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Summary

Bayesian regularization of artificial neural networks (BRANNs) were used to predict body mass
index (BMI) in mice using single nucleotide polymorphism (SNP) markers. Data from 1896 animals
with both phenotypic and genotypic (12 320 loci) information were used for the analysis. Missing
genotypes were imputed based on estimated allelic frequencies, with no attempt to reconstruct
haplotypes based on family information or linkage disequilibrium between markers. A feed-forward
multilayer perceptron network consisting of a single output layer and one hidden layer was used.
Training of the neural network was done using the Bayesian regularized backpropagation algorithm.
When the number of neurons in the hidden layer was increased, the number of effective parameters,
c, increased up to a point and stabilized thereafter. A model with five neurons in the hidden layer
produced a value of c that saturated the data. In terms of predictive ability, a network with five
neurons in the hidden layer attained the smallest error and highest correlation in the test data
although differences among networks were negligible. Using inherent weight information of
BRANN with different number of neurons in the hidden layer, it was observed that 17 SNPs had a
larger impact on the network, indicating their possible relevance in prediction of BMI. It is concluded
that BRANN may be at least as useful as other methods for high-dimensional genome-enabled
prediction, with the advantage of its potential ability of capturing non-linear relationships, which
may be useful in the study of quantitative traits under complex gene action.

1. Introduction

Many genetic association studies aim at characteriz-
ing relationships among numerous single-nucleotide
polymorphisms (SNPs) and a continuous or discrete
trait (Curtis, 2007). Common diseases such as obesity
or diabetes have been considered to be the result of a
complex combination of genetic and environmental
factors (Mutoh et al., 2005). Although genetic factors
are known to be involved in the development of these
diseases, their genetic determination remains largely
unclear and SNPs are natural candidates for predic-
tive models.

Several statistical and computational methods have
been devised for the analysis of SNP data (Useche
et al., 2001). An example is that of artificial neural
networks (ANNs), which provide a powerful tech-
nique for learning about complex traits by predicting
future outcomes based on training data (Shaneh &
Butler, 2006). However, the application of ANNs on
the prediction of complex phenotypes using genomic
(SNPs) is new. Neural networks (NNs) are computer-
based systems composed of many simple processing
elements operating in parallel (http://www.scs.unr.
edu/nevprop; Tu, 1997; Lampinen & Vehtari, 2001).
An ANN is determined by the network structure
(e.g. the number of neurons), connection strength
and type of processing performed to accommodate
elements or nodes. NNs have the ability of capturing
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complex non-linear relationships between the re-
sponse (e.g. phenotype) and input variables (e.g.
SNPs), including all possible interactions between the
latter, and many training algorithms are available
(Tu, 1997; Lampinen & Vehtari, 2001). This makes
ANN extremely interesting for the analysis of com-
plex traits.

Backpropagation is a commonly used method of
learning in multilayer feed-forward NNs. It is a super-
vised learning algorithm based on a suitable error
function, whose values are determined by the target
(phenotype) andmappedoutputs of the network (fitted
values) ; the error function is akin to a residual sum of
squares and can be minimized via gradient-descent
methods. The simplest implementation of backpro-
pagation updates the network-regression coefficients
(weights) and intercepts (biases) in the direction
in which the performance function decreases most
rapidly. For this, it is required that the activation
functions of the neurons in the network should be
differentiable, and it is customary to use some kind of
sigmoid function (Aggarwal et al., 2005).

Like other parametric and non-parametric
methods, such as kernel regression and smoothing
splines, ANNs can produce overfitting (especially with
highly dimensional data, such as SNPs) and pre-
dictions can be outside the range of the training data
(Ping et al., 2003; Feng et al., 2006; Wang et al.,
2009). Regularization (shrinkage) is a procedure that
allows bias of parameter estimates towards what are
considered to be plausible values, while reducing their
variance; thus, there is a bias–variance trade-off. Two
popular techniques for generalizing or predicting in
ANN models are the Bayesian regularization (BR)
and the cross-validated early-stopping (CVES) meth-
ods (Wang et al., 2009). Early stopping is used with a
neural network trained via gradient descent methods.
The data set, D={pi, t, i=1, 2, …, N}, where pi is a
vector of inputs (e.g. SNPs) for observation i and t is
a vector of target variables (phenotype), is split into
training and tuning (validation) sets. After each step
in a set of iterations (epoch) through the training set,
the network is evaluated on the tuning set. Once per-
formance in the tuning set stops improving, the al-
gorithm halts. Early stopping limits the effect of
weights in the network and produces regularization.
However, the measure of error in the tuning set may
not provide a good estimate of the prediction error
that would be achieved in practice. One method of
producing an unbiased estimate of prediction error is
to run the network on a third set of data, the testing
set, which is not used at all during the training process
(http://www.faqs.org/faqs/ai-faq/neural-nets/part3/
section-5.html). Alternatively, BR gauges an objective
function consisting of a residual sum of squares plus
the sum of squared weights ; the function is minimized
with respect to the weights, and the aim is to produce

a network that generalizes well (Bishop & Tipping,
1998; Titterington, 2004; Marwala, 2007; Ripley,
2007). In the Bayesian approach, the weights and
intercepts of the network are assumed to be random
variables following some specified prior distributions.

BR is a non-linear analog of ridge regression.
This technique is more robust than standard back-
propagation nets and can reduce or eliminate the need
for lengthy cross-validation processes (Winkler &
Burden, 2004). The Bayesian approach to neural net-
work modelling consists of arriving at the posterior
probability distribution of weights by updating a
prior probability distribution using a training set in
D (D={pi, t, i=1, 2, …, N}, where pi is a vector
of SNPs for observation i and t is a vector of body
mass index (BMI) measurements). In the standard
backpropagation algorithm, the cost function
ED=(1=N)gN

i=1(ei)
2=(1=N)gN

i=1[tixf(pi;w)]
2, where

N is the size of the training set, is minimized with re-
spect to the vector of weights w, which enters non-
linearly into the ANN f(pi ;w). With BR, the cost
function is modified into F=aEw+bED, where Ew is
the sum of squares of the ANN weights and a and b
are regularization parameters that need to be tuned.
Hence, BR can be viewed as a penalized non-linear
least-squares regression, where minimization with re-
spect to w leads to a conditional (given a and b) pos-
terior mode in a Bayesian model in which p(ti|w, b) y
N[f(pj,w), bx1] and wkjyNiid(0, ax1), where, j=1,
2, …, R is the number of inputs and k=1, 2, …, S is
the number of neurons in the hidden layer. Here N(.,.)
denotes normal distribution and iid stands for inde-
pendent and identically distributed. The posterior
predictive distribution of a new target for a new input
data (p) is obtained by averaging the predictions of the
model over the posterior distribution of w (Kelemen
& Liang, 2008).

In Bayesian regularization of artificial neural net-
works (BRANNs), and particularly when the data sets
are small, it is not necessary to split the data into
training, testing and tuning sets, and all available in-
formation is devoted to model fitting and model com-
parison (Bishop & Tipping, 1998). This is important
when training networks with small data sets, and there
is evidence that BR has a better generalization per-
formance than early stopping (http://www.faqs.org/
faqs/ai-faq/neural-nets/part3/section-5.html). In con-
trast to conventional network training, where an op-
timal set of weights is chosen by minimizing an error
function, the Bayesian approach involves a prob-
ability distribution of network weights. As a result,
the predictions of the network are also realizations
from probability distributions. Importantly, complex
models are penalized in the Bayesian approach, re-
ducing the problems of overfitting and overtraining
(Sorich et al., 2003). It is important to note that a fully
Bayesian solution requires Markov chain Monte
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Carlo sampling. However, such techniques can be
computationally expensive, and they also suffer from
the difficulty of assessing convergence.

The objectives of this paper were: (1) to fit alterna-
tive BRANN using SNPs as input variables and BMI
in mice as an output, considering different activation
functions and varying number of neurons in the
hidden layer, (2) to compare the predictive ability of
different BRANN and (3) to detect relevant SNPs
associated with BMI. The paper is organized as fol-
lows. The section Material and methods describes
how the data were obtained and processed; it also
gives an account of the architectures of the NNs used,
of the tuning of a and b parameters, of the analyses
carried out and of the computational strategy used.
The section Results presents the performance of the
regularized NNs in terms of predictive ability and the
relevance of SNPs with respect to their association
with BMI. The paper ends with a Discussion section
and concluding remarks.

2. Material and methods

(i) Data sets

Records from a population of mice have been recently
used for studying the predictive ability of genomic-
based linear-regression models for quantitative traits
using Bayesian methods (Legarra et al., 2008; de los
Campos et al., 2009). The data sets are freely available
at (http://gscan.well.ox.ac.uk), and details can be
found in (Mott et al., 2000; Mott, 2006; Valdar et al.,
2006a, b). Genotyping techniques and choice of SNPs
are in Valdar et al. (2006a). Animals with both pheno-
typic and genotypic data were retained for analysis.
Our data sets were composed of 1896 individuals
genotyped at 12 320 SNP loci. Because the proportion
of missing genotypes was low, to simplify the analysis,
missing genotypes were imputed at random based
on their allelic frequencies, with no attempt to recon-
struct haplotypes based on the family information or
the linkage disequilibrium between markers. The pedi-
gree for the 1896 individuals included information on
their parents, but not on their grandparents ; parents
of phenotyped and genotyped animals did not have
phenotypic information.

Gender, cage density (number of animals per cage)
and age were considered as potential factors affecting
BMI (Valdar et al., 2006b). The followingmixed linear
model was fitted:

y=Xb+Zu+Tc+e,

where y is the observed vector of BMI phenotypes;
b is an unknown vector of fixed effects of gender, age
and cage density; u is an unobserved vector of ran-
dom additive genetic infinitesimal effects ; c is an

unobserved vector of random cage effects ; X, Z and T

are the corresponding known incidence matrices, and
e is a vector of random residuals assumed to follow a
multivariate normal distribution, eyN(0,Ise

2), where
se

2 is the residual variance and I is an 1896r1896
identity matrix. The random additive genetic and cage
effects were assumed independent, with distributions
uyN(0,Asu

2) and cyN(0,Icsc
2), respectively. Here,

su
2 is the additive genetic variance, sc

2 is the variance
among cages, A is the matrix of additive genetic
relationships, and Ic is a 359r359 identity matrix,
where 359 is the number of cages. Allocation of ani-
mals to cages was not at random, as most animals in a
cage were full sibs. Within the 359 cages there were
only 8 cages with offspring from more than one sire,
and each full-sib group was allocated to an average
of 2.84 cages. Therefore, there was some confounding
in the least squares sense between family and cage ef-
fects (Legarra et al., 2008).

The BMI values were corrected to eliminate nuis-
ance effects as t=ŷxXb̂xTĉ, where b̂ and ĉ were
conditional (given likelihood based estimates of su

2,
sc

2 and se
2) generalized least squares estimates and

best linear unbiased predictions of b and c, respect-
ively. The t values were used as target values in the
NNs using 12 320 SNPs (aa, Aa and AA, genotypes
were coded as 0, 1 and 2, respectively) as potential
input variables. A total of 530 of these SNPs were
discarded because loci were monomorphic. A pre-
screening of SNPs was performed using a simple linear
regression (one SNP at a time) to obtain P-values
under the null hypothesis of no marker effect. False
discovery rate (FDR) was calculated using PROC
MULTTEST in SAS (SAS, 2009); the FDR controls
the expected proportion of incorrectly rejected null
hypotheses (type I errors) among all rejected hypothe-
ses. Using the FDR approach, 798 SNPs were called
significant at P=0.05, and were then used as input
variables for the NNs.

The 1896 cases (ti, p9i) where p9i={pij} is a row vector
with genotypes on the 798 filtered SNPs considered,
were randomly divided into three subsets : training,
tuning and testing. The first subset (n=1138; 60% of
the cases) was used for training the network and for
updating the network weights and biases (intercepts)
iteratively, in conjunction with the tuning set. The
second or tuning subset (n=379; 20% of the cases)
was used to monitor during the training process.
Training and tuning errors normally decrease during
the initial phases of training. When the network be-
gins to overfit the training data, the error on the tun-
ing set typically begins to increase. When the tuning
error increased for a specified number of iterations,
training was stopped, and the weights and biases that
minimized the tuning error were returned. The third
subset (n=379; 20% of the cases), was the testing set,
which was not used at all during training, and was
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used to evaluate the predictive ability of the different
models (Chen et al., 2008).

Overfitting results from an excessive number of
parameters and can occurwhen the number of neurons
in the hidden layer increases. While a neural network
can learn patterns in the training set perfectly, it may
not be able to make reasonable predictions when pres-
ented with independent cases (Alados et al., 2004).
A brief description of ANN is presented next.

(ii) Feed-forward neural networks

In the feed-forward NN used herein, the input vector
of SNP genotypes pi was related to the target ti
(adjusted BMI) using the architecture depicted in
Fig. 1. The network architecture implemented in this
paper was such that, pik=(pi1, pi2, …, pi798) contained
genotype codes for 798 SNPs in mouse i. The SNPs
are connected to each of S neurons in a single hidden
layer via weights (wkj, k=1, 2, …, S), which are
specific to each SNP(j)–neuron(k) connection, and
there is a bias (intercept) specific to each neuron. For
example, if there are S neurons in the architecture, the
biases are b1

(1), b2
(1), …, bS

(1). The input into neuron k,
prior to activation is b(1)k +g798

j=1wkjpj. Subsequently,
this input is transformed (activated) using some linear
or non-linear activation function f(.) (Fig. 1) as
fk(b

(1)
k +g798

j=1wkjpj), k=1, 2, …, S. This activated
emission is then sent to the output layer and collected

as gS

k=1wkfk(b
(1)
k +g798

j=1wkjpj)+b(2), where wk (k=1,
2, …, S) are weights specific to each neuron and b(1)

and b(2) are bias parameters in the hidden and output
layers, respectively. Finally, this quantity is activated
again with function g(.) as g[gS

k=1wkfk(:)+b(2)], which
then becomes the predicted BMI value of ti in the
training set, or t̂ i. Typically, g(.) is a linear activation
function when ti is a continuous outcome.

With 798 SNPs and five neurons, there are close to
4000 weights and biases to estimate from only 1138
cases in the training set. Training is the process by
which the weights are modified in the light of the data
while the network attempts to produce the desired out-
put. Before training, weights do not have any meaning
(Forshed et al., 2002; Alados et al., 2004) beyond that
conveyed by the prior distribution in a Bayesian set-
ting. After training, the fitted value for corrected BMI
is calculated as:

t̂ i=g g
s

k=1

wkf g
R

j=1
wkjpj+b(1)k

 !
+b(2)

( )
;

j=1, 2, . . . ,R; k=1, 2, . . . ,S:

(1)

Linear or tangent sigmoid activation functions were
used in this study for all neurons.

(iii) BR

The Bayesian framework for NNs involves a prob-
ability distribution of network weights, so that

Fig. 1. ANN design used in this study. There were 798 SNP genotypes used as inputs (pij). Each SNP is connected to up to
five neurons via coefficients wjk (j denotes neuron, k denotes SNP). Each hidden and output neuron has a bias parameter
bj
(l), j denotes neuron, l denotes layer).
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predictions from the network can also be cast in a
probabilistic framework (Sorich et al., 2003). Regu-
larization is a technique that can improve predictive
ability (generalization) of ANNs. Once a set of values
weights, w, is assigned to the connections in the net-
works, this defines a mapping from the input vector p
to the output t̂. If M denotes a specific network
architecture, the typical performance function used
for training a neural network is the sum of squared
prediction errors

ED(Djw,M)= g
N

i=1
( t̂ ixti)

2 (2)

for N input–target pairs resulting in data D. The net-
work architecture consists of a specification of the
number of layers, the number of neurons in each layer,
and the type of activation functions used. Early stop-
ping as a default in MATLAB (Demuth et al., 2009)
uses as default values of w chosen such that ED is
minimized, but this procedure fails for large models,
especially when the number of coefficients exceeds N.
Different algorithms are used; the Levenberg–
Marquardt algorithm is the fastest and can be used in
moderate-sized ANN for obtaining parameter esti-
mates (MacKay, 1996; Gencay & Qi, 2001).

In BRANN, on the other hand, an additional term
that penalizes large weights in the hope of achieving a
smoother mapping is added to the objective function.
Gradient-based optimization is then used to minimize
the function:

F=bED Djw,Mð Þ+aEW wjMð Þ, (3)

where EW (w|M), is the sum of squares of network
weights. Here, n is the number of weights in the
ANN, and a and b are regularization parameters that
need to be estimated. If a>>b, emphasis is on re-
ducing the magnitude of weights at the expense of
goodness of fit, while producing a smoother network
response (Foresee & Hagan, 1997). Training involves
a trade-off between model complexity and goodness
of fit. If Bayes estimates of a are large, the posterior
densities of the weights are highly concentrated
around zero, so that the weights effectively disappear
and the model discounts connections in the network
(Titterington, 2004; MacKay, 2008). Therefore,
complex models are automatically self-penalized. The
second term in eqn (3), known as weight decay, favors
small values of w and decreases the tendency of a
model to overfit (MacKay, 2008).

The empirical Bayes approach (MacKay, 2008) is
as follows. The posterior distribution of w given a, b,
D and M is

P(wjD,a, b,M)=
P(Djw, b,M)P(wja,M)

P(Dja, b,M)
, (4)

where D is the training data set. In eqn (4), P(w|a, M)
is the prior distribution of weights under M, P(D|w,
b, M) is the likelihood function, which is the prob-
ability of observing the data given w, and P(D| a,
b, M) is a normalization factor, which does not de-
pend on w (Nguyen & Widrow, 1990; Thodberg,
1996; Kumar et al., 2004)

P(Dja, b,M)=
Z

P(Djw, b,M)P(wja,M)dw:

The weights w were assumed to be identically dis-
tributed, a priori, each following the normal distri-
bution (w|a, M)yN(0, ax1), so that the joint prior
density of w is

p wja,Mð Þ /
Ym
l=1

exp x
aw2

kj

2

� �
= exp x

aEW(wjM)

2

� �
:

After normalization, the prior distribution is then

p(wja,M)=
exp x(aEW(wjM)=2)½ �R
exp x(aEW(wjM)=2)½ �dw

=
exp x(aEW(wjM)=2)½ �

Zw(a)
, (5)

where

ZW(a)=
2p

a

� �n=2

:

The target variable, t, expressed as a function of in-
puts, p, is modeled as ti=f(pi)+e, where eyN(0, bx1)
and f(pi) is the neural network approximation toE(t|p).
Under Gaussian assumptions, the joint density of the
target variables, given the input variables, b andM is :

P(tjp,w, b,M)=
b

2p

� �N=2

exp x
b

2
g
N

i=1
(tixf(pi))

2

� �

=
b

2p

� �N=2

exp x
b

2
ED Djw,Mð Þ

� �
, (6)

where ED(D|w,M) is as given in eqn (2). Letting

ZD(b)=
Z

exp x
b

2
ED Djw,Mð Þ

� �
=

2p

b

� �N=2

,

the posterior density of w in eqn (4) can be
expressed as

P(wjD,a, b,M)=
[1=ZW(a)ZD(b)] exp x1

2
(bED+aEW)

� �
P(DjabM)

=
1

ZF(a,b)
exp x

F(w)

2

� �
, (7)

where ZF(a,b)=[Zw(a)ZD(b)P(D|a,b,M] and F=
bED+aEW. In an empirical Bayesian framework, the
‘optimal’ weights are those that maximize the
posterior density P(w|D, a, b, M), which is equivalent
to minimizing the regularized objective function F
given in equation (3) ; this implies that some values of
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a and bmust be estimated. While minimization of F is
identical to finding the (locally) maximum a posteriori
estimates wMP, minimization of ED by back-
propagation is identical to finding the maximum
likelihood estimates wML (MacKay, 2008).

(iv) Optimizing regularization parameters a and b

Regard now a and b as unknown, and consider the
joint posterior density

P(a, bjD,M)=
P(Dja, b,M)P(a, bjM)

P(DjM)
: (8)

If the prior density P(a, b|M) is uniform, maximiza-
tion of P(a b | D,M) with respect to a is equivalent to
maximization of P(D | a, b, M). From equations (4),
(5), (6) and (7)

P(Dja,b,M)=
P(Djw,b,M):P(wja,M)

P(wjD,a, b,M)

=
(1=ZD(b)) expxbED=2ð Þ½ � (1=ZW(a)) expxaEW=2ð Þ½ �

(1=ZF(a,b)) expxF(w)=2ð Þ

=
ZF(a,b)

ZD(b)ZW(a)

=
ZF(a, b)

2p=bð ÞN=2
2p=að Þm=2

/ bN=2am=2ZF(a,b): (9)

A Laplacian approximation toZF(a, b) yields (Kumar
et al., 2004) :

ZF(a, b) / HMP
�� ��x1=2

exp x
F(wMP)

2

� �
, (10)

where HMP is the Hessian matrix of the objective
function evaluated at wMP, which in turn depends on
current values of a and b andm the number of weights.
Optimal values of a and b can be solved by optimizing
(9) while using (10) as an auxiliary function. The ex-
pression c=nx2aMPtr(HMP)x1 is called the number
of effective parameters in the neural network, where
n is the total number of parameters ; 0fcfn. It can
be shown (MacKay, 1992; Xu et al., 2006) that

aMP=
c

2Ew(wMP)
and bMP=

nxc

2ED(wMP)
: (11)

Bayesian optimization of the regularization para-
meters requires computation of the Hessian matrix of
the objective function F at the optimum point wMP

(Xu et al., 2006). As proposed by (MacKay, 1992), the
Gauss–Newton approximation to the Hessian matrix,
is readily available if the Levenberg–Marquardt
optimization algorithm is used to locate the minimum
of F (Tu, 1997; Lampinen & Vehtari, 2001; Shaneh &
Butler, 2006; www.scs.unr.edu/nevprop).

The flow chart in Fig. 2 summarizes the training
steps of a BRANN. This gives all steps required for
Bayesian optimization of the regularization para-
meters.

(v) Analyses and computing environment

MATLAB (Demuth et al., 2009) was used for fitting
the BRANN. The NNs considered had two layers
(hidden and output layers) and were fully connected
feed-forward networks, as shown in Fig. 1. Deter-
mination of an appropriate number of neurons
(hidden nodes) is a critical task in neural network de-
sign. A network with too few neurons may be in-
capable of capturing complex patterns. In contrast, if
the network has too many neurons it will follow the
noise in the data due to overparameterization, leading
to poor predictive ability of yet to be observed data.
In the present study the number of neurons in a single
hidden layer was varied from one to seven. Therefore,
there were 798 inputs (SNPs), one to seven neurons
and one node in the output layer.

To avoid overtraining and to improve predictive
ability, as well as to eliminate spurious effects caused
by the starting values, 20 independent BRANN were
trained for each architecture. Results were recorded
as the average of these 20 runs, for each architecture.
Two combinations of activation functions were used:
(1) hyperbolic tangent sigmoidal activation functions
from the input layer to the hidden layer plus a linear
activation function from the hidden layer to the out-
put layer and (2) linear activation functions both from
the input layer to the hidden layer and from the hid-
den layer to the output layer.

MATLAB (Demuth et al., 2009) used the
Levenberg–Marquardt algorithm. BR took place
within this algorithm with backpropagation to mini-
mize F. Each iteration (epoch) in backpropagation
has two sweeps: a forward activation to produce a
solution, and a backward propagation of the com-
puted error to modify the weights. The sweeps
are performed repeatedly until a pre-specified toler-
ance is met (Hajmeer et al., 2006; Haykin, 2008). The
number of epochs used was 1000. Training was stop-
ped if : (1) the maximum number of epochs was
reached; (2) performance had met a suitable level ;
(3) the gradient was below a suitable target ; or (4) the
Levenberg–Marquardt m parameter exceeded a suit-
able maximum (training stopped when it became
larger than 1010). Each of these targets and goals were
set at the default values set by the MATLAB im-
plementation.

3. Results

(i) Performance of BRANN

Table 1 summarizes estimated features of the network
architectures used in the current study. The highest
and lowest effective number of parameters were ob-
tained for the one-neuron linear (linear-activation
function in hidden and output layers) and one-neuron
non-linear (tangent sigmoid activation function in
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hidden layer and linear activation in output layer)
networks, with c=101.1¡30.3 and c=117.3¡12.5,
respectively. This linear network is akin to Bayesian
ridge regression, but with a and b tuned similar to the
other NNs. When the number of neurons in the hid-
den layer was increased for non-linear networks from
one to seven, c varied between 105.6 and 117.3, but
without clear differences between networks (Fig. 3c).
Even though the nominal number of parameters (n)

increased from 801 to 5601, c changed slightly only,
indicating the impact of regularization.

As shown in Table 1 and Fig. 3a, values of the ob-
jective function (F) and mean squared error of pre-
diction in the testing set were very similar across
networks, with the distribution of values overruns
showing considerable overlap. Networks with one
and five neurons with non-linear activation functions
had the smallest mean squared of error prediction,

Table 1. Parameter estimates and their standard deviations for different network architectures (results are
averages of 20 independent runs)

S F SSE SSEtest rtrain rtest r
tx t̂

n c

Linear 1.751¡0.1 3.08¡0.06 0.66¡0.04 0.44¡0.02 0.15¡0.05 0.30¡0.02 801 101.1¡30.3
1 1.883¡0.11 3.17¡0.22 0.64¡0.04 0.46¡0.02 0.14¡0.04 0.25¡0.04 801 117.3¡12.5
2 1.85¡0.12 3.17¡0.09 0.65¡0.05 0.44¡0.02 0.14¡0.05 0.25¡0.06 1601 112.3¡16.0
3 1.83¡0.11 3.14¡0.11 0.67¡0.04 0.45¡0.03 0.16¡0.05 0.27¡0.05 2401 114.0¡14.0
4 1.79¡0.11 3.11¡0.09 0.65¡0.04 0.44¡0.03 0.15¡0.05 0.28¡0.05 3201 109.9¡15.7
5 1.80¡0.09 3.11¡0.06 0.64¡0.05 0.43¡0.02 0.18¡0.04 0.27¡0.03 4001 106.8¡11.7
6 1.78¡0.12 3.15¡0.16 0.69¡0.05 0.43¡0.03 0.14¡0.04 0.28¡0.05 4801 105.6¡14.1
7 1.795¡0.06 3.13¡0.03 0.65¡0.05 0.45¡0.03 0.15¡0.04 0.27¡0.01 5601 112.7¡15.6

S, number of neurons; F, objective function; SSE, sum of squares error in the training set ; SSEtest, sum of squares error in the
testing set ; rtrain(test), correlation between predictions and observations in the training(testing) set ; r

tx t̂
, overall correlation

between observed and predicted data; n, number of parameters ; c, effective number of parameters.

Initializing

ED, EW←  training Algorithm  

F(θ ) = βED + αEW

Generalized BRANN

NO

YES

2Ew(w new)

2ED(w new)
n−γ

γ = n – 2α MPtr(H MP)−1

Take one step of the Levenberg–Marquardt algorithm to
minimize objective function F(θ) = βED + αEW

Compute  effective number of parameters γ  via the 
Gauss–Newton approximation to the Hessian 

Compute new estimates of α and β

Iterate steps above until convergence.

γ
α new =

β new =

Convergence

Fig. 2. Flow chart for Bayesian optimization of regularization parameters a and b in NNs; MP, maximum a posterio
(adapted from Shaneh & Butler, 2006).
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but there was no evidence that more complex net-
works provided better predictions than those attained
by the linear model.

The generalization ability of the networks was also
assessed by means of the correlation between pre-
dicted and observed values in the training, testing and
tuning sets. As shown in Figs. 3b and 4 the correla-
tions were much larger in the training than in the
testing and tuning sets, as expected. Predictive ability
was low, and some networks did not improve over the
predictive ability attained by a linear model.

The distribution of weights in a network can also
provide an indication of predictive ability ; small

values lead to better generalization and large weights
tend to produce a more local representation. The av-
erage sum of squares of weights ranged between 0.156
and 0.196 and was smallest for the architecture with 5
neurons; this was consistent with its slightly better
predictive ability. Figure 5 depicts the distributions of
weights for the linear and 5-neuron architectures for
the run with the largest correlation (rtest=0.25 for the
two networks). The weights for the linear model were
larger and more variable than for the 5-neuron model.

(ii) Ranking SNPs for BMI

When the output layer involves a single neuron, the
influence of input variables on the output is directly
reflected in the weights assigned to each input, SNPs
in this case. With many neurons, the influence of each
SNP is more difficult to evaluate. Two different ap-
proaches for assessing the relative importance of in-
dividual SNPs in predicting BMI were considered.
The relative importance of a given SNP on BMI
(Joseph et al., 2003) was assessed as:

ISNPj=
gS

j=1jw
(1, 1)
kj j

gS

j=1g
R

k=1jw
(1, 1)
kj j

100,

where wkj
(1,1) is the connection weight from SNP j to

neuron k, |.| is the absolute value function, and R and
S are the number of SNPs and of hidden neurons,
respectively. For indexing and ranking SNPs, data
were not split into training, tuning and testing sets ;
rather, the whole data set was used to estimate the
impact of SNPs on BMI with 1000 epochs of the al-
gorithms run for each network. Results are shown in
Table 2 and in Fig. 6 for the seven networks. Results
were similar across the networks. For example, SNPs
3978, 12 132, 1096 and 2770 had the greatest impact
on the networks, indicating that these SNPs may be
more relevant for prediction of BMI than other SNPs.
In Table 2, it is shown that SNP 3978 contributed by
far the most (close to 1%) to the sum (over neurons
and SNPs) of absolute values of network weights.
These SNPs could be could be indicative of genomic
regions associated with BMI.

Another measure used was the contribution of a
given neuron, say k, to the entire network (Guha et al.,
2005). The bias term was taken into account, because
when assessing the contribution of a given hidden
neuron, all effects are relevant (Guha et al., 2005). The
contribution of the kth neuron to the entire network
was calculated as:

CNk=
1

R+1
g
R

j=1
w(1, 1)

kj w(2, 1)
k +b(1)k w(2, 1)

k

 !
:

Here, bk
(1) are biases in the hidden layer, wkj

(1,1) are
weights from the input layer to the hidden layer, and
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Fig. 3. Box-plots for (a) mean-squared error in the testing
set, (b) correlation between predictions and observations in
the testing set and (c) effective number of parameters, c,
after 20 independent runs (*indicates extreme values).
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the wk
(2,1) are weights from the hidden layer to the

output (BMI). The relative contribution of neuron k
to the network was obtained as:

SCNk=
CN2

k

gS

k=1CN
2
k

:

As shown in Table 3 the SCNk values indicate that
neurons contributed about equally in networks with
2, 4, 5, 6 and 7 neurons, whereas in the 3-neuron
network, the first and third neurons were more influ-
ential than the second one. It is difficult to assign an
interpretation to these results.

4. Discussion

This study explored the association between 12 320
SNPs and BMI by exploiting properties of BRANN.
Data were fitted using a linear activation function in
both the hidden and output layers of the networks to
obtain a benchmark equivalent to Bayesian ridge re-
gression on markers. Subsequently, different archi-
tectures were explored, including a varying number of

neurons, a tangent sigmoid activation function in the
hidden layer and a linear activation function in the
output layer (Fig. 1). Using a sigmoidal-type function
in the hidden layer and a linear transfer function in
the output layer may be advantageous when it is neces-
sary to extrapolate beyond the range of the training
data (Maier & Dandy, 2000).

The Levenberg–Marquardt algorithm, as imple-
mented inMATLAB,was adopted to optimizeweights
and biases, because previous evaluations with net-
works containing a smaller number of weights in-
dicated that it was a suitable method (Demuth et al.,
2009). In the training process, overfitting often
occurred, leading to a loss of generalization of the
predictive model. Hence, BR was adopted to avoid
over-fitting and improve generalization. Bayesian
methods can simultaneously optimize regularization
parameters in ANNs, a process that is very laborious
using cross-validation (Fernandez & Caballero, 2006).

For the networks trained with BR, we examined
how the effective number of parameters c varied with
architecture. As shown in Table 1, although the total
number of parameters ranged from 801 to 5601, the

Fig. 4. Correlations between predictions and observations for training (rtrain), testing (rtest), tuning (rvalidation) and overall
(ryxŷ) for linear and seven (N-1–N-7) network architectures.
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Fig. 5. Distribution of weights (wkj) for the linear model and for neural network with five neurons.
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Table 2. Relative importance of SNPs with ISNPj values larger than 0.45% for the each of the non-linear
networks

7 neurons 6 neurons 5 neurons 4 neurons 3 neurons 2 neurons 1 neuron

SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)
SNP
ID

ISNP

(%)

420 0.45 7985 0.46 420 0.45 1513 0.45 5010 0.46 4319 0.46 1513 0.45
7985 0.47 5012 0.48 7985 0.46 7985 0.45 4319 0.46 8590 0.48 7985 0.45
5012 0.47 8590 0.48 8590 0.48 348 0.48 10 136 0.46 348 0.49 348 0.48
8590 0.48 4319 0.48 5012 0.48 8590 0.48 348 0.47 5012 0.50 8590 0.49
384 0.48 384 0.48 4319 0.48 3891 0.53 10 141 0.47 384 0.50 3891 0.53
4319 0.48 5010 0.49 384 0.48 5012 0.53 472 0.48 5010 0.51 5012 0.53
5010 0.49 3891 0.49 5010 0.49 2487 0.53 3891 0.49 3891 0.51 2487 0.53
3891 0.49 472 0.50 3891 0.49 384 0.54 2487 0.51 472 0.53 384 0.54
472 0.50 10 136 0.52 472 0.50 10 136 0.54 2770 0.54 10 136 0.53 10 136 0.54
10 136 0.52 10 141 0.52 10 136 0.52 5010 0.54 10 961 0.55 2487 0.53 5010 0.54
10 141 0.52 348 0.52 348 0.52 472 0.54 12 132 0.59 10 141 0.53 472 0.54
348 0.53 2487 0.55 10 141 0.53 10 141 0.55 3978 0.92 10 961 0.58 10 141 0.55
2487 0.55 2770 0.58 2487 0.55 10 961 0.58 2770 0.60 10 961 0.58
2770 0.58 10 961 0.59 2770 0.58 2770 0.63 12 132 0.64 2770 0.63
10 961 0.59 12 132 0.64 10 961 0.59 12 132 0.64 3978 0.94 12 132 0.64
12 132 0.64 3978 0.93 12 132 0.64 3978 0.96 3978 0.96
3978 0.93 3978 0.94

Table 3. Relative contribution of the kth neuron for several neural network architectures for BMI in mice

2 neurons 3 neurons 4 neurons 5 neurons 6 neurons 7 neurons

First neuron 0.50 0.40 0.28 0.22 0.16 0.14
Second neuron 0.50 0.25 0.22 0.23 0.23 0.16
Third neuron 0.35 0.23 0.14 0.10 0.15
Fourth neuron 0.28 0.21 0.16 0.11
Fifth neuron 0.20 0.15 0.15
Sixth neuron 0.19 0.14
Seventh neuron 0.15
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Fig. 6. Plots for the index values of 798 SNPs as prediction of BMI. The solid line gives the cutoff point separating SNPs
with index values larger than 0.45%.
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effective number of parameters varied only from 101
to 117, on average, illustrating the extent of regular-
ization attained. There were minor differences in pre-
dictive ability, and the network with five neurons in
the hidden layer had slightly better performance, but
not significantly. Although differences were minor,
this agrees with several studies (Gencay & Qi, 2001;
Joseph et al., 2003;Kumar et al., 2004;Xu et al., 2006),
suggesting that a model with a single neuron may not
provide a proper representation of the true unknown
function to be predicted. Since complex models are
penalized in a Bayesian approach, we were able to
explore complex architectures (Sorich et al., 2003).
While more free parameters in a model can lead to
smaller data error ED (MacKay, 1992), monitoring
training error to choose among networks is not rep-
resentative of prediction error.

A useful measure of generalization is the corre-
lation coefficient between predictions and realizations
in the test data set. Here, the network with five
neurons had the highest correlation in the test data set
(rtest=0.18), but the lowest in the training data set
(rtrain=0.43). NNs had a performance that was simi-
lar to that attained with other procedures reported in
literature. Data used in our study have already been
analysed in two independent studies, one comparing
genome-assisted genetic evaluation methods using BR
models (Legarra et al., 2008), and another one that
compared the Bayesian LASSO with other marker-
based regression models (de los Campos et al., 2009).
The across-family predictive ability of markers in
Legarra et al. (2008) was 0.17 which is close to
rtest=0.18 obtained here with the five-neuron archi-
tecture. Further, de los Campos et al. (2009) reported
a rank correlation of 0.30 between phenotypic values
and genomic predictions in cross-validation. The over-
all correlation (rtx t̂ ) estimated between observed and
predicted data in our study varied between 0.25 and
0.30 for different network architectures (Table 1), in
agreement with de los Campos et al. (2009). It is
worth noting; however, that the models in Legarra
et al. (2008) and de los Campos et al. (2009) used all
10 946 SNP markers available in their predictions,
whereas here we used only 798 pre-selected SNP
markers. Moreover, the 798 SNPs used to implement
the BRANN were selected in a simplistic way using
single marker analyses coupled with an FDR ap-
proach. Potentially more efficient approaches for pre-
selection of SNPs (e.g. Long et al., 2007; Vazquez
et al., 2010) could be used and tested to improve the
final prediction with BRANN.

Our testing set consisted of 20% (ntest=379) of the
available data, and this was deemed to be large enough
for assessing generalization.Weobserved that the vari-
ability in correlations for testing data was greater than
for training data. These results are in agreement with
several other studies (Aggarwal et al., 2005; Marwala,

2007; Kelemen & Liang, 2008; Wang et al., 2009). At
any rate, the testing set must be a representative
sample of the cases to which one wants to generalize.

ANNs are often considered to be more accurate
predictors than other classes of models. However,
they do not provide clear information regarding how
input values correlate with output values. Therefore,
it is challenging to obtain effective information from a
neural network. Here, exploration of an extensive
pool of SNPs allowed detection of relevant SNPs in
connection with BMI, as pointed out in other contexts
(Fernandez & Caballero, 2006; Xu et al., 2006). In
our study, almost the same SNPs were found to have
an impact on BMI by different networks. This is sug-
gestive of stability of the neural network approach.
The importance of neurons in the hidden layer was
evaluated in this study as well. An interpretation is
that hidden layer neurons are analogous to latent
variables in a partial least squares model. The contri-
bution of each hidden layer neuron to the output
value of the network indicates which such neurons
are most relevant and which can be neglected (Guha
et al., 2005).

5. Conclusions

The ability of predicting BMI in this mouse data set
was low irrespective of the architecture of the NNs
considered. This result is consistent with other studies
of the same data set, but employing different methods.
Among the networks examined, there was a slight
superiority of a network with five neurons in the hid-
den layer. BR allowed estimating all weights, and the
effective number of parameters was much lower than
the nominal number. Further, several networks were
consistent in flagging SNPs that were associated with
BMI. It is concluded that BRANN may be at least as
useful as other methods for high-dimensional genome
enabled prediction, where the number of inputs (e.g.
SNPs) is typically much larger than the number of
cases in the sample. Finally, NNs have the potential
ability of capturing non-linear relationships, which
may also be useful in the study of quantitative traits
under complex gene action. The data set analysed
here did not allow us to corroborate this possibility.

We extend our thanks to The Wellcome Trust Centre for
Human Genetics, Oxford, for making the heterogeneous
stock data available at http://gscan.well.ox.ac.uk.
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