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Abstract
We show that relative Calabi—Yau structures on noncommutative moment maps give rise to (quasi-)bisymplectic
structures, as introduced by Crawley-Boevey—Etingof-Ginzburg (in the additive case) and Van den Bergh (in the
multiplicative case). We prove along the way that the fusion process (a) corresponds to the composition of Calabi—
Yau cospans with ‘pair-of-pants’ ones and (b) preserves the duality between non-degenerate double quasi-Poisson
structures and quasi-bisymplectic structures.

As an application, we obtain that Van den Bergh’s Poisson structures on the moduli spaces of representations of
deformed multiplicative preprojective algebras coincide with the ones induced by the 2-Calabi—Yau structures on
(dg-versions of) these algebras.
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1. Introduction

Throughout this paper, k is a field of characteristic zero.

Noncommutative algebraic geometry

The Kontsevich—Rosenberg principle of noncommutative algebraic geometry says that a structure on an
associative algebra A has a (noncommutative) geometric meaning whenever it induces a genuine cor-
responding geometric structure on representation spaces. This principle led to the discovery of bisym-
plectic structures [9], double Poisson and double quasi-Poisson structures [30], and quasi-bisympletic
structures [3 1] on smooth algebras such that the associated representation spaces are respectively hamil-
tonian G L, -varieties, Poisson and quasi-Poisson G L, -varieties, and quasi-hamiltonian G L,,-varieties.

It turns out that the fusion procedure for (quasi-)hamiltonian spaces from [1, 2] has a noncommutative
counterpart [30, 31] (also called fusion). This, in particular, allows for the construction of quasi-
bisymplectic structures on (localisations of) path algebras of quivers by starting from several copies of
A, and repeatedly applying the fusion procedure. Ultimately, this provides a construction of symplectic
structures [32] on multiplicative quiver varieties [10].

| Noncommutative algebra | Algebraic geometry |
Smooth algebra A Representation variety Rep(A)
Bisymplectic algebras Hamiltonian G L-spaces
Quasi-bisymplectic algebras| Quasi-hamiltonian G L-spaces
Fusion Fusion

Derived symplectic geometry

Hamiltonian and quasi-hamiltonian spaces actually find a nice interpretation (see [7, 23]) in the realm
of shifted symplectic and lagrangian structures from [21] moment maps as well, as their multiplicative
analogs naturally lead to lagrangian morphisms, and both the reduction and the fusion procedures can
be understood in terms of derived intersections of these.

| Algebraic geometry | Derived geometry |

GCX Quotientstack [X/G]
Hamiltonian G-space X  |Lagrangian morphism [X/G] — [¢*/G]
Quasi-hamiltonian G-space X | Lagrangian morphism [X/G] — [G/G]
Reduction Lagrangian intersection
Fusion Composing Lagrangian correspondences

Calabi-Yau structures

More recently, absolute and relative Calabi—Yau structures [5] have turned out to be accurate noncom-
mutative analogs of shifted symplectic and lagrangian structures [6, 26], via the moduli of object functor
Perf from [27].
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Higher algebra \ Derived geometry \
Finite type dg-category C Derived Artin stack Perf(C)
Shifted Calabi—Yau structure Shifted symplecticstructure
Relative Calabi—Yau structure Lagrangian structure
Calabi—Yau pushout Lagrangian intersection
Composing Calabi—Yau cospans|Composing Lagrangian correspondences

It is therefore natural to wonder whether Calabi—Yau structures are hidden behind the aforementioned
(quasi-)bisymplectic ones. More specifically, in our previous work [3, 4], we constructed relative Calabi—
Yau structures on (multiplicative) noncommutative moment maps k[x*)] — A for (multiplicative)
preprojective algebras associated with quivers, leading, in particular, to an alternative construction of
symplectic structures on multiplicative quiver varities. Exhibiting a direct connection between Calabi—
Yau and (quasi-)bisymplectic structures will then help identify the induced symplectic structures on
multiplicative quiver varieties from both approaches.

Results

In a very satisfactory manner, relative Calabi—Yau structures on noncommutative moment maps do
induce (quasi-)bisymplectic ones: the additive version is proved by our first main result (theorem 4.8),
and the multiplicative one is given by theorem 5.5. The rough idea in each case is that the Calabi—
Yau structure on k[x*")] — A is given by a family of noncommutative forms w, € Q>A, n > 1,
satisfying conditions implying the required ones for the 2-form w; to define a (quasi-)bisymplectic
structure on A. In particular, non-degeneracy on the Calabi—Yau side implies non-degeneracy on the
(quasi-)bisymplectic side.

Moreover, we prove that we retrieve for quivers the very same structures exhibited in [9, 30]: in the
additive case in example 4.9, and in a much more involved way in the multiplicative case in section 5.4.
This requires work on the elementary A, quiver as well as on the correct realization of fusion in the
framework of Calabi—Yau cospans. For the latter, we need to prove in section 3 (along with theorem
4.10 and theorem 5.6) that fusion actually corresponds to composition of relative Calabi—Yau structures
with a particular Calabi—Yau cospan studied in [4], the ‘pair-of-pants’ one; that is,

kLD ALY V] — kD y ) — k[2#D],

where z is mapped to x + y in the additive version, and xy in the multiplicative one.

] Higher algebra | Noncommutative algebra |
Finite linear category C Path algebra A¢
Object i Primitive idempotent e;

Bisymplectic structure,
with moment map k[x] — Ac
Quasi-bisymplectic structure,

with moment map k[x*!] — A¢
Pushing-out along the “pair-of-pants” Fusion

Calabi—Yau functor []; k[x;] — C

Calabi—Yau functor []; k[xfl] —-C

We want to emphasize that section 5 contains what can be understood as the quasi-bisymplectic side
of the fusion calculus for double quasi-Poisson algebra [30, §5.3]. Indeed, we know thanks to [31] that
quasi-bisymplectic structures correspond to non-degenerate double quasi-Poisson ones, and we produce
in proposition 5.4 the formula for fusion of quasi-bisymplectic structures, a noncommutative analog of
[1, Proposition 10.7]. Because of this compatibility, we do not use double quasi-Poisson structures in
this paper, but we prove that in the quiver case, the structures we get give back Van den Bergh’s double
quasi-Poisson structures from [30].
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The last essential step for completeness is to check that when considering representation spaces,
all these constructions yield the same symplectic structures, which is proved by our last main result,
theorem 6.1. We prove specifically that the lagrangian structures induced by quasi-Hamiltonian ones
thanks to [30], on the one hand, and by relative Calabi—Yau ones [6], on the other hand, are indeed the
same. This achieves the proof of the conjectural program established in the open questions concluding
[4], except the last part, which is rather independent.

Outline of the paper

In section 2, we recall the mixed structure on the graded vector space of noncommutative differential
forms on an associative k-algebra, which yields a convenient construction of Hochschild and negative
cyclic homology as shown by Ginzburg—Schedler [15]. We consider the example of A = k[x*] and
identify the noncommutative differential form that yields the 1-Calabi—Yau structure from [4].

In section 3, we compare the fusion process introduced by Van den Bergh [30] with certain pushouts
of categories involving the pair-of-pants cospan studied in [4]. Fusion has been introduced in order to
glue idempotents in double (quasi-)Poisson algebras, but in this section, we only focus on the algebra
structure and not on double brackets. Along the way, we show that the fusion of a 1-smooth (or formally
smooth — see definition 3.10) algebra is 1-smooth.

The fourth section can be considered as an additive warm-up for the next one. We show that rela-
tive Calabi—Yau structures on additive noncommutative moment maps induce bisymplectic structures.
Bisymplectic structures were first defined in [9] and are dual to non-degenerate double Poisson struc-
tures from [30]. We introduce, in analogy with Van den Bergh’s fusion of double Poisson structures,
the fusion of bisymplectic structures and show that it corresponds to composition with the additive
pair-of-pants cospan from [4]. Furthermore, we show that the fusion process respects the duality be-
tween bisymplectic and double Poisson structures in the sense that a compatible pair of bisymplectic
and double Poisson structures is sent by fusion to another compatible pair.

In section 5, we prove that relative Calabi—Yau structures on multiplicative noncommutative moment
maps induce quasi-bisymplectic structures in the sense of [31]. Then we prove that the fusion of quasi-
bisymplectic structures is induced by the composition of Calabi—Yau cospans with the multiplicative
pair-of-pants, and that it is compatible with the duality between quasi-bisymplectic and double quasi-
Poisson structures. We also show that in the case of multiplicative quiver varieties, the Calabi—Yau
structure exhibited in [4] is compatible with the non-degenerate double quasi-Poisson structure defined
in [31].

Finally, in the last section, we study the geometries induced by the aforementioned structures on
representation spaces Xy = Rep(A,V) of algebras A in vector spaces V. Namely, assuming that we
have a Calabi—Yau structure on [[;¢; k[x*!'] — C, with A¢ = A, we know thanks to [6] that it induces
a lagrangian structure on [Xy /GLy] — [GLy /GLy]. We also know that the double quasi-Poisson
structure induced by our previous section yields a quasi-Hamiltonian structure on Xy (in the sense of
[2]), and therefore a lagrangian structure on the very same morphism. We prove that these two lagrangian
structures match.

Related works

A systematic comparison of noncommutative differential forms with Hochschild and cyclic complexes
has been achieved by Yeung in [33]. There, the author uses [14], whereas we rely on [15]. We should
also mention Pridham’s [22], which presents a systematic way of producing shifted bisymplectic (resp.
bilagrangian) structures out of absolute (resp. relative) Calabi—Yau structures (see Proposition 1.24 and
Theorem 1.56 in [22]). One may be able to recover some of the results of the present paper using
Pridham’s general theory (but it would probably require as much work as here to derive these results
from [22]).
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2. Cyclic and noncommutative de Rham mixed complex

In this section, we first briefly recall some facts about Hochschild and negative cyclic homology, and
then some constructions and results from [15]. In particular, in [15], Ginzburg and Schedler directly
relate the negative cyclic homology of a unital algebra with the cohomology of a complex that is obtained
from the mixed complex of noncommutative differential forms [17] on this algebra. We finally exhibit
a closed noncommutative form representing the class in negative cyclic homology which defines the
1-Calabi-Yau structure on k [x*'] in [4].

2.1. Hochschild and negative cyclic homology

We denote by Mody the category of chain complexes over k. We warn the reader that we use the
homological grading instead of the cohomological grading used in our previous papers [3, 4]. In
particular, differentials have degree —1, whereas mixed differentials have degree +1. Apart from this
change, throughout this paper we borrow the convention and notation from op. cit., to which we refer
for more details. For instance, whenever . is a model category, we write M for the corresponding
oco-category obtained by localizing along weak equivalences.

A dg-category is a Modg-enriched category, and the category of dg-categories with dg-functors is
denoted by Caty. We refer to [18, 24] for a detailed introduction to dg-categories and their homotopy
theory. The Hochschild chains co-functor is then defined as

L
HH : Cat, —>M0dk;C|—>CC®C°p,

where C¢ := C ® C°P. We write HH; (C) for the i-th homology of HH(C).
L
There is an explicit description of the derived tensor product C c® C°P, which uses the normalized

bar resolution of C as a C-bimodule, and that leads to standard normalized Hochschild chains that we
denote (C.(C),b):

0= P Clana)ella,a)e- - 8C(ar,a)eC(as,al-nl,

with C(a,a’) = C(a,a’) if a # a’ and C(a,a) = C(a, a)/k - id,.

Hochschild chains carry a mixed structure (i.e., given on the standard normalized model by Connes’s
B-operator). We refer to [3, 4] and references therein for the homotopy theory of mixed complexes and
explicit formulas.! The negative cyclic complex of €, denoted by HC™ (%), is defined as the homotopy
fixed points of HH(C) with respect to the mixed structure; it comes with a natural transformation
(-)% : HC™ = HH. In concrete terms, HC™ (%) is given by (C+(O)[[ull, b — uB), where u is a degree
—2 variable.

We can view every dg-algebra with a finite set (e;);c; of orthogonal nonzero idempotents such that
1 = 3;¢s ei is adg-category with object set 1. Conversely, we can associate to every dg-category C with
finitely many objects its path algebra given by the complex

Ac = P C(a,b)
(a,b)€0b(C)xOb(C)

with product given by composition of morphisms. The dg-algebra A is an R-algebra, where R =
®ccobj(c)kec. Note that the construction is in general not functorial, meaning that a functor does not
necessarily give a morphism between the corresponding dg-algebras (unless the functor is injective on

1Beware of the change of (co)homological grading convention though.
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objects). This can be seen very easily in the following example, which will play an important role in the
next section.

Example 2.1. The dg-category coproduct k [ [ k is the dg-category given by two objects 1 and 2 and
endomorphism ring k = End(1) respectively k = End(2) at each object, but zero Hom-spaces between
the two objects. Hence, its path algebra Ay 1 is isomorphic to k @ k. There is a dg-functor

k]_[k_>k

sending 1 and 2 to pf, which denotes the only object of k, but there is no map of k-linear dg-algebras
kek —k.

Nevertheless, C and A are Morita equivalent, so that their Hochschild (resp. negative cyclic)
homology is isomorphic. More precisely, we have an inclusion of mixed complexes (C.(C), b, B) —
(C.(Ac), b, B), which is a weak equivalence (here, we view A¢ as a dg-category with one object).

2.2. Noncommutative forms

Consider a unital associative k-algebra A, along with a subalgebra R. We fix a complementary subspace
A ~ A/R of R. Denote by d : A — A the associated quotient map. We will systematically use the ~
notation for the quotient by R. The graded algebra Q3 A of noncommutative differential forms is defined
as the quotient of Tg (A ® A[—1]) by the relations

a®b=ab and d(ab)=a®d(b)+d(a)®Db

for every a, b € A. It comes equipped with a mixed differential, that is the derivation induced by d and
that we denote by the same symbol. The mixed differential d, descends to the Karoubi—de Rham graded
vector space DR A := QR A/[QF A, Qf A], first introduced in [17].

In order to define a differential on QF, A, turning it into a mixed complex, we consider the distinguished
double derivation E : @ — a ® 1 — 1 ® a, denoted by A in [9]. Recall that the A-bimodule of (R-linear)
double derivations is defined as

Dajg =Derr(A,A® A) ~ QLAY,

where the derivations are taken with respect to the outer A-bimodule structure on A ® A, and the
remaining A-bimodule structure on D 4,g comes from the inner one on A ® A. Here, Q}QA is the kernel
of the multiplication A ®g A — A and inherits its A-bimodule structure from the outer one on A ® A;
it is isomorphic to A ®g A as a left A-module (1 ® da € A ®g A being identified with E(a) € QL A).
As a matter of notation, we will often write Q4 /g = Q}QA.

There is an obvious graded algebra isomorphism Qp A ~ Ty (Q}QA [—1]), as well as a left A-module
isomorphism Q%A ~ A ®g A®R" (see [11]). For later purposes, we also introduce the graded algebra
of polyvector fields DRy A = Ta(D a/r[—1]) from [30].

Following [9], we define, for any R-linear double derivation 6 € D 4/ of A, a graded double derivation

is 1 QrA - QRrAQQRA
of ), A by setting
is(a) =0 and is(da) :=6(a)
for any a € A. On Q%A, we thus have, for instance,

is(pdgdr) = pd(q)’ ® 6(q)"dr — pdgs(r) @ 6(r)" € A® QRA+QRA® A,
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where we use Sweedler’s sumless notation 6(a) = 6(a)’ ® §(a)”. The graded double derivation is
induces a linear contraction operator

L6 =g QA — Q1A

where °(a®p) = (- p@a fora®p € QR A® QL A. Our differential will be given by the contraction
operator g : QpA — Q}}‘IA, which has the following properties thanks to [9, Lemma 3.1.1]: it is
explicitly given by the formula

LE(a()dm e dan) = Z(—l)(l_l)(n_l)+1 [al, da1+1 ce da,,aodal ce dal_l].
I=1

It vanishes on [QR A, QL A] (and thus factors though DR}, A), and it takes vales in [QF A, Q;A]R (in
particular, L% =0), and [tg, d] = 0. As a consequence, we obtain that (Q;A, g, d) is a mixed complex.

2.3. Hochschild chains versus noncommutative forms

Below, we rephrase some constructions and results of [15] in terms of mixed complexes. Beware that
the notation used here is not exactly the same as in op. cit.. For the moment, we only assume that A is a
k-algebra.

Through the identification C.(A) ~ Q; A, the Hochschild differential b reads as

b(ada) = (1)1, a].
The Karoubi operator on Q; A, given by
k(ada) = (-1)*dac,
allows one to define a harmonic decomposition Q; A = PQ; A @ P*Q; A, where
PQ; A =ker(1 - k)? and PO A = ima(1 - )*.
The following identites hold:
tg =bN|p and B = Nd|p,

where N is the grading operator and B is the Connes mixed differential.
Hence, we have the following chain of morphisms of mixed complexes

(Q A, g, d) —2= (PQLA, 1, d) = (PQ; A, b, B)— (Q: A, b, B) @2.1)

such that, according to [15], [dQ; A, dQ; A] < (ker(P)[[u]], t —ud) is a quasi-isomorphism, where u
is adegree —2 formal variable, N! is an isomorphism and the rightmost inclusion is a quasi-isomorphism.
We thus get a quasi-isomorphism

Q; Al[ull

— 4 ud| — (QRA[[M]], b - MB),
[dQ; A, dQ} A]

and the homology of both complexes yields the reduced negative cyclic homology HC (A).
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Hence, when A = A, for C a genuine k-linear category with a finite set 7 of objects, and R = ®;crke;,
we have a zig-zag

(C_*(C) ([ull.b - MB) ¢ - (C'*(A) [ull,b - uB)

QpAl[u]]

[dQA, dQA]

Q: Af[ull )
f— ) 2 ud
[dQ; A, dQ; A]

tg —ud ),
where only the last bottom arrow may not be a quasi-isomorphism.

2.4. Computations for A = k[x*']

As a matter of convention, we always mean (dx)y if no brackets appear in dxy. We want to find a
harmonic cyclic lift for a; := xldx € Q'A which is closed for the mixed structure (P, tx, d). That
means that A is 1-pre-Calabi—Yau according to the terminology of [3]. This was already proved in [4]
using the standard normalized Hochschild complex, but we reprove it here on the ‘de Rham side’ and
check consistency afterwards to illustrate (2.1).

Set a,, = (x“'dx)*""!, B, = k(@) = (dxx~1)?""1 € Q*"~1 A, Then

K(Bn) = k(=Bu_rdxdx™") = —dx™' B,_1dx = ay.

Hence, o, + 8, € PQA and a,, — B, = %(1 - k)%(an) € PLQA. Then
1
LEay = E(Zn - Db(an +Bn)
1
= 5@ = D ([an1x” de™ x] = [Bpordx.x7'])

1
= 5(2}1 — D Bpordx + ap_ixdx = Buordxx™! — xax T ldxx !
= (2n - D((x"dx)?"7? = (dxx™1)?172).
However, da; = —(x"'dx)?, and if we assume da,_; = —(x~'dx)?" 2, we get

day, = d(x "dx(x'dx)*?)
=d(x'dx) (x 7 dx)? 2 — xldxd ((x 7 dx) P 2)
= —x VexVx (7 dx) 2 - x 7l dxd?

= —(x"'dx)*.
Similarly, dB, = (dxx~')*" for all n. Thus, as tg @, = tg B,
te(an + Bn) = 2tpayn = =2(2n — 1)d(Bp-1 + an-1).
As a consequence, (tg — ud)(y) =0, where yi = 3 (ax + i) € PQ*~k[x*!] and
!
Y= I;) ﬁ(—u)k)’kn,
where u is a formal degree —2 variable.
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Let us check now that this is coherent with [4]. Through (2.1) and the isomorphism Q"A ~ A ® A®n,
v is mapped to

Z k'uk (xfl ®x)®(k+l) _ (x ®x71)®(k+1)

k>0 2

as

s = (7 )P = (=D Rx T (dredx YR dx,
ﬁk+1 — (dxx_l)Zk“ — (—l)k”x(dx_ldx)kdx_l,
and yj, € PQ*,

all of which is consistent with [4, 3.1.1].

3. Fusion

In this section, we compare certain pushouts of k-linear dg-categories with the fusion formalism
introduced by Van den Bergh [30] for algebras. Fusion is a process which glues two pairwise orthogonal
idempotents into one. Given an algebra with a double (quasi-)Poisson structure, the new algebra obtained
by fusion inherits a double (quasi-)Poisson structure from the original one as shown in [30, 12].

This will be relevant in the next sections, where we will compare fusion of bisymplectic and quasi-
bisymplectic structures with compositions of Calabi—Yau cospans.

3.1. Fusion as a pushout
Recall that Van den Bergh defines in [30] the fusion algebra which identifies two pairwise orthogonal

idempotents. We use the notation (—)* instead of m as in [30] since it is already used.

Definition 3.1. Let R = ke| & - - - @ ke, be a semi-simple algebra with pairwise orthogonal idempotents
ei, and A an R-algebra. Set u = 1 —e; — ey and € = 1 — e;. Then the fusion algebra AS is defined
as €A%e, where A* := A ]I, okeronu(M2(k) ® k). Here, My (k) denotes the (ke; ® key)-algebra of
2 x 2 matrices, and the idempotent e; is sent to e;;, where e;;’s are matrix units.

One can see that A* is isomorphic to A [ [g R* and that R* = M, (k) ® R>3 and R/ = ke @ Rs3,
where R>3 := kes & --- @ ke,,.
Now, let C be a dg-category with a finite set of objects I = {1,...,n}, n > 2. We define

¢l =c ]_] k,
k1l k

where the functor k [[ & — C is given by the units of the first two objects 1 and 2. Note that the strict
pushout is (categorically equivalent to) a homotopy pushout.

Examples 3.2. (1) The category (k[x] LI k[y])/ (when defined using the strict pushout) is isomorphic
to k{x, y). Similarly, (k[x*'] I k[y*'])/ is isomorphic k(x*, y*!). As a consequence, we get that

¢t ~¢ U k(x'f,x? ,
k[xP1 1 k[xT]

where O € {0, +1} and k [x}'] — Endc (7).
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Q) If R = [1;; k, then R = k 11 R 53, where R»3 = [1;>3 k. As a consequence, we get that
¢l =c ]_[ (kT Rs3),
R

where the functor R — C is uniquely determined by mapping the object of the i-th copy of k to i, and
the functor R — k LI R »3 maps the first two objects of R to the object of the first copy of k.

Proposition 3.3. Let C be a k-linear dg-category with set of objects I. Then Acy is isomorphic to (Ac)7 .

Proof. We can assume without loss of generality that C has only two objects 1 and 2. We denote ¢ and
e their respective identity map. The dg-category C [ ] 4 k has exactly one object which we denote
pt. Let us show that the endomorphism ring B := End(pt) is isomorphic to the fusion algebra A/ of
A := Ac. By the pushout property, there are algebra homomorphisms

f :Endc(1) ~ejAe; — B
g :End¢(2) ~ epAey; — B,

and bimodule morphisms e; Ae; ~ C(2,1) — B,ejae; — ejaep) and epAe; ~ C(1,2) — B, erae; —
ejpaeq such that

C2,1)®C(1,2) ——=BQ®B

SN

Ende(l) —5—~ B

commutes. The algebra homomorphism k& — B is then uniquely determined.

We have injective algebra morphisms Endc(1) =~ ejAe; — Af,a +— a, Endc(2) ~ erAe; —
AT a v epaen. Similarly, we have injective morphisms of bimodules C(2, 1) ~ ej Ae; — Al a—
aer; and C(1,2) =~ epAe; — Al a - epa compatible with the composition of morphisms. Hence, we
obtain a unique injective algebra homomorphism B — A/ . As the image of the above maps generates
A, this morphism is also surjective, and hence, B = Agy ~ A/ o

3.2. Trace maps

Acccording to Van den Bergh [30], we consider the following situation: an R-algebra A and an idempotent
e in R such that ReR = R. One writes 1 = )}; p;eq; with p;, g; € R and defines a trace map

Tr: A > eAe; a— Zeqiapie.
i

We recall a series of standard results, for which we provide full proofs for the sake of completeness; the
main point is to be able to describe the trace map on QrA and DRRA.

Lemma 3.4. The trace map Tr descends to an isomorphism A/[A, A] — eAe/[eAe,eAe] that does
not depend on the choice of decomposition 1 = Y; p;eq;.
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Proof. First of all, the trace map Tr sends commutators to commutators. Indeed,
Tr(ab — ba) = Z(eqiabpie —eqg;bap;e)
i
= Z eqgiapjeqjbpie — eqibpjeqjapie
i.J

= Z eq;apjeq;bpie —eq;bp;eq;ap e € [eAe,eAe].
i,J

Then, one can check that it is a k-linear inverse modulo commutator, to the algebra morphism eAe —
A. Indeed, on the one hand, a = }}; pjeqia = Tr(a) mod [A, A], and on the other hand, eae =
Yiepieqieae = Tr(eae) mod [eAe, eAe]. Since the morphism eAe — A does not depend on the
decomposition of 1, its inverse (modulo commutator) does not either. m]

Lemma 3.5. For any two A-bimodules M and N, the canonical morphism Me ®.g. eN — M ®gr N of
A-bimodules is inversible with the inverse given by

Yu.n: MO N — Me ®re eN ; m®n+—>Zmp,~e®eqin.
i

Proof. Let us check that it is well-defined. Consider r € R and write r = 3’ ; hjel; for some h;,1; € R.
Then

Yy N (mr®n) = Z mrpie ® eq;n = Z mhjeljp;e ® eq;n
i i,j
= thje ®eljpieqin = Z mhje ® eljn
iL,J J
= Z mpieqihje ® el jn = Z mpie ® eqihjelin
i, i,

= Z mpie ® eqirn = Yy ny(m ® rn).

4

We finally observe that ¥y, is an inverse to the canonical morphism Me ®.g.eN — M ®g N. Indeed,
in M Qg N, Y;mpie®eqin =, m® pieqgin =m@n, and in Me Q.g. ¢N, >,; mep;e ® eqien =
2ime ® pieqien = me Q en. o

As a matter of notation, we introduce Wy := Wps m-

Lemma 3.6. The isomorphism Wq, ., induces an isomorphism e(QrA)e ~ Q.re(eAe), through which
the trace map of QrA reads as follows:

Tr: QrA — e(QrA)e ~ Q.g.(eAe)

aoday . ..da, — Z eqiyaopi ed(eq; aippe) ...d(eq,ampie).

Moreover, it induces a k-linear isomorphism
Tr : DRR(A) — DR g.(eAe)

that does not depend on the decomposition 1 = Y; p;eq;.
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Proof. Thanks to the previous lemma, the isomorphism Wq, . induces an isomorphism of tensor
algebras e(TaQ4/r)e = Teac(eQa/re). Using W4, we also have

QeAe/eRe = ker(eAe ®cRe Ae — eAe)
~ ker(eA ®g Ae — eAe)
eker(A®r A — A)e

eQA/Re.

Combining these, we get
e(QrA)e = e(TpQua/r)e = Tope(eQa/rE) = TereQencjere =: Qere(eAe).

Through this identification, an element edae = ea ® e — e ® ae € ef24/re becomes, in Q. a¢/cRe>

Z eapie ® eqie — epie @ eqiae = eae ® e — e @ eae =: d(eae) € Qepc/eRe-

12

Thus, the trace map reads

QrA 3 apday ...da, — Z egi,aoday . ..day,pie € e(QrA)e
io

g Z eqi,aopied(eqi aippe) ...d(eqi, ampie) € Qere(eAe).

005815-e5Im

The last part of the claim follows from lemma 3.4. O

3.3. Functoriality

We now apply the constructions from the previous section 3.2 to the idempotent € = 1 — e, of R*
(see definition 3.1), where 1 = €€€ + e €e2. Precomposing with the algebra morphism A — A*, we
get maps QrA — Qpr A/ and DRg(A) — DRy A/ that we denote by (—)/ . Since ee12 = e12 and
ez1€ = ey1, we have Tr(a) = eae + ejpaey for all a € A*. Actually, the trace map in this situation also
has a simpler expression on forms.

Lemma 3.7. On Q4+ g+, we have
Tr(adb) = eadbe + eyyadbes;,
and dually, we have a trace map on double derivations
Tr: Dg+A* — Dpr A, 61— €6e +eppber).

More generally, if w € Qr+A™, we have Tr(w) = ewe + ejpwey;.

Proof. Thanks to lemma 3.6, we have on 1-forms

Tr(adb) = eaed(ebe) + ejpaed(ebery) + ejpaer d(ernber)) + €aerd(erbe)

= eaedbe + ejpaedber) + epaerdber; + eaerdbe.
Ifae Aeyand b € erA, as eey = epe =0, we get

Tr(adb) = e1radbes; + eadbe.
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Ifa € Ae; and b € ¢;A for some i # 2, as ee; = e;e = e;, we again have
Tr(adb) = eadbe + eyadber.
It generalizes to all forms. O

We go back to the context of a dg-category C with a finite set of objects / and set A := Ac. We define
idempotents e¢; = id; and set R = ®;crke;, a subalgebra of A. Recall that R =~ @;;rke; and consider
the k-linear map C.(C) — QLA given by

ay®a; ®---®a,, — apday ...da,,.

Since there is a functor C — C/, we have a natural map v : C.(C) — C.(C’).

Lemma 3.8. The following diagram commutes:

I

C.(CT) ——Qp, (AT).
Proof. Thanks to lemma 3.6, the map Q (A) — Qs (A') is given by
(aoday -+ - am)’ = Z giyaopi d(gi,a1py,) - - - d(qi,, ampiy)-
105---» im

Since Pi;€ = Di; and €qi; = qi; in our situation, that is either Pi; = € = qi; Or pi; = €21, q;; = e12. Now,

if ag ® - - - a;, belongs to the Hochschild complex of C, then these elements are completely determined

by the a;’s. Indeed, if a; € C(x;41,x;), then qi; = € whenever x; # 2 and Pijy = € whenever x4 # 2.
From the proof of proposition 3.3, we have that C(x,y) — A/ is given by a + gap, with

o g=¢€if y #2, and e, otherwise.
o p =e€ifx # 2, and ey otherwise.

Hence, the composed map C,(C) — C.(C/) — Q. (AT) is given by
ag® - ®am > gi,aopi; ® giyaxpPi, ® -+ qi,,AmPiy»
with the same p;;’s and g;;’s as above, proving the commutativity. O

Lemma 3.9. Let w € Q% (A). Then w induces a map 1(w) : Dar — Qa/r. Under the fusion process,
the following diagram commutes:

DA/R —— DA*/R* _— DAf/Rf

\Lt(w) \Lt(aﬁ) \Lz(Tr(w*)):t(wf)

Qa/R Qa+/R+ Qpr RS-

Proof. The commutativity of the left-hand side square follows immediately from definitions, and the
commutativity of the right-hand side square means that

t1r(s) (Tr(w)) = Tr(ts(w))
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for all w € Q%w (A*) and 6 € D4+ /R+- We prove this now. Recall that the bimodule structure on D 4/r
is induced by the inner one on A ®g A. We know from the proof of [9, Lemma 2.8.6] that ¢, 55 = atsb.
Thanks to lemma 3.7, we thus have

LTr(6) (Tr(w)) = leSe+en ey (Tr(w))
et (Tr(w))e + eppts(Tr(w))ea

els(ewe + eppwenr e + ents(ewe + epweny ) erg
=es(w)e +epts(w)er
=Tr(ts(w)),

as wished. O

3.4. Fusion and 1-smoothness

We start with the following notion simply called ‘smoothness’ in [9] or [30].

Definition 3.10. We call an R-algebra A 1-smooth if it is finitely generated over R and formally smooth
in the sense of [13, §19], meaning that €24, is a projective A-bimodule.

It implies that A has a projective dimension at most 1 and that we may (and will) use short resolutions.
Note that it implies smoothness of associated representation schemes, but we call it 1-smooth in order
to emphasize that it is way more demanding than the notion of (homological) smoothness we use in
previous works [3, 4] for dg-categories (see also section 4.1), following, for example, [18].

In the sequel, assume that A = A¢, where C has a finite number of objects, and R = @.con(c)ke.

Proposition 3.11. If A is 1-smooth over R, then so is AT over R/,

Proof. Recall that A* = A ®g R*. By definition, Q4+/g+ is the kernel of the multiplication map
m* . A g+ AT — A* which can be identified with

idemeid

R*®r A ®r A ®r R R* ®r A ®r R*.

Since R-modules are Ob(C) x Ob(C)-graded k-vector space, R is flat over R and
QA*/R* ~ (R+)e ®Re QA/R =~ (R+)e ®Re A° ® e QA/R =~ (A+)e ®pe QA/R'

Since Qg is a projective A-bimodule, Q4+ /g+ is a projective A*-bimodule.

Then, we know that Q4 /s = e€2a+/g+e from lemma 3.6. Since Q4+ g+ is a projective A*-bimodule,
there exists 7 € N such that Qs gs is a direct summand of e(A* ®g+ A*)"e = (eA* @+ Ate)" =
(AT ®gr AS)" by lemma 3.5. Hence, Q¢ /RS 18 @ projective A7 -bimodule. ]

4. Calabi-Yau versus bisymplectic structures

In this section, we recall the notion of Calabi—Yau structures for dg-categories as in [5, 25] and
bisymplectic structures on algebras as in [9]. We then introduce the fusion process for bisymplectic
structures in analogy with the fusion for double Poisson structures from [30]. We show that a relative
Calabi-Yau structure on [[.con(c) k[xc] — C, C a k-linear category, gives rise to a bisymplectic one
on the path algebra A¢ associated to C. Finally, we prove that the composition with the ‘additive pair-
of-pants’ Calabi—Yau cospan induces fusion for the corresponding bisymplectic structures on Ac.
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4.1. Calabi-Yau structures, absolute and relative

Our notation follows [3, 4]. A dg-category A is called (homologically) smooth if A is a perfect A°-
module. In this case, we have the following equivalence:

()" : HH(A) — RHomy,, (A", A),

where A" is the dualizing bimodule.

Definition 4.1. Let A be a smooth dg-category. An n-Calabi—Yau structure on A is a negative cyclic class
¢ = co+ucy+--- : k[n] — HC(A) such that the underlying Hochschild class ¢ = ¢q : k[n] — HH(A)
is non-degenerate, in the sense that cg : AV[n] — Ais an equivalence.

Relative Calabi—Yau structures on morphisms and cospans of dg-categories where introduced by
Brav—Dyckerhoff [5] following Toén [25, §5.3].

Definition 4.2. An n-Calabi-Yau structure on a cospan A L> % < % of smooth dg-categories is a
homotopy commuting diagram

k[n] —2~ HC (RB)

HC™ (A) — = HC (%)

whose image under (—)? is non-degenerate in the following sense: ctll and c; are non-degenerate, and
the homotopy commuting square

(cbeid L

L
@V [n] g (B'[n]) ® € "~ B 6
%e L@E
va
g®id
L (fybeid L id
(A'[n]) § & cal® A8 e e @

is cartesian. We say that a morphism g : A — C is relative n-Calabi—Yau if the copsan A L C—0
is n-Calabi—Yau.

We will also use the fact that by [5, Theorem 6.2], n-Calabi—Yau cospans compose. It is immediate
with the above definitions that an n-Calabi—Yau structure on @ — € <« @ is the same as an (n + 1)-
Calabi—Yau structure on & . Finally, recall (see, for example, [4, Proposition 2.3]) that a non-degenerate
Hochschild class on a smooth dg-category A concentrated in degree zero admits a unique cyclic lift,
making A a Calabi—Yau category.

Example 4.3.

o The algebra k[x] carries a 1-Calabi—Yau structure. We call the Calabi—Yau structure induced by
1 ® x € HH; (k[x]) the natural Calabi—Yau structure.

o Let Q = (I, E) be a finite quiver, where I is the set of vertices and E the set of arrows. Denote by a
the double quiver obtained by adding for every arrow a € E an arrow a* in the opposite direction.
Consider the path algebra of the double quiver A := kQ. There is a relative 1-Calabi—Yau structure
on the moment map k[x] — kA, x — },cgla,a”], which is compatible with the natural one on
k[x]; see [3,5.3.2].
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o The algebra k[x*!] carries a natural 1-Calabi—Yau structure induced by %(x‘1 ex-x®x!) e
HH; (k[x*]). This has been shown in [4] Section 3.1. See also section 2.4 for the cyclic lift.

The next example of a Calabi—Yau cospan was investigated thoroughly in Section 3.3 of [4] and
related to the pair-of-pants.

Example 4.4 (Pair-of-pants). The cospan
K LAy ] — k@t y*h) e— k(2] .1

where the rightmost map is z +— xy, is a relative 1-Calabi—Yau cospan with the Calabi—Yau structures
a1 (x) + a1 (y) — a1(z) = b(B1) ~ 0and homotopy 81 ==y '@x ' ®@xy -y y x ' ®x.

We prove here the additive version of the previous example which we refer to as the additive pair-of-
pants, as opposed to the multiplicative pair-of-pants of the previous example.

Lemma 4.5. There exists a relative 1-Calabi—Yau structure on

k] | [ kD] — kx,y) — klz], 4.2)

where the rightmost map is z — x + y, such that the underlying absolute 1-Calabi-Yau structures on
k[x], k[y] and k[z] are the natural ones.

Proof. The algebra B := k{x, y) has a small resolution as a B-bimodule:
(B)®*[1] @ B¢
with differential sending (1® 1,0) tox® 1 — 1 ®x,and (0,1 ® 1) toy ® 1 — 1 ® y. Therefore,
BY ~ B¢ @ (B°)®2[-1]

with differential sending 1 ® 1to (x® 1 - 1®x,y®1-1Qy).

The canonical Calabi—Yau structures on A := k[x] are given by @1 (x) = 1 ® x € HH;(.A). Note that
a1 has a unique cyclic lift by Proposition 2.3 of [4] which we denote @. The following diagram induced
by the natural Calabi—Yau structures on A is strictly commutative:

a (x+y)

\% \% e e
BY[1] A;‘@eB[l] AEZB

ar(0+ai(y)

(A®)Y ® Be[1] A®2 @ B¢ B.
Ae Ae
Using the small resolution of A, we find A j@ B¢ ~ B¢[1] & B¢, with differential sending 1 ® 1 to

x®1-1®x. Hence, we get that the diagram is cartesian. The zero homotopy is the unique lift in cyclic
homology between a(z) and a(x) + a(y). Therefore, the cospan (4.2) carries a relative 1-Calabi—Yau
structure. m]

4.2. Bisymplectic structures and fusion

Let A be an R-algebra, where R = ke| @ - - - ® ke, is based on pairwise orthogonal idempotents as usual.
We define gauge elements E; = (a — ae; ® ¢; — e; ® e;a) € D 4/g and recall notions introduced in [9].

Definition 4.6. We call w € Q%e (A) a bisymplectic structure on A if

o w is closed; that is, dw = 0 € DRg(A),
o w is non-degenerate that is, t(w) : Da/r — Qa/r, 6 > ts5(w) is an isomorphism.
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An element u = (u;) € ®;e;Ae; is a moment map for a bisymplectic algebra (A, w) if

du; = tg; (w)
foralli € I.

A moment map always exists; see [30, A.7]. Now we discuss fusion of bisymplectic structures and
aim to prove [30, Proposition 2.6.6]. We use the notation of section 3. Recall that we have trace maps
A— Al a al = eaetennaer, Qp(A) — Q: (A7) and Dy (A) — D}, (A). LetAbe an algebra
equipped with a bisymplectic structure w, with moment map p. We define ,u{ F = u{ = u; fori > 3 and

M{f =1 tepnuern = /1{ +ﬂ{-

Lemma 4.7. The form v/ € Q?e . (AT) is a bisymplectic structure on Af, with moment map u'7.

Proof. By definition, w/ € Q?ef A7 isaclosed form. We need to show that «(w' ) : D s jrr — Qar jrs
is an isomorphism. Recall from lemma 3.9 that we have the following commutative diagram:

Dajr —> Darjrt —> D as s

\LL(w) \Lt(w*) \Lt(wf)

Qa/R — Qarjrr —= Qa7 RS -

Now, ((w™) is an isomorphism as it is obtained from ¢(w) by an extension of rings — ®g R*, where R is
semi-simple.

We observe that the map Tr : Qa+/r+ — Qur gs is surjective. As «(w™) is surjective, (w')
is also surjective by lemma 3.9. Furthermore, the kernel of Tr : Qa+/gr+ — Qur gr is given by
€Qu/rer + e2Q4/r€ and the kernel of Tr : D4+ /p+ — D s s 18 €D av /g€ + 2D g+ R+€. The
morphism ¢(w™) maps the two kernels bijectively to each other as it is an A* ®g+ A*-linear isomorphism.
Furthermore, Tr : D g+/g+ — D z¢ /RS is surjective. As a consequence, L(a)f ) is also an isomorphism
proving that w/ is non-degenerate. This shows that w/ is a bisymplectic structure o, A’ . The moment
map u := (u;); associated to w is determined by the condition du; = g, (w). Denote by F; fori # 2 the
gauge elements in A/ . By lemma 3.9,

d(p]) = (du) = (g (@) = (0) = tr (@)
fori # 1,2. We know from [30, Lemma 5.3.3] that F;| = E{ + E{, SO
dp{") = du] + 1) = 1 (@) 417 (@) =15 (@),

as expected. m}

4.3. From Calabi-Yau structures to bisymplectic structures

Let C be a k-linear category with set of objects I = {1, e ,n} (in particular, we assume that C is
concentrated in degree 0). Set e¢; = id;, R = ®;erke;, R = [l;e; k[x;] and A = Ac. Note that
R := Ap = P, ; k[x;]. We assume that we are given an endomorphism of each object i. This amounts
to having a k-linear functor u : R — C or, equivalently, an R-algebra morphism 2 — A. Let us set
Hi = p(x;) € ejAe;.
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Theorem 4.8. Assume we have a relative 1-Calabi—Yau structure on u : R—C inducing the natural
Calabi-Yau structure on each k|[x;], and assume that Ac is 1-smooth. Then Ac is bisymplectic with
moment map 3.7 fi;.

Proof. The 1-Calabi—Yau structure gives a homotopy 0 ~ u(3."" | 1 ® x;) = 27| 1 ® y; which yields,
thanks to section 2.3, an element w; € Q%Q(A) satisfying (g (w;) = Z?:l du;. Hence, p is a moment
map for w;.

It remains to show that w; is closed and non-degenerate. First, note that y := 3’7" | 1 ® x; € Q}Qﬁ
trivially lifts in negative cyclic homology as B(y) = 0. Then the Calabi—Yau structure is given by a
family wy, € Q%{‘A, satisfying

(1 ud)(z ukwk+1) = ().
k>0

which implies dw; = 1 (w2) = 0 € DRRA. This proves the closedness of w;.
The (Calabi—Yau) non-degeneration property yields the homotopy fiber sequence

AV[1] = R[1] ®re A° = R ®ge A® — A.
Using short resolutions (thanks to the 1-smoothness of A), we get the homotopy commuting diagram

id id du

Ac Ac Ac Qu/r
E \L \Ly@id—id@y puQid-ideu \L l
e e e
DA/R Vu A id A id A

The homotopy is given by t(w1) : Dajr — Qa/r
Now, as the Calabi—Yau structure is non-degenerate, we have

AV[1] = hoﬁb(RV[l] ®re A L R @ge A — A).

In short resolutions, this yields a quasi-isomorphism between the vertical complexes

Ae%d_Ae

‘| o

D Q
A/R m A/R

which, in particular, gives an isomorphism t(w1) : Dajr — Qa/r- O

Example 4.9. Let Q = (I, E) be a finite quiver where / is the set of vertices and E the set of arrows.

Denote by Q the double quiver obtained by adding for every arrow a € E an arrow a* in the opposite

direction. Consider the path algebra of the double quiver A := kQ. We have

o arelative 1-Calabi—Yau structure on u : k[x] — A, x — X, cgla, a”] from example 4.3;

o abisymplectic structure w = ), dada® € ﬁ;A on A given in [9, Proposition 8.1.1], with moment
map (.

We claim that the first structure implies (twice) the second one under theorem 4.8. Indeed, the homotopy
between 0 and p(1 ®x) is given by Y, (1 ®a®a* — 1 ® a* ® a) which corresponds to 2 Y, dada™.
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We next investigate the relationship between fusion of bisymplectic structures and relate them to the
compositions of Calabi—Yau cospans. Consider a dg-category C with object set /, along with a relative
1-Calabi—Yau structure y : % — C that induces natural absolute Calabi—Yau structures on each k [x;].
Set Rz = [1;>3 k[x;]. We can consider the composition of cospans

cr
k(xp,x0) TR 53 /C \
k2] T Rss \ R o

defining C/, where 7 is mapped to x| + x». This yields a relative Calabi—Yau structure on
k[zZ] URs3 — CT. 4.3)

Theorem 4.10. Assume that Ac is 1-smooth. Let (Ac,w) be the bisymplectic structure induced by
the relative 1-Calabi-Yau structure u, thanks to theorem 4.8. Then the fusion bisymplectic structure
(Af ,w!) obtained from fusing the two objects 1 and 2 is induced by the relative 1-Calabi—Yau structure
(4.3).

Proof. Set A = Ac. We know, thanks to proposition 3.3, that A ~ A . As the bisymplectic structure is
compatible with the relative 1-Calabi—Yau structure, we have that the image of z under this isomorphism
is u(x1)’ + pu(x2)” . Hence, the moment map of the fusion bisymplectic structure is induced from the
Calabi—Yau cospan. Let w € Q%Q(A) denote the homotopy u(1 ® (3;¢7 x;)) ~ 0 of the Calabi—Yau
structure which induces by assumption the bisymplectic structure on A. Since the homotopy between
the 1-forms in the cospan

k[zZ] U Rs3 — k(x,x) LI Rs3 e— R
is trivial, the zero-homotopy of the composition of Calabi—Yau cospans is given by the image of w

under the map v from lemma 3.8. But it is proven there that this image is w/, which is precisely what
we want. O

To summarize, we have proven that the following diagram commutes, with R ~ @;c {2 ke; and
RS = Wiep yk[x:].

1-Calabi—Yau functors Th 4 bisymplectic structures

R — C, under R, corem 4.8 ymp )
. on 1-smooth R-algebras

with A¢ 1-smooth

composition .

with pair-of-pants fusion

-Calabi-Yau functors Th 4.8 bisymplectic structures

’\f f f corem 4.

RY —C7, under RY, {on 1-smooth R/ -algebras}

with Acr 1-smooth
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5. Calabi-Yau versus quasi-bisymplectic structures

We prove in this section that relative Calabi—Yau structures on k [x*'] — C, C a k-linear dg-category,
induces quasi-bisymplectic ones on Ac, in the sense of [31]. We prove again that fusion of quasi-
bisymplectic structures on A¢ is induced by the composition of Calabi—Yau cospans with the multi-
plicative pair-of-pants.

5.1. Quasi-bisymplectic structures
Consider an R-algebra A.

Definition 5.1 [31]. A quasi-bisymplectic algebra is a triple (A, w, ®), where w € DR%A and ® € A,
satisfying the following conditions:

(B1) dw = {(@7'd®)* mod [-,-].

(B2) 1pw = 3 (@7 1d® + doD™!)

(B3) The map

Dyjr ® AdPA — Qu 2 (8,7) = 1(w)(6) +7
is surjective.

0
Recall from [31, Theorem 7.1] the A ®g A-linear map T : Qa/r — AE*A L Adoa S Qa/rs
where ¢ denotes the canonical embedding, e denotes the adjoint of ¢ and 7 is uniquely determined by
TYE") =®7'dd — ddD™!,

Definition 5.2. We say that a triple (w, P, ®) € Q% (A)xD%(A)XA* is compatible if L(w)t(P) = 1-4T.

Whatis proved by [31, Theorem 7.1] is that each quasi-bisymplectic structure of DR%e (A) corresponds
to a unique non-degenerate double quasi-Poisson bracket in (DrA/[DrA, DrA]),. We will not recall
the definition of the latter here.

Lemma 5.3. Let (w, P, ®) be a compatible triple on A such that (w, @) is quasi-bisymplectic. Then
(w*, ®*) is quasi-bisymplectic on A* and (w*, P*, ®*) is also compatible.

Proof. The compatibility condition is given by t(w)t(P) = 1 — %T. Since R is semi-simple, — g R*
is exact. Recall also that Qa+/g+ = Qa/r ®r R* and D o+/g+ = D /g ®r R*. From this, it follows
immediately that (w*, ®*) is a quasi-bisymplectic structure. Now by functoriality of the extension of
scalar functor — g R™, we obtain that ((w*)(P*) =1 - %T*. m]

Assume that R = @®; ¢y ke; is based on pairwise orthogonal idempotents. Let (w, P, ®) be a compatible
triple on A such that (w, D) is quasi-bisymplectic and assume that ® = (D;)ier € BicreiA¥e;. Set
@{f = (I){ dDg and d)‘l.ff = d){ = ®; if i > 2. The following rather computational result is the
noncommutative analog of [1, Proposition 10.7].

Proposition 5.4. Set weor = %((D{)_ldélf d(I)g (@{)_1. Then w'f := wf — weor is compatible with
P/ =Pl + JETE].

Proof. We need to prove that ((w// )((PF) = 1 — 1T/ which is equivalent to
1 1 1
Uw"U(P!) == Uweo) UE] E]) = tweor)t(PT) 45 (! (E]E]y =1~ T . 5.1)
2 4 ——
@ (1) (1) Iv) ™)

Note that A* — A/ a — Tr(a) is surjective. Hence, it is sufficient to show compatibility on all images
of da € Q4+ g+. We will systematically use the notation (=)f =Tr(-) in the rest of this proof.
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We have @/ = @/ ®] = ®Fe;,®ler and @ = ®f = @; if i > 2. We abusively note @; = @7,
as they do not involve e;;’s, so that CD{ = ®; wheni # 2, <I>§ = epPrep; and we set ¥ = <I>{f. Then
for any a € A*,

(V)(da') =T (da)
— [af, (q)ff)—ldq)ff — doff (q)ff)—l]
= [af ¥ 'd® 0] + (®])'do] - do 07! - & 1do] ]
+ Z[a-f, ;' dd; — do; D]
i>2
= [af ¥ 71D, 0] + (®])'do] - do, 07! - 1do] ]
+ > ela, @71 dd; - dD; @} e,

i>2
whereas, thanks to lemma 3.9,

()(da’) = u(w! )u(PT)(dal)
= W) («(P)(da))’
= (Uw)u(P)(da))’
=(a- %T(da))f
=al - %E[a, O,'d®; - do D' ]e - %elz[a, O, d®; — dD,®; ey
- 41—‘ Z ela, D' dD; — dD;®; e
i>2

_ _ 1 _ _
= al - Z[eae, ®7'd®, —d¢lq>11]e—z[elzaeﬂ,(q>{) lad] — aol ()]

N,

1
-7 D ela, ;' d®; - do07 e,

i>2
Recall that for every 6 € D 4r,

2U(weor) () = %5 (7' d®1dD) (@])7)
=°(@7'6®d®] (@) - o7'd®60] (@)
= §(®1)"dd] Pl5(®)) - 5(@] ) ¥ D 5(@] ),
and that for every a € A, we have «(P)(da) = H,, the Hamiltonian vector field which satisfies

Hy(®) = —%(ch + E®)(a)°.
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Itimplies (recall that the bimodule structure on double derivations is induced by the inner one on AQg A)

2H] (®]) = 2(eHye + e1aHaea1) (@)
= —(eD|Eje+ €E| D@1+ 2P 1Ejen) + e12E1Prez)(a)’
=—(PE1e+€E1Dy)(a)°
=—(ae®@®P —e®@Pja+ad ® e — P Q €a)’
=D ®ac+Pa®ec—-—e@ad| +ea @D
=-® ®@cac+Dicac®@e; —e; @ €aed + eae ® D

and
2H] (@D{) =2e1(eHq€ + e1nHgen)(P2)en
= —(e12(eDrEr€ + €ErDae + e12PrErens + enEx®rent)(a)ear)
= —(enn(en®2Eze21 + enEr®ren1)(a)err)
= —(ennaey ® enn®re21 — e12e21 ® e1nPraer
+eppa®ier; ® ennerer — en®re21 ® epperaer)
=—(ennaey ® <I>£ —e1 ® <1>{elgae21 + elzaeglfbg Qe — <I>£' ® eppaery)

= —Q){ ® ejpaenr + @{enanl ®er—e1 ® enaezﬁbg +epaey ® q){ .
We thus obtain

4(111) (da” ) = 4(weor)t(PT ) (da’)
= 4u(weor) (HY)
= 2H} (®1)"d®) ¥~ H] (®1) - 2H] (®] )" 'do H] (@] )’
= —€1ad®] ¥7'®| + d®] ¥ Djae; — e1a®dD] ¥ + 1dD] ¥ lae,
+eppaey P dO @) — WTd®, 0] epaen +epaey @) YA, - ©) WD eraer
= —6aed¢>£ ((D{)*l + d@{ (dD{)’leae - eaed>1dd>{ ply dDId‘I)g Y leqe
+ elzanI‘P_ldCI)ld)g - ‘I‘_ldCDl(I){elzaegl + elzaemd)l_]dd)l - @f‘dd)lelzaezl
= —[eae,d®) (®])™ + D] W] + [eppaer, ¥ d® @] + BT dD].

Also,

2u(weo)(EL EL ) (da”) = 26(weor)® (igar (EVVEL = EL igur (ED))
= 2u(weor)°(E] (a")E] — ET EJ (a'))

2L(a)cor)(61E{ eaeq — elaeE{el - elE{elzaezl +elza621Elfel)

= ¢1L2weor) (EJ Yeaes — eraet(2weor) (EJ ey

— e1t2weor) (E] ernaen; + enaer;i(2weor) (EY ey
But

' + +
Elf (a’) = eE{(a)e +enEf(a)e
—€ae| ®eje —€e; Qejae+ejpae| @ ejex —epe ejaer

=—€ae®@e; —e|  €ae
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and

Ezf (a’) = e(ennEjen)(a)e + enn(ennEser)(a)en
= €aey; Q@ ene —€er] @ epae +epaer @ eper —ener epaer)

=epaey ®e; — e ®epaen
imply E{ (@) = E((®1), E{ (®]) =0, E] (©1) =0, E{ (®]) = E(®]) and

Queor) (E)) = a®] (®])™ - d1do] ¥
(Queor) (E]) = ~¥71dd @) + 07'do;.

Hence,

2(11)(da’ ) = 2u(weor)(E] Ef )(da’)
= el(—‘P_ldcblcbg + CIDI_]d(IDI)eae - eae(—‘{‘_ldcblcbg + CIDI_]d(IDI)el
- el(ddbg (CI){)_1 - CI)ldd)g ‘P_l)elzaezl + elzaezl(dCD{ (CIDQC)_1 - CIDIdCI){ ‘P_l)el
= [ennaesr, d®] ()™ — ©1d®] '] + [eae, ¥ dD @] — @7'dD].

Similarly, using L(wa)(El.f) = (d)l._ldd)i + ddDi(I)l._l)f, one gets

2(1V)(da’ ) = 20w’ YW(E] E] ) (da)
e1L(2cuf)(E§)eae - EaEt(2u)f)(E2f)€1

- elt(zwf)(E{)elzaeﬂ + elZanIL(wa)(E{ )ei
el (CDEIdCI)z + dd)zd)gl)feae - eae(cbgldd)z + d<I>2<I>51)f el

— (D7 d®; + dD D7) eppaen + epae (7' d®) + dd D7) ¢
e12(@;' dDy + dDr D, )er €ae — eacer (D' dDy + dDL D, ey

— (@]'dD) + dD D] erpaer +enaer (O] dd; +dP D)
[enaerr, DT dD; + d® D] — [eae, (@) ) 1] +do] (@])7].

Putting everything together yields (5.1) as expected. m

5.2. From Calabi-Yau structures to quasi-bisymplectic structures
Again, let C be a k-linear category with objects set I = {1,...,n}. Set ¢; = id;, R = ®;¢;ke; and
T = Ures kL.

Theorem 5.5. Assume that we have a relative 1-Calabi-Yau structure on a k-linear functor u : T — C
which induces the natural 1-Calabi-Yau structure on each k[x;—'l]. If A = Ac is 1-smooth, then it is
quasi-bisymplectic with multiplicative moment map 3.7, u(x;).

Proof. Define ®@ : k[x*'] — A by ®(x) = 2y m(xg) € ®icreiAe;. Since p is 1-Calabi-Yau, using
the notation of section 2.4, we know that there exists wy € Q%kA for all k such that
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(te — ud) ( Z Mkwk+1) = d(y),

k>0
or equivalently,
1
tEw; = ®(y)) = E((D"d(b+dd><1)") (B2)
1 1
tEw) — dwy = —gq)()/z) = dw; = 8(<1>—1dc1>)3mod -, -] (B1)
2!

tews —dwy = ;‘P(%)

k!

ars k) k> 1.

tEwis1 — dwy = (~1)F

For (B3), set T = k[x*'] and write the relative 1-pre-Calabi—Yau structure
AV[1] = TV[1] ®re A° £ T @7 A° — A

with short resolutions (thanks to our 1-smoothness assumption) to get the homotopy commuting diagram

Ae id Ae (0 '@1+1ed7")/2 Ae dod QA/R
e e e
Dar == 4 (@ lel+led)/2 AT A

where the homotopy D 4/r — Qu/r gives tpw; = (O~ 'dD + ddD") /2.
Now assume that our Calabi—Yau structure is non-degenerate; that is,

AV[1] = hoﬁb(TV[l] ®re A LT @pe A€ = A).
In short resolutions, this yields a quasi-isomorphism (between vertical complexes)

(P '1+10071)/2

A€ A°
Da/r o Qa/R
which, in particular, gives a surjection D o/g — Qa/r/{(d®P), thatis (B3). O
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5.3. Fusion

Set T>3 = >3k [x;—'l] and consider the following composition of 1-Calabi—Yau cospans:

/Cf\ 5.2)
k(e yEDY T Tas / C \
K[z 11 Tas \T 2

where the leftmost one is induced by the pair-of-pants. We want to prove the following multiplicative
analog of theorem 4.10.

Theorem 5.6. Consider a 1-Calabi-Yau functor T — C inducing the natural 1-Calabi-Yau structure
on each k [xl.il], and assume that Ac is 1-smooth. Then the quasi-bisymplectic structure on C' induced,
thanks to theorem 5.5, by the 1-Calabi-Yau functor

k[ U T3 — 7

is the one obtained by fusion of 1 and 2 from the quasi-bisymplectic structure of Ac induced by theorem
5.5.

Proof. Denote by @/ <I>{ the images of x = x1,y = x, in the pushout C/. The extra difficulty here
with respect to the proof of theorem 4.10 is that the homotopy ; involved in the pair-of-pants cospan
is nontrivial; see example 4.4. This non-degenerate homotopy

1 —
B1 = z(y_l ex'exy-—yeyx! ®x) € HH k (x*!, y*!)

is mapped in ﬁzk(xil, v to

—

ytdxtd(xy) - yd(y_lfl)dx)

S
I

Bl— A= =

| = — —

—y T laxx ™ (xdy + dxy) + dyy~'xdx +x_1dxx_1dx)

—y W ldxdy — y 'x taextdxy + dyy 'x T dx + x_ldxx_]dx)

xVdxdyy™ mod [-,-],

which is mapped to
1 - . . - —
~5(@])de] d®] (®])™' € DRy, /.

The proposition 5.4 allows us to conclude, thanks to the uniqueness [3 1, Theorem 7.1] of compatibility
and [31, Theorem 8.2.1]. m]

To summarize, we have proven that the following diagram commutes, where RS = ®icr\({2yke; and
TF = Wen o3k [xF'].
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1-Calabi—Yau functors o .
Theorem 5.5 quasi-bisymplectic structures
T —C,overR, on 1-smooth R-algebras
with A¢ 1-smooth &
composition
with multiplicative fusion
pair-of-pants
I-Calabi~Yau functors Th 5.5 uasi-bisymplectic structures
TF > ¢f, over RS, corem 0. q ymp ’
on 1-smooth R/ -algebras

with Acr 1-smooth

5.4. Examples

5.4.1. An elementary quiver
Consider the quiver A, = (V = {1,2},E = {e : 1 — 2}), with orthogonal idempotents ¢; and e;
satisfying 1 = e; + e2, R = ke ® ke, and set

ar=ej +e‘eand a; = ey +ee”.

Let us denote by A the localization (kA_z)u1 ,a,- Recall that we have given in [4] a relative 1-Calabi—Yau
structure on @ : k[x*'] — A defined by

d)l(xl) = (11_1 and q)z(xZ) =daj.

Define d/de and d/de* in DRA by de/de = ex ® €1, 0e*[de =0, de*/de* = e| ® e; and de/de” = 0.
In the previous section, we proved that this Calabi—Yau structure induces a quasi-bisymplectic one

—2
w) € DRRA on A. We want to prove the following.

Proposition 5.7. The double quasi-Poisson bracket compatible with w\ through [31, Theorem 7.1] is
the one described in [31, §8.3]:

9 i—(1+e*e) 9
e* de

1 . 0
P=—|(1 ¥ — DrA/[DRA, DRA]),.
5 ( +€€)6 3% Jo* € (DRA/[DrA,DRA]),

Note that we use the convention regarding concatenation of paths opposite to the one in [30]; that is,
e = epeeq.

Proof. In [3], one homotopy ¢(y;) ~ 0 is given by

Bi==("®e@0+PRc @e-e" 0 ' @e-D ' gexe

| =

(5.3)
+1@e"@ed-1RQed®e’),

where @ = @ (x1) + D, (xp). It yields an element (1/4 appears because of the degree operator)
1
wi = Z(e*dedfb +®de*de — *d® ' de — @' dede” + de*d(e®) — d(e®D)de”)

in ﬁzA = (ﬁA / [ﬁA,ﬁA])z. We can heavily simplify this expression working modulo [QA, QA].
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First, note that (again, dab stands for (da)b)

do = —a;l (dee + e*de)al_1 +dee” + ede” = —®(de*e + e"de)® + dee” + ede”

dd~! = de*e + e*de - a;l (dee™ + ede"‘)agl =de*e + e*de — @ (dee” + ede™) D!
Thus, using ®e® = ¢ and Oe*® = ¢* (cf [4, (4.3)]),

4w = dde*de — @' dede” + e*ded® — ¢*dD ' de + 2de* d(e®)
= ®de*de — O 'dede” — ¢*de®(de*e + ¢*de)D
+e* @ ! (dee” + ede”)D ' de + 2de* de® — 2de* e®(de*e + ¢*de)D
= ®de*de — D' dede” — ¢*de®de” e®
—e*de®e*de® + "D dee*®  de +¢* D ede* D de

=0
+2de*de® — 2 de* e®de” e® —2de* e®e” ded

—— —
=0

= 3®@de"de — O 'dede” — e®e*de®de” + ¢* D ' ede* ® " de + 2de* e®e* de®
= 3®de*de — @ 'dede” - ee*GDEIded)de* +e*e® de* @ de + 2de*ee*<l>£lded>
= 3®de*de — @' dede” — de®de* + ®~' de®de”
+de*® 'de — dde*d ' de — 2de* de® + 2de* D' de®
= 2dde*de — 20 dede”.

We now need to prove that P and w; are compatible, meaning that

(w)(P)=1- j—‘T

with T(dp) = [p, ®'d® — dPD']. For p = e, the LHS is

t(w1)(P)(de) = %L(wl) %(1 +e*e) + (1+ee”) 62*

1 0. 5 *\0
= 5( igj9e-(W1) (1 +e*e) + (1 +ee*)’ig e (w1)),
where
is(pdgdr) = ps(q)’ ® 6(q)"dr — pdgs(r) ®6(r)" e Ao Q' +Q! ® A,

as stated earlier. Note that above we have used, for 7,v € A and 6 € Dy,

%insy(pdqdr) = °(ps(q)'v @ né(q) dr — pdqs(r)'v @ né(r)”)
= n’is(pdqdr)v

27

(5.4)

since the bimodule structure on D 4/ is induced by the inner one on A°, as explained in the proof of

[9, 2.8.6]. We have

%iaj0e(2w1) = ° (@ ® de + D 'de ® e3) = de® + D' de.
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Thus,

4(w1)u(P)(da) = (de® + D 'de) (1 + e*e) + (1 + ee”) (de® + D' de)
=2de + D' de®d ™! + Dde®,

whereas 4 times the RHS of (5.4) evaluated at de is

4de — [e, ®'dD — dOD™'] = 4de — e® ' (—D(de*e + e*de)D + dee” + ede”™)
+e(—D(de*e + e*de)® + dee* + ede™) D!
+ O (—D(de*e + e*de)D + dee” + ede*)e
— (—®(de*e + e*de)® + dee” + ede™)D e

=4de + ede”e® + ee"de® — eDde e — ePe’de

+ O ldee* e + D ledee — dee*d e — ede* @ e
=4de + ee*de® — D ee*de + D' dee*e — dee”e®
= 4de + Dde® — de® — de + ' de

+ O de®! — ®de — de + de®
=2de + @' de®™! + Dde®,

as wished. Computations are similar to prove eq. (5.4) evaluated at de*. O

5.4.2. Arbitrary quivers
Let us go back to the proof [4, Theorem 4.8] of the 1-Calabi—Yau structure on the multiplicative moment

map g ¢ Uyey k[2i'] = kQppe 1= kO[(1+ ee”) ™", iz defined by

Zy I_l (1 +ee”) x I_l (L+e*e)™!.

ecEnt~1(v) ecEns~1(v)

It is done by realizing this functor as successive compositions of Calabi—Yau cospans. Let us specify
an order that better suits our purpose. As usual, we denote by Q%P the quiver with same edge set E
but vertex set E = {v, = s(e),ve- = t(e)}. It is the disjoint union of |E| copies of A,. We have a
1-Calabi—Yau morphism

pow | [IxE"T W kIyE']) — kO, (5.5)
ecE

given by x, — (eg(e) + e*e)”! and y, — e;(e) + ee”. We know, thanks to the previous section, that
the quasi-bisymplectic structure on kﬁluc induced by this 1-Calabi—Yau multiplicative moment map
matches the one described by Van den Bergh in [31].

We want to prove the same for Q by fusing pairs of vertices (v.,v ) any time s(e) = s(f) in 0.
Precisely, pick a finite sequence of fusion of pairs of vertices that takes us from QP to Q, and consider
an intermediary step Q°. Assume that the quasi-bisymplectic structure induced by the 1-Calabi—Yau
one on - matches Van den Bergh’s, and proceed to the next fusion in our sequence. Assume that we
fuse 1 and 2 in the vertex set  of Q°. By that, we mean that we precisely proceed to the composition
(5.2), where C = kQ°®,,.. By induction, and using theorem 5.6, we get the following.

Theorem 5.8. The quasi-bisymplectic structure on kaloc induced by the 1-Calabi-Yau one on ug
matches the one given by Van den Bergh.
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6. Representation spaces
As before, assume that A is a 1-smooth R-algebra with R = @®;¢; ke;, where the e; are pairwise orthogonal
idempotents and 7 := {1, - -, n}. For any /-graded finite dimensional space V, define Ay by
Homyje/r (A, End(V)) = Homcommalg/x (Av, k).
Thanks to [9, (6.2.2)], setting Xy = Spec(Ay ), we have a map
tr: DR*A — Q*(Xy )L (6.1)
given by a — tr(&), where @ is induced by the evaluation

A— (Ay @ End(V)™v . a-a.

Thanks to [31, Proposition 6.1], there is a quasi-Hamiltonian structure on (Xv,t_r(w),d3) when
(A, w, ®) is quasi-bisymplectic. Now, & : Xy, — GLy induces a lagrangian structure on [ Xy /GLy | —
[GLy /GLy].

However, thanks to [6], if @ carries a 1-Calabi—Yau structure, it yields a lagrangian structure on
Perfs — Perfy,+17, and thus considers substacks on [Xy /GLy | — [GLy /GLy ] again.

In both cases, we know that the induced 1-shifted symplectic structure on [GLy /GLy ] is the standard
one, thanks to [4, §5.1] for the latter.

Now, assume that the 1-Calabi—Yau structure on ® induces the quasi-bisymplectic structure (A, w, ®);
that is, w1 in the proof of theorem 5.5 is w. The current section is devoted to the proof of the following.

Theorem 6.1. These two lagrangian structures are identical.

6.1. Lagrangian morphisms and quasi-hamiltonian spaces

Let X be a smooth algebraic variety. Since we will apply the following results to X = Xy, we assume
X to be affine for simplicity, but these results can be extended to the non-affine case. Assume that
a reductive group G acts on X and consider a G-equivariant morphism u : X — G, which induces
[u] : [X/G] — [G/G]. Consider the standard 1-shifted symplectic structure on [G/G] given by
W= w,+w,, where w,, € (Q'(G) ® g*)° and w, € Q3(G)C.

We refer to [3, §3] for a precise definition of the space A” () (X, n) of (closed) p-forms of degree n
on X. When a € Q?(X)©, we say that (, u) satisfies the multiplicative moment condition if

VI/[ € g’ lﬁa = </‘1*Q07 M). (M)

This is condition (B2) in [31].

Lemma 6.2. The space of homotopies between [u]*w, and 0 in A>N([X/G],1) is discrete. It is the
space of invariant 2-forms a € Q*(X)C satisfying (M).

Proof. The cochain complex of 2-forms on [X/G] is given by
()¢ — (Q!(X) ®9")¢ —= (O(X) ® 5%3")C .

The result follows from the fact that, by definition, 9 is given by (da, u) = iz« for every u € g. O

This can be extended to the following, where we recognize the extra condition (B1) of [31].

Lemma 6.3. The space of homotopies between [u]*w and 0 in A>'([X/G],1) is discrete. It is the
space of 2-forms a € Q2(X)© satisfying (M) and

dqrar = /J*Ql.
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Proof. The de Rham (cochain) complex of [X/G] in weight > 2 is the total (cochain) complex of the
bicomplex

| | | |

| | | |

| | | |
QX)) —— (Q1(X)®¢")7 —— (Q*(X) ® §2¢")¢ —— (O(X) ® $°g")C

| T !

Q2(x)¢ —2~ (Q'(X) ® g")¢ —— (O(X) ® §2g")C

The space of 2-forms a € Q?(X)% mapped on p*w € Q*(X)¢ @ (Q!(X) ® g*)¢ by dgr ® 0 has the
expected description. O

Now thanks to [21], the non-degeneracy condition (that is, (B3) in [31]) defines a union of connected
components in the space of (closed) 2-forms. Therefore, we have the following result (which is already
implicit in [7, 23]).

Theorem 6.4. The space of lagrangian structures on [u] is discrete; it is the set of 2-forms a € Q>(X)©
such that (M).

In particular, the space of lagrangian structures on [u] (or, equivalently, the set of quasi-hamiltonian
structures on X with group valued moment map ) is a subset of Q?(X).

Corollary 6.5. Two lagrangian structures on [u] coincide if and only if the associated 2-forms on X
are the same.

Remark 6.6. Here is how we understand geometrically the 2-form on X we get from an « satisfying
(M. The pull-back of w, along the quotient G — [G/G] is zero. As [u]*w, ~ 0 via @, we get a
self-homotopy of 0 in the space 2-forms of degree 1 on the fiber product

[X/G] x G =X.
[G/G]

Such a self-homotopy is a 2-form of degree 0 on X, which is nothing but a.

6.2. Identifying two lagrangian structures: proof of theorem 6.1

Consider the composition
Spec(Ay) = Xy » [Xy /GLy | < Perfu.

It is given by an A — Ay -bimodule M which induces a chain

HHA —— HH(Mod'}"") <~— HH(End4, (M)) — HHAy = Q*Ay

a—a
given by
ag®a; ®---Qay — tr(dy)dtr(dy) . ..dtr(ay,)

(that is, tr again, c¢f (6.1)). Thus, the 2-forms match on Xy, and therefore, the associated lagrangian
structures as well thanks to the previous subsection.
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Example 6.7.

(i) Let us get back to section 5.4.1, where A is a localization of the path algebra of the A, quiver
and ® denotes the associated multiplicative moment map. Thanks to the computations in section
5.4.1, theorem 6.1 applies and the 1-Calabi—Yau structure on @ exhibited in [4] induces the same
lagrangian structure on

[®] : [Rep(A,7)/GL;]—[GL;/GLz].

for some dimension vector 7 = (np, n2), as the one induced by Van den Bergh’s quasi-Hamiltonian
G Lj-structure in [31].

(ii) Similarly, using section 5.4.2, we finally prove the conjecture raised in [4, §5.3], which is the
identical statement for an arbitrary quiver Q.
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