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ON THE SEMIPRIMITIVITY OF SKEW POLYNOMIAL RINGS

by A. MOUSSAVI
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Let R be a left Noetherian ring with the ascending chain condition on right annihilators, let a be a ring
monomorphism of R and d an a-derivation of R. We prove that, if R is semiprime or a-prime, then R [X; a, 5]
is semiprimitive (and left Goldie), and that J(R[X;aJ) equals N(R)[X;a\.

1991 Mathematics subject classification: 16S36, 16N20

Let R be a ring. A well known result of Amitsur [1] states that if R has no nil ideals
then the polynomial ring K[x] is semiprimitive. Various authors, for example Bedi and
Ram [2], Bell [3], and C. R. Jordan and D. A. Jordan [13], have extended this result to
skew polynomial rings of the form R [x; a, $], where a is an automorphism of R, and 8
is an a-derivation of R. Most of these have worked either with the case 3=0 and a an
automorphism or the case where a is the identity. El Ahmar [8] has shown that, if R is
right and left Noetherian, a: R->R a monomorphism, then /?[x; a] is semiprimitive. An
example [13, §5] shows that some conditions on R and a are necessary if results of this
kind are to be valid. Bell [3] has shown that if R is semiprime left Goldie with a: R->R
an automorphism and 5 an a-derivation then R [x; a, 8] is semiprimitive left Goldie, and
has commented that it is not known whether this generalizes to the case where a is not
surjective.

The situation we shall be concerned with is that of a ring R and a monomorphism a:
R-*R which is not assumed to be surjective. Let R be a left Noetherian ring with
ascending chain condition on right annihilators, N(R) its nilpotent radical. Dean [7] has
shown that cc(N(R)) z N(R). We use methods adapted from those of some of the above
authors together with Dean's result and the construction of the ring A(R, a) of Jordan
[14], to show that R[_x;a,<5] is semiprimitive left Goldie if R is semiprime or a-prime.
We also show that if R is semiprime left or right Goldie and a: R-*R is a
monomorphism then R [x; a] is semiprimitive. We use this result to see that if R is left
Noetherian with ascending chain condition on right annihilators then

J(Rlx; a]) = N(K[x; a]) = JV(R)[x; a].

1. Preliminaries

All rings in this paper have 1 and all endomorphisms are assumed to preserve 1.
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170 A. MOUSSAVI

Let R be a ring and a: R -* R a monomorphism. An a-derivation is an additive map 5
from R to R such that d(ab) = d(a)b + a(a)d{b) for all a,beR. Given such an a and 3, the
Ore extension i?[x;a,(5] is the ring of all formal linear combinations X"=or/JC'. r ie^>
n^O, with multiplication subject to the relation xr = a(r)x + 5(r). If (5 = 0 we have the
skew polynomial ring R[x; a]. Then the set ( x ' } ^ is easily seen to be a left Ore set so
that one can localize and form the skew Laurent polynomial ring, R[x,x~lm, oi].
Elements of R[_x,x~l; a] are finite sums of elements of the form x~'rxJ where reR, i_0,
y^O. Multiplication is subject to rx~1=x~1a(r) for all reR.

In [14], D. A. Jordan has constructed an overring A(R,a) of R, which is, in a sense,
the minimal overring of R to which a extends as an automorphism. Consider an element
of Rlx,x~u, a] of the form x~'rxl, reR, i^O. Then, for ; = 0, x~JrxJ=x~v+J)a.t(r)xl'+]).
It follows that the set of all such elements forms a subring of /?[x,x-1; a], with

x " W + x-jsxj = x-( ; +j)(aj(r) + a'(s))x(i +J) and

x~W. x-Jsx'=x-v+»(ct!(r). a'(s))x(i+J), with r,seR.

This subring is denoted A(R,a). We extend a to A(R,ot), by setting a(x~'rx') = x~'a(r)x'.
Since a(x~(' + 1)rx('+1>) = x~'Vx', a is an automorphism of A(R,a).

Definition 1.1. Let / be an ideal of a ring R, a: R->R be a monomorphism. Then / is
said to be an ct-ideal if <x(/)£/; / is said to be a-invariant if a"1 (/) = /; / is said to be
a-prime if it is a-invariant and for any a-ideals A and B of R, AB£/ implies that A^I
or B £ /. The ring /? is a-prime if 0 is an a-prime ideal of R.

Lemma 1.2. 77ie ring R is a-prime if and only if, for a,beR, a'(a)Ras(b) = 0 for all
t _ 0, s ̂  0, implies that a = 0 or b=0.

Proof. The proof is straightforward.

Definition 1.3. We mean by a right annihilator ideal (left annihilator ideal), an ideal
of the form rann /, (respectively lann /), where / is an ideal of R. If an ideal of R is of
the form rann /=lann /, where / is an a-ideal of R, then it is said to be an annihilator
a-ideal.

By an annihilator a-prime ideal, we mean an annihilator a-ideal which is also a-prime.
The nilpotent radical of a ring R will be taken to be the sum of the nilpotent ideals of

R and will be denoted by N(R). The Jacobson radical of R will be denoted by J(R).

Lemma 1.4. Let R be a ring satisfying the ascending chain condition on right
annihilators and let I be an a-ideal of R. Then rann / is an a-invariant ideal.

Proof. Since rann /£rann(a(/))£rann(a2(/))£ ..., we have that, for some k^.0,
rann(a*(/)) = rann(a* + 1(/)). Let aerann /. Then a*+1(a)erann(a*(/)), so a(a)erann /. If
a(a)erann /, then a*+1(a)6rann(a*+1(/)), so aerann /.
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Lemma 1.5. Let R be a ring satisfying the ascending chain condition on right
annihilators and P be an a-invariant ideal of R. Then, (i) for each t ^ l , P £
lann(a'(rann(P))), and, (ii) if P = lann L for a subset L of R, then lann Lslann(a'(L)),

Proof, (i) The chain rann Pcrann(a(P))e... terminates. So for some integer /c^O
and for all t^O, rann(ak(P)) = rann(a'c+'(P)). Let t ^ l , and berann P. Then Pb=0, so
a*+'(b)erann(a*(P)). Since a* is injective Pa.'(b) = 0.

(ii) We have for each t ^ l , P = lann L£lann(a'(rann(P))) = lann(a'(rann(lann(L)))).
But a'(L)sa'(rann(lann(L))). Thus

lann(a'(rann(lann(L))))slann(a'(L)),t^l.

Proposition 1.6. Let R be a semiprime ring satisfying the ascending chain condition on
right annihilators. Then R has only a finite number of minimal a-prime ideals, and their
intersection is zero. An a-prime ideal of R is minimal if and only if it is an annihilator
a-ideal.

Proof. First we show that each annihilator a-ideal of R contains a product of
annihilator a-prime ideals. Suppose not and let L be an annihilator a-ideal of R which is
maximal with respect to not containing a product of annihilator a-prime ideals. So
L=rann / = lann /, for some a-ideal / of R. Now, L cannot be an a-prime ideal,
otherwise it is, itself, an annihilator a-prime ideal. Hence there are a-ideals T and K of
R which strictly contain L such that TK^L. Take C = rann(/T) and B = lann(CT). By
[16, Proposition 2.2.14], C = rann(/T) = lann(/T), and B = lann(C/) = rann(C7). Since
IL=0 and T/CsL, ITK = 0. Since / T s / , L = rann /Srann(/T), whence CsL. Also
B = lann(C/)2lann /, so B2L. But B=lann(C/) thus BCslann I = L. Since / and T
are a-ideals, C is an annihilator a-ideal. Also B is an annihilator a-ideal. We have
1TK-0, and C/T=0, so K £ C and TsB. Since T and K strictly contain L, the
annihilator a-ideals B and C strictly contain L with BC^L. By the choice of L, B and C
each contain a product of annihilator a-prime ideals so also does L. Therefore we can
deduce that every annihilator a-ideal of R contains a product of annihilator a-prime
ideals. Since the zero ideal of R is an annihilator a-ideal, there are annihilator a-prime
ideals PuP2,...,Pn of R say, such that P!P2. . .Pn = 0. We have ( / )

1 n P 2 n - n P ) ) " = 0.
Since R is semiprime, P, n P2 n • • • n Pn=0.

Now let P be a minimal a-prime ideal of R. Then PlP2...Pn^P, where Pl,P2,...,Pn

are annihilator a-prime ideals of R. Thus Pf £ P for some 1 ^ i ̂  n. Hence P = P( for
some l^i^n.

Conversely, suppose that P is an annihilator a-prime ideal of R. Let P' be an a-prime
ideal of R with P'^P. Suppose that rann P^P', then rann P s P so that (rann P)2=0.
Hence rann P=0. But P is an annihilator a-ideal and this is a contradiction. Therefore
rann P^P'. Now P.rann P^P', P and rann P are a-ideals, thus P^P'. Hence P = P'.

https://doi.org/10.1017/S0013091500018319 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018319


172 A. MOUSSAVI

Proposition 1.7. Let R be a semiprime left (or right) Goldie ring, a: R-*R be a
monomorphism. For an cc-invariant ideal I qfR, as in [14], let Ij = {aeR: x~'ax'el}.

(i) Let P be a minimal a-prime ideal of R. Then A(P) = \Ji^ox~'Px' is a minimal
a-prime ideal of A(R, a).

(ii) Let P be an cc-invariant ideal of A(R,a). Then for each i^O, Pt is an <x-invariant
ideal of R. Also Pi = Pifor each j^O.

(iii) Let P be a minimal a-prime ideal of A(R, a). Then P, is a minimal a-prime ideal of
R. So that there is a 1 — 1 correspondence between the minimal a-prime ideals of R and of
A(R,a) i>i

Proof, (i) Let P be an a-prime ideal of R. We show that A(P) is an a-prime ideal of
A(R,a). We have a(A(P)) = A(P). Let / and J be a-ideals of A(R, a) with /JsA(P) and
J<£A(P). We have (A(P)), = P, and J^P for some i^O. Since /,J,£(/J).-, /;./,• £/>, so
/jCP. We show that for each t^O, / ,£P. Let a el,. Then x~'ax'el. If t^i then
x~iaxi = x~'a'~i(a)x' = a'~i(x~'ax')el, whence ael^P. If t<i, then a'~'(x~'ax') =
x~ia'-'(a)xi = x-'ax'el, so a ' - ' (a)e / ,SP. Thus 7 = A(P).

Now, suppose that P is a minimal a-prime ideal of R. By Proposition 1.6, P = lann
/ = rann /, for an a-ideal / of R. We show that A(P) = lann(A(/)). To see this, let
x~WeA(P) , with aeP. Let x~JbxJeA(I), with bel. Then x~'ax'x~JbxJ=
x-

(i+j)aJ(a)ai(b)x{i+j), with aJ{a)eP and a'(b)el. So A(P)£lann A(/). Conversely, let
x ~ W e l a n n A(7). Then x~'axl. A(/)=0. Let bel. Then x"'axi.x"'W = 0, so aelann
I = P. Thus lann A(/)sA(P). By Proposition 1.6, A(P) is a minimal a-prime ideal of
A(R,a).

(ii) The proof is straightfoward.

(iii) Let / and J be a-ideals of R with /ysP , , then A(7) and A(J) are a-ideals of
A(R,a), with A(/)A(J)sP; so / S P , or JsP,-. Thus Pf is an a-prime ideal of R. By
Proposition 1.6, P = lann M for an a-ideal M of A(R, a). Then Mf is an a-ideal of /?. A
similar argument shows that P, = lann Mt and P, is therefore a minimal a-prime ideal
of R.

Corollary 1.8. A ring R is a-prime if and only if A(R, a) is a-prime.

2. Semiprimitivity of R\x; a, 8~\

Throughout the remainder of the paper, let R be a ring with a: R-*R a
monomorphism and 8:R->R an a-derivation. Let / be a non-zero ideal of i?[x; a, &].
For each n^O, let Tn(I) = {aeR: there exists a non-zero polynomial in I with degree n
and leading coefficient a} u {0}.

Then T,(7) is a non-zero left ideal of R, with a(Tn(/))£Tn + 1(7) and Tn(/)2Tn(/)a"(J?),

Theorem 2.1. Let R be an a-prime left Noetherian ring. Then /?[x; a, <5] is prime.

Proof. The chain T O ^ S T ^ / J C ' - C ^ / J C . , . , will terminate for some integer
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p^O. We then have T P ( / ) = T P + 1 ( 7 ) . Then «(:,(/)) = ! , ( / ) and Tp(/)2ip(/)ap(J?). Put
Tp(/)nap(K) = ap(M). Then T P ( / ) £ M and M is a non-zero a-ideal of R. By Lemma 1.5,
rann M is an a-ideal of R. We have M.rann M = 0, and R is a-prime, so rann M = 0.
We show that rann / = 0 . To see this, let anx

n + an_lx
tt~l + ••• -t-^x + aoerann /, with

an, an^l,...,al,a0€R. Let bsM. Then a.p{b)eip(I), and there exists a polynomial

with b,bp_!,...,buboeR, such that ap(fc)ap(an) = 0. Thus Man=0 and an=O. Therefore
the result follows.

Theorem 2.2. Let R be <x-prime left Noetherian with ascending chain condition on right
annihilators, a: R-*R a monomorphism and 5:R-*R an (x-derivation. Then i?[x; a, d~\ is
semiprimitive.

Proof. Let J be the Jacobson radical of J?[x; a, <5] and suppose that J # 0 . As in the
proof of Theorem 2.1, there exists an integer p2;0 such that ip(J) is a non-zero left ideal
of R with a(Tp(J))£Tp(J) and XP(J)^TP{J)OLP(R). NOW, the subset A = \Ji^px

iTp(J)xi of
A(R,a) is an ideal of A(R,<x). To see this, let x ' W e A , x ~ W e / l ( R , a ) , with i^P, j ^ O ,
ae r p ( J ) and reR. Then x"iax;.x-Jrx-' = x-(i+J')aJ(a)aI'(r)x(''+-'). We have aJ '(a)eTP(J) and

p p

We show that every element of A is a zero divisor. Let x 'ax'eA, j k p and aeip(J).
Then for some polynomial / (x) = axp + ap_1xp~1 + — i - a ^ + aoeJ and a polynomial
^x ) = c,x« + c,_1x«-1 + - --l-CiX-l-CoeRCxja^], with c ,#0 , we have ( l+/(x)x)g(x)= 1.
By comparing the leading term in this equation we have aap + 1(c,) = 0, so
x~'axi.x~'(xp+1(cq)x

i = 0. Thus x ' W is a zero divisor. Since R is left Noetherian with
ascending chain condition on right annihilators, by [7], we have a(N(R))^N(R). But R
is a-prime, and {JV(R)}" = 0 for some n^O. Then R is semiprime. By [14, Corollary 7.5],
A(R,a) is semiprime left Goldie. By [16, Proposition 2.3.5.], A cannot be essential as a
left ideal. Hence there exists a left ideal L of A(R,a) which is non zero and
A . L c A n L = 0 . Since the intersection of minimal prime ideals of A(R,<x) is zero, [16,
Theorem 2.2.15], some minimal prime ideal of A(R,a) must contain A. Since by Lemma
1.3, A(R,a.) is a-prime, minimal prime ideals of A(R,ot) form a single orbit under a and
yet, as above a( A) £ A. Therefore A = 0 and J = 0.

Theorem 2.3. Let R be a semiprime left Noetherian ring with ascending chain condition
on right annihilators, <x:R->R a monomoprhism and d:R->R an x-derivation. Then
R[x; a,<5] is semiprimitive left Goldie.

Proof. By Proposition 1.6, R contains finitely many minimal a-prime ideals
Pl,P2,...,Pn, say, with Pj n P 2 n - n P n = 0. Let # = #R(0) denote the set of regular
elements of R. By Goldie's Theorem, [16, Theorem 2.3.6.], R has a semisimple Artinian
quotient ring Q=<g~lR. By [12, Proposition 2.4]. we have a~l{<€) = (^. We extend a
and 5 to Q, with

o(c ~lr) = <x(c) ~ * «(r) and b*(c ~ir) = a{c) ~1 d(r) - a(c)"s d(r)c ~l r,
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for ce^,reR. We adapt the proof of Proposition 2.1 of Bell [3]. Here a is not assumed
to be surjective. Let lrgi^n. By [16, Proposition 2.1.16 (vi)], QP, is an ideal of Q. By
Corollary 1 of [10, Theorem 1.4.2], QPi = Qet for a central idempotent eteQ. Thus ef is
the identity of Qet. Let c~iasQPi, with c e # and aePt. Then &(c~la) =
a(c)~1a(a)eQP,, because a~x(^.0 = .P. and a(c)e<<?. Thus a(QP() = 6*V We have
a(c,)ei = cf and (a(e,) — e,)e,- = 0, so a(ef) = ev We have also,

*(«,) = S(ef) = *(ef)e, + a(ef)*(ef) = 2e,*(e,).

Hence eiS(ei) = 2efS(et) = 2eiS(ei), so e,£(e;) = 0 and S(e,) = 2e,£(eI) = 0. Thus £((?Pi) =
S(^-1Pi) = S(Qei)^Qei = ̂ ~1Pi and ^(PJs'g'- 'Pj n/? = Pf. Therefore for each l^i^n,
a-1(Pf) = p i and 5(P,)£P(. This implies that PfK[x; tx,<5] is an ideal of K[x; a, c5].

There are induced monomorphisms and derivations a, and £, on R/Ph and we have

For each 1 ^ i ̂  n, K/P,- is a,-prime left Noetherian. We show that the ascending chain
condition on annihilator right ideals passes to R/Ph for each 1 ^ i g n. By Proposition
1.6, P, = rann(K,), with Kt an a-ideal of R, for l g i g n . We have P, is an annihilator
a-ideal. Let 0#Msi? /P , be a right annihilator in R/Pt. We show that M =
{aeR: deM} is a right annihilator in R. Suppose that M = rann 7. Let / be the inverse
image of / i n R. We have 7#0, otherwise M = R/Pi.

Thus /<£P,-, so K,/#0. We show that M = rann(X,7). Since /M = 0, K,/M=0. Hence
IM^Pi. Also, if KtIa = 0, then Ia^Ph so 7a = 0 and aeM. Now, let MjSMjC ••• c
MnS ••• , be a chain of right annihilators in R/Pt. By above, Mt^M2^ ••• £M n . . . , is
a chain of right annihilators in R, which terminates. Therefore for each 1 g i ̂  n, R/Pt is
a left Noetherian ring satisfying the ascending chain condition on right annihilators. By
Theorem 2.2, (R/Pi) [x; a;, 5,] is semiprimitive. Thus P; R [x; a, 5] is a semiprimitive ideal
of /?[x; a, 5]. Since these ideals have zero intersection, K[x; <x,<5] is semiprimitive.

By Goldie's theorem [16, Theorem 2.3.6], (€=(€K{Q) is a left Ore set in R and
Q = <tf~1R is a semisimple Artinian ring. By [12, Proposition 2.4], a.~l{%>) = '&. One can
show in a manner similar to that in [9, Lemma 1.4] that %> is a left Ore set of regular
elements in R[_x; a,5]. We then have

By [5, Theorem 3.2], 8[x;a,<5]) is semiprime left Noetherian. We have that Q is
a-prime, so by Theorem 2.3, Q[x; a, 5] is prime left Noetherian. By [4, Proposition 2.3],
0 is a left Goldie ideal of i?[x; a, 8], which means that i?[x; a., 5] is left Goldie.

Theorem 2.5. Let R be a semiprime Goldie ring, a:R-*R a monomorphism such that a
extends to an automorphism a of the quotient ring Q(R) of R. Let 5:R-*R be an a-
derivation, then R[_x; a, 5] is semiprimitive left Goldie.

Proof. By Proposition 1.6, R contains finitely many minimal a-prime ideals
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P1,P2,.. . ,Pn, say, with Pj n P 2 n - - - n F B = 0 . For each l g i ^ n , P, is an annihilator
a-prime ideal. By Theorem 2.3, we have

Rlx;a,8]/PtR[x;<x,8]*(R/Pl)lx;«,5],and f) P,R[
0

Let S = {ceR = R/Pi: c is regular in R}. We show that S consists of regular elements
of R = R/Pi and satisfies the left Ore condition. To see this, let c r=0, with c e # , reR.
Then creP{. But P, is an annihilator a-ideal, so for an ideal A of i?/P,, we have
P, = lann /4 = rann /I. Then Arc = 0 implies that rePt. Also, since Pf = lann A, rc = O,
gives r=(). Now, if c e S and aeR, then c is regular in R. So there is beR and de#R(0)
such that da = bc. Hence 3a = 5c, and by [16, Theorem 2.1.12], R§ exists.

Now, let aeR. Let a be as in the proof of Theorem 2.3. Since a" is an automorphism
of Q(R), there is for each n^O, beR and c e ^ O ) such that a = an(bc~1). Thus, there
exists ce*<? such that, for each nS^O, aan(c)e<x(R). Therefore for each aeR, and n^O,
there exists c # 0 such that aa"(c) = a'1 (6) with FeR. Since a"1(<^)=<^'. «"(c) is regular in
R/Pj. So 5^0 .

Let J = J ( R [ x ; a,<5]), with P = K/Pf. Let 7 # 0 . By the above argument

T = {aeK:a"(a)x" + an_1x'1~1 + --- + a1x + a o e J , for some n>0}

is non-zero. Also T is an a-ideal of R. Then A(x) = [Jiiox~iTxi is an a-ideal of A(R,£).
Now, one can show that

A(R/PhS)2SA(R,a)/*(Pt)

with a"iax'V-»x"W + A(Pi), where A(P1) = Ul g ox~ ' 'P ix
i .

By [14, Corollary 7.5], A(R,a) is semiprime left Goldie. By Proposition 1.7, A(P() is a
minimal a-prime ideal of A(R, a). So A(Pf) is a finite intersection of minimal prime ideals
of A(R, a). Using [16, Proposition 3.2.5], one can show that A(R, a)/A(P,) is a-prime left
Goldie. So A(R/Pi,a) is semiprime left Goldie. Hence A(T) cannot be essential as a left
ideal of A(R/Ph a). Therefore as in the proof of Theorem 2.3, the result follows.

3. Semiprimitivity of /?|*;a]

Let R be a ring, a:R-*R a monomorphism. Let / (x) = ^ j = m a ,x '6 i? [x ; a] , with a n # 0
and a m #0 , n^O, m^.0. The length of / (x) is the non-negative integer n—m. For an ideal
/ of /?[x;a] we denote by //(/) the set of non-zero elements of / of minimal length. We
note that the set fi(I) u {0} is closed under multiplication on either side by elements of
R[x;a] of length 0, i.e. elements of the form rx', reR, i^O.

The following lemma is proved in [13], where a is assumed to be an automorphism.
However the proof in [13] remains valid in our more general situation.

Lemma 3.2. Let J be the Jacobson radical of R[x;<x]. Let f(x) = ̂ j=maix
ieii(J) be

such that m>0. Then there exists an integer s > 0 such that ana"(an)a
2"(an) . . . ai"(an)=0.
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Definition 3.3. Let R be a ring, <x:R->R a monomorphism. Then the element r e R is
said to be tx-nilpotent if for all integers /c>0, there exists a positive integer s = s(r,k) such
that

rak(r)<x2k(r)...ask(r)=0.

An ideal (left ideal) of R is said to be a-nil, if every element of / is x-nilpotent.

Theorem 3.4. Let R be a semiprime right Goldie ring. Let a: R^R be a monomor-
phism. Then R [x; a] is semiprimitive.

Proof. Let J be the Jacobson radical of K[x;a] and assume that J^O. Let
x = {aeR: there exists a polynomial of minimal length in J with a its leading
coefficient} u {0}, which is non-zero left ideal of R, with <X(T)£T. By Lemma 3.2, T is <x-
nil. By [14, Corollary 7.5], A(R,<x) is semiprime right Goldie. Let A = \Ji^ox~i-cxi. Then
A is an a-nil left ideal of A(R, a). Suppose that A is not a nil left ideal of A(R, a). We
adapt the proof of Theorem 2.1 of Ram [18], to show that for any ae A which is a non-
nilpotent element, there exists a positive integer n such that aan(a)^0. To see this let us
suppose that a<x"(a) = 0 for every positive integer n. Define

Note that a is an automorphism of A(R, a). Then we have

J o S / i S - £ = / „ . . . ,

and

lann 702lann Jx 2 ••• 2 lann / m 2

But the ascending chain condition on right annihilators is equivalent to the descending
chain condition on left annihilators. Therefore for some positive integer t, lann 7, = lann
/r+i. Now, aa"(a) = 0 for each n ^ l if and only if a~"(a)a = 0 for each n ^ l . Since a~(t+1)

(a)elann /„ a - ( t + 1 ) (a)elann / , + 1 . Thus a - ( t + 1 ) (a)cT(t+1) (a) = 0 and a2=0. This
contradicts the assumption that a is not nilpotent. Thus, there exists n ̂  1 such that
aa"(a)#0.

Since A is a-nil, for some positive integer s ^ l , aa"(a)...as"(a)=0. Let s be the least
such integer. We have a~s"(a)a(1~s)" (a) ...a~n(a)a = 0. Put M = a(1-s"1 (a)...a""(a)a- Then
u#0. If the left ideal A(R,a)u is not nil, then bu is not nilpotent for some beA(R,cc). Put
a x = a and a2 = bu. We show that rann(a!)<^rann(a2)- Since a~sn(a)a(1~s)"
(a)...a"n(a)a = 0, a

( 1" s )" (a)...a~"(a)aan(a) = 0. Hence a2aB(a) = 0. But aan(a)#0, thus
rann(aj)^rann(a2)- Replace a = ax by a2 and a2an2(a2)#0 for some n2. Repeat the
argument to get a3 such that rann(a!)^rann(a2)<^rann(a3). Continuing in this way we
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get a strictly ascending chain of right annihilators in R. This is a contradiction.
Therefore there is a non-zero nil left ideal in A(R,a). Since A(R,a) is semiprime right
Goldie, then by [15, Theorem 1] every nil left ideal is nilpotent. Therefore J?[x; a] is
semiprimitive.

Remark. Since a is not assumed to be surjective on R, the assymmetry of the
construction of R[x; a] means that symmetry cannot be cited to give the next result as
a corollary of Theorem 3.4.

Theorem 3.5. Let R be a semiprime left Goldie ring and <x:R-*R a monomorphism of
R. Then i?[x; a] is semiprimitive.

Proof. Since R is semiprime left Goldie, so it has a semisimple Artinian quotient
ring, by [16, Theorem 2.3.6]. Hence one can show that R satisfies the ascending chain
condition on right annihilators. Also A(R,<x) is semiprime left Goldie. The rest of the
proof is similar to the proof of Theorem 3.4.

Corollary 3.6. Let R be a left Noetherian ring satisfying the ascending chain condition
on right annihilators, <x:R—>R a monomorphism, then

J(R[x; a]) = JV(*[x; a]) = N(R) [x; a].

Proof. By [7] we have <x(N(R))^N(R). So N(R)[x;a] is an ideal of K[x;a]. We
show that <*-l(N(R)) = N(R). To see this let <x{a)eN{R), aeR. Then (R<x(a)R)n=0 for
some n^O. It follows that RaR is a nil ideal of R, so we have ct~l(N) = N. Let a be the
homomorphism induced on R/N(R), by a, given by a(a + N(R)) = a(a) + N(R). Then a is
injective. We have R/N(R) is semiprime left Noetherian and a is a monomorphism of
R/N{R). By Theorem 3.4, (R/N(R)) [x; a] is semiprimitive. We have

(R/N(R))lx; a]S/?[x;a]/N(R)[x; a].

Thus N(R) [x; a] is a semiprimitive ideal of K[x;a] and J{R[x; a])sN(R) [x; a].
Since <x(N(R))cN(R) and {N(R)}k = 0 for some fc>0, (N(K)[x; a])k = 0. So the result

follows.

Corollary 3.7. Let R be a right Noetherian ring satisfying the ascending chain
condition on left annihilators. Then we have the same result as Corollary 3.6.

Example 3.8. There are examples which show that some conditions on R and a are
necessary if results of the nature of Theorems 2.2, 2.3 and 3.4 are to be valid. One is the
example constructed by Jordan [13, §5]. In that example 0 is a semiprime ideal of R
which is a-prime but it is not strongly a-prime. But R[x; a] has a non zero nil ideal.
Another example is from Pearson and Stephenson in [17, §2]. They have constructed an
a-prime commutative ring, and automorphism a of R such that R [x; a] is prime with a
non zero nil ideal.
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