,Np>1

We then proceed using the Littlewood—Paley trichotomy:

Case 1: N < N| = N. Applying Bernstein’s inequality, we bound

1Pn (@i, - (55 W)l ||(wf1>N,||Lz NWsEs) wlles,

3
2

l—S —
LK+ NING (] + N2) 'Sl g s, -

K

< Nl_ mln{N
Observing that for fixed N > 1, we have
1_ _ _ 1_
SN el N S Y A
1<N;SN

we are led to estimate

_ - - 2 25— .
DTN A L) 7 (1] + N) T log (4 + D )N min{N, ( + N)?}
N 21

S Il S ],

Case 2: N; < N, = N. A similar argument yields the estimate

. 1_ _s—3 3
1P (0 fom, - (0525 w)llie . S N7 (el + N2) ™ NG min{ NG i+ NoYolglins, -

K

This then leads us to evaluate

D7 (% + N) P log(4 + Z)N20429) min{N?, (x + N)*),
N2>1

which yields the same bound as in Case 1.
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Case 3: N; = N > N. Bernstein’s inequality implies

”PN((I'[/fI)NI'(w%)Nz“LZ
< N fow |l - N5l + ND T2 = ) (0 525) |

Thus, applying Cauchy—Schwarz to the sum, we obtain

Hs*

2

Z Pn (W fi)w, - (w2xf_ic'))N2)“L2 "

Ni=N2N

SN YT NTE (el + N mindV, (ke + N2l s, -

NizN

‘We are then left to evaluate the sum

N oo
D D, wwlog (4+ FRINTH T (el + M) min{ N7, (k + Np)?)
N>1 NN

< D) Il + N TNTE 2 ming N, (k+ N1,
Ni>1

which ultimately yields a contribution identical to that of Cases 1 and 2.
In the case of the mKdV, we have the following analogue:

Lemma 5.14. Let |x| > % > 1 and fi, fr, f5 € C([-1,1]; Bs N S) satisfy
I fill ey, < Mallmkav, -
Then we have the estimates
1Ge = )2 Wnfi - Ungls) (x+3) 7 IIL%
S Il [KTZS + 127 log [21] 6% gl kav, »
1Ge = 0) 2 Wnfi - Ynmlg - Wnslg) (e +9) 2 ||

< Pl [ (1 ) el 6‘10g|2%|]54IIIqIIImKdVK

(5.31)

(5.32)

Proof. The estimate (5.31) follows from the same argument used to prove (5.30); all that changes are

the specific powers inside the sums.

Thus, it remains to consider the estimate (5.32). Proceeding as in the proof of (5.30), we may assume

that 42 = 0 and bound

LHS(532) 5 ) (xl+ M) log (4+ 22 [P (0 fi - w55 - w225l -
N>1 |

We then decompose further by frequency, using

||PN (l//fl 'll’sz w2%+p ||L2

Z 1PN (W fi)n, - (¢2£a) (v5hs) w2 >

Ni,N2,N3>1

<

t

As everything is symmetric under the N, <> N3 interchange, we may reduce matters to four possible

cases:
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Case 1: min{Ny, N} > max{N,, N3}. Here, we apply Bernstein’s inequality to bound

“PN(Wfl)Nl ( 2%—0 ) (Wzma N3 ||L2
< ||(l!ff1)N1||L,2_X||(¢2;;—_3)N2||L,°j’x||(¢/m)N3||L,°j’X

1_ 1_
< NP2 min{ N7, & + Ny ING (1 + N2) TINZ 7 ([l + N3) ' 621G kv, -

Summing in N,, N3 and then in N| =~ N using the Cauchy-Schwarz inequality, we obtain a contribution
to RHS (5.32) that is

Z N A )2 () + N) ™ log (4 + 22) N2 min{ N, (k + N) 218 gl gy,
N>1

- - 2 —
S el [k 4 (14 5) 107 log 12%1] 6 g kay, -

Case 1: min{N,, N} > max{N;, N3}. A similar argument, this time placing ¢ 2xfia
estimate

7.x yields the

”PN((Wfl)NI ( 2x— a)zvz (Wzma N; ||L2

3-8 R 3-8 “152
S N7 (x| + N2)7 Ny* " min{Ny, k + N2} N{ - ([x] + N3) ™ 67l glllmkav, »
which yields a contribution to RHS (5.32) of

Z 2N A )2 (1] + V) log (4 + 22)N 473 mind NV, (k + N) 26l gy, »
N=>1

which yields an identical contribution to Case 1.

Case 3: min{Ny, No} > max{N3, N}. Here, we apply Bernstein’s inequality at the output frequency
and sum using the Cauchy-Schwarz inequality in N; = N, so that for fixed N > 1, we obtain

2

Z ”PN((Wfl)Nl ) ( 20— a) (w2u+6 N3 ”L2

Nj~Ny2N3,N

Ly
2
<N

D @RIl @ sEs) e (@ 525y, e

Ni=Ny2N3,N

L;

SN NS minNE, G+ NP (el 4 N2 N0 A D) 60 g Ry, -
NizN

We then obtain a contribution to RHS (5.32) of

Z T log (4+ Z N5 min{N{, (« + N1)?}
Nzl NizN

X (1l + NO) 7Bl 2 (N1 A %D 6% g kay,

S Z e P NTS P mind N, (k + NDZH (el + ND 72 (N3 A L) 6% gl gy -
Nizl

which gives an identical contribution to Cases 1 and 2.
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Case 4: min{N,, N3} > max{Ny, N}. Arguing as in Case 3, for fixed N > 1, we may bound

2
Z ”PN((wf])N] : (szi ) (w2%+6 N3 ||L2
Ny~N3>2N|,N Ltz
<N Z N; =3 min{ N5, (k + N2)*}(Jx| + N) 4(54|||61|||mKdv )
N>,>N

which yields a contribution to RHS (5.32) of

D T NS mind N3, (k+ N2)P (1l + N2) 6% gl 2y, -
Nyr>1

This gives an identical contribution to the previous cases. O

We are now in a position to prove our main error estimates for the NLS:

Lemma 5.15 (Error estimates for the NLS). There exists § > 0 so that for all real |x| > K3 > 1,
Schwartz functions q, f € C([-1,1]; Bs N S) satisfying
1A s, < Mgllines, -
and y € {(y")D) : 6 < £ <12, j =0, 1}, we have the estimates
H / 25 8137 (k) o dx s e OS2l (5.33)
Ll‘
37 2_8s _
” / £ (E50) |l s [ ] g R, (5.34)
L
o=, <5021k, (535)
o4
H / s (5571 (1) + 137 (=00)) w2 dx sK 562 Ig R s, (5.36)
Ll‘

which are uniform in k, x, and h € R. As ever, xj(x) := x(x — h).

Proof. By translation invariance, it suffices to consider the case 4 = 0. Our basic technique, here, is to
expand using the series (3.19), commute copies of ¢, and then use Holder’s inequality in trace ideals.
We first exhibit this technique to prove the auxiliary result (5.37) before turning our attention to the
principal claims.

Given a test function F € C([-1,1];S), using (3.19), we may write

sgn(x) / Fgn() =yt de= Y (-1 {A(rA)f(% + ) TYAF(x - a)-%} .
=1

Applying Lemma 2.8 followed by the operator estimates (3.7) and (2.25), we obtain

L

t

||tr {A(FA)Z(K + a)—%wth(% B 6)‘%}

S IAIFGS Nl Ge = 9) 7 (W) (x+0)” 2I|z4<~ 1Ge+0) ™2 (WF) (x - 8)” 2||L4~

< C[|%|—(25+1)(€71)73[Kgf% + |%|—4s]62(€—1)

3 3 1 1
X Ngllpe pys MgllNg s N Eo s NE Nl s, o
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where the implicit constant is independent of £. Summing in £ and applying Young’s inequality, we
obtain

2_8s

| [ Felseout ], < 12 1% b olalhes, (1l Nallss, + o0 s, )
(5.37)

fa and using (2.8)

The estimate (5.33) follows immediately from (5.37) by setting » = +«, F = 1/14 T

and (2.14) to bound || Flli.s, < 17" g, -
We turn now to (5.34) and recall that

>3
(&)[> ] — %gl[223] — 8y (5.38)

By (5.37), the contribution of the first term to the left-hand side of (5.34) is easily seen to be acceptable.
To estimate the contribution of the second term on the right-hand side of (5.38), we take fi = x f/y*

and f, = (2% - 0) fﬁy((’;)) and apply the estimate (5.30) to bound

_1 _1 _3 1_4s _
(e £ 0) 72 (W2 fi5g) (¢ £ ) 22, < %72 [1575 + %7 Sl g s, »

where we have used (2.14) with the estimates (3.41), (3.43) to bound

Ifslines, = e - 0829 < llalhs,

NLS,

We then use (3.19) to write

[ #5531 [tr{(m oy s

ey

%36)(“6)—%}].

Repeating our basic technique using (2.25), we obtain

H/ fi 525 v (o) 't dx II(%—0‘)“(9’/(1)(%+5)_7||L4:f 1Ge = 0)2 (W fi 55) (= 9) ||Lt232

8s

_ 2_8s _
I S Tl 71 P (5.39)

which completes the proof of (5.34). The estimate (5.35) follows analogously using (2.25) with x = «:

H/mbm)m
L

_1 _1 _1 _
S Nk =0) 72 (W) (k+0) 2 ag (k2 ) 2N FY e,
_n_4
k23S g ks IF e, - (5.40)

Finally, we consider (5.36). Arguing in the same style, we bound

”/ g12 ( )2%+aw12dx

-1 _1 _1 _1
S [IAllLes, [l (x = 8) 2 (0q)(x +0) 2||L4S l|(x —8) 2(!!/82,515)(K+3) 2L op
< R s g3

L

lgliRes, 152 I,

—2-13(2541) ¢4 2
<k I gl -
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2 1 ..
where we have used that |x| > k3 to estimate ”2;{W”L§"} < k32D, For the remaining term, we
observe that integrating by parts we may write

/812](") 2%+6zﬁ12dx—/m[q,r,q,wlzz}f;a]dx,

where the symbol

_ 2
m(£1,62,€3.€4) = sy on 8 @)

is a sum of terms in K5‘|'3|S(,B 2K) for 0 < |B| < 5, where at most one 8; = 2. In particular, when
considering the sum g12 (K) + g ( k), we see that the terms with even |8| cancel, and hence

[ (8w el -0) shgutan= [ ilg.r.q.u 1

where the symbol of 7 is given by a sum of terms in >~ #1S(; 2«) for |8] = 1,3,5 and at most one
Bj = 2. Applying the estimate (5.25), we then obtain

—2-%(2s+1) <2 2
< k3D glR s, -

|/ (3w eln) g

L
which completes the proof of (5.36). O
Similar arguments yield the following error estimates for the mKdV:

Lemma 5.16 (Error estimates for the mKdV). There exists § > 0 so that for all real |x| > k2 > 1,
q, f € C([-1,1]; Bs N S) satisfying

I Mmkav, < llgllmkav, -

and y € {(y“)V) 16 < £ <12, j =0, 1,2}, we have the estimates

|

g (%)
/f 2-:;(%) thx

iz
< 2‘+|%| " log* 2|6l g7 kav, (5.41)
_4— 1 3_5s -1-
H / £33y dx ST T 55108246 g 2y, . (542)
Lt
H / gl () ($299) 290 3 ax S &2+ e 16 gl kg, - (5.43)
S >31( ) [23] d < 12 (2s+1) 52 5.44
2%+0 g12 K +g1 ( K))Xh X L7 [K +|%| ] ”ICIHImKdV P (5.44)
LI
>3 - s
H [ s 30 -0 - bt ] <OV, 649
Lt
[yt | < e RlgI gy, (5.46)
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L SE kD 2lgl12 kay, - (5.47)

H / [y =y (=) 14T) 2

< k325t 52
L

H/ (K)[>4] +y(- K)[>4 i (q 4:<2 52 4:(2‘1—62 r)) lﬁ;llz dx

g kav,

(5.48)

where the implicit constants are independent of k, x, and h € R.

Proof. The basic technique is that used to prove Lemma 5.15; however, new cancellations need to be
exhibited. We begin with the estimates on .

Mimicking (5.40) but using Lemma 2.7 with p = 4 yields (5.46). When taking p = 6, we obtain
instead

Hy(ik)[Zf’]XHLt] < [ 477 1og (26018 g lkav, (5.49)
K 2554|”Q|”m1(dv

This estimate reduces (5.47) and (5.48) to consideration of the quartic terms, for which we turn to

(3.23). Evidently, every term in (5.47) and (5.48) can be written as a sum of paraproducts with symbols

conforming to (5.23); however, by forming these particular linear combinations, we eliminate all terms

with |8] = 0. Thus, we may apply Lemma 5.11 (with x = «) and so deduce (5.47) and (5.48).
Applying our basic technique to g1, using Lemma 2.7 with p = 4 yields

< RHS(5.41).

H / £ ndr]| + / £8123 () x dx
L

L

Taking p = 5 and using also (3.7) yields

H / £ 0) x

These constitute a significant step toward proving (5.41) and (5.42). In view of (5.38), the proof of
(5.41) is completed by the following:

H/fﬁi'iyxdx

which is a consequence of the argument used in (5.39) but using Lemma 2.7 and (5.3 1) in place of their
NLS analogues.
To prove (5.42), we use (3.32) and y[Z] 2g12 g21] to rewrite (3.40) as

< RHS(5.42),

L

< I [ 4 el 74 Tog? 12416 gy, (5.50)

g1 \[25] _ 1 [25] _ gin(4+y) [>4] | gngxa ,[23] (11,011 ,123] | g1 (1] [23]
(52) =281 % I+ iiyﬂgu 2g12 21812 * 2-:;g12 821 (5.51)
The contribution of the first term was handled already.
Consider, now, the second term in (5.51). Applying Lemma 2.4 together with the estimates (3.27),
(3.35), (3.41), and (3.43), we find that

g12(4+y)
f 22+y)y?

. (54l
satisfies I F llukav, < #1728l glllmkav, -
Thus, applying the basic technique and using Lemma 2.7 with p = 5 shows

H / 2l (241 g < RHS(5.42).

L
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The remaining three terms in (5 51) are handled in a parallel fashion, which we demonstrate using

the first term. Set F = fi 2% 5 2%+6 with fi = x f/¥°, fo = (2% - 9) é’f ,and f3 = (2% + 0)g21. Then
(5.32) implies

1Ge = 0) 2y F(x+ )72 ||L2~
< B[R (14 £5) el log |21 6l gk, -

Thus, applying Lemma 2.7 with p = 6, we find

H/an“(x)w dx

which is no larger than RHS(5.42). This completes the proof of (5.42).
We turn now to (5.43). Combining (5.42) with (3.21) and Lemma 2.4 yields

5 el [ (14 5 el og® 1221] 6l v, »
Lt

H/g21 ) ($2) 5% () ydx|| < 1 7'70*2) . RHS(5.42) < RHS(5.43).

L

To continue, we employ (3.38). From Lemma 2.7 and (2.20), we find that

‘”// ng dxdt| <

and consequently, that

_1 -1 -1 _1
S 1= 9)"2yq(x + 9) leibsﬁll(%—é)) PF(x+0)2 M 2s,

3s

— 1_3s s
< 7 [27F 4 (14 )1l 1o’ 12#1] 6% g Nl mkav, I Fl

< [leh 0v’[7; < RHS(5.43).

H [ bt sleoxad
On the other hand, using Lemma 2.7, (3.22), and (5.32), we get

H f o131 () g1 o)y ) () x dx

L
_1
16— )W) G+ ) g 1= )7 Hu ey GOy P ) e+ 0)
< el [k (14 ) el og® 1241] 6l kv, S RHS(5.43).
This completes the proof of (5.43).

It remains to prove (5.44) and (5.45). We begin by reducing matters to the quartic terms. As |x| > /k,
SO || ol S K 3(s+3) 5. Thus, we find

9-3s o4
< K36 g1 ay,

>5
H/ 220 812 Nx) x dx

L

by applying Lemma 2.7 with p = 5.
Regarding the quartic terms, we observe that

/z,ﬂa (glz](K)—mq r)XdX—/m[q,r,q,Xz,f%a]dx,
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where the lowest order terms cancel to give a symbol m that is a sum of terms in x>~181S(8; 2«) for
1 < |B| < 8. Thus, (5.27) may be applied, which then yields (5.44). To obtain (5.45), we use (5.28)
instead. This is possible due to the absence of any || = 1 terms in the multiplier. O

We are finally in a position to undertake the proof of Lemma 5.3:

Proof of Lemma 5.3. We consider each of the currents in turn.
Proof of (5.8). From Corollary 4.14 and (4.14),

JiEd = —ix+ 8)q - (82')> +i(2% - d)r - (;’;;)[ 3,

Writing
U (2x+0)q =2x(Uhq) — (U5) g+ (Wha)l, + Wha)L,

and invoking (5.34) and (3.44), we estimate

H/ JNLS] (%) ‘/’}112 dx

< 7205t 52

L

2 6 \/
llglixes + 1 pa)2,

v (£5) = ot

i+ 3
L2H )

< %2 E gl s,
which completes the proof of (5.8).

Proof of (5.9). From Corollary 4.14, we compute

. [>3 10\ [23
]r[nit]\, = (46 + 20 + %) q - (;ﬂy) 2 _ (452 — 210 + 0))r - (;—‘;)P I

2 821 +2r2 812

- Zq 24y ey 2+y*

Focusing on the first line in our expression for jr[nitlv, we write
3 2 2 _ 2,43 3 N/ 3 N\ 3\’ RIVZ 3\7 17
¢h(4% +2%0 +07)q = 4n (¢hQ)+2"(¢hQ) +(‘ﬁhQ) _2%(¢h) C[+(lﬂh) q—2[(¢h) ql’. (5.52)

Thus, using Bernstein’s inequality and (3.44), we estimate

”/ P[0 (452 + 220 + 9%)q] - ($290) 2% ) i

L

. >3
<% (1+2A)||Wh‘I”L§H”‘||( 821 (%) )[> ]i < 2(2s+l)62”|q|”

2+y (%)

X s+2 mKdV*

On the other hand, an application of (5.41) yields

H/ P, [lph(4% +2x%0 + az)q] igf;(};)) lﬁh dx

L;
< [% + ~2(2s+1) log |2%|]52”|q”|mKdV

We now demonstrate how to estimate the contribution of the final two terms in our expression for
jrizti]v’ using the former as our example. We first decompose into frequencies, as follows:
2. 8u(%) 12
H/ 9T 2oy ¥n dx|| S

t N;=>1

s

L

/(l//hCI)Nl (d’hr)Nz (l//hCI)Nz (l//:, zgj;/) dx

L

where the two highest frequencies must be comparable. By exploiting symmetries, we may reduce
consideration to two cases, namely, Ny ~ Np > N3V Ngsand Ny ~ N4 2 N> > Ns.
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To estimate the low frequencies, we use

Whaw |- < NI, (5.53)

10 55 wll o, s Gee W) TINESS, (5.54)

which follow from Bernstein’s inequality and (3.41). To estimate the high frequencies, we use

IWian . < N llgllngay-

w352 a2 s Gt NN gy

which follow from Bernstein’s inequality and (3.43). Estimating the two lowest frequency terms in L;”,
and the two highest frequency terms in L, +» we obtain

”/ ric ‘”d"H < [+ log 1221] 6% g acay-

This completes the proof of (5.9).
Proof of (5.10). Recall that » € [K%, %K] U [2k, 00). We decompose

i . 2 >3
J§f5[24] = _l(l - K2K ) 4K2 02)(2}""8)61 (zgﬁ;’((a:‘)))[ ]
err
. 2 (%) \[23]
+(1 = 5 585 (2 = 0)r - (5275

erry

~(Een(0' + Egn(-0 1) 109

err3

i3
(5 (012 4 g (0 ) £ Gy (01 ¢ iy (2

err, errs

and note that by symmetry, it suffices to consider the contributions of the terms err; with j = 1,3, 5.
For err;, we first write

«* 462> 240 (240) &
(1 T R A—5% 62)(2% +0)q = Tl -9 T a2

Using Lemma 2.8 together with (3.44), we estimate the contribution of the high frequencies as

follows:
252 3_1 3 2%+9 g1 (%) \[23] /9
52 | [ vistauit g (35) S v
t
$ Sl 2250) 0 s P s, < 2SR,
3 1, -3(,3 (2%+0)5> 821 (%)
H/ Yizra¥n (¥, 2%—0 Qs (23;(%)) d’hdx o
2%+8) & - - k
< NWnB2a) 5o P S llals, < %2 gl -
t
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The two low-frequency terms are estimated using Lemma 2.8 and (5.34):

3 2x+ﬁ )<% . (g21 (%) )[23] wz dx

/ ‘ﬁh 2K+a Yy (‘”h 2k— 2+y (%)

2 -3r,.3-% —4sT S24(1 112
S S B T TS+ ] gk,

K +x2 .
LI

and similarly,

3 (2%+0)6* () \[23] ;9
H/ wh2K+0¢’h Wi g 9) < (%) Y, dx
8

[ -3r, 2-% -4s] 52 2
smln{%,%}'lxl [K3 3+ || S](S |||q|”NLSK'

Collecting these estimates, we deduce that

H / err; 1// A
To estimate the contribution of errs, we define f = (2x + 9) ( ngly((’:{)) ), and apply the estimates (3.41)

and (3.43) to see that

—4(2s+1 —2(2s+1)] 2 2
S [T 4282 g Ry s, -

Ifllepms <6 and |l fllncs, < llglincs, -

‘We then write
errs = 2”< % (g 2(1) 3 — g (- )[23]) . 2;{+a

(12005 + (012 - o

Kz_,,z

Applying the estimate (5.33) to the first term and the estimate (5.36) to the second, we obtain

”/ err; %1!2 dx
L

Finally, using (5.35), we estimate the contribution of errs by

H/ errs ‘/’h

which completes the proof of (5.10).
Proof of (5.11). Recall that » € [K2 —K] U [2k, 00). We decompose

Kk —2(2s+1) <2 2
S ok 0 ”lq'”NLSK'

2s41) <201 12
< 2ok ISR

Ldiff [24] _ 2 () y[23]
o = (1= 55 A 2+ 0)g - ()

err|

(&2_(70)[231

(1= 5 ) (2 =)' - ($205
HEL 120 - 2012 (k) - 2 g?r) - 28
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[23] « 3] 812(%)
+(K—% 871 (k )_ K+Hg21 (- K)+ K2— %Zr q) 241;(%)

erry

4
_[%7[24](’() K+,¢'y >4]( K) = 32K qu (Q4K2r_52 +r4kzq_az)]

errs

4 () [25] 262 2 (20) y[23]
+ 2:{ o) r e (555)

erre

3K%

z_xzq r4K2 2 2}‘_%2”812 (%)7[2 () = 2_%2qg21 (%)"' 2_%25] rg2] (%)

erry
AR (821(%) )lZ5J _22 2 (812(%) )lZ3J
K2—32 2+y (%) K2—x2 2+y (%)
errg
_3k%x 2 %

—2o2t ‘14,(2 T 2%_%261821](%)’)’ 2](%)"' g e 812](%)_ z_,{zr 4812](%)

errg

While the validity of this equality is, of course, elementary, the particular grouping of terms (and the
addition of an extra term in errs that is then subtracted in err; and errg) represents a very delicate
accounting for numerous cancellations.

As we will see, each term in this expansion individually yields an acceptable contribution to (5.11).
We will treat erry, errs, errs, errg, and err; in turn. The remaining terms are covered by this analysis
and conjugation symmetry.

For err;, we first write

2 4k22 (2%+0)0 (2x%+9)9*
(1- ZK_%24K2 52)(2%"'6)5] = K;(_zz a2—a2 4~ -5

Proceeding as in the proof of (5.10) and using (3.44), we estimate the contribution of the second term
as follows:

3 1 —-3(,,3 (2%+0)&> (%) \[23]
H/ Vi zera¥n (w3, ;K—a ‘1)>x(§fly(;¢)) ¢’h

L
20+0) & [ 3] _
<107 B2 ) o 122 = s <221,
- 2+9) 3
”/ ‘/’szia‘pf('ﬁz( g,:g? q) < (zgi;((’i))) = ]‘/’h
Y _
”(‘//131 (2;{: 396 q <M||L2H (2+s) (5’-:;((7;)) ”xgﬂ Sx 2(1+2S)62|”q”|mKdV

To estimate the term with fewer derivatives, we write (£2 )[>3] =(£2) (=51 4 (£2) B Arguing as
+y 2+y 2+y
above and using (3.45) in place of (3.44), we get

2%+0)d
K2+H2 /wh 2K+6wh (wh(;:ﬁ)’ ) >x (égjly((};))) lph dx L
t
2%+0)0 (%)
S 2 +%2” wi(z;:r(; q >%”L2H (3+s) (% ”Xﬁ“‘

—-3(2s+1) ¢2
S (25+ )6 |||qmm](dv 5
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while using (5.42), we estimate

3 (2x+0)0 221 (%) \[25] , 9
/‘/’h2,<+a’:”h (¥ 2%K 74) u(égﬂy(};)) Yy, dx

el 6D

/<2+u2 )
Lt

5s

3_5s
(k3% 4+ 1275 1og®124]|6* g 12 v, < RHS(5.11).

~ k242

It remains to estimate the contribution of the quartic terms, which we expand using (3.38) and treat
the two parts separately.
tfl

Setting m; = v and mj = 4:<2 g2 and using (3.21) and (3.22), we have
(2%+0) dg 2] %®q 2 xq
I2- 321 Ty () = miq, % 243" T 2%+6] - F’"Z[q’ I B e B 2nr+a]

Applying both (5.27) and (5.28) from Lemma 5.1 1, we deduce that

k%%

< RHS(5.11).

K242

2%+0)0
/ G024 (gl () w2 dx

L

For the remaining quartic term, we first use (3.13) to write

Ui, gZIJ(%) = 2%14-6 [’"7’[2] (%)l'[’llzz] + 2;¢l+a [(‘/’ ) g21](%)]
= 2;‘l+,’) [ry[Z] (%)(!/;lz] + (2%_1_(9)2 [ry 2] (}"') (whz)’] + (2%_1,_3)2 [(d/;lz)llgzll(%)]

and so

2x%+0) 0
” / Gt g v dx

L

2%+0) 0
= ”/ Ty Gt d| -
L]

2x%+0) 0 ’

L

+

23+0) O
| w5 e e

Using (5.27) again, we see that the contribution arising from the first two terms above is acceptable. For
the last term, we estimate

K2

K2+32

23+0) O
[ w5 e wwdy as

L
S “ 2 ( )7 ||l°°
K2 %2 (2%-0)? (4k? 62)q o H-(1+s)

3 0| ogyres < 2308 gy,

Collecting the estimates above, we obtain

H/ err| a,lrh

< RHS(5.11).
1

For errs, we start by writing

5
errs = 3 (g12(k) 123 — g1 (—h) 123 = sLog?r) 1)
4
+ 3 (2120 F3 + g1a (=) 23) 2gfly((;:¢))~
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821 (%)

We then apply the estimates (5.44) and (5.45) with f = (2% + 9) 5 o)

to bound
H / err; z//h

together with (3.41) and (3.43)

S =

~

—(2s+1) <2
,(.,.,, (S )6 |||41|”m](dv

t

For errs, we may write

5

errs = - 2 (0124 - y (- 241}
4

22 (y ()4 4y (s[4

and then use (5.47) and (5.48) to bound

”/ €errs t,bh

For errg, we first apply the estimate (5.42) to bound

3 r q
- (e g+ i)

< —

~

25+ 52
2k gl kav. -

|/ e,
s o (% 153959 100 12410l qy, < RHS(S.11).
Next, we use (3.20) and [¢/}2, £25] = =522 (y12)" 21 to write
it ar =0t e ) + 225 [0 8y ()]
gl qzz;f{Trazi%fqa +U, qﬁ% ~vy qrzfia

From Corollary 3.5 and elementary manipulations, we have

821(%) )[23]

—3-2s5 2
24y (%) n ) |||CI|||mKdVK~

~

2%14—(9 (

Hmm

Thus, by taking m;(£) = 2K+l my(€) = 5= 153 and applying (5.43) to the first term, (5.41) to the
second, and (5.27), (3.42), and (3 44) to the remaining terms, we have

(%) 12
H/ K2_%2q r ;j;/(::)) d’h dx
L
3 g1 (%) \[23] 12
S oo /glz (%) (23;(%)) Yy dx L
t
5 1247 [3] 821 (%) \ [23]
+ o /(‘/’ )81y (% )-2%+6(2-3;/(%)) dx .
3 2k+d) ( 821 (%) 2 12
+ KZ;:%Z /m1 q 2215(2&@(};)) ’2;—(]0’ 2;¢r+a] Y, dx .
1
2 2+, 2 (o) \[23]] ;12
+ o2 /ml N 2%%qa (fjly(u)) ]wh x L
2 [ 2k-9 () 12
+ /mz 9.7 zg_aq,(gj‘y@)) ]¢h dx | < RHS(5.11).
t
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For err;, we first observe that

4 3
P / qgly (0) w2 dx

_ 4t 9 _r _4q _ q _,[3] 12
=2z / 27— 2740 2;1—6”[’ ? dx ,<2 “5 / 75821 (%) () dx.

Applying (5.41), the second integral contributes a constant multiple of

[Kz 725 45 (1H49) o gt 121]6% gl kay, < RHS(5.11).

K242
Thus, the remaining quartic terms are

3KH 264 _4q9 _r
2 %zq v e e e B e R xzq g

A quick computation shows that

3k% P 2. r
- z_xzq r4K2 7 T o229 " 50
o 2k%E 2 r r 6K252 2k+0
= T2 T e T 2™ [q’ 2ro’ 4 2;¢+6]
k2% r’ r #2 r
=l [q, 2nra’ D W] T2z [q,r,q, m]’
__i& _ _i& _ i&)?® :
where m; (&) = pTovrS 4K2+§2, my(€) = PRy and m3 (&) = prexv= To continue, we observe that
2K2% 2_r 2% _9q _9q9 r
2—;f2q 4x2-32 2;¢+6 K222 -0 2u+6 2%-0
4K % 2K— 2xq r 2k 2k— q' r
2 ;{2m4[2n aq’ * -0’ 2%+6] 2 n2m4[27¢ Bq’ > 2%—0° 2%+6]
2> 2xq 2xq r
T 222 M3 [2%—6’ " 3= 2x+a]»
where my4 (&) = 2::51] Z 4K2+ prenvsR Applying the estimate (5.27), we obtain
K252 m [ 2K+6r r ]wIZ dx
K242 19 270" 9 Zva 1 Y L
t

2

K% r’ r 12
+ K2+x2 / m3 [q’ x> 1 2n+6] l/’h dx

L

12
v | [ mlara sslvia

L

72 %xq %xq r 12
+ K242 ms [2%—6 T 50 2x+6] wh dx

L

K232 2k=9 %q r 12
* e Ma| 35475 55 mrg | W dx

< RHS(5.11).

2,2 ’
K% 2K— _q r 12
+ K2+%2 /m4[2% 59" 2=5° 2:»:+B] wh dx o
t

Collecting all our bounds, we obtain the estimate (5.11).
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6. Tightness

Let y € C° be an even nonnegative function supported in {|x| < 1} with || y||;1 = 1, and define

[x]
o(x) = /O Xy —2)dy.

For R > 1, we define the rescaled function ¢r(x) = ¢(5). Notice that ¢ plays the role of a smooth
cut-off to large |x| and so leads naturally to the following formulation of tightness:

Definition 6.1. A bounded subset Q C H* is tight in H® if
¢rqg — 0in H® as R — oo, uniformly for g € Q.

We first prove that tightness of g implies tightness of gj5:
Lemma 6.2. For § > 0 sufficiently small,

lorg12llgsn < lorqllmg + (12|R) " llgllas (6.1)
>3 - -
lorgls e < =208 (Ilorgllz + (1R Nallus ), 62)
g >3 - -
o (£2) > pggor < 1=V (Il + (1R llglg ) (63)

uniformly for |x| > 1, R > 1, and q € Bs. Here, g12 = g12(x) and vy = y(x).
Proof. Using the identity (3.12), we write

PrE12 = — 525 (PrRa(1+7)) — 75 (dR812),

so the estimate (6.1) follows from the estimates (3.24) and (3.27).
Similarly, the estimate (6.2) follows from the identity

>3 r [23
OR8> = 325 (9r4Y) — 725 (PR81>")

and the estimates (3.25) and (3.27). The estimate (6.3) is then a corollary of the estimates (6.1), (6.2),
(2.5), and (3.39). O

We will prove tightness for solutions of (NLS) and (mKdV) by considering the equation satisfied by
Re p(x). Our next lemma shows that this is a suitable quantity to consider. The utility of this density
should not be conflated with that of the currents used to prove the local smoothing effect. In particular,
in the (NLS) setting, it is the imaginary part of p that is used to prove local smoothing.

Lemma 6.3. For 6 sufficiently small, we have

K
lrally: ~ [0 Re [ o ar) &+ O(R 2Nl +laly ) (64)

uniformly forq € Bs NS, R > 1, and k > 1.

Proof. As in the proof of Lemma 5.1, we write

PP =Rlg.r1 =300 55+ 55 1)

and compute that

Re [ Riorg.onr] e = 22 6nally.
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Applying Lemma 2.1, we then obtain

lorally = [ (s Re [ Riona ourldn) 2 + (gl ).
It remains to bound the contribution of the difference
[ pdias- [ Riong.ourtds= [ (Rig.r1 6% - Riong. ourl) s
o [ a5 = (55)) g

For the first term, we bound

< ¢rqllag

[¢R’ 2%—0 ]q”H‘5

<%~ R Nl prallig gl -

[ (Ria.r1 6% - Riora. onr])

For the second term, we apply the estimate (6.3) and Young’s inequality to bound
(£

[ a8 i ax

As a consequence, we may integrate to obtain

K
/ %25+1
1

from which we derive the estimate (6.4) by taking ¢ sufficiently small. O

>3
< Do rqllg or (£5) | gen

< w20 gl +5723 D (R 26 gl

/ p 6% dx ~ Re / R[6rq. drr] dx

< R Norqllas lglias + % 16rqllzs +6°R2llqllFs

We now arrive at the center piece of this section:

Proposition 6.4 (Tightness of the flows). For§ > 0 sufficiently small, the following holds: If Q € BsNS
is tight and equicontinuous in H®, then

{q(t) =y geQ, re[-1, l]> is tight inH® .

Here, x = NLS, mKdV.

We will prove this result for each of the two flows separately. One element common to both is the
following: For o = s + % oro =s+ 1, we have

||¢2(¢%),F||L}1L3Hv < ”lﬂz((ﬁe),”L}lHl”W?,F”L;:Lf[{v < ”F”X"' (6'5)

Proof of Proposition 6.4 for (NLS). Taking t € [-1,1] and R > 1, we multiply the equation (4.37) by
¢%e’ take the real part, and integrate by parts to obtain

Re [ (o) - p0)] v =Re [ [ s (6 axar, (6.6)
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Choosing « > 1 and applying the estimate (6.4) and the a priori estimate (4.12), we obtain

16RalI7 e 51 < 10RGO)IFs + RN (O)F + 19 (07

K
v [Cot) [ s 60" as
1

Integrating by parts and using (3.11), we may write

dx

L

[ s @ av=-i [ a(@x-0)52 - br) 6" as
+i/ r ((2% + (9)51—1; + %q) (¢%¢)’dx
-4 [ toel2 491 (@) a.
For the final term, we may apply (3.28) and (4.12) to obtain

<RZ

~

L

| [ 1oeiz e 20 ax
The remaining two terms are treated identically, so it suffices to consider the first. We decompose

4K2q B2q
1= 50-5 ~ 5 (6.7)

and estimate the contribution of the low frequency term via

H/ e (@e-0) 8 - 1) (@) de

u
(¢%{)’((2% - 6)% -7 HLNH°
(030 1z (122 = ) £ s + gl |

R R
S R 2 g(0) s

$ e llens

26
S K qlliLeas

To continue, we use (2.3) to express the high-frequency term via
[ et (-0 - %r) (63’ dx
6 (Yha) ’
= st [ (108 5o+ G2 ) of (- 0085 - &) (G .

For the commutator term, we apply the local smoothing estimates (3.43) and (5.12), together with (2.11)
and (6.5) to bound

H/ lﬁh’ Ax2= az]qwh ((2%_6)%__ )(¢R) dx
Ly,

itz lal oy AR (=035 = 30, oyt
< 2Dl (0) s

—(2s+32
< kg (0)|I7s-

|(2% - 8)%

b T ||61||Xs+%)
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For the remaining term, we use (3.43), (5.12), (5.13), and (6.5), as follows:

a ’
H / ) g (2 - )25 — 1) (43 d

o

O’ (Yhq)
< || 4K2—Iaq2 “L;',"L,ZH*(S*z)Hwh((ﬁR) (2~ 6)% - )HL‘LfH”%
< K_(2S+1) ||("[/’GlQ)’|IL°°L2HSf% (”(2% N (3) 2g+2;’|x'”] + “q”X” )

h Tt 7K

- -3 §
<« (2‘”1)||q(0)||H,§||C](0)||HS +x 2(2‘+l)5||q(0)||%_1s.

Combining these bounds, we see that for any x > 1 we have the estimate

¢RI o5 < 16RGO)IFs +11g(0)I5 + 61lq (0)llrz
+ k2R 4 (KR_% + K_(s+%))(52.
Taking the supremum over ¢(0) € Q and using that Q is tight, we obtain

limsup sup ||¢R61||Long < sup 6]lq(0)|lm; + kD82,
R—o0 q(0)eQ q(0)eQ

Using that Q is equicontinuous, the result follows by sending x — oo. O

Proof of Proposition 6.4 for (mKdV). Mimicking the argument given in the (NLS) case reduces matters
to proving a suitable L} estimate for

/ Jmkav (9)" dx (6.8)
:/q’((Z%—a)%—r) (¢§)'dx+/r' (@x+0)5% +q) (#3) ax
v [ a2y @ ac- [ 155 @ -2 [ ar @y ax
-2 [ par @y ass [ p @i+ )@ an
From Corollary 3.5, (2.16), (4.12), and (5.15), we have

Il as + llollxs < 1lg(O)Izs- (6.9)

Thus, we may estimate the final term in (6.8) as follows:

H / p (45* + 6?

To estimate the contribution of the remaining terms, we rely on the decomposition (6.7). We first
bound the low-frequency contribution to each of the terms in (6.8), before treating the high-frequency
terms. From (3.41) and (4.12), we have

501

(@7 Nzl 2 - «9>§f; s < KRGO

< (PR + R73)(lg(0) 13

Lt

o e
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Arguing similarly, we also obtain

C y—2
<R g (0) .
LT

H [ 55 ) @ a

2
/ 20 ($2) de

_ _1
% k2R (g (O)I7s

L

For the penultimate term in (6.8), we decompose both g and r according to (6.7):

(¢R) “Hl

2
H [ 55 25 oy dxH S == e e
< R |g(0) I3+

To estimate the contribution of the high-frequency term in the decomposition (6.7), we use (2.3). For
example, we write

| [ 25 (-0 - 1) by

(16, 525 1a + St ) (2 - ) 2 — br) (83 dn

1

Lrl,h
Using (3.43), (5.15), (6.5), and (2.11), we get
H/ i wéla v, ((zx — 0y - ,)
< ||[¢h’ k2= 62]q||L°°L°°H (s+1)||lﬂh(¢R) (2% a)égf;, r)”L}ILtZHSH

< & F D) g(0) 1+ [1g (0) |z -
Using also (5.16), we estimate

‘// /ik(fh;z) 2 —a)%—r) (¢§)’dxdrdh'

P (Ypa)
~ ” 4K;bh(; ||L°°L2H (Hl)”l//h(qu) ((2 - 6)2gj]y ”L}'lLtzH‘”

< KN WRD) Nz 1O s

— Y _§ §
< 12 g(0) 1z g (O)lls + k2 Tog?(26) g (0) 175 -

Arguing similarly, we also obtain

] < R Hg(0) s lg (0) L
Ll,h

H/ [lﬁh, Fypemry) 62 qlﬁh( ) (¢R)Ndx

< w2 1g (0) s Nl (0) s

[w8, %]qlﬁz r(¢x) dx

1
Lt,h
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and

P (Yiq) ’”
H [ Sy G
Lt,h
o 1 —(3
< R U91g(0) g llg(O) s + R k™G Tog? (26) 19 (0) 1

O’ (Ylq) ’
ol U (¢ dx
L

3 (32
<120 g(O) g lg (O)ls + 234 108 20 g (Ol

This leaves us to handle the high-frequency contribution to the penultimate term in (6.8), which
involves the combination

4K’g 6 & FPWEN\ 6 6 & RCT)) 6
ypey ([d/h’ gl e o+ v sz la + 2225 ) v

We illustrate the estimation of these contributions using the latter summand. Using (2.11), (6.5), and
(6.9), we get

| [t sala-ruso@rad <o 52 ol It G0 ol e

t.h

< 029 g (0) g g () 3.

P (Ypa) ’ P (ypa)
”/ 4K2_h62 "Plﬁg (¢%2) dx ~ “ Ar2 ’az ||L;>10Lt2[_1—s||q||L§°H‘”pHXS+l

t,h

3
< kg (0) s llg(O) 17y + 622 Tog? (26) (19 (0) 5 -

The proof may now be completed exactly as in the NLS case. O

7. Convergence of the difference flows
Our main goal in this section is to prove the following:

Proposition 7.1 (Difference flow approximates the identity). Let § > 0 be sufficiently small and fix
* € {NLS, mKdV}. Given Q C Bs NS that is equicontinuous in H* and » > 4, we have

g (e e VD g) - gl (i q) in C([=1,11 H*™) as k — oo,

uniformly for g € Q and h € R.
Proof for (NLS-diff). Applying Proposition 4.6, we see that

QF = {e!VHNs—Hud g - g e 0, 1 € R}

is equicontinuous in H®. By Proposition 3.2, for any » > 1, the map g — g2(x) is a diffeomorphism
from Bs — H**'; moreover, this map commutes with spatial translations. Thus, the set

{g12(%;q) : g € Q*} and so also {tﬁ}fglz(%;q) g€ Q', heR}

is equicontinuous in H**!. As a consequence, it suffices to show that

lim sup sup
K= 4eQ heR

=0. (7.1)

d x
i— (l/f 812(%;€ZJV(HNL57HNL5)CI))
LIH

dt
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Using the identities (3.12) for g1 and (3.11) for y, we may write

—812(%)" +2qrg1n(x) +2q°g21 (%) = =4 g12(x) — [1 +y(20)] (2% + d)q.
Thus, we may rewrite (4.35) as
11

d
ZEgIZ(%) = ;errj,

where we define

4 2,2 25+0
err; = Fg15(x), erry = 425 [1+7(x)] (4:;_(;?,
26+0) &2 3264
errs = [1+y(0)| 22204 erry = 2% 015 (%) 1L 1,

_ 16K % or g r
errs = ng(%)[4K2 32 A2—52  A2-52 4K2—62]’

Je)
erre = [ 355 + 16| g12(0) 795 725

_ 2 2 q
err7 = —8x°g12(%)d [m m]

8261 &%r
errs = 2812(%) g5 m’

erry = 2% [1+y(0)] | - 8137 (0) + 8157 (-0,

errio = - 25 [1+y (0] 137 (0 + 137 (=0,
erri1 = g12(0) | 257 (0124 + 25y (-0 4],

It remains to bound each of the terms err;. We will rely on the a priori estimate (4.12) and the local
smoothing estimate (5.18), which yield

lglines, = lgllezas +lgll oy < llgO)ls- (7.2)
We will also employ the estimates recorded in Corollary 5.7, as well as the bounds

lgll -y = k32D g(0) las, (73)

g2l o S < llg(0)|lzs  and IIV(%)IIXS%Sllq(O)llés, (7.4)

which follow from (2.9), (7.2), (3.33), and (3.35).

As x is fixed, we allow implicit constants to depend on this parameter. Throughout the proof, we will
take k > 2x. When it is convenient to argue by duality, we will write ¢ for a generic function in L{° H*
of unit norm.

Estimate for err;. We apply the estimate (3.24) to bound

iZerrill o < k282Gl men < €2 1Ol
Estimate for err,. Similarly, using duality and (3.27), we may bound

2%+ -2(1
(Al:;—é;gHL”H oo S K2 g (0) |1

||l//ll12err2||LrIH’4 $ “w}lzz[l +’Y(%)]“L;>0Hs+]
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Estimate for err;. We estimate
2+0) 0 (2+0)8* (¥ a)
i 11+ 7 ol CE2EA e < i1+ 7 01 =g 1y

+ il + 1105, 08 gl e

We will bound both of these terms using duality. Using (7.3) and (7.4), we get

(2%+0) 0% (y8 q)
i (1 + ¥ Gl =g o s supllo[t+yColl oz lall, oy

< [K‘1 +11g(0) 17| ‘5(2””|Iq(0)|IHs
< k3D 1g(0) s
Using instead (3.27) and (2.11), we may bound

g1+ y (ol L, 22228 1ql,,

2%+0) 6
R ] ] (O] P2

S S;P @1 +y (O]l s
Estimate for erry. Using L' ¢ H™* and H**! ¢ L* together with (3.24), we get

12 2 2 —2(1+s 3
lwilerrslly s < llgn ey |mgm e < x> g ).

Estimate for errs. Arguing as for errs, we may bound

12 2 d — (1425 3
gy errsl 1+ < & ||g12(%)||[‘1??x||4k2q*62“L;X’L2||4K2i162”L;X’LZ sk Y)H‘I(O)”Hs'

Estimate for errg. Using that L' ¢ H~* and Corollary 5.7, we may bound

ly32errsll < N1l [lvh 795 02||L2 < k3D g0,

Estimate for err;. We estimate

12 2([,,6 20,64
¥, err7||L11H,4 S K ”‘//;1812(%)8 [¢h4kz_3z 4K2r_52]HLt1H—4
21,6 6 22
+K ||¢’hg12(%)[lybh’a ][4K2q_(32 4K2r_az]HLtlH—4'
Using that L' ¢ H™*, we estimate the commutator term by

s gia(x) [y, 6°] ety ”L}H“‘

< K2||g12(%)”l‘f?x||4k2q—62||L;°H1||4K2q—62||Lt°°L2 < K_(1+2S)||q(0)”:;_15.

To estimate the remaining term, we argue by duality. Using (7.4), we have

(w8120 [0 2 7z s (7.5)
< K N1q(0)|lrs || VA2 = 02 [0, =5 =5 |

1
L2H+)
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Employing Lemma 2.8, breaking into Littlewood—Paley pieces and using Bernstein’s inequality, we
deduce that

2k 1
LHS(7.5) 5 lg(O)ls ), o Wiz N5 Il Whans lems-

N> <N

Invoking Corollary 5.7 and evaluating the resulting sum, we ultimately find
-2
err; < k3 [1g(0) |1
Estimate for errg. Using L' ¢ H™* and Corollary 5.7, we bound
& 2 -(2s
lZerrsly s < lgrzColly, Jvh 25517 < k@D llg() 1.
Estimate for errg. Using (3.27), (3.35), and (5.33), we may bound
_4(2s
I} ertollyg-s 5 67300 sup |22+ ) (011 + 7)) by, g Oy

_4
<« 3@ g (0) 17

Estimate for errjo. Arguing as for errg and using (5.36) in place of (5.33), we find

I3 2ermioll -+ < k3 sup 2+ 0) (@11 4y s, IO

_4
<k 3E g (0) -

Estimate for err;;. Using (3.24) and (5.35), we obtain

12 2 >4],,12 —4(2s5+1 5
[y, err11||Lt1H74 <K ||g12||L;fX||y(iK)[> ]'ﬁh ||Lt1x < k308 )“‘I(O)“Hs-

Collecting all our estimates for the error terms yields (7.1). O

Proof for (mKdV-diff). Tt suffices to show the following analogue of (7.1):

=0 (7.6)
LIH*

di (w}fgn(x; e’”(”m"dv’”rﬁm)q))
t

lim sup sup
K= 4eQ heR

Using the identities (3.12) for g1, and (3.11) for y, we may write

8k

— g12(%)"" + 6qrg12(x) + 644’ g2 (%) + 6rq’g12(%) — 4712 (%) + B g1 ()
=g12(%) [5’_‘; +4uqr +2rq’ — 2qr’] —[1+y()] [q” +2uq" +4(k* +%%)q — 2q2r].

As a consequence, we may write (4.36) as

— %) = err;,
ai? . !
J=1
where we define
835 8k 233 25¢+0 2 9%
err; = 2 o0n(x),  erry = 814y ()] S+ 42 [1 4y ()] 15 L
2%+0) &> 64453
errs = [1+y(0)] Z2259  erry = -8% 015 () 1L 10
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— 322 q or dq r
eIrs = “5_2 812(")[ I2_02 22— T I2_3% d2_ar |’

_ 16k _Or _
€rTe = ~7_ 812( )4;(2 32 12—

52r
err; = —16«> xg12(%) 4:(2 62 4K2 7t 4:(2 32 A2
Pq_ &

errg = 4xg12(x) P 32 yps) r327

_ ar g &r
erryg = 16« ng(%)I: Ax2— 62 Ak2-92 T AK2—O2 4k2-F2 |’

r q &r ]

errig = —8« 812(")6[4,(2 AR A28 |’

e _&r Pq _ _&r
€rry; = 2g12(%)[4 252 4k2-92  4xk2—02 4x2-2 |

5
errpy = -3 [1+y(x)] [gu(K)[Z“ - ga(-0)= - %qzr],

errys = =% [1+y (0] [ g2 + g1a(-0 =1,
errys = 2% 01260 |y ()2 4y (-0 241,
erris = < ¢15(x) [Y(K)[Z4] - 7(—/<)[Z4]],

2
errig = —F[1+y(0)]q’r.

To bound the error terms, we will rely on the a priori estimate (4.12) and the local smoothing estimate
(5.22), which yield

lgllmkav, = llglleeas + llglixsa < llg(O)llas. (1.7)
We will also employ the estimates recorded in Corollary 5.9, as well as the bounds
_1
lglixzs s« *Vllg(0)rrs, (7.8)

lgz()lixs2 < lgO)llas and Ny ()lixge < lg(0)lIz (7.9)

which follow from (2.9), (7.7), (3.33), and (3.35).

We will allow implicit constants to depend on x. Throughout the proof, we will take x > 2x. As
before, when arguing by duality, we write ¢ for a function in L& H* of unit norm.

Estimate for err;. We apply the estimate (3.24) to bound

12 -2 -2
[l el‘l’1||Lt1H_4 S k78120 e mss < k7 llq(0)[|as.

Estimate for err;. Similarly, using duality and (3.27), we may bound

loseresl] -

< 1+ Yo pron 1B oo + N5 o0

< 2 Ng(0) s
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Estimate for err;. We estimate
12 6 (2240)* (yfa)
(1% err3||Lt]H*4 < [lwpl1+yGol premr s “L}Ir4

+ g1+ yCollws, 28 1]l -

We will bound both of these terms using duality. Using (7.8) and (7.9), we get

(2%+0)0° (y8 q)
i (1 + ¥ Gl =gl o sup 611+ (el

_1
< [+ 1g Ol [k 2 * Vg (0) llas
< k2219 (0) s

To estimate the commutator term, we use (2.12) and (3.27), as follows:

(R U= T

2%+0) &>
< sup o1 +7Cllp e 10, G528 a2y < 172 Dlg(O) s

Collecting our estimates, we obtain
12 —-L(2s+1
gy 7errsll s < 622+ 11g(0) s

Estimate for erry. Using L' ¢ H™* and H**! ¢ L™ together with (3.24), we get
12 2 2 —2(L+s 3
ly, errall g < & ||812(%)||L;7X”ﬁ||my < k20 g(0) |1y
Estimate for errs. Arguing as for errs, we may bound
12 2 a —(142 3
lileresly s < Cllgr@ ey |tz e w2 e e <« 1a 0.
Estimate for errg. Using L' ¢ H™* and Corollary 5.9, we may bound
12 2 6__0 2 -1 3
vy, errell g+ < & ”ng(")”Lf?x“lﬁhmq”qx < &M g(0)]17,s-

Estimate for err;. Arguing as for errg, we may bound

|4K2 62||L°°L2Hwh Ix2= azan2
< k21 (0) 13-

Iy el s KCllg() ey,

Estimate for errs. Arguing as for errg again, we bound

12 6 & 2 —2( 1+ 3
lZerrsllzy s < NGl |vh 55z < 0 IO

Estimate for errg. Using (2.11) and then (7.7) yields
L2l - — 6 _
15 7 s s & Nalleeas + 67 |G lizpse < €7 HIg(O) s, (7.10)
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Analogously, but also breaking at frequency N = +/k, we find

&g —2-2 2 A71-2:
v % azHLZH s S K5 glls s + k2NN Wh ) <n e
+ NI () o (7.11)

< k1029 14.(0) s

Combining these bounds, we deduce that

”wh err9||L L -4 S K ||g12||LmH-‘+l||lph4K2 62||L2Hc+1Hw24gz_qaZHLt2H—l—s

< k7229 g (0) 3.

Estimate for errjo. Our goal, here, is to employ (5.28). Given ¢ € L;"’H“, we have

/Bq

22 ¢) 2%+9 2+
[¢W}112812] IR 4K2r 2 = m[% r, l//12 ‘ﬁu( 2081 1B

2740 | +mla.r ¢ v, prrr b

where the paraproduct m has symbol

&
mér-- 88 = Gar e

In this way, we see that

/¢l!/ 812 - B 4K2 62 Ax2— 52]dx

I ‘s PP FTOTS
L

t

and thence that
IIslf}ferrlollL;HfA < k2919 (0) 13-

Estimate for err;. Arguing as for (7.10), we first use (2.11) and (7.7) to see that

8 2% oo < Nl +llalixger S gl

and

A

6 &q —(142s — (142 —(142s
I sl oo < €2 gl brs + 6 gl < €2 1g(O) s

Thus,

||812(%)||L;'“H°‘+1”W?,%”L?Hsn“lﬁg 4[(('); (92||L2H (s+1)

K 2g (0) 7

Estimate for err;,. We first note that (3.27) and (3.35) imply

A

12
”'//h el'rll”Ltl['-r4

A

2%+ ) (811 + 70D |ukav, < 1+ Mgllkav, <1
for any ¢ € L;"’H4 of unit norm. Thus, it follows from (5.45) that

12 —(2s+1 3
Iy errially s <k~ *Vllg(0) 7.
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Estimate for err;3. Arguing as for err;, and using (5.44) in place of (5.45), we get

12 —(2s+1 3
o i2errislly s < €2 qO) 3.

Estimate for erry4. Using L! ¢ H™* together with (3.24) and (5.46), we get

1
liZerrisliz g < Cligley, Iy (=042, < 27D g0,

WX

Estimate for err;5. The argument, here, is essentially a recapitulation of the proof of (5.47). For
example, from (5.49), we have

il 8126y E0 e < TP lgnzlize Ia O < g (0)]1Fs.

In order to repeat the treatment of the y[*! terms given previously, we need one additional piece of
information, namely, that f/ defined by

2Kf_a = ¢ gia(x) 2,:]_3

satisfies

I flleems S Nglleens and || fllmkav, S Ngllmkav,

for every ¢ € L?"H4 of unit norm. These assertions follow readily from (2.16), (3.24), and (3.33). Thus,
we may conclude that

12 —(2s+1 5
o i2errislly g < Vg O3

Estimate for err;¢. Breaking at frequency N = +/« and using (7.7), we find

WS ql 2 < Nllgllzens + 2 lqllysa < x* g0l
Thus, arguing by duality and using (3.24), we estimate
los7errielic s < €2 lglez e 105417 00 sup 611+ Gl e
< < lg(O)lI7ss.-

Combining our estimates for all the error terms, we deduce (7.1), which then completes the proof of
the mKdV case of Proposition 7.1. O

8. Well-posedness

In this section, we prove Theorem 1.1. While we have already established the necessary prerequisites
to obtain global well-posedness in H® for —% < s < 0, we begin this section with one additional
equicontinuity result that will be applied to yield well-posedness at higher regularity.

This equicontinuity relies on a certain macroscopic conservation law, which we introduce through
its density

B(x) = qr - 2ep(x).
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That this density satisfies a conservation law follows readily from Corollary 4.14 and the conservation
of mass. The associated microscopic conservation law will be essential for proving local smoothing
estimates at positive regularity in the next section.

For later reference, we note that

’

512 () = %(q . .,). (8.1)
Using p, we prove the following analogue of Proposition 4.4:

Proposition 8.1. Let 0 < o < % Then there exists 6 > 0 so that for any q(0) € S satisfying
[lg(0)||;2 < 8, the solution q(t) of (NLS) or (mKdV) satisfies

lg()" 13,1 S 1g(0)' 1171 + &>~ %[l (017 (8.2)

uniformly fort € R and k > 1.
Proof. Using (3.24), (3.25), and (3.28), we get

- >3 — _
gl < % gl 182l < #72Malls IyGolis <7 gl

Consequently, using (3.39) and (4.14), we obtain

>3 _ — _
(2293 =)0 < 5728 gll e, andso B ()l s 762 q12, (8.3)

whenever 0 < § < 1 is sufficiently small. Employing (8.1) and (8.3), we get
£Re [ Pain) e = /1, + O gl

If o =0, wesimplysetx =«k. If 0 < 0 < %, we apply the estimate (2.7) to obtain

/ ”2U(iRe / 5<x;x)dX)%~||q'||ég-1+0(K2"Wllqlliz)-

As the mass and left-hand sides in these estimates are conserved under both (NLS) and (mKdV), the
claim (8.2) now follows. O

Proof of Theorem 1.1. In view of the history discussed in the Introduction, it suffices to treat regularities
—% < s < 0 for (NLS) and —% <s < ‘1—1 for (mKdV). With the tools at our disposal, we are able to give
a uniform treatment of both equations over the range (—%, %) so this is what we do. As the arguments
for (NLS) and (mKdV) are identical, we provide details in the case of (NLS).

We first consider initial data ¢ € H®, where —% <5 <0.Let0 < ¢ < 1 be sufficiently small and,
rescaling according to (1.3), assume that g € Bs. Let {g,}n>1 € BsNS sothatg, — gin H® asn — oo,

In view of Propositions 4.6 and 6.4, the set
Q= {e"Visg, in>1, re[-1,1]}

is equicontinuous and tight in H*. Further, by Proposition 4.4, we may find some C = C(s) > 1 so that
Q CBecsNS.

https://doi.org/10.1017/fmp.2024.4 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.4

76 B. Harrop-Griffiths, R. Killip and M. Visan

For fixed % > 4,let g12(-) = g12(%; ) and k > 2x. Let R > 1, ¢pg be as in Section 6, and yr € S be a
nonnegative function so that 1 < qﬁ% + X%e' We then bound

lg1a (e’ VNS g,) — gra(e VNS g || oo g
< llgna(e’ Vhisg,) — glz(etJVHhK’LSCIm)||L;°HS+1

tJ V(HNLs—

+ sup |l xrgi2(e s g) = xr812(9) ey

qeQ*

+sup [|prgia (e’ VNS
nx1

gl s,

where the set
Q" = {e”(’HNLs”HﬁLs)qn n>1, k>22x%, t,5s €[], 1]}.

By Propositions 4.4 and 4.12, we have Q* C B¢cs NS, while by Proposition 4.6, Q* is equicontinuous
in HS.
By Proposition 4.12 and the diffeomorphism property of Proposition 3.2, we have

tIVHY,

VHX
LSgp) — ng(etJ N

lim ”812(6 qum)”LfoHsH =0.
n,m—co

Using Proposition 7.1, we obtain

tJV(HnLs—

lim sup ||xrgi2(e ) g) = Xr812(q) ||l prsn

<r lim sup sup ||'//;112812(€”V(HNLS_ Ns) g) —l//;llzglz(Q)||L;°Hs+l =0.
K= geQ* heR

Finally, from the estimate (6.1) and the fact that Q € Bcs N S is tight, we have

VH,;
VHSS g | gt = 0.

lim sup[[¢rgi2(e
R—00 151
Thus, {g2(e’/ VNS g,)} is Cauchy in C([—1, 1]; H**!) and from the diffeomorphism property, we
conclude that {e’/VHNis g, 1 is Cauchy in C([—1, 1]; H*). This yields local well-posedness of (NLS) in
H?® on the time interval [—1, 1].
From the estimate (4.12) with « = 1, we obtain the estimate

lle" VNS gl 575 < Cligllms,

uniformly for t € Rand g € BsNS. Using this bound, we may iterate the local well-posedness argument
to complete the proof of global well-posedness in H*.

Now, consider initial data ¢ € H?, where 0 < o < % Let 0 < § < 1 be sufficiently small and
{gn}n>1 be asequence of Schwartz functions so that g, — ¢ in H? as n — co. After possibly rescaling,
assume that ||g,||;» < d foralln > 1.

Applying our well-posedness result with s = —%, the sequence of solutions {e’’ VANis g, 1 is Cauchy
inC([-1,1];H ‘zl’t). Applying the estimate (8.2), we see that the corresponding set Q is equicontinuous
in H”, and hence the sequence {e’/ VNisg, 1 is also Cauchy in C([~1, 1]; H). This gives local well-
posedness in H7 .

Employing the estimate (8.2) with x = 1, and the conservation of mass, we obtain the estimate

JVH,
lle" "™ glle < llgllme,
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uniformly for ¢+ € R and ¢ € S satistying ||g|[;2 < ¢. This suffices to complete the proof of global
well-posedness in H . O

9. Proof of Theorems 1.2 and 1.3

In this section, we prove Theorems 1.2 and 1.3. We start by considering (NLS):

Proof of Theorem 1.2. The estimate (1.7) follows from (5.12) and rescaling. It remains to prove the
continuity statement in Theorem 1.2.

Let 0 < § <« 1 be sufficiently small and, by rescaling, assume the initial data ¢g(0) € Bs. Let
{gn(0)}n>1 € Bs NS so that ¢,,(0) — ¢(0) in H® as n — oo, and denote the corresponding solutions
by q(t) = e’ Vs g(0) and g, (1) = e’/ VNS g, (0). Tt suffices to prove that ¢, — ¢ in X33 asn — oo

Decomposing into low and high frequencies, we may bound

_ _ 6
40 = il ooy < IP<u(gn = Gl ey + 259D SO 1P W

< Vllgn = gmllems +supsupll(Wng)'ll |,y

n>1heR L7H,

As the set {g,,(0)},>1 is equicontinuous in H*, we may apply (5.13) from Proposition 5.4 to obtain

lim supsup |(W§gn)'ll | .y =0.

K= n>1 heR LiHy
Finally, from Theorem 1.1, we have ¢g,, — ¢ in C([-1, 1]; H®) as n — oo, which completes the proof
that ¢, — ¢ in X5*3, O

The corresponding result for (nKdV), Theorem 1.3, is proved almost identically: When —% <s <0,

we replace Proposition 5.4 by Proposition 5.5, whereas at higher regularity we use the following:

Proposition 9.1. Let 0 < o < % Then there exists 6 > 0 so that for any q(0) € S satisfying
[lg(0)||;2 < 8, the solution q(t) of (mKdV) satisfies the estimate

lgllxon < llgO)llae. (CRY
Further, we have the high-frequency estimate
II(l!/flq)"llitzHF < ||q(0)'||2{71 + 27 g (0172, 92)

uniformly for h € R and « > 1.

To prove Proposition 9.1, we use the microscopic conservation law for p(x),
;P + Ox jmkav =0,
where the current
Jmkav (%) = (qr)” = 3(g'r" +¢°r%) = 2 jmkav (%)

We will first establish analogues of (5.4), (5.7), and (5.9). We then use these as in the proof of Proposition
5.5 to derive (9.1) and (9.2).
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We start with the analogues of the estimates (5.4) and (5.7).

Lemma 9.2. Let g € S satisfy ||qll;2 < 6, and let ¥y, be as in (5.2). Then

Re/ﬁ(x;%) ¥, (x) dx

2 -1 2
S Mgl +% 7 llallzz

Re [ T2y (xi wi) e = #3005 ", + O I+l
+ 0I5 g (14 g1+ lallz2) )

uniformly for x > 1 and h € R.

Proof. Using (8.1), we estimate

Re/ P12 (o 2) W (x) dx‘ =

£
RG/W

2 -1
S 1 e 1P < g1+ 7 gl

Combining this with (8.3) yields (9.3).
We turn now to (9.4). The quadratic part of the current satisfies

Bl o) = (Rlg.r1)” - 3Rg". 71,

where the paraproduct R[q, r] has symbol

in
R(¢,7) = 2(2% z.f) * 3@

Notice also that (8.1) shows
72 (x5 = Rlgur10) = & [ REma@rme™ € de an.

Taking the real part, we have

Re [ RIWGa). (0fr) v = =100 1.

and hence, we may write

Re mKdV(%)w dx = $3|I(w2q)’/”i[;1 +RC/ ﬁ[q’ 7‘] (';0}112 " dx
- 3Re/ (w}fﬁ[q',r'] ~R[(U5q)". (wgr)’]) dx

Proceeding as in the proof of (9.3), we may bound the second term on RHS (9.5) by

2 201,112
S Mgl + 2 Mgl

Re / P (%) (W1 (x) dx
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The remaining term on RHS (9.5) is given by

-3Re [ (PRlq"r] - RIGG0) 05)]) do

~3Re / (18, 52 1a - W) = W 5 la - W)'r - SA (W) 'r) d.

Integrating by parts, we may bound

Re [ (uRlq"r) - RIwSa) 4] ds
SN ez (1g g + 27 lgllz2) + ||q’I|f,;1 +%2llqll}2
which completes the proof of (9.4).
It remains to prove an analogue of the estimate (5.9). To this end, we denote
lalov = gl + ]2

which corresponds to the local smoothing norm in the case s = 0.

Lemma 9.3. Let g € C([-1, 1];S) satisfy ||q(0)||2 < 6. We have

Re [ jiz4 (%) 1,0;112 dx

-1c2 2
JmKdv <6 |||6I|||mKdV,

L

uniformly for x > 1 and h € R.

79

(9.6)

Proof. We first establish several variants of the estimates in Corollary 3.5, inspired by the decomposition

(9.12) below. Using that

1 1
f = < FUIAN 5
we obtain
3 EJRVITE T S Lot
Wil S NWRDNL W54l o < 02 lallikay-
Thus, using (2.31) and (3.20), we may bound
1 1ok 3
W8y Gllare < %767 gl ay-
From (3.28), we get
lyGolles, < %' 6%,
and thence using (2.31) again, we find
>3 - 2.3 3
gty COllpsrs < % MR allsrs IV les, < #7282 gl 2 gy
From the identity (3.31) and the estimate (9.9), taking 0 < § <« 1 sufficiently small, we obtain

6 3 3 -2
15y lz e < W38l e d ol e < % 26lqlmkay-

https://doi.org/10.1017/fmp.2024.4 Published online by Cambridge University Press

9.7

9.8)

9.9)


https://doi.org/10.1017/fmp.2024.4

80 B. Harrop-Griffiths, R. Killip and M. Visan

Consequently, using (3.12), we get

>3
luels J(%)||L2H1 S lglle 2 lpy ()l 2 +||('//h)'qzl£%>“u
< %26 N gllmkav + % Nglier2ly (Il < %26 g llmkav-

Recalling the identity (3.39) and using (3.11) to write v’ in terms of ¢, r, g12, g21, we may apply these
estimates to obtain

>3 _
o (2295 =201 < 2262 g cay - (9.10)

Using (2.31) and (3.12) again, we may bound

>3 — _
Ingis Ol s <% gl s Ry ()l < % 57 g e

3
t

Using the identity (3.32), we estimate

3]
a2y = e WY1 + 5

< x4

N

3
o Wl + ey e Whea ' 5

t t

g7 kv

Applying (3.12) once again, we obtain

>5 _
32815 Iy < Nallze 2y )l e < %76 gy

Finally, we use the identity (3.40) with the above estimates, as well as (3.11) to replace y’, to obtain

>5 _
2 (229 B30 < 26 gl - .11

We turn now to estimating the current. Using Corollary 4.14, we have

4 23 ’” >3
Tk 6o = =2ng” - (28) 5 v 2w (52)12°) (9.12)
— 422+ 0)q - (£2) 1 +4x2(2% —ayr- (g2
+ g r prey —dur’q £ -3¢%r

For the first two terms, we apply the estimate (9.10) to bound

H/ 2xq” - f lﬁ,llzdx

6 6
< x|y /I”LTZH,;'”'vbh(% 225

-1c2 6 -1
< 77 S N lnkav (150D N2zt + 10 Nt + % gl r2).

L
)[23]

which is acceptable.
We bound the sextic and higher order contributions of the remaining terms using (9.10) and (9.11),
as follows:

2 12 [>5]
S lglleeralley™(55) ey
Lt

-2
S 5 ”lqmm](dw

H/ 422+ 0)q - (%)[25] W2 dx
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>3
< wllalles il o v (£2) =2

H/ 4%q r- lﬁ,llz

L

24
Sxu o ”l‘ﬂ”mKdv

It remains to consider the contributions of

521) — 4y q- (512) (1] —2q2r2

err| = dxq’r - (35 prey

err; := —4x* (2% +d)q - (é’jly) Ly 422 - 9)r - (%)[31 -

For err;, we use the identity (3.38) to write

”

_ 2. 2_gq
Reerr) = q°r =+ qr' ;77

so we may bound

Re/ern d/,llzdx

-1 6 N\ 6 52
||Q||L°°L2”‘/’hLI||L4Lm( ”(lﬁhQ) ||Lt21-1;1 + ”[W;p m]antZ‘X)

L

< N lmcay (MWD Nz + 72N llcav )

which is acceptable.
Recalling the identities (3.20), (3.21), (3.22), and (3.38), we may integrate by parts to obtain

/errz z//}lz dx = / 42 (2% + )q - [l//}lz, ﬁ](r 5 - 5hs) dx
/4”2(2”_6)’ [d/h ’ Zx—a](q v 2;:1—6)‘1)‘

2 4 r’ r q 12
+/ 6% (27«:76 B P 'Q) 2%+0  2x—0 Yy dx

2,7 r ’ 12
_/2}‘ (‘1 "o T '2u—a)2u+a g Ui A

.49 12
+/‘1r 58 merd Un dx

We then bound each of these terms by applying (2.31) with (9.8) as follows:

Ll

H/ 42 +0)q - )0 i3] (r - 5l - 5 dx

2 12
< 2N 2x + )l oy Y3 55 (r i 3) 2

-1 -1c2 2
<% Nl 0312 o < %7 6
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1
L]

L

with identical estimates for the symmetric terms.

Combining the estimates for jiz4]

Jingay» We obtain the estimate (9.6). O

Proof of Proposition 9.1. We now argue as in the proof of Proposition 5.5, with p, jmkav replaced by
0, JmKdv, respectively, and the estimates (5.7), (5.4), (5.9) replaced by the estimates (9.3), (9.4), (9.6),
respectively, to obtain

1 2 -1 2
N5 sy < W50 sy + (14 D (101 477 12 2)
#2782 ks

where the implicit constant is independent of #, x, €. Taking ¢ sufficiently small to defeat the implicit
constant above and using (8.2) and the conservation of mass, we may bound

II(elth)”IleH_l < g (0117, + M lg(O)I7 + 6% g%

Arguing as in Proposition 5.5 and using the conservation of mass to bound the low frequencies, we
obtain the est1mates 9.1) and (9.2) in the case o = 0.
If 0 < o < 5, we first use (9.1) with o = 0 to bound ||¢||x: and then integrate using (2.7) to obtain

1W50) 12 s = / PN W2y 2 < 1g(O) I ms + 27 Nlg ()2,
K
and the proof of the estimates (9.1) and (9.2) is completed similarly. |

A. Ill-posedness

The key observation that drives everything in this section is the following:
Lemma A.1. Ify : R — C is a Schwartz function and ¥, (x) := Ay (Ax), then

1 co=-1
B .. 2 2
/;l/(x) dx =0 implies ||Yallzyo g Su {/1_1 L0 o< _% , (A.1)
whereas
) ) logd :0= -1
/lf/(x) dx #0 implies ||1//,1||?_,<,(R) 2y { 21 (A.2)
1 o< bl

uniformly for A > 2.

This follows from direct computation. Better bounds are possible in the oo < —5 case of (A.1), but
simplicity is preferable.

In order to exploit Lemma A.l, we need solutions for our flows that initially have mean zero but
later have nonzero mean. For just (NLS) or (mKdV), this is trivial. However, we wish to consider all
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evolutions in the hierarchy simultaneously (excepting translation and phase rotation). For this reason, it
is convenient to work with the generating function A («) for the Hamiltonians and then expand in inverse
powers of k. Under the A (k) flow,

£ qu:i/g12(x;K) dx. Moreover, /gllij(x;K)dx:—ﬁ/qu. (A.3)

These assertions follow from (4.20) and (3.20), respectively. Delving further, shows
+ > VAR R - C+1 _ o 0+1
[elaa= 223 [ (@) am-0a@dm S dean. a4
=0

Proposition A.2. Both (NLS) and (mKdV) exhibit instantaneous inflation of the H? norm, in the sense
of (1.4), for every o < —%. Indeed, this also holds for all higher flows in the hierarchy (focusing or
defocusing).

Proof. We first consider a fixed Schwartz solution # : R X R — C of our chosen equation. For even
numbered Hamiltonians of the hierarchy, such as (NLS), we choose initial data itg(¢) = a&?e™¢ * where
a > 0 will be chosen small shortly. For odd numbered Hamiltonians, such as (mKdV), we choose
(&) = alé* +&3)e ¢ * The key criterion for selecting these initial data and for choosing a > 0 is that

/ u(0,x)dx =0 but / u(ty,x)dx #0 (A.S5)

for some #; > 0 and any sufficiently small a > 0. The existence of such a #; will follow if we show
nonvanishing of the cubic terms in the time derivative of f u at time ¢ = 0. This is precisely the role of
(A.4).

For even numbered Hamiltonians (i.e., £ even), the integrand in (A.4) is sign definite, and so (A.5) is
clear. For odd numbered Hamiltonians, we first symmetrize under <> £ and then under simultaneous
inversion in 77 and &; this then leads to an integrand with a sign-definite imaginary part.

In the case o = —%, we choose ¢ = au, using the rescaling of u given by (1.3): One chooses a small
to guarantee that the initial data have size & and then A large to guarantee that 17"#; < & and that the
norm exceeds ! at this time.

When o < —%, we need an extra idea: Consider the solution g with initial data

N
q(0,x) = Z auy(0,x +nl).

n=1

Note that ), au,(t,x + nL) is almost a solution and becomes more so as L — oo. As all equations in
the hierarchy are known to admit a perturbation theory in high regularity spaces [20, 34], we know
that the approximate solution differs little from ¢ (¢, x) uniformly for ¢ € [0, 17"¢] provided we take
L large enough. The ill-posedness result now follows by choosing N and L large enough to guarantee
large norm at time A~""¢; and ensuring that A is large enough to place this time in [0, £] and to make
the norm small at time ¢ = 0. O

Evidently, this argument cannot be applied to (mKdVy), because / q is conserved. Nevertheless, we
are able to show the following form of norm inflation in the focusing case:

Proposition A.3. For any sequence of times t, — 0, there is a sequence of (real-valued) Schwartz-class
solutions q, to focusing (mKd V) that satisfy

lga O,y 1 and llga(en)ll, = . (A6)

1
2

Moreover, instantaneous norm inflation in the sense of (1.4) holds when o < —%.
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Note that at time zero, these solutions belong to the homogeneous Sobolev space; this is a stronger
requirement than belonging to H~'/>(R) and enforces that / ¢n(0,x) dx = 0. (Unlike for (NLS) and
(mKdV), this mean-zero property is preserved by (mKdVzy).) Nevertheless, the (weaker) inhomogeneous
norm diverges.

Foro = — %, we show norm inflation for initial data of size one, rather than for arbitrarily small initial
data. It is only in this sense that the result is weaker than (1.4).

Proof. All that is required is a careful inspection of the two-soliton solutions

2 cosh(x — t) — cosh(2x — 8¢)

d t,x) = (1, Ax).
cosh(3x — 9¢) + 9 cosh(x — 7¢t) — 8 and  ua(t, x) u( %)

u(t,x) =6

Fix o < —%. As rescalings of a single mean-zero Schwartz function,

2 - 2 -1, 1420
Ilua(O)IlH_%(R)~1 and  [ua(O)llgom S 47 +4

uniformly for A > 1. On the other hand, for /l%tn > 1, we see that the solution resolves into two sign-
definite Schwartz solitons (each of width ~ A;,!) separated by a distance ~ A2t,,. In this way, one readily
shows that

2 - 2
llua, (t")”H-%(R) ~log(d,) and |lua, ()o@ 2 1.

The claim (A.6) follows at once by choosing 4,, appropriately. Norm inflation in H (R) follows via the
same summation device employed in the proof Proposition A.2. O
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