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Abstract

This paper is concerned with a nonstationary Markovian chain of cascading damage that
constitutes an iterated version of a classical damage model. The main problem under
study is to determine the exact distribution of the total outcome of this process when
the cascade of damages finally stops. Two different applications are discussed, namely
the final size for a wide class of SIR (susceptible → infective → removed) epidemic
models and the total number of failures for a system of components in reliability. The
starting point of our analysis is the recent work of Lefèvre (2007) on a first-crossing
problem for the cumulated partial sums of independent parametric distributions, possibly
nonstationary but stable by convolution. A key mathematical tool is provided by a
nonstandard family of remarkable polynomials, called the generalised Abel–Gontcharoff
polynomials. Somewhat surprisingly, the approach followed will allow us to relax
some model assumptions usually made in epidemic theory and reliability. To close,
approximation by a branching process is also investigated to a certain extent.
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1. Introduction

1.1. Background

In a recent paper, Lefèvre (2007) investigated a problem of first-crossing for the partial sums
process of some nonstationary sequences. Let us briefly present the framework and the main
result obtained.

Let {Xt, t = 1, 2, . . .} be a sequence of random variables taking on values in N = {0, 1,

2, . . .}. The basic assumption is that the variables Xt are independent and of nonstationary
distributions in the following specific sense. Firstly, the laws of all the Xt s belong to a common
parametric family of arithmetic laws, L(θ) say, depending on a parameter θ ∈ D = R

+ or N;
let pi(θ), i ≥ 0, be the associated probability mass function. Each Xt has its own parameter
value, and we write

X1
d= L(θ0 + θ1) and Xt

d= L(θt ), t ≥ 2,
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248 M. GATHY AND C. LEFÈVRE

where ‘
d=’ denotes equality in distribution and θ0 +θ1, θ2, θ3, . . . ∈ D . Secondly, the law L(θ)

is stable by convolution, which implies that, when θ ∈ R
+, L(θ) is a compound Poisson law,

and when θ ∈ N, L(θ) is the θ -fold convolution of L(1). As a direct consequence, for both
cases, {ei(θ) ≡ pi(θ)/p0(θ), i ≥ 0} is a sequence of polynomials of degree i in θ satisfying
the following properties: e0(θ) = 1, ei(0) = δi,0, i ≥ 0, and, for θ + θ̃ ∈ D ,

ei(θ + θ̃ ) =
i∑

j=0

ej (θ)ei−j (θ̃ ), i ≥ 0. (1.1)

Owing to property (1.1), the polynomials {ei/i!, i ≥ 0} are of binomial type (see Rota
et al. (1973)) and the polynomials {ei, i ≥ 0} are of convolution type (see Di Bucchianico
(1997)).

Now, consider an associated partial sum process {m + St , t ≥ 1}, where m is any fixed
integer greater than or equal to 1 and St = X1 + · · · + Xt, t ≥ 1. Since L(θ) is stable by
convolution, St

d= L(θ0 + θ+
t ) with θ+

t ≡ θ1 + · · · + θt , t ≥ 1. Let T be the first-crossing
time of the process {m + St , t ≥ 1} through the diagonal line of slope 1, i.e.

T = inf{t ≥ m : m + St ≤ t}. (1.2)

Clearly, T corresponds to a first-meeting time, that is, m + ST = T . The question under study
is how to determine the distribution of the first-crossing level, ST .

A key result established in Lefèvre (2007) (see formulae (4.5) and (4.7) in this paper) is that,
at time T ,

P(ST = s) = p0(θ0 + θ+
m+s)Ḡs(θ0 | {−θ+

m+i , i ≥ 0}), s ≥ 0. (1.3)

Here, given a sequence of reals, U = {ui ≡ −θ+
m+i , i ≥ 0}, the attached sequence {Ḡs(θ | U),

s ≥ 0} represents the family of generalised Abel–Gontcharoff (AG) polynomials of degree s in θ .
That family of polynomials was initially introduced in Picard and Lefèvre (1996) under a
somewhat more general form of pseudopolynomials. The reader can find a concise presentation
of these polynomials in Lefèvre (2007, Section 2).

We recall that the Ḡs(θ | U)s are built from the previous basic polynomials {ei, i ≥ 0}
using the simple recursion

Ḡs(θ | U) = es(θ) −
s−1∑
j=0

es−j (uj )Ḡj (θ | U), s ≥ 0. (1.4)

These polynomials also possess several nice algebraic and operational properties. In the special
affine case where ui = a + bi, i ≥ 0, they reduce to

Ḡs(θ | {a + bi, i ≥ 0}) = θ − a

θ − a − bs
es(θ − a − bs), s ≥ 0. (1.5)

The standard AG polynomials due to Gontcharoff (1937) correspond to the particular case when
ei(θ) = θi/i!, i ≥ 0; they are denoted by Gs(θ | U). In the affine situation, these polynomials
become, by (1.5), the classical Abel polynomials.
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1.2. Overview

The present paper, which is a continuation of Lefèvre (2007), is firstly motivated by
applications to the modelling of epidemic processes. A number of works in epidemic theory
are devoted to the study, exact or asymptotic, of the transient and final behaviours of various
epidemic models. Much on this is presented in the comprehensive books of Daley and Gani
(1999) and Andersson and Britton (2000).

Our attention will be focused on infectious diseases which are of the SIR (susceptible →
infected → removed) schema. A statistic of great interest here is the final size We of the
epidemic, i.e. the total number of new infected cases at the end of the infectious process. It is well
established that the AG polynomials provide a useful tool for expressing the exact distribution
of the variable We for many SIR epidemic models. We refer the reader to, e.g. Lefèvre and
Picard (1990), (2005), Ball et al. (1997), Ball and O’Neill (1999), Ball and Lyne (2001), and
Picard and Lefèvre (1990), (1991), (2003).

A closely related application in reliability theory will also be examined. It is concerned
with a cascading failure model in a closed system of components, such as an electric power
transmission system. This model was studied in Dobson et al. (2005) and Lefèvre (2006) and
falls into the context of exchangeable cascading failures discussed in Lindley and Singpurwalla
(2002). A central statistic here is the total number of new failures in the system, Wr , when the
cascading process finally stops.

Our main purpose is to determine the exact distribution of the final epidemic size, We,
and the total number of failures, Wr , within a unified and more general framework. For
this, a novel model of cascading damage will be introduced by means of some nonstationary
decreasing Markovian chain which comes to an end at an appropriate stopping time. Rather
interestingly, this model may be viewed as an iterated cascading version of a classical damage
model introduced in Rao (1965). The distribution of the total damage will again be expressed
using the generalised AG polynomials. It will be derived by starting with (1.3) obtained for the
law of the first-crossing level, ST . To close, we will also investigate an approximation of this
distribution by the total progeny law in some branching process.

1.3. Rao’s damage model

As a preliminary, let us briefly present Rao’s damage model. This model describes certain
random phenomena which may be only partially observable due to a destructive or omission
process. For example, it could represent the number of eggs laid by an insect, the number of car
accidents declared by a driver, or the number of accidents in an energy company (see Charnet
and Gokhale (2004)).

Formally, let Z denote the random variable under study, which is assumed to take on values in
N with probability mass function pi, i ≥ 0. Owing to possible deteriorations, Z is subdivided
into two parts, a lost set X and a complementary undamaged set Y , both valued in N:

Z = X + Y.

The survival distribution of Y is given by the conditional law, whenever it exists,

pj | i = P(Y = j | Z = i), j = 0, . . . , i. (1.6)

This model has been discussed mainly in order to characterise certain distributions. For the
sequel, it is worth mentioning two well-known results on this topic. The basic theorem, due to
Rao and Rubin (1964), states that if p0 < 1 and if, whenever pn > 0, the survival distribution is
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binomial, B(n; p), p being fixed in (0, 1), then a condition of partial independence defined as

P(Y = j) = P(Y = j | Z = Y (i.e. Z is undamaged)), j ≥ 0, (1.7)

is satisfied if and only if Z has a Poisson distribution. Condition (1.7) and the associated
characterisation of the Poisson law are called the Rao–Rubin condition and characterisation,
respectively.

An important extension is provided by the following theorem proved in Shanbhag (1977).
If p0 < 1 and if there exist reals ai and bi, i ∈ N, satisfying ai > 0 for every i and b0, b1 > 0,
such that, whenever pi > 0, the survival distribution is of the form

pj | i = ajbi−j

ci

, j = 0, . . . , i, (1.8)

where {ci, i ≥ 0} is the convolution of {ai, i ≥ 0} and {bi, i ≥ 0}, then the Rao–Rubin
condition, (1.7), is satisfied if and only if Z has a power series distribution. Moreover, (1.7) is
also equivalent to the condition that the variables Y and X are independent. A number of other
characterisations of this type can be found in the literature.

2. A nonstationary damage process

Let us consider a system of elements, individuals or machines for example, which is of size
Y0 = n ∈ N at time 0. The size of the system is interpreted as a measure of the ‘safety’ of the
whole system. It could represent, for example, the number of individuals in good health or the
number of functioning machines.

Just earlier, i.e. at time 0−, a damage phenomenon caused the destruction of m ≥ 1 units,
and this accident has weakened the safety of the actual Y0 units. Each lost (i.e. damaged) unit,
initial or subsequent, will generate, one after the other, a cascade of damages in an independent
way. Roughly speaking, some kind of domino effect is engaged. A first lost unit damages
the initial Y0 = n units, so that at time t = 1, Y0 is decomposed as the sum of two N-valued
random variables, a damaged part X1 and an undamaged part Y1 (with Y0 = X1 +Y1). Then, a
second lost unit (if any) damages the remaining quantity Y1, so that at time 2, Y1 is subdivided
similarly into two parts, X2 damaged units and Y2 undamaged units (with Y1 = X2 + Y2). By
iteration, at time t ≥ 1, the t th lost unit (if it exists) damages the remaining Yt−1 units, which
are decomposed as

Yt−1 = Xt + Yt , t ≥ 1. (2.1)

Let us now make precise the deterioration effects of every damage phenomenon that will
occur. For this, we introduce the parametric family of distributions L(θ), θ ∈ D , stable by con-
volution, which was presented in the introduction (with probability mass function pi(θ), i ≥ 0).
The successive undamaged parts are defined through time-dependent survival distributions of
the type (1.6). Specifically, the survival law at time 1, denoted p

(1)
j | i = P(Y1 = j | Y0 = i), is

given by

p
(1)
j | i = pj (θ0 − θ1)pi−j (θ1)

pi(θ0)
, j = 0, . . . , i, (2.2)

whenever pi(θ0) > 0. Here, θ0 and θ1 are any given parameters in D satisfying the constraint
θ1 < θ0. Clearly, (2.2) is a probability law by virtue of the stability by convolution of L(θ). We
note that (2.2) corresponds to a simple parametric case of the conditional law (1.8) considered
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in Shanbhag (1977). Then, the remaining undamaged part Y1 escapes damages at time 2 with
a survival law p

(2)
j | i = P(Y2 = j | Y1 = i) of the same form but with different parameters:

p
(2)
j | i = pj (θ0 − θ1 − θ2)pi−j (θ2)

pi(θ0 − θ1)
, j = 0, . . . , i,

provided that pi(θ0−θ1) > 0, for some parameter θ2 ∈ D satisfying θ1+θ2 < θ0. By iteration,
the survival law at every time t ≥ 1, p

(t)
j | i = P(Yt = j | Yt−1 = i), is given by

p
(t)
j | i = pj (θ0 − θ+

t )pi−j (θt )

pi(θ0 − θ+
t−1)

, j = 0, . . . , i, (2.3)

provided that pi(θ0 − θ+
t−1) > 0, where θ+

t = θ1 + · · · + θt < θ0, with θ+
0 ≡ 0.

2.1. The total damage distribution

Let us follow the process of undamaged parts, {Yt , t ≥ 1}, provided that damage phenomena
continue to occur in the course of time. This process is a nonstationary Markovian chain whose
transitions are ruled by the survival distributions (2.3). For the moment, it is convenient to
assume that Y0 is not equal to a constant n, but corresponds to a random variable with given
law L(θ0).

Lemma 2.1. If Y0
d= L(θ0) then, for all t ≥ 1,

Yt
d= L(θ0 − θ+

t ), Xt
d= L(θt ),

and Yt and Xt are independent random variables.

Proof. We proceed by recurrence. For t = 1, we have, by construction,

P(Y1 = j) =
∞∑

i=j

P(Y0 = i)p
(1)
j | i , j ≥ 0.

By assumption, P(Y0 = i) = pi(θ0), i ≥ 0, so that inserting (2.2) for p
(1)
j | i yields

P(Y1 = j) = pj (θ0 − θ1)

∞∑
i=j

pi−j (θ1) = pj (θ0 − θ1),

i.e. Y1
d= L(θ0 − θ1). Similarly, we see that

P(X1 = j) = P(Y1 = Y0 − j) =
∞∑

i=j

P(Y0 = i)p
(1)
i−j | i = pj (θ1), j ≥ 0.

Independence between Y1 and X1 then follows from the stability by convolution of the
family L(θ). Now, for any time t ≥ 2, (2.1) gives

P(Yt = j) =
∞∑

i=j

P(Yt−1 = i)p
(t)
j | i , j ≥ 0.

By recurrence, P(Yt−1 = i) = pi(θ0 − θ+
t−1) for all i. Thus, using the survival law (2.3), we

find that Yt
d= L(θ0 − θ+

t ), as announced. The law of Xt and the independence between Yt and
Xt are easily obtained. This completes the proof.
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Obviously, the process {Yt , t ≥ 1} is stochastically decreasing. As damage is caused by any
previously lost unit, the deterioration process will stop as soon as there are no more lost units
able to generate such damage. Let St = X1 + · · · + Xt = n − Yt , t ≥ 1, be the total number
of lost new units until time t . So, m + St represents the total number of lost units able to cause
damage until time t . On the other hand, the number of lost units susceptible to generate damage
until time t is, by construction, equal to t . Thus, cascading damage will continue provided that
some lost units can still cause damage, i.e. as long as m + St > t . It will terminate when there
remain no lost units able to cause damage, i.e. at time T = inf{t ≥ m : m + St = t}. This
stopping time is identical to that considered in (1.2).

Let us now return to the case where Y0 is a constant n ∈ N. The statistic of interest is the
total number of new units lost at the end T of the cascading damage process; it corresponds
to the variable ST = n − YT . Owing to the above result from Lefèvre (2007), (1.3), we will
derive the probability mass function of ST in terms of generalised AG polynomials.

Proposition 2.1. If Y0 = n and X0 = m, then

P(ST = s) = pn−s(θ0 − θ+
m+s)p0(θ

+
m+s)

pn(θ0)
Ḡs(0 | {−θ+

m+i , i ≥ 0}), s = 0, . . . , n. (2.4)

Proof. A simple trick consists of supposing first that Y0
d= L(θ0). By Lemma 2.1, the

variables Xt are then all independent and of laws L(θt ). Thus, the associated partial sums
St , t ≥ 1, are of laws L(θ+

t ). Since the stopping time T is defined by (1.2), the present problem
is exactly the problem investigated in Lefèvre (2007), where here θ0 = 0. Consequently, (1.3)
with θ0 = 0 provides the law of ST , i.e.

P(ST = s) = p0(θ
+
m+s)Ḡs(0 | {−θ+

m+i , i ≥ 0}), n ≥ 0. (2.5)

Now, let us suppose that Y0 = n. We can write, for s = 0, . . . , n,

P(ST = s | Y0 = n) = P(ST = s, Y0 = n, and Y0
d= L(θ0))

P(Y0 = n and Y0
d= L(θ0))

= P(ST = s | Y0
d= L(θ0)) P(Y0 = n | ST = s, Y0

d= L(θ0))

P(Y0 = n | Y0
d= L(θ0))

. (2.6)

The probability in the denominator of (2.6) is pn(θ0) by definition. Now let us examine the two
probabilities in the numerator. The former is obviously given by (2.5). In the latter, the event
of concern means that n − s units of the system escape all damage caused by the total number
of lost units, T . Note that there are m initial and s new lost units, so that T = m+ s. Thus, this
event is equivalent to Ym+s = n − s. As Y0 is of law L(θ0) by the conditioning, Lemma 2.1
implies that Ym+s

d= L(θ0 − θ+
m+s). So, the latter probability is equal to pn−s(θ0 − θ+

m+s);
hence, (2.4) is proved.

2.2. The survival distributions

Let us comment on the conditional survival law (2.3). We note that a parametric distribution
of this type is discussed in Di Bucchianico (1997) in the context of umbral calculus.

Working with generating functions and using the stability by convolution of L(θ), it is easily
seen that law (2.3) is of mean

E(Yt | Yt−1 = i) = i
θ0 − θ+

t

θ0 − θ+
t−1

, i ≥ 0, (2.7)
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independent of the specific law for L. The other moments are not so simple. For the second
factorial moment, a nice formula is

E(Yt (Yt − 1) | Yt−1 = i) = i
θ0 − θ+

t

θ0 − θ+
t−1

(
i − 1 −

i−1∑
j=1

fj (θ0 − θ+
t )fi−j (θt )

fi(θ0 − θ+
t−1)

)
, i ≥ 0,

where {fi(θ) ≡ iei(θ)/θ, i ≥ 0} forms a sequence of Sheffer polynomials of degree i − 1 in θ

(see, e.g. Picard and Lefèvre (1996)).
Let us now present a few particular survival distributions (2.3) obtained by choosing specific

laws for L(θ). When θ ∈ R
+, the following statements hold.

• If L(θ) is a Poisson law, denoted by P (θ), then, for t ≥ 1 and 0 ≤ j ≤ i,

p
(t)
j | i =

(
i

j

)
(θ0 − θ+

t )j θ
i−j
t

(θ0 − θ+
t−1)

i
, (2.8)

which is a binomial law.

• If L(θ) is a generalised Poisson law, denoted by GP (θ; β) (i.e. pi(θ) = θ(θ + βi)i−1

e−θ−βi/i!, i ≥ 0, with β ∈ [0, 1]), then, for t ≥ 1 and 0 ≤ j ≤ i,

p
(t)
j | i =

(
i

j

)
θt (θ0 − θ+

t )

θ0 − θ+
t−1

(θ0 − θ+
t + βj)j−1(θt + β(i − j))i−j−1

(θ0 − θ+
t−1 + βi)i−1

,

which is a quasibinomial II law (see, e.g. Johnson et al. (1992, pp. 102 and 396)).

• IfL(θ) is a negative binomial law, denoted byNB(θ;p) (i.e.pi(θ) = (
θ+i−1

i

)
(1 − p)ipθ,

i ≥ 0, with p ∈ (0, 1)), then, for t ≥ 1 and 0 ≤ j ≤ i,

p
(t)
j | i =

(
θ0 − θ+

t + j − 1

j

)(
θt + i − j − 1

i − j

)/(
θ0 − θ+

t−1 + i − 1

i

)

=
(

i

j

)
(θ0 − θ+

t + j − 1)[j ](θt + i − j − 1)[i−j ]
(θ0 − θ+

t−1 + i − 1)[i]
, (2.9)

where a[i] = a(a − 1) · · · (a − i + 1) with a[0] = 1, which is a particular Markov–Pólya
law (also named the negative hypergeometric) (see, e.g. Johnson et al. (1992, p. 83)).

• If L(θ) is a generalised negative binomial law, denoted by GN B(θ; β, p) (i.e. pi(θ) =
[θ/(θ + βi)](θ+βi

i

)
(1 − p)ipθ+βi−i , i ≥ 0, with p ∈ (0, 1) and β ∈ (1, 1/(1 − p)),

then, for t ≥ 1 and 0 ≤ j ≤ i,

p
(t)
j | i =

(
i

j

)
θt (θ0 − θ+

t )

θ0 − θ+
t−1

θ0 − θ+
t−1 + βi

(θ0 − θ+
t + βj)(θt + β(i − j))

× (θ0 − θ+
t + βj)[j ](θt + β(i − j))[i−j ]

(θ0 − θ+
t−1 + βi)[i]

, (2.10)

which is a particular generalised Markov–Pólya (or quasihypergeometric) law (see,
e.g. Johnson et al. (1992, pp. 101 and 230)).
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When θ ∈ N, the following statement holds.

• If L(θ) is a binomial law, denoted by B(θ; p) with p ∈ (0, 1), then, for t ≥ 1 and
0 ≤ j ≤ i,

p
(t)
j | i =

(
θ0 − θ+

t

j

)(
θt

i − j

)/(
θ0 − θ+

t−1

i

)
, (2.11)

which is a hypergeometric law.

The survival binomial law (2.8), the Markov–Pólya law (2.9), and the hypergeometric law
(2.11), will play special roles in the sequel. Note that the last two distributions do not depend
on the parameter p used in the corresponding laws L(θ). Moreover, for these three laws, their
factorial moments E(Yt (Yt − 1) | Yt−1 = i) are explicitly given by

i(i − 1)
[θ0 − θ+

t ]2

[θ0 − θ+
t−1]2

, i(i − 1)
[θ0 − θ+

t ][θ0 − θ+
t + 1]

[θ0 − θ+
t−1][θ0 − θ+

t−1 + 1] ,

and i(i − 1)
[θ0 − θ+

t ][θ0 − θ+
t − 1]

[θ0 − θ+
t−1][θ0 − θ+

t−1 − 1] ,

respectively. Thus, the variance of (2.8) is smaller or larger than the variance of (2.9) or,
respectively, (2.11) when θ ∈ N. This suggests that the final influence of these three sampling
methods might be comparable in some stochastic sense. The question remains open, however
(see Figure 3 in Section 3).

3. Application to SIR epidemics

Consider a closed, homogeneous, and independently mixing population that is subjected to
an epidemic of the SIR scheme. At the beginning it contains n susceptibles, m infectives, and
no removed cases. Each infective, initial or future, acts independently and is able to infect
any susceptible met during its infectious period. If ever contacted, a susceptible becomes an
infective. At the end of the infectious period an infective recovers permanently from the disease
and becomes a removed case without any possible influence on the spread of the disease. The
epidemic ceases when there are no more infectives present, and this arises, almost surely, after
a finite time F . The total number of new infected cases, We, is under consideration here.

Various models are proposed in the literature to represent SIR epidemic processes (see the
books referred to in the introduction). The two most known SIR models are the so-called Reed–
Frost epidemic and general epidemic. They are examined below, as well as several nonstandard
extensions of interest.

To find the distribution of We, we will operate a change of time scale in the model (as,
e.g. in Lefèvre and Utev (1996)). First, the successive infectives are labelled t = 1, 2, . . . ,
and a new time scale t ∈ N follows by considering the infectives, one after the other, during
their infectious periods. Now, set Y0 = n and, at each time t ≥ 1, let us count the number of
contacts, Xt , caused by the t th infective among those individuals, in number Yt−1, who escaped
contacts with the previous t − 1 infectives. By the subtraction Yt−1 − Xt , we then find the
number Yt of individuals who are not yet infected at time t . This iterative procedure continues
until time T when there are no more infectives in the population, i.e. with T given by (1.2).
The final number of suseptibles is YT = n − ST .

Obviously, the chosen time scale is quite different from the true time scale. The final outcome
of the epidemic, however, is identical in both representations, i.e. We

d= ST . Indeed, as far as
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We is concerned, the real instant where an individual was infected is not relevant at all. In the
new description, the epidemic model corresponds to a damage process such as described in
Section 2.

It remains to specify how each infective contacts susceptibles during its infectious period,
which will give the successive survival laws. Let us consider again a family of distributions
L(θ), θ ∈ D , and assume that, for the t th infective, if there are i susceptibles present, the
corresponding survival law {p(t)

j | i , 0 ≤ j ≤ i} is of the form (2.3). Then, by Proposition 2.1,
the distribution of the final size We is provided by (2.4).

A large variety of situations can be described by an appropriate choice of the survival law and
the sequence of parameters θt . Hereafter, we will first point out that the classical Reed–Frost
epidemic and its variants are obtained when the survival distributions are chain binomial, and
the parameters θt are geometrically decreasing. Then, we will focus on two new epidemic
damage models that are built from the Markov–Pólya and hypergeometric survival laws.

3.1. Reed–Frost epidemics

3.1.1. The classical Reed–Frost model. For this model, we suppose that an infective goes
through a latent period of length 1, followed by an instantaneous infectious period. At that
instant, the infective can contact any given susceptible with probability p = 1−q (0 < q < 1).
So, if at time t − 1 ≥ 0 there are It−1 infectives, any of the Nt−1 susceptibles present will
escape infectious contact at time t with probability qIt−1 . Thus, the conditional law of Nt is of
binomial type:

Nt | (Nt−1, It−1)
d= B(Nt−1, q

It−1), t ≥ 1, (3.1)

where N0 = n and I0 = m. At the end F of the epidemic there will be a total number
We = n − NF of newly infected cases.

Using the above equivalent representation, we obtain an associated damage process for which
the individuals present escape contact with the t th infective according to a binomial survival
distribution:

p
(t)
j | i =

(
i

j

)
qj (1 − q)i−j , j = 0, . . . , i. (3.2)

Note that law (3.2) is independent of t .
This situation can be viewed as a particular case of (2.3) when

L(θ) is Poisson P (θ), θ0 > 0, and θt = θ0q
t−1(1 − q), t ≥ 1. (3.3)

Then, indeed, θ+
t = θ0(1 − qt ), t ≥ 1, so that (2.8) reduces to (3.2).

Now, for the final size We, (2.4) combined with (3.3) yields

P(We = s) = n[s]q(m+s)(n−s)θ−s
0 Ḡs(0 | {θ0(q

m+i − 1), i ≥ 0}), s = 0, . . . , n. (3.4)

For the law P (θ), we have ei(θ) = θi/i!, i ≥ 0, which implies that the Ḡs reduce to the
standard AG polynomials, Gs . Moreover, the following property then holds: given any reals a

and b,
Gs(a + bθ | a + bU) = bsGs(θ | U), s ≥ 0.

Therefore, (3.4) simplifies to

P(We = s) = n[s]q(m+s)(n−s)Gs(1 | {qm+i , i ≥ 0}), s = 0, . . . , n, (3.5)

a result already obtained in Lefèvre and Picard (1990) using a different method.
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3.1.2. A nonstationary Reed–Frost model. Let us assume that the number of individuals
escaping contact with the t th infective is still binomial but with a time-dependent parameter
0 < qt < 1, i.e.

p
(t)
j | i =

(
i

j

)
q

j
t (1 − qt )

i−j , j = 0, . . . , i. (3.6)

It is directly checked that in our modelling, (3.6) is obtained when assumptions (3.3) are
modified to

L(θ) is Poisson P (θ), θ0 > 0, and θt = θ0q1 · · · qt−1(1 − qt ), t ≥ 1,

which yields θ+
t = θ0(1 − q1 · · · qt ), t ≥ 1.

So, (3.5) is then generalised to

P(We = s) = n[s](q1 · · · qm+s)
n−sGs(1 | {q1 · · · qm+i , i ≥ 0}), s = 0, . . . , n, (3.7)

which was also derived in Lefèvre and Picard (2005) by another argument.
Note that qt , t ≥ 1, represents the survival probability of any given susceptible who escaped

contact with the t −1 first infectives. Thus, this is a conditional probability and it will generally
be of the form qt = ft/ft−1 with f0 = 1. In this case, (3.7) is more compact since q1 · · · qm+i =
fm+i , i ≥ 0.

As an application, let us examine a Reed–Frost model with vaccination discussed in Lefèvre
and Picard (2005). So, the classical model is considered with q as the parameter of no contact,
but now every susceptible is assumed to have received a vaccine that confers a random resistance
to the disease. All the resistances are independent and have the same distribution, that of a
variable ε valued in [0, 1]. Then, the modified model is of the previous nonstationary type,
where qt = ft/ft−1 with

ft = E([q + (1 − q)ε]t ), t ≥ 0. (3.8)

In Figure 1 we consider three situations of this kind. The Reed–Frost plot gives the
distribution function of We when the resistance level ε has a power-function distribution,
i.e. P(ε ≤ x) = x2 for x ∈ [0, 1]. The upper bound plot corresponds to the approximation
(usually named the leaky model) where ε is replaced by its mean E(ε) = 2

3 . The lower bound
plot is the approximation (named all/nothing model) where ε has a Bernoulli law of parameter
E(ε) = 2

3 . As proved in Lefèvre and Picard (2005), these two approximations provide upper
and lower bounds for any distribution of ε with given mean. Intuitively, it is natural that the
safest case arises when the resistance level ε is fixed instead of being a variable.

3.1.3. The randomised Reed–Frost model. This model allows us to take random levels of
infectiousness into account. Each t th infective does not contact any given susceptible present
with a probability Qt which is assumed to be a random variable (especially to account for the
variability of the length of its infectious period). All the Qt are independent and have the same
distribution, that of Q say.

Clearly, this model can be viewed as a randomised version of the nonstationary Reed–Frost
epidemic. So, taking the expectation in (3.7) yields

P(We = s) = n[s] E((Q1 · · · Qm+s)
n−sGn(1 | {Q1 · · · Qm+i , i ≥ 0})), s = 0, . . . , n.

This result seems to be rather intricate. In Lefèvre and Picard (2005), however, the polynomial
Gn is expanded by Taylor’s formula, and applying a nice property of the AG polynomials, they
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Figure 1: Graph of P(We ≤ s), 0 ≤ s ≤ 30, when n = 30, m = 5, and under (3.8), where
q = 0.02 and ε = 2

3 almost surely (upper bound), P(ε ≤ x) = x2, x ∈ [0, 1] (Reed–Frost),
P(ε = 1) = 1 − P(ε = 0) = 2

3 (lower bound).

deduced the following simplified formula:

P(We = s) = n[s]
s∑

j=0

[q(n − j)]m+j

j ! Gs−j (0 | {q(n − s + i), i ≥ 0}), s = 0, . . . , n,

where the expectation appears now only through the parameters q(k) = E(Qk), k ≥ 0.
For instance, the general epidemic is a special case where the infectious periods are inde-

pendent and exponentially distributed with parameter µ, the generic variable being D say, and
pairs of individuals can contact according to independent Poisson processes of rate β. Then,
Q = e−βD , which yields q(k) = µ/(µ + kβ), k ≥ 0.

3.2. Markov–Pólya and hypergeometric epidemics

In the Reed–Frost model, any given susceptible is contacted by an infective with a fixed
probability p = 1 − q. Hereafter, we suppose that this probability depends on the number of
contacts and the number of infections already made by the infective.

More precisely, in the previous epidemic scheme, consider time t − 1 ≥ 0 when there are i

susceptibles present, labelled k = 1, . . . , i. To follow the successive contacts made by the t th
infective among these i susceptibles, we introduce the sequential probabilities:

P(the (k + 1)th susceptible is infected at time t | l among the first k susceptibles were

already infected) ≡ p(t)(k + 1 | l)

= 1 − q(t)(k + 1 | l), 0 ≤ l ≤ k ≤ i. (3.9)

(i) As a first case, we make the assumption that, for any time t ≥ 1,

p(t)(k + 1 | l) = θt + l

θ0 − θ+
t−1 + k

, l = 0, . . . , k. (3.10)
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Thus, the probability to infect a first susceptible is equal to θt/(θ0 − θ+
t−1). For the next

susceptibles, the probability decreases with the number k of previous contacts made, and it
increases with the number l of infection cases caused. In particular, the (k + 1)th susceptible
has a more important risk than the first susceptible if the actual proportion of infections, l/k,
is larger than the initial infection probability.

A situation like (3.10) might arise if, for instance, the infection power of the infective is
not known with precision, but can be reevaluated after each contact by using a more adequate
estimation. Note that, if the numbers k and l have no influence, (3.10) is replaced by p(t) =
θt/(θ0 − θ+

t−1) and, as expected, p(t) reduces to p = 1 − q in the Reed–Frost case.
Using (3.10), we then find that

P(at t, the first j susceptibles escape contact and the last (i − j) susceptibles are contacted)

= q(t)(1 | 0)q(t)(2 | 0) · · · q(t)(j | 0)p(t)(j + 1 | 0)p(t)(j + 2 | 1) · · · p(t)(i | i − j − 1)

= (θ0 − θ+
t + j − 1)[j ](θt + i − j − 1)[i−j ]

(θ0 − θ+
t−1 + i − 1)[i]

, j = 0, . . . , i. (3.11)

Moreover, we see that, thanks to the expression in (3.10), the
(
j
i

)
combinations of the j surviving

susceptibles all have the same probability. Therefore, {p(t)
j | i , 0 ≤ j ≤ i} is given by the Markov–

Pólya distribution (2.9). For this reason, the model will be named a Markov–Pólya epidemic.
So here,

L(θ) is negative binomial, N B(θ; p). (3.12)

From (2.4) and (3.12), we obtain

P(We = s) = n[s]
(1 − p)s

(θ0 − θ+
m+s) · · · (θ0 − θ+

m+s + n − s − 1)

θ0 · · · (θ0 + n − 1)

× Ḡs(0 | {−θ+
m+i , i ≥ 0}), s = 0, . . . , n. (3.13)

Now, let {Ḡa
s (θ | U), s ≥ 0} be the generalised AG polynomials associated to the sequence

{ai(θ) ≡ ei(θ)/(1 −p)i, i ≥ 0}. Applying Property A.1 in Appendix A, we deduce that (3.13)
can be simplified to

P(We = s) = n[s]
(θ0 − θ+

m+s) · · · (θ0 − θ+
m+s + n − s − 1)

θ0 · · · (θ0 + n − 1)

× Ḡa
s (0 | {−θ+

m+i , i ≥ 0}), s = 0, . . . , n.

The parameter p is no longer present here, which is not surprising since this was already the
case in the survival law (2.9). Let us underline that the Ḡa

s are generalised, and not standard,
AG polynomials.

Figure 2 provides a comparison between the classical Reed–Frost epidemic and the Markov–
Pólya epidemic built with the same geometric sequence of parameters {θt , t ≥ 0}. The sampling
method used, of binomial or Markov–Pólya type, has a strong influence on the distribution of
We. From (2.4), it is directly seen that P(We = 0) is always smaller for the Reed–Frost model
than for the Markov–Pólya model. Thus, a minor outbreak is more likely in the Markov–Pólya
model. This is illustrated in Figure 2, which also shows that the two distribution functions
finally cross each other. Thus, a major epidemic also appears to be more likely in the Markov–
Pólya epidemic. Intuitively, with this model, we may expect that, owing to assumption (3.10),
a large number of infections is needed to generate some snowball effect in the contagion.
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Figure 2: Graph of P(We ≤ s), 0 ≤ s ≤ 30, when n = 30, m = 3, and {θ0 = 1, θt = qt−1(1 − q),
t ≥ 1} with q = 0.96 for the Markov–Pólya and classical Reed–Frost epidemics.

(ii) As a second case, let us assume that, for any time t ≥ 1,

p(t)(k + 1 | l) = θt − l

θ0 − θ+
t−1 − k

, l = 0, . . . , k, (3.14)

provided that l ≤ θt and k < θ0 − θt−1. This time, the probability to infect a susceptible
increases with the number k of previous contacts made, and it decreases with the number l of
infection cases caused. In particular, the infection risk for the (k + 1)th susceptible is now
smaller than for the first susceptible if the actual proportion of infections, l/k, is larger than the
initial risk θt/(θ0 − θ+

t−1).
As a possible explanation for (3.14), we might think, for instance, that the infective carries

germs, infectious or not, and some germs or infectious germs are destroyed after each contact
made or, respectively, each infection caused.

Using (3.14) and following the same argument as in (3.11), we then find that {p(t)
j | i , 0 ≤

j ≤ i} is given by the hypergeometric distribution (2.11). For this reason, the model will be
named a hypergeometric epidemic. So here,

L(θ) is binomial, B(θ; p). (3.15)

From (2.4) and (3.15), we obtain

P(We = s) = n[s] (1 − p)s

ps

(θ0 − θ+
m+s) · · · (θ0 − θ+

m+s − n + s + 1)

θ0 · · · (θ0 − n + 1)

× Ḡs(0 | {−θ+
m+i , i ≥ 0}), s = 0, . . . , n. (3.16)

Let {Ḡa
s (θ | U), s ≥ 0} be the AG polynomials associated to the sequence {ai(θ) ≡ ei(θ)(1 −
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Figure 3: Graph of P(We ≤ s), 0 ≤ s ≤ 30, when n = 30, m = 3, and {θ0 = 100, θ1 = · · · =
θ6 = 3, θ7 = · · · = θ13 = 10, θ14 = · · · = 0} for the Markov–Pólya, nonstationary Reed–Frost and

hypergeometric epidemics.

p)i/pi, i ≥ 0}. By Property A.1, (3.16) then becomes

P(We = s) = n[s]
(θ0 − θ+

m+s) · · · (θ0 − θ+
m+s − n + s + 1)

θ0 · · · (θ0 − n + 1)

× Ḡa
s (0 | {−θ+

m+i , i ≥ 0}), s = 0, . . . , n,

the parameter p being again absent as in the survival law (2.11).
In Figure 3 the hypergeometric epidemic is compared with the nonstationary Reed–Frost

and Markov–Pólya epidemics for a sequence of parameters {θt , t ≥ 1} valued in N. From
(2.4) we check that P(We = 0) is always the smallest for the hypergeometric model. Thus,
a minor outbreak is less likely for this epidemic. Furthermore, Figure 3 shows that the
three distribution functions have a crossing point. So, a major epidemic also seems to be
less likely in the hypergeometric model. By numerical calculation, we obtain E(WM–P

e ) =
18.9398, E(WR–F

e ) = 20.3166, and E(W h
e ) = 21.9916, using an obvious notation. From these

observations, a plausible conjecture could be that WM–P
e ≤icv WR–F

e ≤icv W h
e , where ‘≤icv’

denotes the increasing concave stochastic order (see, e.g. Lefèvre and Utev (1996)). Intuitively,
it is not so surprising that, owing to assumption (3.14), the contagion in the hypergeometric
model often becomes important but not extremely severe.

4. Application to cascading failures

A quite analogous damage model can be used in reliability to describe the occurrence of
cascading failures in a closed system of n interconnected similar components. This is not
so surprising since in both applications, damage arises through some kind of domino effect
amongst the individuals or components still present.
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4.1. Binomial failures

(i) Following Dobson et al. (2005) we suppose that in normal functioning conditions the n

components are able to bear loads L1, . . . , Ln, which are independent uniform (0, 1) random
variables.

Step 0. For some technical reasons, an accident arises that implies an additional load a to
each component. As a consequence, any component i will fail if its new load Li + a is greater
than 1, which happens with probability P(Li > 1 − a) = a; let M0 be the number of failures.

Step 1. If there are new failures, a supplementary load b per failed component is imposed to
each functioning component. So, firstly a load M0b is added to the load of each of the n − M0
remaining components. Amongst these, every component i whose total load Li + a + bM0 is
greater than 1 will fail; let M1 be the number of failures.

Step 2. In an analogous way, a load bM1 is then added to the n − M0 − M1 remaining
components, and the failure test is again applied. Such successive reload and damage processes
will continue as long as possible.

Let Nt, t ≥ 1, be the number of components functioning after t steps. Then, Nt = Nt−1 −
Mt−1, where N0 = n and M0

d= B(n, a). This process is submitted to a cascading failure
phenomenon of binomial type. More precisely, N1

d= B(n, 1 − a), and at any time t ≥ 2,
every functioning component i will remain active with the conditional probability

P(Li + a + b(M0 + · · · + Mt−1) < 1 | Li + a + b(M0 + · · · + Mt−2) < 1),

which yields

Nt | (Nt−1, Nt−2)
d= B

(
Nt−1,

1 − a − b(n − Nt−1)

1 − a − b(n − Nt−2)

)
, t ≥ 2. (4.1)

The cascade stops at time F when the loads of the remaining components are all smaller than 1.
The total number of failures is Wr = n − NF . Note that in (4.1) it was implicitly assumed that
1 − a − b(n − 1) > 0. An analogous hypothesis is retained for the sequel. If this is not true
(i.e. when 1 − a − bi ≤ 0 for some i ≤ n − 1), the discussion can be easily adapted.

When interest is focused on Wr , we may operate a time scale change t ∈ N by considering
the state of the system of components after the failure of any single component. In other words,
the damage process of Section 2 is applicable here too. Denote by Xt, t ≥ 1, the number of
failures caused by the t th failed component, and let Yt , t ≥ 0, be the number of components
that are still functioning at time t , i.e. after the t th failure. Then, Yt = Yt−1 − Xt, t ≥ 1, with
Y0 = n. Because of the t th failed component, if there were i active components, the number
of components that remain functioning is of survival law {p(t)

j | i , 0 ≤ j ≤ i} defined by (2.3).
In the present case, this yields, for t = 1,

p
(1)
j | n =

(
n

j

)
(1 − a)j an−j , j = 0, . . . , n,

and, for t ≥ 2,

p
(t)
j | i =

(
i

j

)
(1 − a − b(t − 1))j bi−j

(1 − a − b(t − 2))i
, j = 0, . . . , i.

Comparing with (3.6), we observe that the model corresponds to a particular case of the
nonstationary Reed–Frost model (2.3), with parameters

q1 = 1 − a and qt = 1 − a − b(t − 1)

1 − a − b(t − 2)
, t ≥ 2. (4.2)
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Note that
ft = q1 · · · qt = 1 − a − b(t − 1), t ≥ 1,

i.e. ft is a linear function of t .
The cascading failures stop at time T when there are no more new failures. It is engaged

by introducing one artificial infective, so that T is represented by (1.2) with m = 1. The total
number of failures Wr is distributed as ST = X1 + · · · + XT . By Proposition 2.1, its law is
provided by (3.7) with (4.2); hence,

P(Wr = s) = n[s](1 − a − bs)n−sGs(1 | {1 − a − bi, i ≥ 0}), s = 0, . . . , n. (4.3)

As the sequence U defining Gs in (4.3) is affine, we know by (1.5) that the Gs reduce to the
Abel polynomials. By substitution, (4.3) becomes

P(Wr = s) =
(

n

s

)
a(a + bs)s−1(1 − a − bs)n−s , s = 0, . . . , n, (4.4)

a result that can be found in Dobson et al. (1995).
(ii) In a recent paper, Lefèvre (2006) examined the same model, as well as several extensions,

using a different formulation that has recourse to the order statistics of the loads L1, . . . , Ln.
A connection with epidemics was also pointed out there, in somewhat intricate terms however.

So, let us now suppose that the initial loads Li are independent and identically distributed,
but with an arbitrary distribution function H on (0, 1), not necessarily uniform. Any component
is still assumed to fail if its actual load is greater than 1. In the present framework, we easily
see that this variant is quite similar to the previous model, but with the parameters qt in (4.2)
replaced by

q1 = H(1 − a) and qt = H(1 − a − b(t − 1))

H(1 − a − b(t − 2))
, t ≥ 2. (4.5)

In particular, if the loads are of increasing exponential law, i.e. when H(x) = ex/(e − 1) on
(0, 1) say, then q1 = e1−a/(e − 1) and qt = e−b, t ≥ 2. For an appropriate choice of a, all the
qt are thus equal to each other, as in the classical Reed–Frost model (3.1).

More generally, for the additional loads in case of failures, we might now choose any
fixed real sequence wi, i ≥ 1, not necessarily constant. Denote the cumulated weights by
vi = w1 + · · · + wi, i ≥ 1, with vn−1 < 1. Then, (4.5) is generalised as

q1 = H(1 − a) and qt = H(1 − a − vt−1)

H(1 − a − vt−2)
, t ≥ 2, (4.6)

where v0 = 0. Finally, inserting (4.6) into (3.7) with m = 1 yields

P(Wr = s) = n[s](H(1 − a − vs))
n−sGs(1 | {H(1 − a − vi), i ≥ 0}), s = 0, . . . , n,

the Gs again being standard AG polynomials.
As an illustration, suppose that, for security reasons, the system has to contain several

redundant components. So, the first failures, in number c ≥ 0 say, will have no influence on
the functioning of the system and only the next failures will generate an additional load b to
the remaining components. In other words,

v0 = v1 = · · · = vc = 0 and vi = b(i − c), i ≥ c + 1. (4.7)
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Figure 4: Graph of P(Wr ≤ s), 0 ≤ s ≤ 30, when n = 30, H uniform (0, 1), a = 0.2, b = 0.01, and
under (4.7) with c = 0, 3, and 6.

Such a situation is considered in Figure 4, where the initial loads are uniform on (0, 1).
Observe that, as expected, a higher security threshold c implies a smaller total number of
failures. The case in which c = 0 gives the model without threshold examined in Dobson et al.
(2005).

4.2. Markov–Pólya and hypergeometric failures

In the initial model (4.1), the probability for any given functioning component to fail due
to the t th failed component is equal to a if t = 1 and to b/(1 − a − b(t − 2)) if t ≥ 2. This
probability is now allowed to depend on the number of components tested and the number of
failures already caused by the failed component.

Arguing as in (3.9), we consider time t − 1 ≥ 0 when there are i components functioning,
labelled k = 1, . . . , i, and we follow the successive possible failures generated by the t th failed
component. So, this time the probability

p(t)(k + 1 | l) = 1 − q(t)(k + 1 | l), 0 ≤ l ≤ k ≤ i,

represents the failure risk for the (k + 1)th component due to the t th failed component, given
that among the previous k components, l of them have already failed.

(i) Let us assume that, for any time t ≥ 1,

p(t)(k + 1 | l) = b + l

a + b(n − t + 1) + k
, l = 0, . . . , k. (4.8)

Thus, the failure probability by a failed component decreases with the number k of components
tested and increases with the number l of failures caused earlier.

Such a case might occur when, for instance, the resistance of the components can be
reevaluated after each test by using a better calibrated estimation. Note that, if the numbers k

and l have no influence, (4.8) is replaced by p(t) = b/(a + b(n − t + 1)), i.e. equivalently,
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p(t) = b/(a + b(n − 1) − b(t − 2)); so, the form of p(t) looks like the one obtained for
model (4.1).

Under (4.8), we then find that

P(at t, the first j components still function and the last (i − j) components have failed)

= (a + b(n − t) + j − 1)[j ](b + i − j − 1)[i−j ]
(a + b(n − t + 1) + i − 1)[i]

, j = 0, . . . , i. (4.9)

Therefore, the survival law {p(t)
j | i , 0 ≤ j ≤ i} is given by the Markov–Pólya distribution (2.9),

where θ0 = a + bn and θt = b for all t ≥ 1.
Now, from (2.4), (3.12), and (4.9), we obtain

P(Wr = s) = n[s]
(1 − p)s

(a + b(n − s − 1)) · · · (a + b(n − s − 1) + n − s − 1)

(a + bn) · · · (a + bn + n − 1)

× Ḡs(0 | {−b(i + 1), i ≥ 0}), s = 0, . . . , n. (4.10)

As the family U in Ḡs of (4.10) is affine, (1.5) is applicable, which yields

Ḡs(0 | {−b(i + 1), i ≥ 0}) = es(b(s + 1))

s + 1
, s ≥ 0.

Using (3.12) to express es , we then deduce that

P(Wr = s) =
(

n

s

)
(a + b(n − s − 1)) · · · (a + b(n − s − 1) + n − s − 1)

(a + bn) · · · (a + bn + n − 1)

× b[b(s + 1) + 1] · · · [b(s + 1) + s − 1], s = 0, . . . , n. (4.11)

(ii) We now make the assumption that, for any time t ≥ 1,

p(t)(k + 1 | l) = b − l

a + b(n − t + 1) − k
, l = 0, . . . , k,

provided that l ≤ b and k < a + b(n − t + 1). So, the failure probability now increases with
the number k of components tested and decreases with the number l of failures caused. Such a
situation might be plausible if, for instance, some security measures are relaxed with time but
reinforced after the occurrence of failures.

Using (3.9), we find that the survival law {p(t)
j | i , 0 ≤ j ≤ i} corresponds to the hypergeo-

metric distribution (2.11), where θ0 = a + bn and θt = b, t ≥ 1.
By adapting the argument followed for (4.11), we then obtain

P(Wr = s) =
(

n

s

)
(a + b(n − s − 1)) · · · (a + b(n − s − 1) − n + s + 1)

(a + bn) · · · (a + bn − n + 1)

× b(b(s + 1) − 1) · · · (b(s + 1) − s + 1), s = 0, . . . , n.

Of course, a more general sequence {θt , t ≥ 1} could be considered.

5. Branching approximation

It is well established in epidemic theory that in a large population the progress of the infectious
disease for a minor epidemic can be approximated through a branching process (see, e.g. Ball
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(1983), Lefèvre and Picard (1990), Ball and Donnelly (1995), and Lefèvre and Utev (1999)).
We investigate the validity of such an approximation for the total damage amount, ST .

A central condition is that the number of elements in the system is quite large and the expected
number of damages caused by each lost unit is roughly constant. In an epidemic context, this
means that the population contains many susceptibles and any infective can only contact, on
average, a limited number of individuals. Note that such an assumption is intuitive in order to
get the announced result. Let us add an index (n) in the notation to indicate a dependence on
n; for instance, we write θt ≡ θ

(n)
t , t ≥ 0. From (2.7), we see that the probability of the t th lost

unit causing damage to any present element is equal to θ
(n)
t /(θ

(n)
0 − θ

(n)+
t−1 ). As n → ∞, we

are so led to assume that
nθ

(n)
t

θ
(n)
0

→ θl ∈ D, t ≥ 1. (5.1)

A further condition is that the number of damaged cases at time 1, given a large initial
system, converges in distribution to some random variable with a parametric law that is stable
by convolution. Recall definition (2.2) for the probabilities p

(1)
n−j | n of getting j damages at

time 1. Using condition (5.1), we thus assume that, as n → ∞,

pj (θl θ
(n)
0 /n)pn−j (θ

(n)
0 − θlθ

(n)
0 /n)

pn(θ
(n)
0 )

→ pl,j (θl), j ≥ 0,

with Pl (θl) ≡ {pl,j (θl), j ≥ 0} stable by convolution.

(5.2)

At first view, (5.2) might be satisfied if θ
(n)
0 /n converges. We will see later that this is indeed

true for the particular distributions discussed earlier. It is rather natural to suppose that θ
(n)
0 is

of order n, since n represents a large fixed value of Y
(n)
0 and Y

(n)
0 is of law L(θ

(n)
0 ).

Proposition 5.1. Under conditions (5.1) and (5.2), the total new damage, S
(n)
T , converges

completely to the total new progeny in a Galton–Watson branching process with m ancestors
and offspring size distribution Pl (θl).

Proof. Let us return to (2.4). From (5.1), the θ
+(n)
m+i can be approximated as

θ
+(n)
m+i ∼ θl(m + i)θ

(n)
0

n
, i ≥ 0,

which constitutes a sequence of parameters affine in i. By (1.5) we then have

Ḡs(0 | {−θ
+(n)
m+i , i ≥ 0}) ∼ m

m + s
es

(
θl(m + s)θ

(n)
0

n

)
, s ≥ 0. (5.3)

Thus, inserting (5.3) into (2.4) yields

P(S
(n)
T = s) ∼ m

m + s

ps(θl(m + s)θ
(n)
0 /n)pn−s(θ

(n)
0 − θl(m + s)θ

(n)
0 /n)

pn(θ
(n)
0 )

,

and thanks to the first line of (5.2), we find that

lim
n→∞ P(S

(n)
T = s) = m

m + s
pl,s(θl(m + s)), s ≥ 0. (5.4)
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Let Xl,t (θl), t ≥ 1, be a sequence of identically distributed random variables with law Pl (θl).
By the second line of (5.2) we can write that

pl,s(θl(m + s)) = P

(m+s∑
t=1

Xl,t (θl) = s

)
, s ≥ 0,

so that (5.4) becomes

lim
n→∞ P(S

(n)
T = s) = m

m + s
P

(m+s∑
t=1

Xl,t (θl) = s

)
, s ≥ 0. (5.5)

Now, the right-hand side of (5.5) is recognized to be the law of the total new progeny in
the branching model indicated above (it suffices to use the classical ballot formula, given in,
e.g. Takács (1989)). This completes the proof.

Note that setting g(x), x ∈ [0, 1], to be the probability generating function of Xl,1(θl) (with
law Pl (θl)), (5.5) is equivalent to

lim
n→∞ P(S

(n)
T = s) = m

m + s

1

s!
{

ds

dxs
(g(x))m+s

}∣∣∣∣
x=0

, s ≥ 0, (5.6)

i.e. the total damage m + S
(n)
T converges completely to a delta Lagrangian distribution L(m, g)

(see, e.g. Consul and Famoye (2006)).

Corollary 5.1. Under (5.1) and (5.2), S
(n)
T converges in distribution to the total new progeny

in the above branching if and only if θl ≤ 1.

Proof. As complete convergence to a proper law is equivalent to convergence in distribution,
we have to show that the total new progeny is finite almost surely if and only if θl ≤ 1.
In fact, it can be proved that the Lagrangian law L(m, g) in (5.6) is proper if and only if
(dg(x)/dx)|x=1 = E(Xl,1(θl)) ≤ 1 (see, e.g. Gathy (2007)). Now, using (2.7), we find that the
expectation of the conditional law in the first line of (5.2) is equal to θl whatever the value of n.
This implies that E(Xl,1(θl)) = θl ; hence, the result.

By standard branching theory we then know that, if θl > 1, the total damage will be infinite
with probability 1 − χm, where χ is the positive root of the equation g(x) = x in [0, 1].

Let us now consider the particular laws presented in Subsection 2.2.

Corollary 5.2. Under (5.1) and when

θ
(n)
0

n
→ a with aθl ∈ D, (5.7)

• if L(θ) = P (θ) then Pl (θl) = P (θl);

• if L(θ) = GP (θ; β) then Pl (θl) = GP (aθl/(a + β); β/(a + β));

• if L(θ) = N B(θ; p) then Pl (θl) = N B(aθl; a/(a + 1));

• if L(θ) = GN B(θ; β, p) then Pl (θl) = GN B(aθl; β, (a + β − 1)/(a + β));

• if L(θ) = B(θ; p) then Pl (θl) = B(aθl; 1/a).
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Proof. The derivation of Pl (θl) is rather straightforward. In all situations, conditions (5.1)
and (5.7) are found to guarantee the validity of condition (5.2). The case where L(θ) is a
generalised negative binomial law is discussed in Appendix A.

To close, we indicate that, as in epidemic theory, normal and Poisson approximations can
also be established for the total damage, under appropriate conditions. This question is the
object of a forthcoming work.

Appendix A

Let L(θ) ≡ L(θ, c) be a generalised power series distribution with two parameters, i.e. of
the form

pi(θ, c) = ai(θ) ci

η(θ, c)
, i ≥ 0,

where c > 0 is independent of θ , ai(θ) ≥ 0 for all i ≥ 0, and η(θ, c) = ∑∞
i=0 ai(θ)ci (see,

e.g. Johnson et al. (1992, p. 74)).

Property A.1. Suppose that {ai(θ), i ≥ 0} is a sequence of polynomials of convolution type,
and let {Ḡa

s (θ | U), s ≥ 0} be the associated sequence of generalised AG polynomials. Define
ei(θ, c) ≡ pi(θ, c)/p0(θ, c) = ai(θ)ci, i ≥ 0, and let {Ḡs(θ | U), s ≥ 0} be the associated
sequence of generalised AG polynomials. Then,

Ḡs(θ | U) = csḠa
s (θ | U), s ≥ 0. (A.1)

Proof. By (1.4), the Ḡa
s are built from the recursion

Ḡa
s (θ | U) = as(θ) −

s−1∑
j=0

as−j (uj )Ḡ
a
j (θ | U), s ≥ 0, (A.2)

with Ḡa
0(θ | U) = 1. Multiplying (A.2) by cs and using the definition of the ei(θ, c), we see

that the polynomials csḠa
s (θ | U) satisfy (1.4); hence, identity (A.1) is proved.

In our context, this result is applicable to the negative binomial law N B(θ; p), where
c = 1 − p, and to the binomial law B(θ; p), where c = p/(1 − p).

The limit distribution Pl (θ) in Corollary 5.2 is derived below when L(θ) is a generalised
negative binomial law. By (2.10), the conditional distribution p

(1)
n−j | n considered in (5.2) then

corresponds to a generalised Markov–Pólya law with

p
(1)
n−j | n =

(
n

j

)
(θlθ

(n)
0 /n)(θ

(n)
0 − θlθ

(n)
0 /n)

θ
(n)
0

θ
(n)
0 + βn

(θ
(n)
0 − θlθ

(n)
0 /n + β(n − j))(θlθ

(n)
0 /n + βj)

×
(

θlθ
(n)
0

n
+ βj

)
[j ]

(θ
(n)
0 − θlθ

(n)
0 /n + β(n − j))[n−j ]
(θ

(n)
0 + βn)[n]

, j = 0, . . . , n.

(A.3)
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Proof of Corollary 5.2 when L(θ) = GN B(θ; β, p). Under (5.1) and (5.7), direct approx-
imations in the successive factors of (A.3) yield

p
(1)
n−j | n ∼ nj

j ! aθl

1

aθl + βj
(aθl + βj)[j ]

(an − aθl + β(n − j))[n−j ]
(an + βn)[n]

∼ 1

j !aθl

1

aθl + βj
(aθl + βj)[j ]

1

(a + β)j
φ

(n)
j , j = 0, . . . , n, (A.4)

where φ
(n)
j is the only factor still depending on n and is defined by

φ
(n)
j = (an + βn − (aθl + βj − j))[n]

(an + βn)[n]
.

Using Stirling’s approximation, we find that

lim
n→∞ φ

(n)
j =

(
a + β − 1

a + β

)aθl+βj−j

, j ≥ 0. (A.5)

Inserting (A.5) into (A.4) then gives

lim
n→∞ p

(1)
n−j | n = aθl

aθl + βj

(
aθl + βj

j

)
1

(a + β)j

(
a + β − 1

a + β

)aθl+βj−j

, j ≥ 0,

which is the distribution GN B(aθl; β, (a + β − 1)/(a + β)).
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