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Introduction. Let U" be the /i-dimensional Euclidean space with the usual norm
denoted by |-|. In what follows Q will denote an open bounded subset of W, and Q its
closure.

For a e (0, 1], C°"(Q, U) is the space of all functions u : Q-» U such that:

ha(u) : = sup{|u(x) - u(y) \/\x -y\a; x,y eQ,x*y}<oo.

C°ff(Q, U) is called the Holder space with exponent a and is a Banach space when
endowed with the norm:

where ||u||oo is, as usual, defined by:

||«|U = sup{|u(jc)|;jcen}.

Let moreover/ =f(x, t) be a real valued function defined o n Q x R .
The aim of this paper is to find conditions on / ensuring some continuity and

differentiability properties of the so called Nemitskii operator induced by / ; i.e. the
operator F defined by

F(u)(x) =/(*, H(JC)) (x e Q)

for real valued functions u defined on Q.
More precisely we show that:
(a) if/satisfies the assumption

(H) / e C01(Q x /, U) for any bounded interval I czU,

then F maps C°'a(Q, U) into itself;
(b) if / =f(x, t) is differentiate with respect to the real variable t and its derivative

f',(x, t) satisfies (H), then Fmaps COa(Q, R) continuously into itself;
(c) finally, if / is twice differentiate with respect to t and the second derivative /"

satisfies (H), then F is continuously differentiate.
The same results can be obtained if / is a real valued function defined on

Q x Rm(m ^ 1); the corresponding statements are given in §3.
Continuity properties of the Nemitskii operator operator in Sobolev spaces rather

than in Holder spaces are proved by Valent in [3]; he shows (Theorem 2) that if Q has the
cone property, i f / eC m (QxlR) and mp>n, then F maps Wmp(Q) continuously into
itself.

We end this note with an application of the results above in the degree-theoretical
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approach to non linear elliptic boundary value problems of the kind:

(f(x, u, Du, D2u) = 0 (in Q)
I u = 0 (on 3Q).

1. Continuity. Let Q and / be as in the Introduction. In this section we state
conditions on/ensuring that the corresponding Nemitskii operator maps C0|"(Q, U) into
itself and is continuous.

THEOREM 1.1. Iff satisfies (H), then F maps C°'a(Q, U) into itself.

Proof. Let ueC°'a(Q,R) and M=||u||0>a; then |M(JC)| ̂ M VJC e Q. Let moreover
I-[-M,M] and k = k(I) be the Lipschitz constant of / relative to /. Then

\f(x, u(x)) -f(y, u(y))\/\x-y\a^k{(\x-y\ + \u(x) - u(y)\)/\x-yn (x,y e Q).

If d denotes (diam Q)1"", one gets

ha(F(u))^k{d + ha(u)}. (1.1)

Moreover, for any (x, f) in Q x /,

where x0 is an arbitrary point in Q and c = \f(x0, 0)|.
Therefore, for all x e Q,

|/(JC, u(x))| ̂ c + ̂ (Cl + ||M|U), (1.2)

where c, is the radius of a ball centered at x0 and containing Q.
Finally, taking into account (1.1) and (1.2), we get

where c2-d + c,.

THEOREM 1.2. Let f\ denote the partial derivative off with respect to the real variable t
and assume that f, satisfies (//). Then:

(i) the Nemitskii operator G induced by f, maps C°'a(Q, U) into itself;
(ii) the Nemitskii operator F induced by f is locally Lipschitzian and hence

continuous.

Proof, (i) is a consequence of Theorem 1.1. (ii) Fix u e C°'a(Q, U), let N =
ll"llo,*+l. J = [-N,N] and let k be the Lipschitz constant of/,' corresponding to J.
Then, arguing as in the proof of Theorem 1.1, we get

\\G(u + | u ) | | 0 . ^ c + k(c2 + \\u + gu||) (1.3)
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whenever | e [0, 1] and v e C°-a(Q, U) is such that ||u||0,a= 1. Now write

/(*, «(*) + v(x)) -f{x, u(x)) = ff',(x, u(x) + %v(x))v(x
Jo

= fG(u + !;v)(x)v(x)dZ,

whence

(M + v) - F(u)\\^£ ||G(« + |«)«||. d|. (1.5)

From (1.4) we also get

\f(x, u(x) + v(x)) -f(x, «(*)) -f(y, u(y) + v(y)) +f(y, u(y))\/\x -y\a

1 -y\adt (1.6)

which shows that

ha(F(u + v) - F(u)) ^ f ha(G(u + £v)v) d§. (1.7)
Jo

Therefore, from (1.5) and (1.7),

\\F(u + v)-F(u)\\0.a£ f' \\G(u + %v)v\\0.adt
Jo

One checks easily that ||wu||Oa.^m ||w||0,a \\v\\0<a for some m^O and all w,v e
C°'a(Q, R); therefore we have

\\F(u + v) -F(u)\\0.a£m Hullo., f ||G(« + §u)||0.«rf|
Jo

whence, using (1.3), we finally get, if ||u||0,ff=l,

\\F(u + v)-F(u)\\0,a^L\\v\\0,a,

where L = m[c + k(c2 + N)]. This proves that F is Lipschitz continuous around u.

2. Differentiability

THEOREM 2.1. Let Q be as before, let f be twice dijferentiable with respect to the real
variable t, and assume that its second derivative f"satisfies (H). Then:

(i) the Nemitskii operator G induced by f\ is continuous;
(ii) the Nemitskii operator F induced by f is continuously differentiable, with

derivative F'(u)[v] = G(u)v.
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Proof, (i) This is a consequence of Theorem 1.2. (ii) Set

w(u, v, x):=f(x, u(x) + v(x)) -f(x, u(x)) -f',(x, u(x))v(x)

so that

w(u, v, x) = f [f',(x, u(x) + fi/(x)) -/,'(*, u(x))]v(x) dl
Jo

whence

\\F(u + v) - F(u) - G(u)v\\^ f \\(G(u + %v) - G(u))v\
Jo

Moreover,

\w(u, v, x) — w(u, v, y)\/\x -y\

S \(G(u + fr) - G(u))(x)v(x) - (G(u + fu) - G(u))(y)v(y)\/\x - .
Jo

In other words,

ha[F(u + v)- F{u) - G(u)v] =i f' ha[{G{u + fu) - G(u))v] dl
Jo

We conclude that

\\F{u + v) - F(u) - G ( M ) U | | 0 . ^ f ||(G(M + |u) - G(u))u||0>(rrf|
Jo

Now let £ > 0. By continuity of G (part (i)) there exists 6 > 0 such that
\\G(u + %v) - G(u)\\0,a< e whenever | |u | |0 , a<6. Therefore,

\\F(u + v)-F(u)-G(u)v\\0,a£e\\v\\0,a

whenever ||v||o«• <^> showing that F is differentiable at u with derivative F'(u)[v] =
G(u)v.

Finally, to show that F is continuously differentiable, let 5£ denote the Banach space
of all linear bounded mappings of COar(Q, U) into itself, equipped with its usual norm

Since

\\F'(u + w)[v] - F'(u)[v]\\Q.a = \\G(u + w)v - G(u)v\\0,a
(u + w)-G(u)\\0,a\\v\\0.a
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we have
\\F'(u + w)- FWU^m \\G(u + w)- G(u)\\OiU

and the conclusion follows again from the continuity of G.

3. Vector-valued functions. If Q denotes, as before, an open bounded subset of
W, the same results given in Sections 1 and 2 can be stated when f =f(x, s) =
f(x, j ] , . . . , sm) is a real-valued function defined o n Q x R m ( m ^ l ) .

We let here f's = (f'Sl,. . . , f'sJ denote the gradient of / with respect to the variable
i e R m , while / " will denote the m x m Hessian matrix (J"fi) (i,j = l,...,m) of / with
respect to the same variable.

Moreover, the symbol / will denote here a bounded interval in Um:

I = {x = (xu... , xm) e Km :a, <x, < bh i = l,2, . . . , m}

(with a,-, bj real numbers such that a, < bh i = 1, . . . , m) and / will denote the closure
of/.

Finally, we choose for the space C°-a(Q, Um) the norm:

THEOREM 3.1. Let Q be as before and letf: Q x Rm-» U be of class C01(Q x /, U) for
any bounded interval IcUm; then the Nemitskii operator F induced by f, defined by
F(u)(x)=f(x,u(x)) for vector valued functions u:Q->Um, maps COa(Q,IRm) into
C°-a(Q, R).

THEOREM 3.2. With the same notations as before, assume moreover that f is
dijferentiable with respect to the Um variable and thatf's e C01(Q x /, Um) for any bounded
interval I <=Mm. Then:

(i) the Nemitskii operator G induced by f's maps C°'a(Q, Um) into itself;
(ii) the Nemitskii operator F induced by f maps C°'a(Q, Um) into COar(Q, IR) and is

locally Lipschitzian.

THEOREM 3.3. / / / is twice dijferentiable with respect to the fRm variable and
f" eC°-l(QxI,Um) for any bounded interval IcUm, then:

(i) the Nemitskii operator G induced by f, maps continuously COff(Q, Um) into itself;
(ii) the Nemitskii operator F induced by f maps C°'a(Q, Um) into C°'a{Q, U) and is

continuously differentiate with derivative

(F'(u)[v] = G'(u) -v (u,ve C°"(Q, IR"1)),

where • denotes the scalar product in Um; explicitly,

(F'(u)[v])(x)=f's(x,u(x))-v{x)
m

= 2f'si(x,u(x))vi(x). (3.1)
1=1
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4. An application to nonlinear elliptic problems. Let C2n(Q, U) be the space of
real functions denned on Q, with derivative up to the second order in C°'a(Q, U). We
equip C2a(Q, U) with the usual norm:

Hw|k«= 2 \\Dku\\0,a,
I*|S2

w h e r e k = ( k l y . . . , k n ) is a m u l t i i n d e x , \k\ = &, + . . . + kn a n d

Let moreover / =f(x, t, p, q) be a real valued function defined on Q x IR x IR" x
R"2 = QxlRm (m = l + n + n2), and consider the following nonlinear boundary value
problem:

(f(x,u, Du,D2u) = 0 (inQ),
I M = 0 (on9Q), *• ' ;

where Q has smooth boundary dQ and Du, D2u are shorthand notations for the first
(resp. second) order derivatives of u.

One seeks C2-" solutions of (4.1).
One way of attacking (4.1) is to use degree theory for Fredholm mappings, as

suggested by K. D. Elworthy and A. J. Tromba in their paper [2]. To do this, one basic
requirement to fulfill is that the Nemitskii operator F induced by / b e a smooth (e.g. C1)
mapping between C2i<*(Q;M) and C°'a(Q,U); moreover, one needs the explicit expres-
sion of the derivative F'(u) in order to check that F is a Fredholm mapping of index zero
(see e.g. Berger [1] for the definition). To this end we prove the following result.

THEOREM 4.1. Let f =f(x, t, p, q) be as above and assume that it satisfies the
assumptions of Theorem 3.3. Then the induced Nemitskii operator

F(u)(x) =f(x, u{x), Du(x), D2u(x)) (x e Q)

maps C2a(Q, U) into C°'a(Q, U) and is continuously differentiate, with derivative

(F'(u)[v])(x) =f',(x, u(x), Du(x), D2u(x))v(x)

" dv
+ 2 f'pjx, u(x), Du(x), D2u{x)) — (x)

, = 1 OXi
n g2

+ 2 /; ,(*, u(x), Du(x), D2u(x)) —— (x) (4.2)
i,; = l ' OXi °Xj

for any u,v e C2a{Ci, U).

Proof. Let; be the isometry of C2a(Q, U) onto COar(Q, IRm), denned by

ju = (u, Du, D2u),
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and let F be the Nemitskii operator induced by / o n C°-a(Q, Um); i.e.

F(U)(JC) =/(*, v(x)), v e C°-a(a, Rm).

We have

F(u) = F(ju) (veC2'a(Q,U));

i.e. F = F°j. Therefore, by Theorem (3.3), F maps continuously C2a(Q, U) into
C°'a(Q, U) and is continuously differentiable; moreover, by the chain rule,

F'(u) = F'(ju)°j

or

F(u)[v] = F'(ju)\jv] (u, v e C2a(Q, R)).

Therefore, by the explicit formula (3.1),

(F'(u))[v](x)=f's(x,ju(x))-jv(x)

=f's(x, u, Du(x), D2u(x)) • (v(x), Dv{x), D2v(x)),

which is nothing but the shorthand version of (4.2).
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