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Abstract. Our understanding of solar convection is incomplete. A crucial gap is the unknown
superadiabaticity in the solar convection zone, δ=∇−∇ad. Global modes of oscillations in the
inertial frequency range are sensitive to δ and serve as a novel tool to explore solar convection.
Here, we address the forward problem where the superadiabaticity δ(r) varies with radius. We
solve the 2.5D eigenvalue problem, considering the linearized equations for momentum, mass
and energy conservation with respect to a realistic solar model. We find that the frequency and
eigenfunction of the m= 1 high-latitude mode are influenced by δ in the lower convection zone.
Our prescribed setup suggests that the superadiabaticity in the lower half of the convection zone
is below 2.4× 10−7 to reach a qualitative agreement with the observed eigenfunction.
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1. Introduction

In the outer 30% of the Sun’s interior, the thermal energy is transported by convection.
Since convection can efficiently mix the entropy, the mean stratification in the convection
zone (CZ) is believed to be very close to adiabatic. A tiny deviation from the adiabatic
stratification is measured by the superadiabaticity

δ=∇−∇ad =−Hp

cp

ds0
dr

,

where∇= d ln T/d ln p is the double-logarithmic temperature gradient,Hp is the pressure
scale height, cp is the specific heat at constant pressure, and s0 denotes the horizontal
mean of the background entropy. The stratification is convectively unstable when δ > 0
(superadiabatic) and is convectively stable when δ < 0 (subadiabatic). According to the
local mixing-length model (Böhm-Vitense 1958), δ is estimated to be of the order of
10−6. Acoustic modes, which are the subject of conventional p-mode helioseismology are
largely insensitive to the value of δ.
Evidence indicates that the solar convection cannot be described by local mixing-

length models. Time-distance helioseismology has provided an observational upper limit
on the subsurface convective velocity at large scales which are much smaller than the
typical convective speed estimated by the mixing-length model (Hanasoge et al. 2012).
Furthermore, recent numerical simulations (which are consistent with the local mixing-
length model) have difficulty in reproducing the observed differential rotation of the Sun
(e.g., Hotta et al. 2023). These problems are referred to as the convective conundrum
(O’Mara et al. 2016). It has been implied that the solar convective energy transport is
a highly non-local process (Brandenburg 2016) and the mean stratification in the CZ
could be much less superadiabatic than typically assumed (Cossette and Rast 2016).
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Recent numerical simulations also show that a weakly subadiabatic layer can exist near
the bottom of the CZ as a result of non-local convective heat transport (Hotta et al.
2022; Käpylä 2023).
Recently, various kinds of inertial modes have been detected and identified on the Sun.

They are global-scale low-frequency modes of oscillation restored by Coriolis force. The
observed solar inertial modes include the equatorial Rossby modes (Löptien et al. 2018;
Liang et al. 2019; Proxauf et al. 2020; Mandal and Hanasoge 2020), high-latitude and mid-
latitude modes (Gizon et al. 2021) and others (Hanson et al. 2022). Theoretical models
of the solar inertial modes predict that some modes are highly sensitive to the supera-
diabaticity δ in the CZ (Bekki et al. 2022; Bekki 2024). It was demonstrated through
numerical studies by Gizon et al. (2021) that the mode structure can be reproduced with
δ≤ 2× 10−7. However, these studies have used the simplifying assumption of a spatially
constant δ. Here, we go a step further and aim to constrain the superadiabaticity in the
CZ as a function of radius δ(r) by solving the forward problem of the solar inertial modes.

2. The forward problem

The model equations consist of the linearized equations of motion, continuity, and
energy conservation, in a frame rotating at the Carrington angular velocity Ω0. The
magnetic field is not included. We consider a realistic solar background stratification
(Christensen–Dalsgaard et al. 1996), the differential rotation measured by global helio-
seismology (Larson and Schou 2018), and the latitudinal entropy gradient required
to sustain the observed differential rotation via thermal wind balance. For simplicity,
uniform viscous and thermal diffusivities of 5× 1011 cm2 s−1 are chosen.
The function δ(r) enters the linearised energy equation:

Ds1
Dt

= cpδ
vr
Hp

− vθ
r

∂s0
∂θ

+
1

ρ0T0
∇ · (κρ0T0∇s1), (1)

where the variables have their usual meaning, the subscript 0 is for the background values,
and the subscript 1 is for the wave perturbations (Gizon et al. 2021, their appendix B.1).
The quantities vr and vθ are the radial and colatitudinal components of wave velocity.
Furthermore, we parameterize the function δ(r) as follows:

δ(r) = δlower +

(
δupper − δlower

2

) [
1 + tanh

(r− rmid

d

)]
, (2)

where δupper and δlower denote the superadiabaticity in the upper and lower CZ, respec-
tively. The transition from δlower to δupper occurs at r= rmid with a transition width d.
In this study, we fix d= 0.03R� and δlower, δupper, rmid are parameters to be varied.

We use the linear eigenvalue solver of the differentially-rotating CZ from Bekki et al.
(2022). It is a 2.5D solver, which computes the eigenmodes of oscillation in the inertial
frequency range at fixed longitudinal wavenumber m, over a staggered grid in radius and
colatitude. The radial domain is 0.710≤ r/R� ≤ 0.985.

3. Outlook

Our preliminary results concern the high-latitude mode with m= 1 and the equatorial
Rossby mode with m= 3. The real part of the eigenfrequency, ωsim, and the horizontal
velocity eigenfunction at the surface, vsim(θ, φ), are computed for various combinations
of (δlower, δupper, rmid). The function δ(r) can then be constrained using the observations
ωobs and vobs(θ, φ) reported by Gizon et al. (2021, their table A1).

We find that the surface eigenfunction of the m= 1 high-latitude mode is strikingly
sensitive to the value of the superadiabaticity in the lower half of the CZ, δlower. Figure 1
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Figure 1. Variation of the frequency of the m= 1 high-latitude mode as a function of δlower.
Filled circles mark the modes whose eigenfunctions have the same direction of spiralling as the
observations (cf. Fig. 2a), plus symbols mark the modes with no distinct spiralling (cf. Fig. 2b),
and open circles show modes with reverse spiralling (cf. Fig. 2c). The size of the marker is
proportional to the (positive) growth rate of the modes. The value of δlower covers the range
±10−6, while the parameters δupper = 0 and rmid = 0.85R� are fixed.

Figure 2. Longitudinal component of the velocity eigenfunction of the m= 1 high-latitude
mode, indicated by different symbols in Fig. 1. Left to right: mode with the correct spiralling,
marked with filled circles; mode with indistinct spiralling, marked with plus symbols; mode with
reverse spiralling, marked with open circles; observation. The observation shown uses data from
the HMI ring diagram pipeline with 5◦ tiles (Gizon et al. 2021).

illustrates how the frequency and the inclination of the spiral pattern of the vφ eigen-
function depends on δlower, for fixed δupper = 0 and rmid = 0.85R�. We find that the
direction of spiralling matches the observation for δlower < 2.4× 10−7, and reverses sign
for δlower > 5.5× 10−7. For δlower between these values, the direction of spiral is unclear.
Sample eigenfunctions for all three cases are shown in Fig. 2. For this particular set-up,
we can therefore conclude that in order to recreate the observed latitudinal profile of the
mode, the superadiabaticity in the lower half of the convection zone must be less than
2.4× 10−7.

Unlike the m= 1 high-latitude mode, we find that the m= 3 equatorial Rossby mode
with zero radial node is rather insensitive to changes in δlower, as shown in Fig. 3, likely
due to their toroidal nature. In future work, we will carry out a comprehensive study of
the sensitivity of selected inertial modes to more general radial profiles of δ(r) and of the
turbulent viscosity profile νturb(r).
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Figure 3. Colatitudinal component of the velocity eigenfunction of the m= 3 Rossby mode.
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