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Abstract
Which patterns must a two-colouring of Kn contain if each vertex has at least εn red and εn blue neigh-
bours? We show that when ε > 1/4, Kn must contain a complete subgraph on �( log n) vertices where one
of the colours forms a balanced complete bipartite graph.
When ε ≤ 1/4, this statement is no longer true, as evidenced by the following colouring χ of Kn. Divide

the vertex set into 4 parts nearly equal in size as V1,V2,V3,V4, and let the blue colour class consist of the
edges between (V1,V2), (V2,V3), (V3,V4), and the edges contained insideV2 and insideV3. Surprisingly, we
find that this obstruction is unique in the following sense. Any two-colouring of Kn in which each vertex
has at least εn red and εn blue neighbours (with ε > 0) contains a vertex set S of order �ε( log n) on which
one colour class forms a balanced complete bipartite graph, or which has the same colouring as χ .
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1. Introduction
Ramsey’s theorem guarantees that any r-edge-colouring of a large complete graph yields a large
monochromatic complete subgraph. In general, we cannot guarantee the existence of anything but
monochromatic subgraphs. Indeed, nothing prevents the host graph from being monochromatic
itself. However, in recent years, there have been many results stating that in colourings where
each colour is well-represented, a richer family of patterns can be guaranteed. The following, ini-
tially suggested by Bollobás [4], is a prototypical result of this form. Here, Ft denotes the family
of 2-edge-coloured complete graphs on 2t vertices in which one colour forms either a complete
bipartite graph with t vertices on each side (Kt,t) or a clique of order t (Kt). See Figure 1 for a
depiction of the four colourings in Ft (up to isomorphism).

Theorem 1.1 (Fox-Sudakov, Cutler-Montágh [4, 9]). Let G be a 2-edge-coloured Kn where each
colour class has at least εn2 edges, and suppose n≥ (1/ε)16t . Then, G contains a member of Ft .

A probabilistic construction shows that the above is asymptotically tight up to the constant
factor in the exponent. The theorem is also optimal from a structural standpoint. Namely, 2-edge-
colourings of Kn where one colour class forms two disjoint cliques of size �n/2� and �n/2� or one
colour class forms a Kcn (with c∼ √

2/2) satisfy the hypothesis of Theorem 1.1 with ε ∼ 1/2, and
thus certify that one cannot hope to find patterns which are more complex than those in Figure 1.
Similarly, Theorem 1.1 becomes false if we delete any of the four patterns contained in Ft .
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Figure 1. The four types of colourings in Ft . The circles denote cliques of size t, whereas the lines connecting the circles
denote complete bipartite graphs. In the first row, one colour class forms a Kt,t , whereas on the second row, one colour class
forms a Kt .

Figure 2. An illustration of the relevant two-coloured and totally two-coloured graphs.

There are numerous extensions of Theorem 1.1, including multicolour and infinite variants
[1], variants where Kn is replaced by another dense host subgraph [15], and variants where ε is
allowed to depend on n [2, 11, 13]. In this paper, we are concerned with the following question,
initially raised by Wesley Pegden (personal communication).

Question 1.2. Let ε > 0. Suppose that Kn is 2-edge-coloured so that each vertex is incident to at
least εn edges in each colour. Which subgraphs must Kn necessarily contain? �

We call 2-coloured Kn as in Question 1.2 locally ε-balanced. Of course, this is a stronger
hypothesis on the colouring compared to Theorem 1.1. Hence, any locally ε-balanced Kn must
contain a complete subgraph on 2t vertices where one colour forms a Kt,t or a Kt , where t =
�ε( log n). However, this is not necessarily a complete answer to Question 1.2 as it cannot be the
case that in a locally ε-balanced Kn one colour class consists entirely of a clique. This motivates
the following question: does any locally ε-balanced Kn contain a complete 2t-vertex subgraph in
which one colour class forms a Kt,t?

The answer turns out to be negative for any value of ε ≤ 1/4 and t ≥ 2. To see this, consider
the following 2-colouring of K4k, where each vertex is adjacent to at least k red and blue edges,
illustrated in Figure 2 (labelled P3). Partition V(K4k) into four equal-sized sets as V1,V2,V3 and
V4. Colour all edges with both endpoints in V1 ∪V4 red, colour all edges with both endpoints in
V2 ∪V3 blue, and colour edges betweenV1,V3, and betweenV2,V4 red, and colour the remaining
edges (between V1, V2 and between V3,V4) blue. Denote by Pk the resulting 2-coloured K4k (so
the number of vertices is n= 4k). It is easy to see that Pk contains no complete subgraph with 4
vertices in which one colour class forms two disjoint cliques of size 2 each. One can also check
that Pk is locally 1/4-balanced.
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Perhaps surprisingly, Pk is an optimal construction in the following sense. For any γ > 0,
a locally (1/4+ γ )-balanced Kn must contain large complete subgraphs where one colour
class forms a complete bipartite graph. Our first result makes this precise, thereby answering
Question 1.2 when ε > 1/4.

Theorem 1.3. Let G be a 2-coloured locally (1/4+ ε)-balanced Kn for ε > 0, and suppose n≥
2t·2−C log (1/ε)8 for some absolute constant C. Then, G contains a complete subgraph on 2t vertices
where one colour class forms a Kt,t .

The earlier construction (Pk) shows that Theorem 1.3 does not hold when 1/4+ ε is replaced
by 1/4. Moreover, n has to be exponentially large in t for the conclusion to hold (e.g. by consider-
ing a random colouring), but we believe that the dependence of n on ε should be far from optimal.
We discuss this further in Section 5.

We now turn our attention to answering Question 1.2 when ε ≤ 1/4. In light of the earlier
construction (Pk), it is not clear at all if anything interesting can be said about this case. One
might guess there exists a 2-colouring of Kn, say P ′

k, that is locally 1/8-balanced, but P ′
k does

not contain a complete subgraph isomorphic to P2, or a complete graph on 4 vertices where
one colour class forms two disjoint cliques of size 2. And perhaps, there exists another colour-
ing which is locally 1/16-balanced, which does not contain P2

′ or any of the former patterns.
Hence, maybe, the answer to Question 1.2 is a family of patterns Fε which increases with ε−1.
Indeed, Theorem 1.3 could feasibly be interpreted as evidence towards such a phenomenon. Our
next result rules out any such possibility in a strong sense, demonstrating that the answer to
Question 1.2 depends only on whether ε ≤ 1/4 or not.

Theorem 1.4. Let G be a 2-coloured locally ε-balanced Kn for some ε > 0, and suppose n≥ 2Ct/ε16

for some absolute constant C. Then, G contains a complete subgraph on 2t vertices where one colour
class forms a Kt,t , or a complete subgraph isomorphic to Pt .

In [1], Theorem 1.1 was generalised to r-edge-colourings of Kn, and we refer the reader to that
paper to see what kind of patterns can be guaranteed in the multicolour version of the problem.
It is also natural to investigate a locally balanced version of the multicolour problem. The situa-
tion here is unexpectedly more difficult, as already for locally ε-balanced 3-colourings there is no
straightforward analogue of Theorem 1.4. We formalise this negative statement in Section 4, and
obtain some complementary positive results.

Organisation of the paper. In Section 3.2, we introduce a general tool to find patterns (such
as those depicted in Figure 3) efficiently in edge-coloured complete graphs. Our main tool is a
technique of Nikiforov which uses subgraph count estimates to find large blow-ups of small sub-
graphs. This is in contrast to many of the related results in this area for which the main tool is the
dependent random choice method. In Section 2.2, we compare these two approaches and give an
overview of the proofs of Theorem 1.3 and Theorem 1.4. Section 3 contains formal proofs of both
of these results. In Section 4, we treat the multicolour version of the problem.

Remark. After the submission of this paper, Theorem 1.3 and Theorem 1.4 have been strength-
ened by Gir ao and Munhá Correia [12] to give a dependence between n and ε which is optimal
up to constant factors in the exponent.

2. Preliminaries and proof outline
2.1 Notation
In this subsection, in preparation to give an overview of the proofs, we introduce and recall some
notation. An r-edge-coloured (or just an r-coloured) graph is a graph together with a labelled
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Figure 3. A three-colouring of Kn in which any locally balanced subgraph has at least 6 vertices, where 6 is the number
of parts. This colouring is locally (1/6)-balanced. Colourings of this type (where two colour classes form a blow-up of an
alternating cycle) show that there is no analogue of Theorem 1.4 for more than two colours.

partition of its edge-set into r parts. We view the parts of this partition as being labelled by dif-
ferent colours. We say that one coloured graph G contains another coloured graph H if there
exists an injection φ : V(H)→V(G) such that (a, b) ∈ E(H) implies that (φ(a), φ(b)) ∈ E(G) and
(φ(a), φ(b)) has the same colour as (a, b).

We say that a coloured graph G is a homogeneous t-blow-up of another coloured graph H if
V(G) can be partitioned into t-sized sets V1, · · · ,V|V(H)|, each G[Vi] is a monochromatic clique
(in some colour), and for each (i, j) ∈ E(H) of colour c, G[Vi,Vj] is a complete bipartite graph
where each edge gets colour c.

An r-totally coloured graph is a graph whose vertices as well as its edges are given an
r-colouring. A coloured graph G is a t-blow-up of a totally coloured graph H if G is a t-blow-up
of H with respect to the edge-colouring of H, and G[Vi] is a monochromatic clique in the same
colour as the vertex i ∈H.

If G is 2-coloured, G is used to denote the coloured graph with the two colours interchanged.
We say that an r-coloured G is locally ε-balanced if each vertex of G is incident to at least

ε|V(G)| edges in each of the r colours. We say that an r-coloured graph G is globally ε-balanced
if each colour class has size at least ε

(n
2
)
. Throughout the paper, ε is assumed to be a positive real

number.
For the convenience of the reader, in the following paragraph we collect every coloured and

totally coloured graph we make reference to throughout the paper. For further clarity, in Figure 2,
we provide an illustration of each of these graphs.

Let P1 be the totally coloured K2 with vertices receiving colour red, and the unique edge receiv-
ing colour blue. Note that the t-blow-up of P1 is a blue induced Kt,t . Let P2 be the totally coloured
K2 with one vertex receiving colour red, the other receiving colour blue, and the edge receiving
colour red. Let P3 be the totally coloured K4 with edges (1, 2), (2, 3), (3, 4) and vertices 2 and 3
coloured blue, and all other edges and vertices coloured red. Note that a t-blow-up of P3 is locally
1/4-balanced. Moreover, let P◦

3 be the (not totally) coloured graph obtained from P3 by discarding
the vertex colours. Let C4 be a 2-edge-coloured K4 with the red edges forming a 4-cycle. Let M1
be the properly 2-edge-coloured K2,2.

With our notation, the aforementioned theorems can be stated as follows.

Theorem 1.1. (Fox-Sudakov, Cutler-Montágh) Suppose n≥ (1/ε)16t . Then, any globally
ε-balanced 2-coloured Kn contains a t-blow-up of one of P1, P2, P1, P2.

Theorem 1.2. Suppose n≥ 2t·2−C log (1/ε)8 for a sufficiently large absolute constant C. Then, any
locally (1/4+ ε)-balanced 2-coloured Kn contains a t-blow-up of P1 or P1.
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Theorem 1.3. Suppose n≥ 2Ct/ε16 for a sufficiently large absolute constant C. Then, any locally
ε-balanced 2-coloured Kn contains a t-blow-up of P1, P1 or P3.

Note that P3 is not included in the above list as P3 = P3.

2.2 Proof overview
Although our proofs are short, the method is quite different from the other papers in the area. In
this section, we aim to motivate our approach and give heuristic explanations for why Theorems
3 and 4 are true, at least qualitatively (i.e. with some finite n= n(t, ε)). We begin with a brief dis-
cussion of Theorem 1.1 in order to compare the different approaches. It is rather straightforward
to obtain a proof of Theorem 1.1 if one is only concerned with obtaining t-blow-ups where t tends
to infinity with n. Indeed, applying the well-known Kővari-Sós-Turán Theorem to both red and
blue colour classes, we can obtain one red and one blue Ks,s, say T1 and T2, respectively, where
s∼ log n (we can ensure that T1 and T2 are vertex-disjoint). Apply Ramsey’s theorem to the four
parts coming from T1 and T2, and delete all vertices outside of themonochromatic cliques guaran-
teed by this application. Similarly, for each pair of the 4 parts, in turn, apply the Kővari-Sós-Turán
theorem to the majority colour class in the bipartite graph between the pair of parts to guarantee
a monochromatic complete bipartite subgraph, at each iteration reducing the size of the parts log-
arithmically. This produces a t-blow-up of a totally coloured K4 (where t → ∞ as n→ ∞) where
we do not have precise control over the colouring; however, we know that the colouring is not
monochromatic (there exists at least one blue and one red edge). It is easy to see that this implies
that the totally coloured K4 must contain one of P1, P2, P1, P2, as desired.

In [9], the dependent random choice method (see, e.g. [10]) is employed to obtain optimal
bounds for Theorem 1.1, eliminating the need for nested applications of the Theorems of Ramsey
and Kővari-Sós-Turán. However, the argument still boils down to finding a blow-up of a totally
coloured graph which is not monochromatic, thereby producing a structure which necessarily
contains one of the desired patterns. To prove Theorems 1.3 and 1.4, we find blow-ups of totally
coloured graphs where each vertex is adjacent to edges of both colours. The argument given in the
previous paragraph is too weak to achieve this, since it does not make use of the assumption that
our colouring is locally balanced. The dependent random choice is quantitatively much stronger,
but does not give any additional structural information.

Hence, we need an argument which will make use of the global structure of the colouring.
Specifically, our main tool (Lemma 2.4), a strengthening of a theorem due to Nikiforov [17],
reduces the problem to finding certain small subgraphs appearing in G with a positive density.
Using Lemma 2.4, the statements of Theorem 1.3 and 1.4 reduce to the following two statements,
respectively.

Proposition 2.1. There exists a constant C1 such that the following holds. Any locally (1/4+ ε)-
balanced 2-coloured Kn contains 2−C1 log (1/ε)8n4 copies of C4 or C4.

Proposition 2.2. Let n≥ ε−100. Any locally ε-balanced 2-coloured Kn contains ε4n4/105 copies of
P◦
3, C4 or C4.

A natural tool for proving statements such as Proposition 2.1 and 2.2 is the Szemerédi
Regularity Lemma and closely related removal lemmas (see, e.g. [3]). For the sake of obtaining
better bounds and more cogent proofs, we do not use the regularity method. However, the regu-
larity method does provide a shorter proof of a quantitatively weaker version of Proposition 2.1,
and thus Theorem 1.3. Indeed, using the Regularity Lemma, it is not hard to show that the ver-
tex set of a 2-coloured Kn with a vanishing density of both C4 and C4 can essentially (i.e. after
recolouring o(n2) edges), be partitioned into a red and a blue clique. Such a 2-coloured Kn can
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at best be locally (1/4+ o(1))-balanced, by an easy optimisation argument (see Proposition 3.5),
implying Proposition 2.1.

Proposition 2.2 is, however, more subtle, since even finding a single copy of the desired small
subgraphs is a non-obvious extremal problem. To give some intuition on why the statement holds,
let us prove an idealised version of it.

Proposition 2.3. Let (A, B) be a 2-coloured complete bipartite graph with |A|, |B| > 2 so that each
vertex of A has at least one blue neighbour, and each vertex of B has at least one red neighbour.
Then, (A, B) contains a cycle of length 4 whose edges are alternating red and blue.

Proof. Suppose without loss of generality that |A| > |B|. Let v,w ∈A. Suppose there exists no
alternating red and blue 4-cycle. Observe that the blue neighbourhood of v must be contained
in that of w, or vice versa, otherwise we immediately obtain an alternating 4-cycle. Hence, the
collection of blue neighbourhoods of vertices in A forms a chain where the smallest subset has at
least one element, say q ∈ B, by assumption. Hence, q is in the blue neighbourhood of every vertex
of A, meaning q has no red neighbours, a contradiction. �

To clarify the connection between Proposition 2.3 and Proposition 2.2, notice that completing
a colouring of an alternating red-blue 4-cycle to an edge-colouring of K4 yields a C4, C4 or a P◦

3.
Finally, we state our main technical tool, which allows us to deduce Theorems 1.3 and 1.4 from

the aforementioned Propositions. Nikiforov [17] showed that any graph with a positive density
of K�-copies contains a large complete �-partite subgraph. We strengthen this statement to find
homogeneous blow-ups in r-coloured graphs. Recall that our definition of a homogeneous blow-
up in a coloured graph requires that the parts of the blow-up induce monochromatic cliques, but
the colours of the cliques are not specified.

Lemma 2.4. Let H be an �-vertex r-coloured graph. Let G be an n-vertex r-coloured graph
containing at least cn� copies of H. Then G contains a homogeneous t-blow-up of H with t ≥
min

{
c
2� ,

1
2r log r

}�

log n.

Lemma 2.4 is proved in Section 3.2. We remark that the Lemma also gives a short proof
of Theorem 1.1 with the stronger hypothesis that n≥ 2100t/ε . Indeed, an easy counting argu-
ment implies that any globally ε-balanced 2-colouring of Kn contains �(εn3) properly coloured
two-edge paths (i.e. K1,2-copies), so Lemma 2.4 yields a homogeneous t-blow-up of the non-
monochromatic edge-colouring of K1,2. A simple case distinction then gives a blow-up of P1,
P2 or one of their complements. A similar argument gives a concise proof (with a weaker depen-
dence between n and ε) of Theorem 1.4 from [1], which is a generalisation of Theorem 1.1 to an
arbitrary number of colours, originally proved via nested applications of the dependent random
choice method.

3. Proofs for patterns in two-colourings
3.1 Proofs of the main theorems
Wenow show how themain theorems follow easily from the two propositions on subgraph counts
and Lemma 2.4.

Proof of Theorem 1.3. By Proposition 2.1, we may assume (without loss of generality) that G
contains at least 2−C1 log (1/ε)8n4 copies of C4. By Lemma 2.4 applied with c= 2−C1 log (1/ε)8 , G
contains a homogeneous (2−C log (1/ε)8 log n)-blow-up of C4 for some absolute constant C. Note
that by assumption on n, 2−C log (1/ε)8 log n≥ t. Let V1, . . . ,V4 be the parts of this blow-up, and
recall that G[Vi] are monochromatic cliques.

https://doi.org/10.1017/S0963548323000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000160
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We claim that G[V1 ∪V2 ∪V3 ∪V4] contains a t-blow-up of P1 or P1. Assume the opposite.
At least one vertex part has to be blue, so assume that G[V1] is blue. Then G[V2] and G[V4] are
red, so they form a blow-up of P1, which is a contradiction. �
Proof of Theorem 1.4. Proposition 2.2 implies that G contains ε4n4/105 copies of C4, C4 or P◦

3
in G. Let t = (

ε4 · 10−6)4 log n, noting that this satisfies the claimed bound on n(t, ε). In the cases
with many copies of C4 or C4, the above argument from the proof of Theorem 1.3 yields a t-blow-
up of P1 or P1. In the latter case, applying Lemma 2.4, we obtain that G contains a homogeneous
(ε1610−7 log n)-blow-up of P◦

3 on the vertex parts V1,V2,V3 and V4. Suppose that this structure
does not contain the t-blow-up of a P1 or P1, otherwise we are done. Suppose that G[V1] is blue.
Then G[V3] and G[V4] are red, and hence they form a blow-up of P1, contradiction. Hence G[V1]
is red, and consequently, G[V2] is blue, so G[V4] is red, and finally, G[V3] is blue. This yields a
t-blow-up of P3, as required. �

3.2 Finding homogeneous blow-ups of small patterns
In this subsection, we prove Lemma 2.4, a variant of a result due to Nikiforov [17]. The main
ingredient is Lemma 3.1, which is about dense �-uniform hypergraphs. Before stating and proving
Lemma 3.1, we give the following definitions which are central due to the inductive nature of the
proof.

Let H be an �-partite �-uniform hypergraph H on parts V1, . . . ,V�. We usually specify the
members of E(H) as �-tuples (v1, . . . v�) (where vi ∈Vi), but we also abuse notation by say-
ing that (v1, . . . , v�) contains v1, or by writing (v1, . . . v�)= (v1, . . . , v�−1)+ v�. Let K2(H) be
the vertex pairs contained in edges of H. Moreover, we write ∂H for the collection of (� − 1)-
tuples (v1, . . . , v�−1) which are contained in some edge (v1, . . . , v�) of H, with vi ∈Vi for i ∈ [�].
We emphasise that this notation is not standard since ∂H only contains (� − 1)-tuples from
V1 × · · · ×V�−1. Given a graph G isomorphic to a K�(m) (the complete �-partite graph with ver-
tex parts of sizem), we say thatH covers G if E(G)⊂K2(H) and there arem disjoint S ∈ E(H) with
S⊂V(G) (in other words,H contains a matching of sizem on V(G)).

Lemma 3.1. Let H be an �-partite �-uniform hypergraph on parts V1, . . . ,V� of size n with least
�cn� edges. Let ϕ be an r-colouring of the complete (2-uniform) graphs on V1, . . . ,V�. Then, there

are vertex sets S1, . . . , S� with |Si| ≥
(
min{ c2 , 1

2r log r }
)�

log n such that ϕ is constant on each Si, and
H covers the complete �-partite graph on S1, . . . , S�.

To prove Lemma 3.1, we need the following lemma for finding unbalanced complete bipartite
graphs, which can be proved using the classical double counting argument of Kővari, Sós and
Turán [14].

Lemma 3.2. (Lemma 2 from [17]). Let F be a bipartite graph with parts A and B. Let |A| =m,
|B| = n and c, α ∈ (0, 1/2). If α log n≤ cm

2 + 1 and e(F)≥ cmn, then F contains a complete bipartite
graph with parts S⊂A and T ⊂ B of size |S| = α log n and |T| > n1−α/c.

We also need a standard upper bound on the r-colour Ramsey number due to Erdős and
Szekeres [6]. Namely, any r-colouring of Kn contains a monochromatic clique on log n

r log r vertices.
We emphasise that we are mostly concerned with the case r = 2. We can now proceed with the
proof.

Proof of Lemma 3.1. Assume that c≤ (r log r)−1, since the statement for larger values of c
then follows. We prove the statement by induction on �. The case � = 1 follows from Ramsey’s
Theorem – a colouring of Kcn contains a monochromatic clique of size (r log r)−1 log (cn)≥
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(2r log r)−1 log (n)≥ c
2 log n. Assume that the statement holds for � − 1, and let H be as in the

statement.
For a hypergraph L and R= (v1, . . . , v�−1), we write dL(R) for the number of edges of L con-

taining R. A standard deletion argument shows that there is L⊂H with |L| ≥ (� − 1)cn� such
that

for any R ∈V1 × · · · ×V�−1, dL(R)≥ cn or dL(R)= 0; (1)

indeed, one can iteratively remove all edges containing R for any R violating (1), removing at most
cn · n�−1 edges in total.

We have |∂L| ≥ |L|/n≥ (� − 1)cn�−1, since each R ∈ ∂L is contained in at most n edges of L.
Applying the induction hypothesis to ∂L, we obtain sets U1, . . .U�−1 ⊆V1, . . . ,V�−1 with |Ui| =
m= ( c

2
)�−1 log n such that ∂L covers the complete (� − 1)-partite graph on U1 ∪ . . . ∪U�−1, and

ϕ[Ui] is constant for each i ∈ [� − 1].
Let A be a set of m disjoint (� − 1)-tuples in ∂L, which exists by the definition of a covering.

The graph structure of K2(L) will now be used by noticing that it suffices to find a large subset of
vertices T ⊂V� such that R+ v� ∈L for all R ∈A and v� ∈ T. To this end, consider the bipartite
graph F with partsA and V� such that (R, v�) ∈ F whenever R+ v� lies in L. Since dL(R)> cn for
all R ∈A⊂ ∂L, we have that e(F)≥ cmn.

We can apply Lemma 3.2 to F with α = (c/2)�. We also set s := ( c
2
)� log n= α log n≤ c

2m+ 1
and t := n1−2−�c�−1 = n1−α/c. It follows that F contains a complete bipartite graph with parts A′
and T such that |A′| = s and |T| = t. Let G=K2(L). Let S1, . . . , S�−1 be the vertex sets of the
edges ofA′, and recall that they induce a K�−1(s) in G since Si ⊂Ui. Moreover, we claim that wv�

is in G for any v� ∈ T and w ∈ Si with i ∈ [� − 1]. This follows from the fact that there is an R ∈A′
containing w, and R+ v� ∈L.

Finally, by Ramsey’s theorem, there is a subset S� ⊂ T with |S�| = s= ( c
2
)� log n≤ 1

r log r log |T|
on which ϕ is constant. Recalling that ϕ[Si] is constant for i ∈ [� − 1] by induction hypothesis,
we obtain our desired sets S1, . . . , S�. To verify that L covers S1, . . . , S�, note that the edges ofA′
with the vertices of S� (in an arbitrary order) form a matching of size s in L. �

We now give the proof of Lemma 2.4.

Proof that Lemma 2.4 follows from Lemma 3.1. LetV1, . . . ,V� be a uniformly random partition
of the vertex set of G with parts of size at least n′ = �n

�
�, and associate V1, . . . ,V� to the vertices

of v1, v2, . . . , v� of H. We say that a copy of H in G is canonical with respect to this partition if vi
is embedded to Vi for each i ∈ [�]. We claim that a copy of H in G is canonical with probability
at least (n′/n)�. Indeed, each vertex vi of this H-copy is placed into Vi with probability at least n′

n .
Moreover, the events that the vertices of this H-copy are placed into the corresponding parts are
positively correlated, which implies the lower bound (n′/n)�.

Hence, using linearity of expectation, we may assume that the number of H-copies respect-

ing our partition is at least
(
n′
n

)�

cn� = cn′�. Let H be the hypergraph corresponding to those
copies. We may apply Lemma 3.1 with c′ = c

�
, to obtain the desired sets S1, . . . S� with |Si| =

min
{

c
2� ,

1
2r log r

}�

log n. �

3.3 Small subgraphs in locally balanced colourings
We now prove Proposition 2.1, which follows immediately from Lemma 3.4 and Proposition 3.5.
As discussed above, in Lemma 3.4 we actually describe the structure of colourings with a vanishing
density of C4 and C4. We call a 2-coloured Kn split if its vertex set can be partitioned into a red
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804 N. Kamčev and A. Müyesser

clique and a blue clique. We call two 2-coloured Kn δ-close if the first can be made isomorphic
to the second after flipping the colours of at most δn2 many edges. The following result can be
thought of as a substitute for the regularity method which is sufficient for our purposes.

Lemma 3.3. (Fox-Sudakov [8] (Theorem 4.4)). There exists an absolute constant c such that for
each ε ∈ (0, 1) and graph H on k vertices, there are constants κ := (ε/4)k2−c(k log (1/ε))2 and C =
4/(ε2−ck( log (1/ε))2 ) such the following holds. For any n-vertex graph G with fewer than κnk induced
copies of H, there is an equitable partition of V(G) into at most C parts such that each part induces
a subgraph of density at most ε or at least 1− ε.

We now use the above lemma to show that a 2-coloured graph with a vanishing density of C4
and C4 is o(1)-close to being split.

Lemma 3.4. There exists an absolute constant C2 so that the following holds for any n and δ. Let G
be a 2-coloured Kn. Then, at least one of the following is true.

1. G contains at least 2−C2 log (1/δ)8n4 many distinct copies of C4 or C4

2. G is δ-close to being split.

Proof. Suppose that (1) does not hold. Then, by Lemma 3.3 applied with δ5 in place of ε, we have
that there is an equitable partition of G into at most

C = 4/(δ52−4c( log (1/δ5))2 )

parts, each of which has either red or blue density above 1− δ5. Let us refer to the parts with high
red density as red parts, and label them by V1, . . . ,V�.

Proof. We claim that G[V1 ∪ · · · ∪V�] contains at most δn2/2 blue edges. If � = 1, this is trivial,
and otherwise it follows from the following claim.

Claim 1. Let Vi and Vj be two parts with density≥ 1− δ5 in red. Then the bipartite graph G[Vi,Vj]
has red density at least 1− δ.

Suppose that the blue density between Vi and Vj is at least δ. It follows that the blue subgraph
of G[Vi ∪Vj] must contain at least 2−10δ4(n/C)4 copies of a cycle on 4 vertices (see, for example,
Theorem 1.9(iv) from [16]). At most 2δ5(n/C)4 such 4-cycles can contain a blue edge from G[Vi]
or G[Vj], by the density assumption. The remaining 4-cycles must correspond to a copy of C4 in
G[Vi ∪Vj]. Note that for some absolute constant C2, we have that δ4(n/C)4 ≥ 2−C2 log (1/δ)8n4, so
as we assumed that (1) does not hold, we conclude that G[Vi,Vj] has red density at least 1− δ.

The same argument implies that the union of blue parts contains at most δn2/2 blue edges.
Hence, combining the red parts as well as the blue parts gives a partition certifying that G is
δ-close to a split graph, as required.

We now show that graphs which are δ-close to being split cannot be (1/4+ 2δ)-balanced.
When combined with Lemma 3.4, this immediately implies Proposition 2.1.

Proposition 3.5. If a 2-coloured Kn is δ-close to being split, then it has a vertex with at most (1/4+
3δ)n red or at most (1/4+ 3δ)n blue neighbours.

Proof. Assume for the sake of a contradiction that G is a 2-coloured Kn in which all vertices have
more than (1/4+ 3δ)n red and more than (1/4+ 3δ)n blue neighbours. Consider a split graph G′
which is δ-close to G. The vertex set of G′ is the union of a red clique X and a blue clique Y . In
G, the sum of the blue degrees of the vertices in X is > (1/4+ 3δ)n|X|. Since X contains at most
δn2 blue edges by the δ-closeness assumption between G and G′, the edges inside X contribute at
most 2δn2 to the previous sum. This implies that in G, between X and Y , there are at least (1/4+
δ)n|X| blue edges. Similarly, we can derive that between X and Y , there are at least (1/4+ δ)n|Y|
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red edges, giving in total (1/4+ δ)n2 > n2/4 edges between two disjoint subsets of G. This is a
contradiction. �

Now we move on to Proposition 2.2. Recall that M1 denotes a properly 2-edge-coloured K2,2.
The following lemma is a robust version of Proposition 2.3. For a graph G, let δG(S) denote the
minimum degree (in G) of a vertex in S⊂V(G).

Lemma 3.6. Let ε > 0, and consider a two-colouring R∪ B of Kn,n with vertex parts X, Y of order
n such that δR(X), δB(Y)≥ εn. Then, this two-colouring of Kn,n contains at least ε4n4/2000 many
distinct copies of M1.

Proof. Let A be the set of vertices in X contained in at least ε3n3/500 copies ofM1. We will show
that |A| ≥ εn

2 . This implies the lemma, since the number of copies ofM1 is at least |A|ε3n3/1000.
Assume that |A| < εn

2 , and let A′ = X \A. Note that δR(A′), δB(Y)≥ εn/2 by the assumption
on the size of A′. Let v be a vertex of A′ with minimum red degree, and let S⊆ Y be the red neigh-
bourhood of v. In A′ \ {v} × S, there are at least εn2/3 blue edges. It is well-known that every
graph with average degree μ contains a subgraph with minimum degree μ/2 (see [5], Proposition
1.2.2). So, A′ \ {v} × S has a subgraph (C,D) with minimum blue degree at least εn/6 (in particu-
lar, |C|, |D| ≥ εn/6). Observe now that for each element d of D, each blue neighbour of d in C, say
c, and each red neighbour of c in Y \ S, say b, {v, d, c, b} induce a copy ofM1. This is because (v, b)
must be blue by the assumption that b /∈ S. There are at least |D|εn/6 choices for such d and c, and
we claim that any c ∈ C has at least εn/6 red neighbours in Y \ S, all of which can play the role of
b. To see this, note that by minimality of v, cmust have at least |S| red neighbours in Y , and that at
most |S| − εn/6 of these neighbours are contained in S (since c has at least εn/6 blue neighbours
in D⊂ S). Hence, we can find at least (ε/6)3n3 > ε3n3/500 distinct triples (d, c, b) giving rise to
distinctM1 containing v. This contradicts the definition of A, so we conclude that |A| ≥ εn/2. �

Proposition 2.2 follows easily from the previous result.

Proof of Proposition 2.2. Let G be locally ε-balanced 2-coloured Kn. By assigning each vertex to
a set X or Y uniformly at random, we can find a bipartite subgraphG′ = (X, Y) ofGwhich satisfies
the hypotheses of Lemma 3.6 with n(3.6) := 0.49n and ε(3.6) := 0.99ε (Chernoff’s bound is suffi-
cient here, using the assumption n≥ (1/ε)100). It follows by Lemma 3.6 that G contains ε4n4/105
many distinct copies of M1. Note that each copy of M1 yields a copy of P◦

3, C4 or C4, depending
on the colour of the remaining two edges spanned by V(M1). This implies the proposition. �

4. Multiple colours
In this section, we investigate the r-colour variant of Question 1.2. To allow for a more precise
discussion, we give the following two definitions. Given a totally coloured graph H, the t-blow-
up of H is denoted by H[t]. A totally r-coloured graph H is called unibalanced if each vertex
of H[2] is incident to an edge in each of the r colours.1 For instance, the patterns P1 and P3 are
unibalanced, but P2 is not. Observe that for a totally coloured graph H, H[t] is locally ε-balanced
for some value of ε > 0 if and only if H is unibalanced. We call a family F of r-colourings of Kn
locally (r, ε)-unavoidable if every locally ε-balanced colouring of Kn where n is sufficiently large
contains a copy of some F ∈F .

Question 4.1. Suppose Kn is given a locally ε-balanced r-edge-colouring. Which subgraphs must Kn
necessarily contain? �

Obviously, colourings as in Question 4.1 are globally ε-balanced as well. In [1], a multicolour
version of Theorem 1.1 is provided (see Theorem 4). This result guarantees, just using a global

1In other words, H is unibalanced if every vertex v of H is incident to each of the available r colours (the value of r will be
clear from context), where a vertex v is also considered incident to c if it is coloured c.
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balancedness assumption, the existence of a rich family of patterns, say F (r), where each pattern
in the family uses all r colours (see Figure 1 in [1] for a depiction of patterns guaranteed when
r = 3). In particular, F (r) is locally (r, ε)-unavoidable for every ε > 0. Yet, F (r) does not give a
satisfying answer to Question 1.2, for the same reason the family Ft (see Figure 1) does not give
a satisfying answer to Question 1.2. That is, elements of F (r) are not locally balanced, leaving
open the possibility that there exists either a smaller (as in Theorem 1.3) or more complex (as
in Theorem 1.4) family of unavoidable patterns. On the other hand, as in the two-colour case,
any (r, ε)-unavoidable family F consisting of blow-ups of a finite family of unibalanced totally
coloured graphs F ′ (assuming that no member of F ′ contains another member) would give a
structurally optimal answer to Question 1.2. Indeed, members of such F would be themselves
locally ε-balanced for some ε > 0, making it impossible for a smaller, or more complex family of
(r, ε)-unavoidable graphs to exist (for ε sufficiently small).

We can now explain why already for r ≥ 3, the problem is rather different. A consequence of
Theorem 1.4 is that for any ε > 0 and t ≥ 1, the family {P1[t], P̄1[t], P3[t]} is (2, ε)-unavoidable.
For r = 3, if F is a finite family consisting of unibalanced totally coloured graphs whose blow-ups
are (3, ε)-unavoidable, then the following proposition shows that |F | has to have size at least 1/ε.
Proposition 4.2. There exists a locally ε-balanced 3-colouring of Kn in which any unibalanced
subgraph has at least �ε−1� − 1 vertices.

Proof. Partition the vertex set into parts V1, . . . ,V� of order at least εn, where � ≥ �ε−1� − 1 is
an even number. Colour the bipartite graphs betweenVi andVi+1 red and blue alternatingly (with
indices modulo �). Colour the remaining edges green. For an illustration of the case when � = 6,
see Figure 3. This colouring is locally ε-balanced and any non-empty unibalanced subgraph of
this colouring must contain a vertex from each of V1, . . . ,V�, as required. �

Proposition 4.2 implies that there can be no straightforward generalisation of Theorem 1.4 for
more than two colours. That is, there is no single finite family of unibalanced totally coloured
(with r colours) graphs whose blow-ups are (r, ε)-unavoidable for every ε > 0. However, we can
still prove a version of Theorem 1.4, with the caveat that the size of the family of unavoidable
patterns depends on ε.

Theorem 4.3. Given ε > 0, an integer r ≥ 2, and C = 80
ε
log 1

ε
, there is a constant α such that the

following holds for sufficiently large n. Any locally ε-balanced r-colouring of an n-vertex complete
graph contains a homogeneous α log n-blow-up of some unibalanced graph on at most C vertices.

Proof. Let ε � η � α � 1/n. We have the following claim.

Claim 2. There exists k≤ C such that there are at least 1
4
(n
k
)
vertex subsets S of order k inducing a

unibalanced r-coloured subgraph.

Proof. Denote the family of subsets S⊂ [n] which induce a unibalanced subgraph by U . Let S
be a random set of vertices where each vertex is sampled independently with probability ζ

n , with
ζ = 20

ε

(
log r + log 1

ε

) ≤ C
2 . We will show that the probability that S /∈ U is at most 1

2 .
For v ∈V(G), let Ai(v) be the event that there is a vertex u ∈ S such that uv has colour i (note

that this event does not depend on whether v is in S), and let A(v)= ⋂
i∈[r] Ai(v).

Since Ai(v) are mutually independent for i ∈ [r], we have

P [A(v)]=
∏
i∈[r]

P [Ai(v)] .

Moreover, by the locally ε-balancedness assumption, we have that P [Ai(v)]≥ 1−
(
1− ζ

n

)εn ≥
1− e−ζε/2 for n sufficiently large, so
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P [A(v)]≥ 1− re−ζε/2.

Since A(v) and v ∈ S are independent events, we have, for any v ∈ [n],

P

[
A(v)∧ v ∈ S

]
≤ ζ

n
· re−ζε/2

Denoting the random variable counting the vertices v ∈ S for which A(v) does not occur by X
and substituting for ζ , we have

E [X]≤ ζ re−ζε/2 ≤ 20
ε

(
log r + log

1
ε

)
re−10 log r−10 log 1

ε

≤ 40r2ε−2 · r−10ε10 < 40
(
εr−1)8 < 40 · 4−8 <

1
2
.

Note that in the fifth inequality, we used that ε ≤ 1/2 and r ≥ 2. Clearly, S /∈ U only if X ≥ 1. By
Markov’s inequality, the probability that X ≥ 1 is at most 1/2, so P [S /∈ U]≤ 1

2 , as claimed.
To complete the proof of the claim, assume that

∣∣∣∣U ∩
(
[n]
k

)∣∣∣∣ ≤ 1
4

(
n
k

)
for all k≤ C. (2)

It follows that

P [S ∈ U]≤
C∑

k=0

P
[
S ∈ U

∣∣ |S| = k
] + P [|S| > C]≤

C∑
k=0

1
4

· P [|S| = k
] + 1

8
≤ 3

8
,

where the second inequality follows from (2) and the Chernoff bound. We reached a contradic-
tion, completing the proof of the Claim. �

Hence, for some k-vertex unibalanced graphH, G contains at least 1
4 r

−C2(n
k
)
copies ofH; to see

this, note that there are at most rC2 options forH. Applying Lemma 2.4, we obtain a homogeneous
α log n-blow-up of H, as required. �

5. Concluding remarks
Asymptotics. It remains an interesting open problem to improve the quantitative estimates
from Theorems 1.3 and 1.4. There is more room for improvement in Theorem 1.3 compared
to Theorem 1.4, but we believe both estimates should be quite far away from the truth. In particu-
lar, we don’t see an inherent reason why the asymptotics of the locally balanced Ramsey problem
should be different from the globally balanced Ramsey problem. That is, we believe that there
should be an absolute constant C so that when n≥ (1/ε)Ct , the conclusions of Theorems 1.3
and 1.4 hold. Such a bound would be of the same order of magnitude as the bound from
Theorem 1.1. This bound would also be tight up to the value of C, as can be justified with a simple
probabilistic construction.

The main obstacle to proving a bound of this form comes from our reliance on Lemma 2.4.
Fox, Luo, and Wigderson [7] have recently combined the method of Nikiforov with ideas from
graph regularity to obtain better estimates for a version of Lemma 2.4 where the blow-up guar-
anteed is not necessarily homogeneous. Their ideas could quite possibly be modified to guarantee
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homogeneous blow-ups, but the resulting bound would still be rather far from being able to prove
optimal bounds for Theorems 1.3 and 1.4.

Remark.While this paper was under revision, Girão and Munhá Correia [12] have addressed the
above problem.

The extremal aspect. A fruitful direction of research in the globally balanced version of the prob-
lem has been finding patterns in globally ε-balanced Kn where ε is a function of n. This seems
to be an intriguing direction in the locally balanced setting as well, especially in the setting of
Theorem 1.4. Namely, we raise the following problem. Let t ≥ 1 be some integer. What is the
smallest function ε := ε(n, t) as n→ ∞ such that any locally ε-balanced 2-coloured Kn contains
a t-blow-up of P1, P1 or P3? It already seems like an interesting challenge to prove ε ≤ nC/t2 for
some absolute constant C.
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