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1. Introduction

It is well known that, for any n ∈ N, the ring Mn(D) of n×n matrices over a division ring
D is simple, that is, it has no non-trivial ring ideals. As a semigroup, however, Mn(D)
is not simple. Indeed, Mn(D) has finitely many semigroup ideals Ik, 0 � k � n, where

Ik = {A ∈ Mn(D) : rank(A) � k}.

Clearly,
I0 = {0} ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In = Mn(D);

moreover, the Rees quotients Ik/Ik−1 of successive ideals, 1 � k � n, are completely 0-
simple. The ring Mn(D) possesses further interesting ‘semigroup’ properties: by a result
of Laffey [16], proved by J. A. Erdös [4] in the case when D is a field, every singular
element of Mn(D) is a product of idempotents.

The matrix ring Mn(D) is of course isomorphic to the ring of linear maps of any
n-dimensional vector space V over D, so that, as a semigroup, Mn(D) is isomorphic
to the endomorphism monoid EndV of V . Vector spaces over division rings are partic-
ular examples of (universal) algebras belonging to the class of v∗-algebras. These first
appeared in an article of Narkiewicz [19] and were inspired by Marczewski’s study of
notions of independence, initiated in [18] (see [14] and the survey article [21]). More
recently, v∗-algebras have been referred to as independence algebras [12]. Such algebras
may be defined via properties of the closure operator 〈·〉, which takes a subset of an
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algebra to the subalgebra it generates. In an independence algebra, 〈·〉 must satisfy the
exchange property, which guarantees that we have a well-behaved notion of rank for
subalgebras and hence for endomorphisms, generalizing that of the dimension of a vec-
tor space. Furthermore, independence algebras are relatively free. Precise definitions and
further details may be found in § 2. We remark that free G-acts, for any group G, are
further examples of independence algebras. A study of endomorphism monoids of inde-
pendence algebras was initiated by the author in [12], where it is shown that, for an
independence algebra A of finite rank, EndA has the same ideal structure as EndV for
a finite-dimensional vector space V . Subsequently, Fountain and Lewin [9] proved that
every ‘singular’ endomorphism of A is a product of idempotent endomorphisms.

The endomorphism monoid of an independence algebra A is regular. But, perhaps
surprisingly, regularity of EndA is not necessary for the above results concerning idem-
potent generation. For example, the results of Laffey [16] show that if A is a free module
of finite rank n over a Euclidean domain, then the set of non-identity idempotents of
EndA generates the subsemigroup of endomorphisms of rank strictly less than n.

Fountain and Gould introduced in [6] a class of algebras called stable basis algebras
that generalize free modules over Euclidean domains, in an attempt to put the results of
Laffey, and later work of Fountain [5] and Ruitenberg [20], into a more general setting,
an aim achieved in [8]. Stable basis algebras are, in particular, relatively free algebras in
which the closure operator PC (pure closure) satisfies the exchange property. Certainly,
independence algebras are stable basis algebras. Finitely generated free left modules over
Bezout domains and finitely generated free left T -sets over any cancellative monoid T such
that finitely generated left ideals of T are principal are examples of stable basis algebras.
We recall that a Bezout domain is an integral domain (not necessarily commutative)
in which all finitely generated left and right ideals are principal. As for independence
algebras, rank is well defined for subalgebras and endomorphisms of basis algebras, where
now the rank is defined via the operator PC. The endomorphism monoid of a stable
basis algebra of finite rank has a ∗-ideal structure analogous to the ideal structure of the
endomorphism monoid of a finite-rank independence algebra. Further details are given
in §§ 2 and 3.

We remind the reader that if A and B are algebras such that the universe (that is, the
underlying set) of B is contained in the universe of A, then B is a reduct of A if every
basic operation of B is the restriction to B of a basic operation of A. Let R be a Bezout
domain and let D be its division ring of (left) quotients. If F is a free module of finite
rank n over R, then it is well known that F is a reduct of V , where V is a vector space
over D: we have already observed that V is an independence algebra. On the other hand,
if B is a stable basis algebra having only unary and nullary basic operations, then the
results of [6] show that B is a reduct of an independence algebra. The first aim of this
paper is to show that every stable basis algebra satisfying the distributivity condition
is a reduct of an independence algebra. We remark that the distributivity condition is
satisfied for all known examples of basis algebras that are not independence algebras
and for the examples of independence algebras mentioned above. We enlarge upon this
discussion in § 4.
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Classical ring theory tells us that if R and D are as in the preceding paragraph, then
Mn(R) has a ring of (left) quotients Mn(D), that is, Mn(R) is a (left) order in Mn(D).
Of course, the endomorphism monoid of an arbitrary algebra, indeed of an arbitrary
independence algebra A, need not be a ring, so it makes little sense to talk of left orders
in EndA in the sense of ring theory. Help is at hand, however, in the notion due originally
to Fountain and Petrich [11] of a semigroup of (left) quotients, which we explain in § 3;
if Q is a semigroup of (left) quotients of S, then we say that S is a (left) order in Q.
The second aim of this paper is to show that if B is a stable basis algebra of finite rank
n satisfying the distributivity condition, then EndB is a left order in EndA, where A is
the independence algebra we have constructed, of which B is a reduct.

If a semigroup S is a left order in a semigroup Q, then we hope that the structure of S

is closely related to that of Q. This is certainly true if S has non-empty intersection with
every H-class of Q, a condition guaranteed if S is straight in Q (see § 3). Our final aim is
to consider when EndB is straight in EndA, where B is a stable basis algebra of finite
rank n satisfying the distributivity condition and A is the independence algebra we have
built from B. It might be anticipated that EndB would always be straight in EndA,
for we know from [7] that EndB is certainly a straight left order in some semigroup.
We know that, for any such B, the monoid T of non-constant unary term operations
is a cancellative monoid that is right reversible (or left Ore), that is, for any a, b ∈ T

there exist c, d ∈ T with ca = db. The property of left reversibility is defined dually.
Perhaps surprisingly, we show that EndB is straight in EndA if and only if T acts by
isomorphisms on the constant subalgebra of B and (if n � 2), T is also left reversible.

The structure of the paper is as follows. In § 2 we give a brief summary of the relevant
definitions and properties associated with independence algebras and basis algebras. Sec-
tion 3 contains the semigroup-theoretic results needed for this paper. In particular, we
recall Green’s relations and their ∗-generalizations and their realizations in EndA and
EndB, where A is an independence algebra and B is a stable basis algebra. The final
three sections contain our results as outlined above. That is, given a stable basis algebra
B satisfying the distributivity property, we construct in § 4 an independence algebra A

of which B is a reduct. In § 5 we show that (if B has finite rank) EndB is a left order
in EndA and we conclude in § 6 by addressing the question of when EndB is straight in
EndA.

2. Independence algebras and basis algebras

By an algebra A we mean an algebra in the sense of universal algebra. Since this paper is
concerned with two special classes of algebras, namely independence and basis algebras,
we briefly recall their construction and make note of some of their properties for later
reference; further details may be found in [7, 8, 12]. We refer the reader to [3, 14, 17]
for standard concepts of universal algebra. A constant in an algebra A is the image of a
basic nullary operation.

Independence and basis algebras are approached via closure operators, defined below.
In the case of independence algebras we use the standard subalgebra closure operator 〈·〉,
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whereas for basis algebras we make use of the operator PC. These interrelated operators
coincide for an independence algebra, but are distinct for a general basis algebra.

Let A be a set and let C : P(A) → P(A) be a function, where P(A) is the set of all
subsets of A. Then C is a closure operator on A if C satisfies the following conditions for
all X, Y ∈ P(A):

(i) X ⊆ C(X);

(ii) if X ⊆ Y then C(X) ⊆ C(Y );

(iii) C(X) = C(C(X)).

A subset of A of the form C(X) is said to be closed.
If A is any algebra, then 〈·〉 is a closure operator on A, where, for all X ⊆ A, 〈X〉 is the

subalgebra of A generated by X. Where there is more than one algebra in question and
danger of ambiguity we denote the operator 〈·〉 on A by 〈·〉A. We remark that if A has
non-empty set of constants U , then 〈∅〉 = 〈V 〉 = 〈U〉 for any V ⊆ U , and 〈∅〉 consists of
those elements a for which there is a unary term operation with unique value a (see, for
example, [14, p. 40, Corollary 3]). If A has no constants, then we make the convention
that ∅ is a subalgebra, so that in this case 〈∅〉 = ∅. We say that A is constant if A = 〈∅〉.
More generally, it is clear that, for any subset X of an arbitrary algebra A, 〈X〉 is the
set of terms that can be built from the elements of X. In view of this, it is easy to see
that 〈·〉 is always an algebraic closure operator, where a closure operator C on a set A is
algebraic if, for all X ⊆ A,

C(X) =
⋃

{C(Y ) | Y ⊆ X, |Y | < ℵ0}.

A closure operator C on a set A satisfies the exchange property (EP) if, for all X ⊆ A

and x, y ∈ A,

if x /∈ C(X) but x ∈ C(X ∪ {y}), then y ∈ C(X ∪ {x}).

Perhaps the most familiar example of a closure operator with (EP) is 〈·〉 on a vector
space. Where there is no danger of ambiguity we say that an algebra A satisfies (EP) if
〈·〉 does so.

Let C be a closure operator on a set A. A subset X of A is C-independent if x /∈
C(X \ {x}) for all x ∈ X. In case A is an algebra and C is 〈·〉, we say that a C-
independent subset is independent. Clearly, for a vector space, a subset is independent if
and only if it is linearly independent.

Algebraic closure operators that satisfy the exchange property are intimately connected
with abstract dependence relations. Translating results of [3, § VII.2] to the language of
algebraic closure operators yields the following result.
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Lemma 2.1 (Cohn [3, Lemma VII.2.2]). Let C be an algebraic closure operator
satisfying (EP) on a set A and let Y ⊆ X ⊆ A. Then the following conditions are
equivalent:

(i) Y is a maximal C-independent subset of X;

(ii) Y is C-independent and C(Y ) = C(X);

(iii) Y is minimal with respect to C(Y ) = C(X).

The next result is again classical, quoted here from [6].

Theorem 2.2 (Cohn [3] (cf. [6, Theorem 1.4])). Let C be an algebraic closure
operator satisfying (EP) on a set A, and let X ⊆ Y ⊆ A. If X is C-independent, then
there is a C-independent subset Z with X ⊆ Z ⊆ Y and C(Z) = C(Y ).

Let C be an algebraic closure operator satisfying (EP) on a set A and let Y ⊆ A; the
C-rank of Y is the cardinality of any maximal C-independent subset of Y . As explained
in [6], classical results of universal algebra (see, for example, [3]) give that the C-rank of
Y is well defined. Clearly, C-rank is monotonic and, from Lemma 2.1, for any X ⊆ A,
C-rank(X) = C-rank(C(X)). Again we refer to our canonical example of a vector space,
where the 〈·〉-rank of a subspace is its familiar dimension. In this paper we frequently
refer to 〈·〉-rank more simply as rank.

We need one more concept in order to define independence algebras, which relates to
free generators. Let A be an algebra. A subset X of A is A-free if any map from X to A

can be extended to a morphism from 〈X〉 to A. As noted in [14], if |A| > 1, then every
A-free subset is independent. We say that the free basis property (FB) holds for A, if
every independent subset is A-free. An independence algebra is an algebra A satisfying
(EP) and (FB). An independence algebra V is therefore certainly relatively free, that
is, it is a free algebra in the variety it generates. As noted in § 1, vector spaces are the
archetypical example of independence algebras. Notice that any constant algebra satisfies
vacuously the conditions required to be an independence algebra.

The term ‘independence algebra’ was introduced in [12], where it is remarked that
they are precisely the v∗-algebras of Narkiewicz [14,19]. The aim of [12] and subsequent
papers such as [1,9,10] was to investigate the structure of the endomorphism monoid
EndA of an independence algebra A. Any such monoid has an ideal structure analogous
to that of the monoid of linear maps of a vector space. In the case where the algebra has
finite rank, Fountain and Lewin prove in [9] that, as was already known for vector spaces,
every singular endomorphism can be written as a product of idempotent endomorphisms.
By singular, we mean that the rank of the image of an endomorphism is strictly less than
the rank of the algebra. As remarked in § 1, other algebras that are not independence
algebras satisfy an analogous property, most particularly the endomorphism monoid of
a finite-dimensional free abelian group. This phenomenon led to the development of the
second class of algebras we consider, namely basis algebras.

Essentially, basis algebras are approached in an analogous way to independence alge-
bras, but with the closure operator 〈·〉 replaced by the operator PC.
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For an element a of an algebra A and a subset X of A we write a ≺ X if

a ∈ 〈∅〉 or 〈a〉 ∩ 〈X〉 �= 〈∅〉

and we set
PC(X) = {a ∈ A | a ≺ X}.

The operator PC need not be a closure operator [6, Theorem 1.6]. Where it is, it is
algebraic and the closed subsets are subalgebras. In this case we refer to PC-independent
subsets as directly independent. As remarked in [6], for any X ⊆ A we have that 〈X〉 ⊆
PC(X) and directly independent sets are independent, although the converse is not true
in general. We say that A is a weak exchange algebra if PC is a closure operator satisfying
(EP); in this case we say that A satisfies the weak exchange property (WEP). Subsets
of A consequently have well-defined PC-rank. We require the following result from [6],
most of which is classical and can be taken from [3].

Lemma 2.3 (Fountain and Gould [6, Corollary 1.11 (Corollary 1.12 of
revised version)]). Let X be a subset of a weak exchange algebra A. Then

(i) PC-rank(〈X〉) = PC-rank(X) = PC-rank(PC(X)) � |X|;

(ii) if X is finite and PC-rank(X) = |X|, then X is directly independent.

From [6, Lemma 2.2 (Lemma 2.3 of revised version)], if A is a non-trivial algebra with
constants, or without constants but having no constant unary term operations, then
every A-free subset is directly independent. A weak independence algebra A is a weak
exchange algebra in which every directly independent set is A-free.

The monoid T1 of unary term operations of a weak independence algebra A is of
particular importance to us. We let

TC = {κc : c ∈ 〈∅〉},

where κc denotes the constant map with image c ∈ C and set

T = T1 \ TC .

Clearly, if A has no constants, then TC = ∅ and T = T1.

Proposition 2.4 (Fountain and Gould [6, Proposition 6.2 (Proposition 5.2
of revised version)]). Let A be a weak independence algebra with constants such that
A is not constant, that is, A �= 〈∅〉. Then, for t ∈ T1, the following are equivalent:

(i) t = κc for some c ∈ A;

(ii) t(x) ∈ 〈∅〉 for all x ∈ A;

(iii) t(x) ∈ 〈∅〉 for some x ∈ A \ 〈∅〉.

We say that a non-constant weak independence algebra A is torsion-free if each t ∈ T

is injective. We declare a constant algebra to be torsion-free.
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Proposition 2.5 (Fountain and Gould [6, Proposition 6.4 (Corollary 5.5 of
revised version)]). Let A be a non-constant torsion-free weak independence algebra.
Then TC is a prime ideal of T1, and T is a cancellative right reversible monoid.

An A-free subset X of an algebra A is a basis of A if X ∩ 〈∅〉 = ∅ and X gener-
ates A. It follows from the results of [6] that a basis of a subalgebra of a torsion-free
weak independence algebra is exactly the same thing as a generating set that is directly
independent.

In a weak independence algebra A a pure subalgebra is a subalgebra B that is PC-
closed, that is, such that B = PC(B).

Lemma 2.6 (Fountain and Gould [6, Corollary 5.4 (Corollary 6.4 of revised
version)]). Let A be a torsion-free weak independence algebra. If X is a basis for A and
Y ⊆ X, then 〈Y 〉 is pure.

A basis algebra A is a torsion-free weak independence algebra which satisfies the fol-
lowing condition:

(PEP) if P Q are pure subalgebras in A with P ⊆ Q, and X is a basis for P , then there
is a basis Y for Q with X ⊆ Y .

It follows from this definition that every pure subalgebra of a basis algebra has a basis
and, in particular, every basis algebra has a basis.

It is worth pausing to make some remarks concerning PC-rank and the cardinality of
bases. Let B be a basis algebra and let C = 〈X〉 be a subalgebra of B. If X is a basis for
C, then we have observed that X is a directly independent generating set for C. Since
X generates C we see that X is maximal directly independent in C, in other words, X

is a PC-basis for C. Consequently, |X| = PC-rank(C) and C ⊆ PC(X) = PC(C) with
the inclusion being an equality if and only if C is pure.

Suppose now that A is a basis algebra, PC-rankA = n and B is a pure subalgebra of
A with PC-rankB = n. Since any basis of B can be extended to a basis of A, we must
have that A = B.

Finally, we say that a basis algebra A is stable if every subalgebra of A having a
generating set of cardinality at most PC-rank A has a basis.

Independence algebras are stable basis algebras. Indeed, in an independence algebra
PC(X) = 〈X〉, so that rank(X) = PC-rank(X) for any subset X. If R is a Bezout
domain, then a free left R-module of finite rank is a stable basis algebra [6]. Our third
canonical example of a stable basis algebra is a finitely generated free left T -act over a
cancellative principal left ideal monoid T .

3. Left orders in semigroups: semigroups of left quotients

We present here a brief resumé of the semigroup theory needed for the remainder of this
paper, and refer the reader to [15] for further details.

For any monoid S (that is, a semigroup with identity), the preorder �L is defined by
the rule that a �L b if and only if Sa ⊆ Sb; the equivalence relation associated with �L
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is Green’s relation L. The relations �L and L are relations of right divisibility, for it is
easy to see that, for elements a, b ∈ S, a �L b if and only if a = sb for some s ∈ S, and
aL b if and only if a = sb, b = ta for some s, t ∈ S. The preorder �R and associated
equivalence R are defined dually, using principal right ideals of S. The intersection of L
and R is denoted by H and their join by D; since L and R commute, D = L ◦ R. The
following crucial result is due to Green.

Theorem 3.1 (Green [15, Theorem 2.2.5]). Let S be a monoid. For any a ∈ S, a

lies in a subgroup of S if and only if aH a2.

For the endomorphism monoid of an independence algebra A, �L and �R, and so L
and R, have particularly pleasant realizations. We recall that, for any map α : X → Y ,
Ker α is the equivalence relation on X defined by the rule that

x Ker α y ⇐⇒ xα = yα.

Proposition 3.2 (Gould [12, Proposition 4.5]). Let A be an independence algebra.
Then, for any α, β ∈ EndA,

α �L β ⇐⇒ Im α ⊆ Im β

and

α �R β ⇐⇒ Ker β ⊆ Ker α.

Consequently,

α Lβ ⇐⇒ Im α = Im β

and

α Rβ ⇐⇒ Ker α = Ker β.

Let A be an independence algebra. We define the rank ρ(α) of α ∈ EndA to be the
rank of Imα. The following result is a consequence of the ideal structure of EndA, as
presented in [12].

Proposition 3.3 (Gould [12, Proposition 4.5, Theorem 4.9]). Let A be an
independence algebra of finite rank and let α, β ∈ EndA. Then

(i) ρ(α) = ρ(β) if and only if αDβ,

(ii) α Lα2 if and only if α Rα2 if and only if α H α2,

(iii) if α �L β and ρ(α) = ρ(β), then α Lβ, dually for �R and R.

It follows from Proposition 3.3 that for an independence algebra A of finite rank,
EndA is local, that is, for any α ∈ EndA, α L IA if and only if α R IA, where we follow
standard convention in denoting by IA the identity map on A. For, if α ∈ EndA and
α L IA, then as L is right compatible with multiplication, α2 Lα, whence α2 H α so that,
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by Theorem 3.1, α lies in a subgroup G. Let ε be the identity of G. Then ε L IA, from
which it follows that ε = IA and α H IA. Dually, if α R IA, then we again obtain that
α H IA.

To make remarks corresponding to those in Propositions 3.2 and 3.3 for basis algebras,
we must consider the ∗-generalizations of Green’s relations.

Let S be a monoid. The relation �L∗ on S is defined by the rule that a �L∗ b if and
only if, for any x, y ∈ S,

bx = by =⇒ ax = ay.

It is clear that �L∗ is a preorder; the associated equivalence relation is denoted by L∗.
The relation L∗ has another characterization, namely that aL∗ b if and only if aL b

in some oversemigroup of S; this may easily be justified by employing the left regular
representation of S. The relations �R∗ and R∗ are defined dually. We continue the
analogy with the notation for Green’s relations by putting H∗ = L∗ ∩ R∗ and D∗ =
L∗ ∨ R∗. Unlike the case for Green’s relations, L∗ and R∗ do not, in general, commute.

For a stable basis algebra B we define the rank ρ(α) of an element α ∈ EndB to be
the PC-rank of the image of α. As commented in § 2, there is no danger of ambiguity
here, since in an independence algebra, rank and PC-rank coincide.

Proposition 3.4 (Fountain and Gould [7, Lemmas 4.1 and 4.5]). Let B be a
stable basis algebra. Then for any α, β ∈ EndB,

α �L∗ β ⇐⇒ PC(Im α) ⊆ PC(Im β)

α �R∗ β ⇐⇒ Ker β ⊆ Ker α.

Consequently,

α L∗ β ⇐⇒ PC(Im α) = PC(Im β)

and

αR∗β ⇐⇒ Ker α = Ker β.

Proposition 3.5 (Fountain and Gould [7, Theorems 4.9 and 7.4]). Let A be
a stable basis algebra of finite rank. Then R∗ ◦ L∗ = L∗ ◦ R∗ so that, consequently,
D∗ = L∗ ◦ R∗. Further, for any α, β ∈ EndB:

(i) ρ(α) = ρ(β) if and only if αD∗β;

(ii) α L∗ α2 if and only if αR∗α2 if and only if α H∗ α2;

(iii) if α �L∗ β and ρ(α) = ρ(β), then α L∗ β; dually for �R∗ and R∗.

A ∗-ideal of a monoid S is an ideal that is a union of L∗-classes and R∗-classes. In a
stable basis algebra B of finite rank n there are n + 1 ∗-ideals, namely Ik, 0 � k � n,
where

Ik = {α ∈ EndB : rankα � k}.
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The Rees quotients Ik/Ik−1 are the non-regular analogue of completely 0-simple semi-
groups, being isomorphic to Rees matrix semigroups over cancellative monoids. We do
not pursue these ideas here, but the interested reader may find further details in [7].

Unlike the case for independence algebras, in a stable basis algebra B not all sub-
algebras, hence not all images of endomorphisms, are pure. Moreover, in general, not
every subalgebra of B will have a basis.

Proposition 3.6 (Fountain and Gould [7, Corollary 4.4]). Let B be a stable
basis algebra and let α ∈ EndB. Then Im α has a basis. Moreover, if α is idempotent,
then Im α is pure in B so that Im α has a basis that can be extended to a basis for B.

We end this section by giving the necessary background on the concept of a semigroup
of left quotients, as introduced by Fountain and Petrich in [11]. We refer the reader
to [13] for further details. Let S be a semigroup. An element a of S is square-cancellable
if aH∗ a2. By a remark following the definition of Green’s ∗-relations above, together
with Theorem 3.1, we see that being square-cancellable is a natural necessary condition
for an element of S to lie in a subgroup of an oversemigroup. Suppose now that S is a
subsemigroup of a semigroup Q. Then Q is a semigroup of left quotients of S and S is a
left order in Q if every q ∈ Q can be written as q = a�b, where a, b ∈ S and a� denotes
the inverse of a in a subgroup of Q, and if, in addition, every square-cancellable element
of S lies in a subgroup of Q. In the case that every q ∈ Q can be written as q = a�b in
Q, where a, b ∈ S and aR b, then we say that S is straight in Q.

If Q is a group, then our definition of a semigroup of left quotients coincides with the
classical notion of group of left quotients. The next theorem is due to Ore and Dubreil.

Theorem 3.7 (Ore and Dubreil [2, Theorem 1.24]). A monoid T has a group
of left quotients if and only if it is cancellative and right reversible.

We will make repeated use of the classical ‘Common Denominator Theorem’ for a
group of left quotients, easily proved via an inductive argument.

Theorem 3.8. Let T be a left order in a group G. Then for any g1, . . . , gn ∈ G, there
exist a, b1, . . . , bn ∈ T such that gi = a−1bi for 1 � i � n.

4. A stable basis algebra B as a reduct of an independence algebra A

Throughout this section B denotes a non-constant stable basis algebra with monoid of
non-constant unary term operations T having identity 1 (so that 1 is the identity map
IB on B). We may regard B as a left T -act, that is, there is a map T × B → B, where
(α, b) �→ αb = α(b), such that 1b = b and α(βb) = (αβ)b for all b ∈ B and α, β ∈ T . We
assume in addition that B satisfies the distributivity condition, which says that for all
α ∈ T and n-ary basic term operations s, where n � 2, we have

α(s(x1, . . . , xn)) = s(α(x1), . . . , α(xn))

for all x1, . . . , xn ∈ B. Our aim is to show that B is the reduct of an independence
algebra A.
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Before proceeding, we make some remarks concerning the distributivity condition.
Certainly, free modules over rings, and S-sets over monoids (hence our canonical examples
of stable basis algebras), satisfy this condition. We have observed that all independence
algebras are stable basis algebras. Independence algebras, under the original name of
v∗-algebras, were completely determined in the 1960s; we refer the reader to [21] for
the details. One may then ask which independence algebras (other than vector spaces
and free G-sets over a group G) have the distributivity property. What we are trying
to ascertain is whether or not it is possible, given an arbitrary independence algebra,
to pick a generating set of basic term operations which will have the property that the
elements of T will distribute over the chosen n-ary basic term operations for n � 2. For
the four-element exceptional algebra and the affine independence algebras it is possible
to do so. Other independence algebras are either essentially unary–nullary, when the
distributivity condition holds trivially, or the S-homogeneous algebras or Q-homogeneous
algebras, where S is a monoid and Q a quasi-field. It is an open problem whether all
S-homogeneous and Q-homogeneous algebras satisfy the distributivity condition.

From Proposition 2.5 the monoid T is cancellative and right reversible. From Theo-
rem 3.7 we know that T has a group of left quotients G.

Set Σ = T × B and define ∼ on Σ by the rule that (α, a) ∼ (β, b) if and only if there
exist γ, δ ∈ T with

γα = δβ and γa = δb.

Lemma 4.1. The relation ∼ is an equivalence relation on Σ.

Proof. Clearly, ∼ is symmetric, and as we certainly have 1α = 1α and 1a = 1a for
any (α, a) ∈ Σ, ∼ is reflexive. It remains to show that ∼ is transitive.

To this end, let (α, a), (β, b), (γ, c) ∈ Σ and suppose that

(α, a) ∼ (β, b) ∼ (γ, c).

Then there exist δ, ε, µ, ν with

δα = εβ, δa = εb,

µβ = νγ, µb = νc.

Since T is right reversible, there are elements ρ, π ∈ T with

ρε = πµ.

Then
ρδα = ρεβ = πµβ = πνγ

and, similarly, ρδa = πνc. Thus, (α, a) ∼ (γ, c), and ∼ is an equivalence as required. �

We denote the ∼-equivalence class of (α, a) ∈ Σ by [α, a]. Let A = Σ/∼.

Lemma 4.2. Suppose that [1, a], [β, b] ∈ A and

[1, a] = [β, b].

Then βa = b.
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Proof. From the definition of ∼ we have that

α1 = γβ and αa = γb

for some α, γ ∈ T . Hence,
γβa = γb

and as γ is injective we have that βa = b. �

We now proceed to define basic operations on A, under which it becomes the indepen-
dence algebra we require.

The nullary operations on A are straightforward. For each nullary operation cB on B,
with image c, we define a nullary operation cA on A with image [1, c]. Similarly, for any
basic unary operation vc

B = κc ∈ TC , where c ∈ 〈∅〉, we define a basic unary operation
vc

A of A by the rule that vc
A([α, a]) = [1, c], for any [α, a] ∈ A.

The next lemma will help us to show that the remaining n-ary operations on A for
n � 1, as given below, are well defined.

Lemma 4.3. Suppose that α, β, γ, δ, µ, ν ∈ T and a, b ∈ B are such that

γα = δβ, γa = δb and µα = νβ.

Then
µa = νb.

Proof. We have that γ−1δ = αβ−1 = µ−1ν, so that µγ−1δ = ν. Since T is right
reversible, we can choose θ, ϕ ∈ T with

θµ = ϕγ.

Then µγ−1 = θ−1ϕ and so
ϕδ = θν.

Calculating, we have that
θµa = ϕγa = ϕδb = θνb.

Now θ is injective and so µa = νb as required. �

For each ξ ∈ G we define a unary operation uξ
A by the rule

uξ
A([γ, c]) = [µ, νc],

where ξγ−1 = µ−1ν and µ, ν ∈ T .

Lemma 4.4. The operation uξ
A is well defined.
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Proof. Suppose that (γ1, c1) ∼ (γ2, c2) and µi, νi, i = 1, 2, are chosen such that

ξγ−1
1 = µ−1

1 ν1 and ξγ−1
2 = µ−1

2 ν2.

We aim to show that (µ1, ν1c1) ∼ (µ2, ν2c2).
Since (γ1, c1) ∼ (γ2, c2) there exist ρ, κ ∈ T with

ργ1 = κγ2 and ρc1 = κc2.

By the right reversibility of T we can choose η, π ∈ T with

ηµ1 = πµ2.

We have that
ξ = µ−1

1 ν1γ1 = µ−1
2 ν2γ2 and µ1µ

−1
2 = η−1π,

so that
ην1γ1 = πν2γ2.

Since in addition we have that

ργ1 = κγ2 and ρc1 = κc2,

we call upon Lemma 4.3 to deduce that ην1c1 = πν2c2. Thus, (µ1, ν1c1) ∼ (µ2, ν2c2) as
required. �

If tB = α ∈ T is a unary operation on B, then we declare tA to be uα
A.

For each n-ary basic operation tB on B, where n � 2, we define an n-ary operation tA
on A by the rule that

tA([α1, a1], . . . , [αn, an]) = [α, tB(β1a1, . . . , βnan)],

where α, βi ∈ T (1 � i � n) are chosen by Lemma 3.8 such that α−1
i = α−1βi (1 � i � n).

Lemma 4.5. The operation tA is well defined.

Proof. Suppose that (αi, ai), (α′
i, a

′
i) ∈ Σ and

(αi, ai) ∼ (α′
i, a

′
i), 1 � i � n,

and α, α′, βi, β′
i are chosen such that

α−1
i = α−1βi and (α′

i)
−1 = (α′)−1β′

i

for 1 � i � n. We must show that

(α, tB(β1a1, . . . , βnan)) ∼ (α′, tB(β′
1a

′
1, . . . , β

′
na′

n)).

First, we choose γ, δ ∈ T with
γα = δα′.
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Since for 1 � i � n we have that (αi, ai) ∼ (α′
i, a

′
i), there are elements ρi, τi such that

ρiαi = τiα
′
i and ρiai = τia

′
i, 1 � i � n.

Notice that for any i ∈ {1, . . . , n} we have that

α(α′)−1 = γ−1δ = βiαi(β′
iα

′
i)

−1

and so
γβiαi = δβ′

iα
′
i.

Calling upon Lemma 4.3 we deduce that

γβiai = δβ′
ia

′
i, 1 � i � n.

Using the distributivity condition, we have that

γtB(β1a1, . . . , βnan) = tB(γβ1a1, . . . , γβnan)

= tB(δβ′
1a

′
1, . . . , δβ

′
na′

n)

= δtB(β′
1a

′
1, . . . , β

′
na′

n)

and so
(α, tB(β1a1, . . . , βnan)) ∼ (α′, tB(β′

1a
′
1, . . . , β

′
na′

n)),

as required. �

We show via a series of lemmas that A, together with the basic nullary, unary and
n-ary (n � 2) operations defined as above, is an independence algebra. As a first step we
gather together some useful elementary observations.

Lemma 4.6.

(i) For any α, β ∈ T and b ∈ B we have

uα
A([1, b]) = [1, αb], uα−1

A ([1, b]) = [α, b] and [αβ, αb] = [β, b].

(ii) For any θ ∈ G, (uθ
A)−1 = uθ−1

A .

(iii) If C is a subalgebra of A, then for any a ∈ B and α, β, γ, δ ∈ T we have

[α, βa] ∈ C ⇐⇒ [γ, δa] ∈ C.

Proof. (i) We have that

α1−1 = α1 = 1α = 1−1α

so that, by definition,
uα

A([1, b]) = [1, αb].
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Similarly,
α−11−1 = α−11

and so
uα−1

A ([1, b]) = [α, 1b] = [α, b].

Finally,
1(αβ) = αβ and 1(αb) = αb,

so that the third statement follows from the definition of ∼.

(ii) Let [α, a] ∈ A and θ ∈ G. Then θ−1α−1 = µ−1ν for some µ, ν ∈ T , so that

uθ−1

A ([α, a]) = [µ, νa].

Now θµ−1 = α−1ν−1 = (να)−1 = (να)−11, so that

uθ
Auθ−1

A ([α, a]) = uθ
A([µ, νa]) = [να, νa] = [α, a]

by (i). It follows that uθ
A and uθ−1

A are mutually inverse.

(iii) Let C be a subalgebra of A and suppose that [γ, δa] ∈ C. Suppose that α, β ∈ T

and let θ = α−1βδ−1γ. Then θγ−1 = µ−1ν, say, where µ, ν ∈ T , so that

uθ
A([γ, δa]) = [µ, νδa].

We have that α−1βδ−1 = µ−1ν, so that α−1β = µ−1νδ. Writing µα−1 as τ−1κ, we have
that τµ = κα and τνδa = κβa, whence

[α, βa] = uθ
A([γ, δa]) ∈ C.

�

Lemma 4.7. For any term operation tB and z1, . . . , zn ∈ B,

tA([1, z1], . . . , [1, zn]) = [1, tB(z1, . . . , zn)].

Proof. For a basic nullary operation cB , we have that

cA(∅) = [1, c] = [1, cB(∅)].

Similarly, for a basic unary operation of the form vc
B = κc ∈ TC , we have that

vc
A([1, a]) = [1, c] = [1, vc

B(a)];

for basic unary operations of the form uα
A, where α ∈ T , we call upon Lemma 4.6 (i).

For a basic n-ary operation tB for n � 2, the statement follows immediately from the
definition of tA. The result can now be argued using induction on the number of basic
term operations needed to build an arbitrary term operation tB . �
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For a subset D of B we write [T, D] as shorthand for

{[α, d] | α ∈ T, d ∈ D}.

Lemma 4.8. Let X = {[αi, ai] | i ∈ I} ⊆ A and set Y = {ai | i ∈ I}. Then

〈X〉A = [T, 〈Y 〉B ].

Proof. It is clear that
〈X〉A ⊆ [T, 〈Y 〉B ].

For the converse, we show by induction on the number of basic term operations needed
to build y ∈ 〈Y 〉B from elements of Y that [1, y] ∈ 〈X〉A.

If y ∈ Y , then y = ai for some i ∈ I and pair [αi, ai] ∈ X. Since [αi, y] ∈ X, Lemma 4.6
gives that [1, y] ∈ 〈X〉A.

If y is the image of a nullary operation yB , then [1, y] is the image of the nullary
operation yA, so that [1, y] ∈ 〈X〉A. Similarly, if y = vc

B(u) where c ∈ 〈∅〉B and u ∈ 〈Y 〉B

with [1, u] ∈ 〈X〉A, then

[1, y] = [1, c] = vc
A([1, u]) ∈ 〈X〉A.

If y = αz, where α ∈ T , z ∈ 〈Y 〉B and [1, z] ∈ 〈X〉A, then Lemma 4.6 gives directly
that [1, y] ∈ 〈X〉A.

Finally, suppose that y = tB(z1, . . . , zn) for some basic n-ary operation tB (n � 2) and
z1, . . . , zn ∈ 〈Y 〉B with [1, zi] ∈ 〈X〉A for 1 � i � n. Then Lemma 4.7 yields that

[1, y] = [1, tB(z1, . . . , zn)] = tA([1, z1], . . . , [1, zn]) ∈ 〈X〉A.

The result now follows from Lemma 4.6. �

Lemma 4.9. The algebra A satisfies (EP).

Proof. Let X = {[αi, ai] | i ∈ I}, and suppose that

[α, a] ∈ 〈X ∪ {[β, b]}〉A

but that
[α, a] /∈ 〈X〉A.

By Lemma 4.8,
[α, a] = [γ, tB(b1, . . . , bn, b)]

for some b1, . . . , bn ∈ Y = {ai | i ∈ I}. By definition of ∼ we have that

µα = νγ and µa = νtB(b1, . . . , bn, b)

for some µ, ν ∈ T .
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If a ∈ 〈∅〉B , then, by Lemma 4.8, [α, a] ∈ 〈∅〉A ⊆ 〈X〉A, which is a contradiction. Thus,
a /∈ 〈∅〉B and by Proposition 2.4 we have that

µa = νtB(b1, . . . , bn, b) /∈ 〈∅〉B ,

so that
a ≺ {b1, . . . , bn, b}.

If a ≺ {b1, . . . , bn}, then, as a /∈ 〈∅〉B , we must have that

πa = sB(b1, . . . , bn) /∈ 〈∅〉B

for some term operation sB . It follows that [1, πa] ∈ 〈X〉A, so that from Lemma 4.6
[α, a] ∈ 〈X〉A, again a contradiction.

We deduce that a �≺ {b1, . . . , bn} and so, as B has (WEP), b ≺ {b1, . . . , bn, a}.
If b ∈ 〈∅〉B , then we must have that [β, b] ∈ 〈X ∪ {[α, a]}〉A. On the other hand, if

κb = vB(b1, . . . , bn, a) /∈ 〈∅〉B , then from Lemma 4.8 we have that [1, κb] ∈ 〈X∪{[α, a]}〉A

and so finally, from Lemma 4.6, [β, b] ∈ 〈X ∪ {[α, a]}〉A. Thus, A satisfies (EP). �

Lemma 4.10. Let X = {[αi, ai] | i ∈ I}, where we suppose that [αi, ai] �= [αj , aj ] for
i �= j, and let Y = {ai | i ∈ I}. Then X is independent in A if and only if ai �= aj for all
i, j ∈ I with i �= j and Y is directly independent in B.

Proof. Suppose first that X is independent. We first observe that if i �= j, then
ai �= aj . For if ai = aj , then by Lemma 4.6

[αi, ai] ∈ 〈{[αj , aj ]}〉A ⊆ 〈X \ {[αi, ai]}〉A,

contradicting the independence of X.
Suppose now that, for some i ∈ I,

ai ≺ Y \ {ai},

so that either ai ∈ 〈∅〉B or γai = tB(y1, . . . , yn) /∈ 〈∅〉B for some γ ∈ T , y1, . . . , yn ∈
Y \ {ai} and term tB . The first possibility would lead to the contradiction that [αi, ai] ∈
〈∅〉A ⊆ 〈X \ {[αi, ai]}〉A. The second would lead via a now familiar argument using
Lemmas 4.8 and 4.6 to [1, γai] ∈ 〈X \ {[αi, ai]}〉A and then to [αi, ai] ∈ 〈X \ {[αi, ai]}〉A.
We deduce that Y is directly independent.

Suppose conversely that ai �= aj for all i, j ∈ I with i �= j, and that Y is directly
independent. If

[αi, ai] ∈ 〈X \ {[αi, ai]}〉A

for some i ∈ I, then by Lemma 4.8 we have that

[αi, ai] = [β, tB(y1, . . . , yn)]

for some β ∈ T and term tB with y1, . . . , yn ∈ Y \ {ai}. Using the definition of ∼ we
must have that

γαi = δβ and γai = δtB(y1, . . . , yn)
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for some γ, δ ∈ T . Since Y is directly independent, we have that ai /∈ 〈∅〉 so that, by
Proposition 2.4,

γai = δtB(y1, . . . , yn) /∈ 〈∅〉.

But this says that
ai ≺ Y \ {ai},

contradicting the fact that Y is directly independent. We deduce that X is independent.
�

In order to conclude that A is an independence algebra, it remains to show that A

satisfies (FB). To this end we need one further subsidiary lemma.

Lemma 4.11. Let [αi, ai], [βi, bi] ∈ A for 1 � i � n. Then there exist γi, δi ∈ T ,
1 � i � n, such that, for any n-ary term operation tA, there exist an n-ary term operation
sB and an element ε ∈ T (depending on tA) such that

tA([α1, a1], . . . , [αn, an]) = [ε, sB(γ1a1, . . . , γnan)]

and

tA([β1, b1], . . . , [βn, bn]) = [ε, sB(δ1b1, . . . , δnbn)].

Proof. We employ Lemma 3.8 to find elements ε, γ1, . . . , γn, δ1, . . . , δn of T such that

α−1
i = ε−1γi and β−1

i = ε−1δi, 1 � i � n.

Consequently,

[αi, ai] = [ε, γiai] and [βi, bi] = [ε, δibi], 1 � i � n.

Suppose that tA is the ith projection pi
A. We therefore have that

tA([α1, a1], . . . , [αn, an]) = [αi, ai] = [ε, γiai] = [ε, pi
B(γ1a1, . . . , γnan)]

and, similarly,
tA([β1, b1], . . . , [βn, bn]) = [ε, pi

B(δ1b1, . . . , δnbn)].

We proceed by induction on the number of basic term operations of A needed to
construct tA. Suppose that t is constructed in m � 2 steps, and the result is true for all
term operations constructed in fewer moves. If tA is a constant term operation, then the
result is clear with ε = 1.

Suppose now that tA = vc
AsA, where c ∈ 〈∅〉B ; by the inductive assumption we can

find π ∈ T and term function wB of B such that

sA([α1, a1], . . . , [αn, an]) = [π, wB(γ1a1, . . . , γnan)]

and

sA([β1, b1], . . . , [βn, bn]) = [π, wB(δ1b1, . . . , δnbn)].
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Now

tA([α1, a1], . . . , [αnan]) = vc
A([π, wB(γ1a1, . . . , γnan)])

= [1, c]

= [1, vc
Bp1

B(γ1a1, . . . , γnan)]

and, similarly,

tA([β1, b1], . . . , [βn, bn]) = [1, vc
Bp1

B(δ1b1, . . . , δnbn)].

On the other hand, suppose that tA = uρ
AsA for some ρ ∈ G; let π, wB be as above. Then

ρπ−1 = µ−1ν for some µ, ν ∈ T , giving that

tA([α1, a1], . . . , [αn, an]) = uρ
A([π, wB(γ1a1, . . . , γnan)])

= [µ, νwB(γ1a1, . . . , γnan)]

and

tA([β1, b1], . . . , [βn, bn]) = [µ, νwB(δ1b1, . . . , δnbn)].

Finally, we suppose that

tA = sA(w1
A, . . . , wm

A )

for some m � 2 and basic m-ary operation sB of B. By our inductive assumption we can
find π1, . . . , πm ∈ T and n-ary term operations v1

B , . . . , vm
B of B such that, for 1 � i � m,

wi
A([α1, a1], . . . , [αn, an]) = [πi, v

i
B(γ1a1, . . . , γnan)]

and

wi
A([β1, b1], . . . , [βn, bn]) = [πi, v

i
B(δ1b1, . . . , δnbn)].

Choose π, ρi with

π−1
i = π−1ρi for 1 � i � m,

so that

tA([α1, a1], . . . , [αn, an]) = sA([π1, v
1
B(γ1a1, . . . , γnan)], . . . , [πm, vm

B (γ1a1, . . . , γnan)])

= [π, sB(ρ1v
1
B(γ1a1, . . . , γnan), . . . , ρmvm

B (γ1a1, . . . , γnan))]

and, similarly,

tA([β1, b1], . . . , [βn, bn]) = [π, sB(ρ1v
1
B(δ1b1, . . . , δnbn), . . . , ρmvm

B (δ1b1, . . . , δnbn))]

as required. �
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Lemma 4.12. The algebra A satisfies (FB).

Proof. It only remains to show that every independent subset of A is A-free. To this
end let

X = {[αi, ai] | i ∈ I}
be an independent subset of A, where we assume that for i �= j, [αi, ai] �= [αj , aj ]. By
Lemma 4.10, ai �= aj for i �= j, and Y = {ai | i ∈ I} is directly independent.

Suppose that θ : X → A is a map such that

[αi, ai]θ = [βi, bi].

We define
θ̄ : 〈X〉A → A

by
tA([α1, a1], . . . , [αn, an])θ̄ = tA([β1, b1], . . . , [βn, bn]).

If θ̄ is well defined, it is clear that it is a morphism and extends θ.
Suppose now that

tA([α1, a1], . . . , [αn, an]) = sA([α1, a1], . . . , [αn, an]) for some [α1, a1], . . . , [αn, an] ∈ X.

From Lemma 4.11 there exist µ, ν, γ1, . . . , γn, δ1, . . . , δn ∈ T and n-ary term operations
uB and vB such that

tA([α1, a1], . . . , [αn, an]) = [µ, uB(γ1a1, . . . , γnan)],

tA([β1, b1], . . . , [βn, bn]) = [µ, uB(δ1b1, . . . , δnbn)],

sA([α1, a1], . . . , [αn, an]) = [ν, vB(γ1a1, . . . , γnan)]

and

sA([β1, b1], . . . , [βn, bn]) = [ν, vB(δ1b1, . . . , δnbn)].

We have that
[µ, uB(γ1a1, . . . , γnan)] = [ν, vB(γ1a1, . . . , γnan)],

and so there exist π, τ ∈ T with

πµ = τν and πuB(γ1a1, . . . , γnan) = τvB(γ1a1, . . . , γnan).

From [7, Lemma 2.8], {γ1a1, . . . , γnan} is a directly independent subset of B of cardinality
n. Now B is a basis algebra, so that {γ1a1, . . . , γnan} is therefore A-free, and the function
γiai �→ δibi, 1 � i � n, lifts to a morphism from 〈{γ1a1, . . . , γnan}〉B to B. It follows
that

πuB(δ1b1, . . . δnbn) = τvB(δ1b1, . . . , δnbn)

and, consequently,

tA([β1, b1], . . . , [βn, bn]) = sA([β1, b1], . . . , [βn, bn]),

so that θ̄ is well defined. �
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Having constructed the independence algebra A, we now define ι : B → A by bι = [1, b],
for any b ∈ B.

Lemma 4.13. The function ι is one–one and embeds B as a reduct of A.

Proof. If bι = cι for some b, c ∈ B, then from [1, b] = [1, c] we must have that

α1 = β1 and αb = βc

for some α, β ∈ T . Hence, α = β so that αb = αc. By torsion-freeness we deduce that
b = c and that ι is one–one. That ι embeds B as a reduct of A follows immediately from
Lemma 4.7. �

We can now present the main result of this section.

Theorem 4.14. Let B be a stable basis algebra satisfying the distributivity condition.
Then B is a reduct of an independence algebra A. Moreover, the rank of B is equal to
the rank of A.

Proof. We suppose that B is non-constant, else the result is clearly true with A = B.
With A constructed as above, it only remains to show that A and B have the same rank.
We can say rather more than this. Let Y ⊆ B. Observe that Y ι = {[1, y] | y ∈ Y } and
immediately from Lemma 4.10 we have that Z ⊆ Y is directly independent if and only
if Zι ⊆ Y ι is independent, so that PC-rankY = rankY ι.

Let X be a maximal directly independent subset of B, so that |X| = PC-rankB.
Then Xι is a maximal independent subset of Bι, so that by Lemma 2.1, X is a maximal
independent subset of 〈Bι〉 = A, and rankA = |Xι| = |X|. �

Corollary 4.15. Let B be a non-constant stable basis algebra satisfying the distribu-
tivity condition, and let T be the monoid of non-constant unary term operations on B.
Then the following conditions are equivalent:

(i) T is a group;

(ii) B is an independence algebra;

(iii) EndB is regular.

Proof. (i) ⇒ (ii). If T is a group, then T coincides with its group of left quotients
G. Let A be constructed as above and let ι : B → A be the given embedding. For any
[α, a] ∈ A we observe that [α, a] = [1, α−1a], so that Bι = A. Identifying B with its image
in A, we notice that the term operations of A and Bι coincide (although in general A has
more basic operations than B) so that, for any X ⊆ A = B, 〈X〉A = 〈X〉B and clearly
B is an independence algebra.

(ii) ⇒ (iii). This follows from [12, Proposition 4.7].
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(iii) ⇒ (i). Let X be a basis for B, fix x ∈ X and let α ∈ T . Define θ : B → B by
yθ = α(x) for all y ∈ X. Since EndB is regular by assumption, there is an endomorphism
ϕ of B such that θϕθ = θ.

We have that

α(x) = xθ = xθϕθ = (α(x))ϕθ = α(xϕθ),

so that x = xϕθ since α is injective. Let xϕ = t(y1, . . . , yn) for some term t and
y1, . . . , yn ∈ X. Consequently,

x = t(y1, . . . , yn)θ = t(y1θ, . . . , ynθ) = t(α(x), . . . , α(x)) = β(α(x))

for some β ∈ T . But {x} is B-free, so we deduce that b = βα(b) for all b ∈ B.
We have shown that β is a left inverse for α in the monoid T ; but T is cancellative, so

that α and β are mutually inverse. Consequently, T is a group. �

We end this section with an illustrative example. Let T be a cancellative monoid such
that its finitely generated left ideals are principal, and let B be the free left T -act on a
finite set X. We have commented that B is a finite-rank stable basis algebra. The monoid
T is (isomorphic to) the monoid of (non-constant) unary term operations on B; we know
from our general theory that T must be right reversible; this is also easy to see directly,
since for any a, b ∈ T we have that Ta and Tb are comparable. Vacuously, B has the
distributivity property. The independence algebra constructed in Theorem 4.14 is the
free left G-act on X, where G is the group of left quotients of T .

5. End B is a left order in End A

Throughout this section we let B be a non-constant stable basis algebra satisfying the
distributivity condition, and let A be the independence algebra constructed as in § 4. We
show that if B has finite rank, then EndB is a left order in EndA. For our preliminary
lemmas, however, we need impose no condition on the rank of B.

Lemma 5.1. The endomorphism monoid of B can be embedded in the endomorphism
monoid of A.

Proof. Let Y be a basis for B. It follows from Lemma 4.10 that

X = Y ι = {[1, y] | y ∈ Y }

is independent in A. Moreover, from Lemma 4.8, X generates A and is thus a basis for A.
Let θ ∈ EndB and define θ̄ ∈ EndA by the rule that

[1, y]θ̄ = [1, yθ]
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for all [1, y] ∈ X. Let b ∈ B; as Y is a basis for B, we have that b = tB(y1, . . . , yn) for
some yi ∈ Y . In view of Lemma 4.7,

[1, b]θ̄ = [1, tB(y1, . . . , yn)]θ̄

= tA([1, y1], . . . , [1, yn])θ̄

= tA([1, y1]θ̄, . . . , [1, yn]θ̄)

= tA([1, y1θ], . . . , [1, ynθ])

= [1, tB(y1θ, . . . , ynθ)]

= [1, t(y1, . . . , yn)θ]

= [1, bθ].

Indeed, we can say a little more than this. If [α, a] ∈ A, then

[α, a]θ̄ = (uα−1

A ([1, a]))θ̄

= uα−1

A ([1, a]θ̄)

= uα−1

A ([1, aθ])

= [α, aθ].

Suppose now that θ̄ = ϕ̄. Then for any b ∈ B, [1, b]θ̄ = [1, b]ϕ̄, so that [1, bθ] = [1, bϕ]
and so bθ = bϕ since ι is an embedding. Hence, θ = ϕ.

We now define Φ : EndB → EndA by the rule that

θΦ = θ̄.

By the above, Φ is an injection, and clearly IBΦ = IA.
Let θ, ϕ ∈ EndB. For any y ∈ Y we have that

[1, y]θ̄ϕ̄ = [1, yθ]ϕ̄ = [1, yθϕ] = [1, y]θϕ

so that θ̄ϕ̄ and θϕ agree on a basis. Consequently, θ̄ϕ̄ = θϕ and Φ is an embedding as
required. �

In what follows, for ψ ∈ EndB, ψ̄ will denote the endomorphism of A constructed as
in Lemma 5.1.

Lemma 5.2.

(i) Let θ ∈ EndB and let Y be a PC-basis for Im θ. Then

X = {[1, y] | y ∈ Y }

is a basis for Im θ̄.

(ii) If θ, ϕ ∈ EndB, then θ L∗ ϕ in EndB if and only if θ̄ L ϕ̄ in EndA.
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Proof. (i) Since Y is directly independent, X is independent by Lemma 4.10. Let
C = 〈X〉A.

For any y = y′θ ∈ Y we have from Lemma 5.1 that

[1, y] = [1, y′θ] = [1, y′]θ̄ ∈ Im θ̄,

so that X ⊆ Im θ̄ and consequently, C ⊆ Im θ̄.
Let Z be a basis for B so that Zι is a basis for A. Certainly,

Im θ̄ = 〈{[1, z] | z ∈ Z}〉Aθ̄ = 〈{[1, z]θ̄ | z ∈ Z}〉A = 〈{[1, zθ] | z ∈ Z}〉A.

For any z ∈ Z we have that
zθ ≺ Y,

so that
zθ ∈ 〈∅〉 or α(zθ) = sB(y1, . . . , yn) /∈ 〈∅〉

for some y1, . . . , yn ∈ Y and term operations α and sB . In the first case [1, zθ] ∈ C, and
in the second case we must have that zθ /∈ 〈∅〉 and α ∈ T , so that

[1, αzθ] = [1, sB(y1, . . . , yn)] = sA([1, y1], . . . , [1, yn]) ∈ C

using Lemma 4.7. But then [1, zθ] ∈ C and we deduce that Im θ̄ ⊆ C. Hence, C = Im θ̄

as required.

(ii) In view of the comments following the definition of L∗ and R∗, we need only show
that if θ L∗ ϕ in EndB, then θ̄ L ϕ̄ in EndA. Suppose therefore that θ L∗ ϕ, so that, by
Proposition 3.4, PC(Im θ) = PC(Im ϕ). Let Y and Z be bases (and hence PC-bases) for
Im θ and Im ϕ, respectively, so that

PC(Y ) = PC(Im θ) = PC(Im ϕ) = PC(Z).

By (i) we have that

Im θ̄ = 〈{[1, y] | y ∈ Y }〉A and Im ϕ̄ = 〈{[1, z] | z ∈ Z}〉A.

For any z ∈ Z we have that

z ∈ Im ϕ ⊆ PC(Im ϕ) = PC(Y )

so that z ≺ Y . Hence z ∈ 〈∅〉B , or αz = u(y1, . . . , yn) /∈ 〈∅〉B for some α ∈ T, y1, . . . , yn ∈
Y and term function uB . In the first case, [1, z] ∈ 〈∅〉A ⊆ Im θ̄, and in the second,

[1, αz] = [1, u(y1, . . . , yn)] ∈ Im θ̄,

by Lemma 4.8. But then [1, z] ∈ Im θ̄, whence Im ϕ̄ ⊆ Im θ̄. Together with the dual
argument, we obtain that Im θ̄ = Im ϕ̄, so that θ̄ L ϕ̄ by Proposition 3.2. �

We can now state the second of the two main results of this paper.
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Theorem 5.3. Let B be a stable basis algebra satisfying the distributivity condition,
with finite PC-rank n � 1. Then B is a reduct of an independence algebra A such that
EndB is a left order in EndA.

Proof. Let A be constructed as given in § 4. It only remains to show that EndB is a
left order in EndA.

Let Y = {b1, . . . , bn} be a basis for B, so that as in Lemma 5.1,

X = Y ι = {[1, b1], . . . , [1, bn]}

is a basis for A. Let θ ∈ EndA; by a now standard argument using the common denom-
inator theorem we can write

[1, bi]θ = [α, ai],

for some α ∈ T and ai ∈ B, 1 � i � n.
Define κ ∈ EndB by biκ = αbi, 1 � i � n. Then κ̄ ∈ EndA is given by

[1, bi]κ̄ = [1, αbi], 1 � i � n.

We now define τ ∈ EndA by the rule that

[1, bi]τ = [α, bi], 1 � i � n.

We claim that κ̄ and τ are mutually inverse in EndA. To see this we calculate that, for
i ∈ {1, . . . , n},

[1, bi]κ̄τ = [1, αbi]τ = (uα
A([1, bi]))τ = uα

A([1, bi]τ) = uα
A([α, bi]) = [1, bi],

so that, consequently, κ̄τ = IA. The monoid EndA is local, so we obtain that κ̄ and τ

are mutually inverse.
Finally, we define ϕ ∈ EndB by the rule that

biϕ = ai, 1 � i � n.

Then ϕ̄ ∈ EndA and

[1, bi]τϕ̄ = [α, bi]ϕ̄

= (uα−1

A ([1, bi]))ϕ̄

= uα−1

A ([1, bi]ϕ̄)

= uα−1

A ([1, biϕ])

= uα−1

A ([1, ai])

= [α, ai]

= [1, bi]θ.

Consequently, θ = τϕ̄ = κ̄−1ϕ̄.
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It remains to show that every square-cancellable element of End B lies in a subgroup
of EndA or, more properly, that if θ ∈ EndB and θ H∗ θ2, then θ̄ lies in a subgroup of
EndA.

Suppose then that θ ∈ EndB is square-cancellable, so that, in particular, θ L∗ θ2. By
Lemma 5.2,

θ̄ L θ2 = θ̄2.

Proposition 3.3 tells us that θ̄ H θ̄2, whence, by Theorem 3.1, θ̄ lies in a subgroup of
EndA. �

6. When is End B straight in End A?

The main success achieved in characterizing left orders in semigroups and the most
natural examples of left orders has, to date, been in the case where the left orders
are straight (see § 3). Rather surprisingly, not all of our left orders of the form EndB,
where B is a finite-rank stable basis algebra satisfying the distributivity condition, need
be straight. We prove in this section that, for such a B, EndB is straight in EndA,
where A is the independence algebra constructed as in § 4, if and only the monoid T of
non-constant unary term operations satisfies a rather natural property that we call the
‘constant isomorphism’ condition, and, if n � 2, T is left reversible. This result is all the
more curious, since Theorem 6.12 of [7] tells us EndB is a straight left order in some
semigroup.

We remark that, for any α ∈ T ,

α|〈∅〉B
: 〈∅〉B → 〈∅〉B

is a one–one map since B is torsion-free. We say that B satisfies the constant isomorphism
condition (CI) if

α|〈∅〉B
: 〈∅〉B → 〈∅〉B

is onto, hence an isomorphism of the constant subalgebra.
We begin our argument with a subsidiary result.

Lemma 6.1. Let A be an independence algebra with basis {x1, . . . , xn}. Let k ∈
{0, . . . , n} and let θ ∈ EndA be defined by the rule

xiθ = xi, 1 � i � k,

and
xjθ = uj ∈ 〈{x1, . . . , xk}〉, k + 1 � j � n.

Then
Ker θ = 〈{(xj , uj) | k + 1 � j � n}〉.

Proof. Let ρ = 〈{(xj , uj) | k + 1 � j � n}〉; clearly, ρ ⊆ Ker θ. On the other hand, if
v(x1, . . . , xn), w(x1, . . . , xn) ∈ A and

v(x1, . . . , xn)θ = w(x1, . . . , xn)θ,

https://doi.org/10.1017/S0013091508000473 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000473


Independence and basis algebras 723

then

v(x1, . . . , xn) ρ v(x1, . . . , xk, uk+1, . . . , un) = w(x1, . . . , xk, uk+1, . . . , un) ρ w(x1, . . . , xn),

so that Ker θ ⊆ ρ. �

Our first characterization of straightness is technical; we will simplify later to the
conditions given at the beginning of this section.

Proposition 6.2. Let B be a stable basis algebra of finite rank n � 1, satisfying the
distributivity condition, let A be the independence algebra constructed as in § 4, and let

: EndB → EndA be the embedding as given in § 5. Then EndB is a straight left order
in EndA if and only if, for any k ∈ {0, . . . , n}, k-ary term operations tk+1

B , . . . , tnB and
α ∈ T , there exist directly independent a1, . . . , ak ∈ B with

tjB(a1, . . . , ak) ∈ α(B), k + 1 � j � n.

Proof. Let {b1, . . . , bn} be a basis for B, so that, as in Lemma 5.1, {[1, b1], . . . , [1, bn]}
is a basis for A.

Suppose first that EndB is straight in EndA and let k, α and tk+1
B . . . , tnB be as given.

Define θ ∈ EndA by the rule that

[1, bi]θ = [1, bi], 1 � i � k,

and

[1, bj ]θ = [α, tjB(b1, . . . , bk)], k + 1 � j � n.

Since [α, tjB(b1, . . . , bk)] ∈ 〈{[1, bi] | 1 � i � k}〉A we have that

Im θ = 〈{[1, bi] | 1 � i � k}〉A.

Furthermore, θ restricts to the identity on 〈{[1, bi] | 1 � i � k}〉A, so that, for k + 1 �
j � n,

[1, bj ]θ = [α, tjB(b1, . . . , bk)]θ

and moreover, by Lemma 6.1,

Ker θ = 〈{([1, bj ], [α, tjB(b1, . . . , bk)]) | k + 1 � j � n}〉.

By assumption, EndB is straight in EndA, so that, by [13, Proposition 3.1], θ H ϕ̄ for
some ϕ ∈ EndB. Set biϕ = ai so that [1, bi]ϕ̄ = [1, ai], 1 � i � n. Since Ker θ = Ker ϕ̄,
we have that, for k + 1 � j � n,

[1, aj ] = [1, bj ]ϕ̄

= [α, tjB(b1, . . . , bk)]ϕ̄

= [α, tjB(a1, . . . , ak)],
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using Lemma 5.1, so that

Im ϕ̄ = 〈{[1, a1], . . . , [1, ak]}〉A.

We know that k = rank θ = rank ϕ̄, whence [1, a1], . . . , [1, ak] are independent. From
Lemma 4.10, a1, . . . , ak are directly independent. For k + 1 � j � n we use Lemma 4.2
to deduce from [1, aj ] = [α, tjB(a1, . . . , ak)] that tj(a1, . . . , ak) = αaj .

Conversely, we suppose that the given condition holds. We begin by considering an
endomorphism θ : A → A of rank k defined by the rule that

[1, bi]θ = [1, bi], 1 � i � k,

[1, bj ]θ = vj
A([1, b1], . . . , [1, bk]), k + 1 � j � n.

Notice that, from Lemma 6.1,

Ker θ = 〈{[([1, bj ], v
j
A([1, b1], . . . , [1, bk])) | k + 1 � j � n}〉.

In view of Lemmas 3.8 and 4.8, we can find term operations tjB , k +1 � j � n and α ∈ T

such that
[1, bj ]θ = [α, tjB(b1, . . . , bk)], k + 1 � j � n.

We now invoke our hypothesis to choose directly independent a1, . . . , ak in B such that

tjB(a1, . . . , ak) = αaj , k + 1 � j � n,

for some ak+1, . . . , an ∈ B. Defining ϕ : B → B by the rule that biϕ = ai, 1 � i � n, we
claim that ϕ̄ R θ.

Making use of an observation in Lemma 5.1,

[α, tjB(b1, . . . , bk)]ϕ̄ = [α, tjB(a1, . . . , ak)].

On the other hand, by Lemma 4.2,

[1, bj ]ϕ̄ = [1, aj ] = [α, tjB(a1, . . . , ak)],

and we deduce that Ker θ ⊆ Ker ϕ̄. Clearly, Im ϕ̄ = 〈{[1, a1], . . . , [1, ak]}〉A, so that, as
{a1, . . . , ak} are directly independent by assumption, ϕ̄ has rank k. Proposition 3.3 now
gives that θ R ϕ̄.

Now choose an arbitrary ψ ∈ EndA with rank k. Without loss of generality we may
assume that

Im ψ = 〈{[1, b1]ψ, . . . , [1, bk]ψ}〉A,

where [1, b1]ψ, . . . , [1, bk]ψ are independent and, for k + 1 � j � n,

[1, bj ]ψ ∈ 〈{[1, b1]ψ, . . . , [1, bk]ψ}〉A.

Define µ : Im ψ → A by the rule that

[1, bi]ψµ = [1, bi].
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By [12, Lemma 3.7], µ is a one–one morphism, so that Kerψµ = Ker ψ and ψµ Rψ.
From the above we know that ψµ R ϕ̄ for some ϕ ∈ EndB, so that ψ R ϕ̄. We conclude
that every R-class of End A contains an element in (the image of) EndB.

For the remainder of the proof, suppose that θ ∈ EndA and ϕ ∈ EndB with θ R ϕ̄.
We aim to show that there exists κ ∈ EndB with θ H κ̄.

By Proposition 3.3 and Lemma 5.2, θ, ϕ and ϕ̄ all have the same rank. From [7,
Theorem 4.9], ϕ L∗ ε for some ε = ε2 ∈ EndB, so that, from Lemma 5.2, ϕ̄ L ε̄. Now [7,
Lemma 4.7] tells us that Im ε is pure in B, so that, as B is a basis algebra, Im ε has a
basis Y that can be extended to a basis Y ∪ Z of B. Certainly, Y is a PC-basis for Im ε

so that, from Lemma 5.2,
X = {[1, y] | y ∈ Y }

is a basis for Im ε̄ = Im ϕ̄.
Since θ and ϕ̄ have the same rank, we have a basis T = {[αy, ay] | y ∈ Y } for Im θ,

where [αy, ay] �= [ay′ , ay′ ] for y �= y′. Clearly, U = {[1, ay] | y ∈ Y } generates Im θ and,
by two applications of Lemma 4.8, U is independent and hence a basis for Im θ.

Define ξ ∈ EndB by fixing its value on the basis Y ∪ Z by

yξ = ay, zξ = b for y ∈ Y, z ∈ Z and fixed b ∈ B.

Then Im ϕ̄ξ̄ = Im θ, whence ϕ̄ξ̄ = ϕξ L θ. Furthermore, ξ̄|X is one–one and Xξ̄ = U is
independent, so that, by [12, Lemma 3.7], ξ̄|〈X〉A

is one–one. Thus, Kerϕξ = Ker θ,
giving that ϕξ R θ. We have therefore shown that ϕξ H θ so that, by [13, Proposition
3.1], EndB is straight in EndA as claimed. �

We can now prove our final result.

Theorem 6.3. Let B be a stable basis algebra of finite rank n � 1 satisfying the
distributivity condition, and let T be the monoid of non-constant unary term operations.
Let A be the independence algebra constructed as in § 4, and let : EndB → EndA be
the embedding as given in § 5. Then EndB is a straight left order in EndA if and only
if B satisfies (CI) and if n � 2, then T is left reversible.

Proof. Suppose first that EndB is straight in EndA. Let α ∈ T ; we are required to
argue that α|〈∅〉B

: 〈∅〉B → 〈∅〉B is onto. To this end, let c ∈ 〈∅〉B . Let k = 0 and consider
the nullary term operation wc

B : B → B with image c. Set ti = wc
B for 1 � i � n; by

Proposition 6.2, c = wc
B(∅) = αb for some b ∈ B. But we are then forced to have b ∈ 〈∅〉B ,

so that α|〈∅〉 : 〈∅〉B → 〈∅〉B is onto.
Suppose now that n � 2. In order to show that T is left reversible, let α, β ∈ T , set

k = 1 and let t2B = · · · = tnB be the unary term operations given by

tjB(x) = β(x).

From Proposition 6.2, there is an element a1 ∈ B with {a1} directly independent such
that

β(a1) = t2B(a1) = α(a2)
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for some a2 ∈ B. It follows that β(a1) /∈ 〈∅〉B , so that a2 /∈ 〈∅〉B and a2 ≺ {a1}. Let {d}
be a basis for PC({a1}), so that

〈{d}〉B = PC({a1}).

We therefore have that
a1 = γ(d) and a2 = δ(d)

for some unary term operations γ, δ. Clearly, γ, δ ∈ T and we have that

βγ(d) = αδ(d).

Now {d} is B-free, whence βγ(b) = αδ(b) for all b ∈ B. But this says that βγ = αδ and
T is left reversible as required.

Conversely, we suppose that B has (CI) and, in the case where n � 2, that T is left
reversible. We show that the condition given in Proposition 6.2 holds.

Consider first the case where k = 0. Let α ∈ T and let t1B , . . . , tnB be nullary term
operations on B. Let cj ∈ 〈∅〉B be the image of tjB for 1 � j � n. By our assumption that
B has (CI), there exist d1, . . . , dn ∈ 〈∅〉B such that, for 1 � j � n, tjB(∅) = cj = αdj .

Suppose now that k � 1. Notice that if k = n, then the condition of Proposition 6.2
is vacuously satisfied. We assume, therefore, that k < n so that n � 2 and T is therefore
left reversible.

At this stage it is convenient to consider the free term algebra Tk on {x1, . . . , xk} having
the same signature as B. We write 〈∅〉 for 〈∅〉Tk

and denote elements of 〈∅〉 by c̄, where
c is the corresponding element of 〈∅〉B , and write ᾱ for a basic unary operation with
interpretation α in T . For an arbitrary term u of Tk we denote by uB its interpretation
in B.

Let u1, . . . , um be a finite list of k-ary term operations in Tk. Assume for the moment
that this list is of the form

p1, . . . , pk, v1, . . . , vh,

where for 1 � � � k, p� is the �th projection and, for 1 � i � h, vi = κci , where (with
some abuse of notation) κci is the k-ary constant term operation having constant image
ci ∈ 〈∅〉. Since B has (CI), we can find elements di ∈ 〈∅〉B such that ci = αdi, 1 � i � h.
Let {b1, . . . , bn} be a basis for B and set a� = αb�, 1 � � � k. Then

p�
B(a1, . . . , ak) = p�

B(αb1, . . . , αbk) = αb� and vi
B(a1, . . . , ak) = ci = αdi

for 1 � � � k and 1 � i � h. Moreover, {a1, . . . , ak} is directly independent, by [7,
Lemma 2.8].

We now consider an arbitrary finite list L,

u1, . . . , um,

of k-ary term operations of Tk and show by induction on

N(L) =
m∑

j=1

N(uj),
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where N(uj) is the number of basic operations needed to construct uj from projec-
tions and elements of 〈∅〉, that for any α ∈ T there are directly independent elements
a1, . . . , ak ∈ B such that

uj
B(a1, . . . , ak) ∈ α(B), 1 � i � m,

whence the condition of Proposition 6.2 follows immediately.
The case for N = 0 has been successfully argued. Suppose now that N(L) > 0 and

the result is true for all lists L′ with N(L′) < N(L). Fix α ∈ T . Since N(L) > 0, we
must be able to find an element of the list that without loss of generality we may take
to be um, such that um is neither a projection nor of the form κc̄. There are three cases
to consider.

We first look at the situation where um = δ̄s(y1, . . . , yk), δ̄ is unary and δ = κc ∈ TC .
Let L′ be the list

u1, . . . , um−1, s

so that N(L′) < N(L) and, by our inductive assumption, there are directly independent
a1, . . . , ak ∈ B with

uj
B(a1, . . . , ak) = αdj , sB(a1, . . . , ak) = αd

for some d1, . . . , dm−1, d ∈ B. We then observe that

um
B (a1, . . . , ak) = δsB(a1, . . . , ak) = c = αb

for some b, by our assumption that B has (CI).
Next, we consider the case where um = β̄s(y1, . . . , yk), where β ∈ T . Now T is left

reversible, so that βαδ = αγ for some δ, γ ∈ T . Using our inductive assumption for the
element αδ ∈ T , we can find directly independent a1, . . . , ak ∈ B with

uj
B(a1, . . . , ak) = (αδ)dj = α(δdj) and sB(a1, . . . , ak) = (αδ)d

for some d1, . . . , dm−1, d ∈ B. Then

um
B (a1, . . . , ak) = βsB(a1, . . . , ak) = β(αδd) = (βαδ)d = (αγ)d = α(γd).

Our final case is straightforward. We assume that

um(y1, . . . , yk) = t(s1(y1, . . . , yk), . . . , s�(y1, . . . , yk)),

where � � 2 and t is a basic �-ary operation. Let L′ be the list

u1, . . . , um−1, s1, . . . , s
�,

so that N(L′) < N(L) and our inductive assumption provides us with directly indepen-
dent elements a1, . . . , ak ∈ B such that

ui
B(a1, . . . , ak) = αdi, sj

B(a1, . . . , ak) = αbj ,
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for 1 � i � m − 1 and 1 � j � �. But B has the distributivity condition, so that

um
B (a1, . . . , ak) = tB(s1

B(a1, . . . , ak), . . . , s�
B(a1, . . . , ak))

= tB(αb1, . . . , αb�)

= αtB(b1, . . . , b�),

thus completing our proof that the condition of Proposition 6.2 holds. By that result,
EndB is straight in EndA as required. �

Our final result follows immediately from the comments at the end of § 4.

Corollary 6.4. Let B be a free T -act on a finite set X with |X| � 2, where T is
a cancellative monoid such that finitely generated left ideals are principal, so that B

is a finite-rank stable basis algebra. Let A be the free G-set on X, so that A is an
independence algebra and B is a reduct of A and EndB is a left order in EndA. Then
EndB is straight in EndA if and only if T is left reversible.

To see that not all cancellative monoids in which the principal left ideals are linearly
ordered are left reversible, we consider the R-class of a certain Bruck–Reilly monoid. It is
clear that, for any monoid S, R1, that is, the R-class of the identity, is a right cancellative
monoid.

Example 6.5. Let G be the free group on the set X = {x1, x2, . . . } and let θ be
the endomorphism of G determined by xiθ = xi+1. Then for BR(G, θ) the monoid R1 is
cancellative with principal left ideals linearly ordered, but is not left reversible.

Proof. Notice that θ is certainly one–one. Hence, if

(0, g, n)(0, h, m) = (0, g, n)(0, k, �),

we calculate that
(0, ghθn, m + n) = (0, gkθn, � + n)

and so m = � and (as θn is one–one) h = k, (0, h, m) = (0, k, �) and R1 is cancellative as
required.

Suppose now that (0, w, n), (0, v, n + k) ∈ R1, where k � 0. Then

(0, v, n + k) = (0, v(wθk)−1, k)(0, w, n),

so that
R1(0, v, n + k) ⊆ R1(0, w, n)

and the principal left ideals of T are linearly ordered.
Finally, R1 is not left reversible, for if

(0, x1, 1)(0, g, n) = (0, ε, 1)(0, h, m),

where ε is the identity of G, then we would obtain x1 = (hθ)(gθ)−1 ∈ Im θ, a contradic-
tion. �
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