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ABSTRACT. A dynamo driven by flows of differential rotation and 
global convection in a rotating sphere is reviewed as a model of the 
solar and planetary dynamos. The flows can amplify a magnetic field 
from an infinitesimal level and thus can generate a magnetic field. 
The flows periodically reverse the polarity of the field and force the 
generated field system to propagate along iso-rotation surface in the 
sphere in form of a wave during the generation process. The flows can 
also generate the field without reversing its polarity depending on the 
structure of the flows of the differential rotation. The basic dynamo 
process with and without polarity reversals is explained in terms of 
topological deformation of field lines by the flows in the sphere. The 
oscillatory and steady dynamos are interpreted as corresponding to 
the solar and planetary dynamos respectively. 

1. Introduction 
A fundamental question of the cosmic dynamo is whether or not there 
is any kind of fluid motions in a highly conducting electrically neu-
tral medium that can amplify a magnetic field from an infinitesimal 
level without wires or rods which serve as guiding routes of elec-
tric currents in the medium. This historic problem in astrophysics 
has been answered positively by flows of differential rotation and 
global convection under the effects of rotation in form of Coriolis 
force (Yoshimura, 1972, 1975a, b, 1983a, b). We review in this paper 
physical processes of the dynamo mechanism. The behavior of the 
magnetic field in a highly electrically conducting fluid or plasma can 
be described by movement of magnetic field lines that represent the 
magnetic field vector in space and time. The behavior is governed by 
an ordinary magnetohydrodynamic (MHD) induction equation with 
the divergence free equation for the magnetic field vector, neglecting 
terms second and higher order in (v/c) where ν is representative order 
of velocity of flows and c is velocity of light. The essential aspect of 
dynamo process is stretching and deformation of magnetic field lines 
in three-dimensional space governed by the induction equation and 
the divergence free equation and the associated creation of magnetic 
field energy. The essence of the dynamo process is time evolution of 
geometry of the magnetic field lines. We describe in the following 
how these processes can be understood visually, particularly how the 
dynamo reverses polarity of the field and forces the amplified field 
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system to propagate along iso-rotation surface as a wave to make an 
oscillatory dynamo and how the same dynamo can also generate a 
magnetic field without reversing its polarity. We proceed then to the 
problem how the oscillatory and steady dynamos can be interpreted 
as corresponding to the solar and planetary dynamos. 

2. Formulation 
The first attempt to follow the movement of the magnetic field lines 
deformed by the flows of the differential rotation and the global con-
vection in three-dimensional space was done by averaging the in-
duction equation over longitude in order to reduce the mathemati-
cal structure of the governing equations to that of two-dimensional 
space (Yoshimura, 1972). The resulting equation was called the dy-
namo equation. The philosophy underlying this procedure is similar 
to that of mean-field magnetohydrodynamic (MMHD) formulation of 
the action of turbulence on magnetic field by Steenbeck, Krause, and 
Rädler (Steenbeck et al, 1963, 1966; Krause, 1976; Rädler, 1976). 
The averaging procedures in both cases were necessary to reduce the 
governing equations to those that were solvable in those times. The 
same concept of averaging was also used in the formulation of dy-
namo by Parker (1955). The philosophy underlying the longitudinal 
averaging procedure, however, was different from that of MMHD. 
The concept of MMHD was applied to the problem of dealing with 
turbulence with helical twists due to Corilois force without knowing 
its detailed structure. The concept of the longitudinal averaging, on 
the other hand, was applied to the problem for the purpose of for-
mulating a solvable equation in two-dimensional space that captured 
essential aspects of the dynamo process in three-dimensional space. 
Detailed structure of differential rotation and global convection was 
taken into account in the formulation. In the MMHD case, the space 
over which the averaging is to be done must be larger than the scale 
of the turbulence but coud be much smaller than the system under 
consideration which is a sphere in the present case. Hence the result-
ing equation could still be in three-dimensional space. The averaging 
procedure of MMHD was done to extract the bulk effect of the tur-
bulent twisting of the magnetic field lines in three-dimensional space. 
The resulting effect was expressed by a parameter a or Γ, which cor-
responds to regeneration term R in our case. The concept of the 
turbulence as a medium to drive the dynamo was devised to provide 
a kind of nonaxisymmetric component in the flows of the dynamo. 
The cosmic dynamo hypothesis was once questioned seriously by the 
Cowling's anti-dynamo theorem (Cowling, 1934). He showed that if 
flows consisted of only axisymmetric component, the dynamo could 
not work. To overcome the anti-dynamo theorem, Elsassar (1947) 
suggested that if there was a nonaxisymmetric component in the 
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flows with helical twists due to Coriolis force, Cowling's anti-dynamo 
theorem needed not hold true. The first candidate for such flows 
of nonaxisymmetric component was the turbulence with twists due 
to Coriolis force. For the case of the Earth, global scale flows were 
considered in the context of explaining the westward propagation of 
the geomagnetic field. For the case of the Sun, small scale convective 
flows observed on the surface as granulation were considered. The 
problems for both cases were how to treat the turbulence and how 
to specify what kinds of flows in the Earth and the Sun correspond 
to the turbulence in reality. For the case of the Earth, the structure 
of the flows and of the magnetic fields was expressed by expansion of 
the structures by series of spherical hamonics (Bullard and Gellman, 
1954). But in this case there were always the question of convergence 
of the expansion. The geometry of deformation process of the field 
lines was not clear. In the beginning phase of the development of 
dynamo theories, the flows were not required to satisfy the Navier-
Stokes equation since the principal concern was to prove that the 
dynamo can work. Any kind of flows was sufficient at that time as 
far as it could be shown that the dynamo can work. For the case of the 
Sun, and later for the case of the Earth, the turbulence was treated 
by the formulation of MMHD. Only one aspect of the struct ure of 
the turbulence, the helical twist of the turbulence was considered. 
However, the net effect of the twist, which is related to the sign of 
the parameter, a or Γ, was ambiguous. The sign of the corresponding 
term R, on the other hand, could be determined definitively by the 
formulation since the structure of the flows explicitly came into the 
formulation (Yoshimura, 1972). Also, there were criticisms against 
the MMHD formulation for the case of the Sun mainly due to the 
fact, in my opinion, that the scale of the observed turbulence on the 
Sun in form of granulation or even supergranulation and the observed 
scale of magnetic field elements are similar to each other. We could 
not be sure whether such a system can be treated with confidence by 
a simple linear concept of the MHD action of flows on the magnetic 
field. The interaction could be highly nonlinear so that we could not 
be sure whether the resulting effect works as a dynamo to generate 
the magnetic field energy or works as a diffusive medium to dissi-
pate the magnetic field energy as observed on the surface of the Sun 
(Leighton, 1964). However, the nonaxisymmetric flows need not be 
such small-scale flows for the case of the Sun too. 

3. A Linear Dynamo Driven by Differential Rotation 
and Global Convection 

In the case of global convection as the nonaxisymmetric flows that 
could drive the dynamo, scale of the flows is comparable to scale of 
a system under consideration, a sphere in the present case of the 
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planetary dynamos. Hence the scale of the flows is so large that the 
scale of the magnetic field elements in form of small flux tubes on the 
surface of the Sun or even in form of flux tubes of sunspots are much 
smaller than the scale of flows of the global convection. In this case, 
the flux tubes can be regarded as being carried by the flows of the 
convection rather passively as if they were magnetic field lines which 
do not exist in reality but whose concept is important to visualize 
magnetic vector field in space and time. This is the basic philosophy 
underlying the treatment of the behavior of the magnetic field inside a 
sphere or a spherical shell by a linear magnetohydrodynamic equation 
with the divergence free equation. 

4. Structure of Differential Rotation 
and Global Convection 

In the present model, structure of differential rotation and global con-
vection is given. The structure of differential rotation is completely 
arbitrary/ This aspect of the formulation gives us a kind of flexibility 
and universality in the solutions of the problem. We do not have a 
universal theory yet that can determine internal structure of differ-
ential rotation in the Sun and planets and stars in general. However, 
once we have a tool to follow response of a magnetic field to differ-
ence of structure of the rotation, we could have a tool to conversely 
infer structure of the rotation from behavior of the magnetic field. 
Results of the present formulation show that dynamo generation of 
the magnetic field and behavior of axisymmetric component of solu-
tions is sensitive to difference of structure of the rotation but rather 
insensitive to difference of structure of the convection or modes of 
the convection as far as the structure has two basic properties, i.e., 
(i) helical twists, and (ii) wave-like propagation of convective pattern. 
Both are results of action of Coriolis force of the rotation on the flows 
of the convection. The structure of global convection which is used 
in the present formulation is a solution of a linearized Navier-Stokes 
equation in a thin spherical shell. The solution describes two basic 
aspects of the effects of rotation on the flows of global convection in 
a spherical geometry. The helical structure of the flows appears in 
latitude-radius, longitude-latitude, and longitude-radius planes. The 
propagation of the convective pattern appears around the rotational 
axis in longitudinal direction. Whether the pattern propagates pro-
grade (in the direction of rotation) or retrograde (in the direction 
opposite to the rotation) depends on the magnitude of rotation and 
modes of convection (e.g., Yoshimura, 1974). Both aspects are uni-
versal properties of global flows in a spherical geometry and are at 
the same time two vital factors for operation of the dynamo. Pre-
serving these two basic properties, the structure of global convection 
is deformed topologically so that it can also represent flows of global 
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convection in a deep shell or in a whole sphere. The structure of global 
convection is characterized by a spherical harmonic that represents a 
mode of the convection when the rotation of the system is reduced to 
null. When the rotation is not null, more than one spherical harmon-
ics are needed to represent the flows of the convection. The mode is 
then represented by longitudinal wave number m and order η of the 
spherical harmonic when the rotation is fictitiously reduced to null. 
The order η with a given m represents latitudinal structure of the 
flows of the convection. These are concepts of a linear theory. But 
these concepts are necessary and sufficient for understanding basic 
aspects of operation of the dynamo. 

5. Operation of the Dynamo Wave 
The first attempt to follow the movement of the magnetic field lines 
under the action of the flows of the differential rotation and the global 
convection was, as described in section 2, done by formulating a dy-
namo equation in latitude-radius space by averaging the MHD in-
duction equation over longitude. The divergence free equation can 
be satisfied automatically by using a vector potential for the mag-
netic field vector. The field vector is a curl of the vector potential. 
Then the dynamo equation was solved numerically with a given set of 
structure of the differential rotation and the global convection. It was 
found that the oscillatory and growing solutions can be obtained as 
natural solutions (Yoshimura, 1975a). A new reversed magnetic field 
system appeared within the pre-existing system and then the whole 
system propagates along isorotation surface in latitude-radius space 
(Yoshimura, 1975b). This was the dynamo wave found by Parker 
(1955). But in those times of Parker (1955), it was not noticed that 
the dynamo wave propagates along iso-rotation surface. The the-
orem that the dynamo wave propagates along iso-rotation surface 
is vital to understand the operation of the solar and possibly stel-
lar dynamos which are oscillatory. The concept that the Butterfly 
diagram, which shows that the sunspot appearance zones start from 
mid-latitudes in the beginning phase of the solar cycle and then move 
toward the equator along with the progress of the solar cycle, rep-
resents a cross-section of the dynamo wave at the surface and does 
not represent directly the propagation of the dynamo wave cannot 
be understood without the concept of the dynamo wave propagation 
along iso-rotation surface. 

6. Topology of the Magnetic Field Line Deformation 
of the Dynamo Operation 

The second attempt to follow the movement of the magnetic field lines 
was done by directly solving the MHD induction equation in three-
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dimensional space numerically by a computer (Yoshimura, 1983a, b). 
The graphic display of the solutions showed that the basic character-
istics of the solutions of the dynamo equation in the first formulation 
in two-dimensional mathematical space were reproducible in the solu-
tions of the induction equation in three-dimensional space. The basic 
dynamo problem was answered definitively that there exist flows in 
a continous fluid system that can amplify a magnetic field from an 
infinitesimal level. Moreover, the longitudinal structure of the mag-
netic field can be studied by solutions of the three-dimensional MHD 
equation. We do not re-display here all the same diagrams that show 
the solutions. Interested readers are referred to the papers. How-
ever, an important aspect of the solutions is displayed in Figure 1 to 
show the dynamo wave reversal process in latitude-radius plane for 
later purpose. The diagrams shows the axisymmetric zonal compo-
nent of the three-dimensional solution of the MHD equation in three-
dimensional space (Yoshimura, 1983a). The zonal component of the 
three-dimensional solution in this case is similar to those of the two-
dimensional dynamo equation (Yoshimura, 1978a, b, c). Both are for 
the case when the upper part of the convective cell is much larger 
than the lower part of the cell. The solution of the two-dimensional 
dynamo displayed in Yoshimura (1975a) is for the case in which the 
lower part of the convection zone is much larger than the upper part. 
In the latter case, the dominant part of the dynamo wave propagates 
toward the bottom layer while the weaker upper part of the dynamo 
wave propagates toward the surface. The three-dimensional numeri-
cal integration experiments of the dynamo problem showed that, as 
far as behavior of the zonal component is concerned, the solutions 
of the two-dimensional dynamo equation are equivalent to those of 
the three-dimensional MHD equation. Figure 2 shows the time series 
of the same solution as in Figure 1 at the surface to demonstrate 
that the Butterfly Diagrams of the toriodal and poloidal components 
of the magnetic field in latitude are a manifestation of time-series 
of cross-section of the dynamo wave propagating along iso-rotation 
surface in latitude-radius space in Figure 1. The rotation rate for 
this case increases inward and equatorward. However, the graphic 
display of the solutions at that time was not adequate enough to un-
ambigously show the movement of the field lines in three-dimensional 
space to demonstrate the generation and reversal process of the dy-
namo. The basic difficulty came from the fact that, when the mag-
netic vector field was displayed uniformly in space, the field structure 
in three-dimensional space was difficult to visualize. To overcome this 
difficulty, we have recently devised a new kind of graphic display. To 
display the time evolution of a vector field, we use a concept which 
is similar to that of a test particle whose motion shows structure of a 
field in space and time. It cannot show all the details of the field in 
the whole system under consideration. Similarly we could use a test 

https://doi.org/10.1017/S0074180900174637 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900174637


469 

field line. But then the three-dimensional perception that is essential 
for understanding dynamo process is not easy. So we use a test de-
formable rod to display the time evolution of the field in space and 
time. Figures in the following show the evolution of the magnetic 
field vector associated with the oscillatory dynamo. The purposes of 
these figures are to show the following basic aspects of the dynamo 
process, (i) The helical structure of the magnetic field lines deformed 
by the flows of the differential rotation and the global convection is 
different in the upper and lower layers of the convective cell in the 
radial direction. This different helical structure is related to the prop-
agation of the dynamo wave, (ii) The helical structure derived by the 
three-dimensional MHD equation is equivalent to that derived by the 
two-dimensional dynamo equation when it is seen in latitude-radius 
space, (iii) The combined effects of the differential rotation and the 
global convection stretch the magnetic field lines and thus amplify the 
field and reverse the polarity of the field. The first stage of stretching 
of the magnetic field lines in the longitudinal direction or of creation 
of the toroidal component from any amount of poloidal component 
by flows of the differential rotation is well known both for the Earth's 
case (Elsasser, 1947) and for the solar case (Babcock, 1961). Figure 
3 shows the toroidal field created by this process and the geometry 
and position of the hexahedrons of following diagrams in the context 
of the spherical geometry. 

The second stage is deformation of the field lines by the convective 
flows. This was studied by Weiss (1966) in two-dimensional space. In 
the case of Weiss (1966), the convective flows with cell-like structure 
wind up the field lines and concentrate the field in the boundaries 
between different convective cells. The field would eventually be de-
stroyed by the diffusion. In the present case, the convective pattern 
propagates along the rotational axis so that, in a reference frame in 
which the convective pattern is stationary, the rotation looks like a 
mean flow passing by the convective pattern. In this case, the re-
sulting stationary flow pattern in the reference frame looks like an 
ocean surface wave. The magnetic field lines represented by the rod 
are deformed by the convection but are not wound up at the bound-
aries. This stage is shown in Figure 4. The two rods in the upper 
and lower parts of the convection cells are displayed. The boundary 
between the two parts is where the horizontal flows change their di-
rection. When the rotation is differential, there would be latitudes 
where mean flows pass by the pattern in the direction of rotation as 
well as in the opposite direction depending on the relative angular 
velocity of the pattern with respect to the angular velocity of the 
rotation. The digrams shown here are for the case when the propa-
gation angular velocity of the pattern is smaller than that of rotation 
so that the mean flows of rotation pass by the pattern in the direction 
of rotation. 
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Fig. 1. Time evolution of zonal components of a solution of the three-dimensional 
MHD equation in latitude-radius space showing dynamo wave propagation driven 
by flows of differential rotation and global convection (Yoshimura, 1983a). 

T O R O I D A L F I E L D 

Fig. 2. Time series of cross-section of the dynamo wave of Fig. 1 at the surface. 
Abscissa is time step. Ordinate is sin (latitude). The patterns reflect the dynamo 
wave propagation along iso-rotation surface, which increases both downward and 
equatorward. 

Fig. 3. The first stage of θ Ι ί > 
the dynamo process show-
ing creation of the toroidal 
field from any poloidal field 
by shearing flows of differ-
ential rotation. Geometry 
of a sphere and a hexahe-
dron of the dynamo system 
in the following figures are 
shown. The magnetic field 
line is represented by the 
deformable rod. 
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Fig. 4. The second stage of the dynamo process showing deformation of the field 
line rod by the convective flows. Since convective pattern propagates in the opposite 
direction of rotation, mean flows toward the direction of rotation are superposed 
on the convective flows. As. a result of this, the field line rod is not wound up 
around the convective cells. The horizontal axes are for longitude and latitude 
coordinates. The vertical axis is for radial coordinate. The direction of the field 
line rods is along the longitudinal coordinate toward the direction of rotation. 

the northern hemisphere. The effect is equivalent to the clockwise (anti-clockwise) 
twist in the upper (lower) layer when the field line rods are seen in latitude-radius 
space toward the direction of rotation. 
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The third stage is the helical twist of the convective flows and as-
sociated twist of the magnetic field lines. The helical structure of the 
flows due to the Coriolis force makes the flow pattern twist. Figure 
5 shows the case for the northern hemisphere. The Coriolis force in 
the upper part acts on the flows in a clockwise direction in the place 
where the upflows reach the surface and hence twists the flow pat-
tern and the magnetic field lines clockwise when they are seen in the 
latitude-radius plane toward the direction of rotation. In the lower 
part on the other hand, the Coriolis force acts in the same clockwise 
direction but in the place where the downflows reach the bottom 
boundary and hence twists the flow pattern and the magnetic field 
lines anti-clockwise in the latitude-radius direction. This is the basic 
mechanism how the sign of the regeneration term R, which is equiva-
lent to the parameter a or Γ of MMHD, is determined and this is why 
the sign is different in the upper and lower parts in the convection 
zone. It is positive (negative) in the upper part of the convection zone 
and negative (positive) in the lower part in the northern (southern) 
hemisphere. 

The fourth stage of the action of the flows of the differential rota-
tion on the field lines is shown in Figures 6 and 7. The behavior of 
the field lines is different for different structures of differential rota-
tion. Figure 6 (Figure 7) shows the case of pure latitudinal (radial) 
differential rotation. The rod is shown only for the upper layer of 
Figures 4 aiid 5. In Figure 6 (Figure 7) of the case of latitudinal 
(radial) differential rotation, equatorial low latitudes (deeper layers) 
rotate faster than high latitudes (shallower layers). The action of the 
latitudinal (radial) differential rotation is equivalent to the rotational 
twist around the vertical (horizontal) axis denoted by the thick dot-
ted lines in the figures. A new reversed field system appears in the 
deeper (higher latitude) zone for the case of Figure 6 (Figure 7). 

The fifth stage is the appearance of the dyamo wave and propaga-
tion of the wave. By the winding and twisting actions of the flows of 
the convection and the differential rotation, a reversed field system is 
created in one place. In the opposite side along the iso-rotation sur-
face, the field is strengthened. As a result of this process, the whole 
magnetic field system with two polarities propagates as a dynamo 
wave along iso-rotation surface. The process for the case of the lati-
tudinal differential rotation of Figure 6 is shown in Figure 8. When 
the stretching and twisting process shown in Figure 6 continues, the 
dynamo wave appears in the radial direction. The process creates a 
new reversed field system in the deeper layer and at the same time 
strengthens the field system in the shallower layer. The net effect is 
creation of two field systems with opposite polarities that propagate 
toward the surface as a wave. We call this wave the dynamo wave, 
which is equivalent to the dynamo waves of Parker (1955) and of 
Yoshimura (1975b) though the governing equations of the waves in 
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Fig. 6. The fourth stage of the dynamo process for the case of the latitudinal 
differential rotation. 

rotation. 

the present case and the latter cases are different. 
In the case of the lower layer with the opposite helical twist shown 

in Figure 5, the wave propagates toward the bottom boundary. Simi-
larly, when the stretching and twisting process continues for the case 
of the radial differential rotation in Figure 7, the field systems prop-
agate toward the equator as a wave. The generalization of the sit-
uations is the theorem that the dynamo wave propagates along iso-
rotation surface in the direction determined by the sign of R or α or Γ 
that represents direction of the effect of the helical twist of the flows 
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Fig. 8a. The fifth stage of the dynamo process showing the first step of reversal of 
the field line rod from the diagram of Fig. 6 of the case of the latitudinal differential 
rotation. 

Fig. 8b. The second step of reversal of the field line rod. The reversed field line rod 
in the lower part is strengthened. The upper part is stretched and is strengthened. 
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Fig. 8c. The third step of reversal of the field line rod. The field line rod is folded 
to give rise to the reversed field in the lower part and the strengthened field in the 
upper part. 

the lower straight reversed field line rod. In reality, the whole stages and steps of 
Figs. 3 - 8 take place simultaneously. 
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and the magnetic field lines by Coriolis force (Yoshimura, 1975b). 
This theorem, which was found in the two-dimensional dynamo for-
mulation, holds true also for the three-dimensional MHD dynamo 
formulation. During the process, the field lines are stretched and 
the magnetic field energy is created and thus the dynamo can work. 
The reversal is a natural result of the dynamo mechanism and the 
oscillatory dynamo is universal. 

7. The Solar Dynamo and Planetary Dynamo 
Then a question naturally arises. How can a steady dynamo without 
polarity reversals be achieved by the same mechanism as that of the 
oscillatory dynamo? The solar dynamo as the generation mechanism 
of the solar magnetic field and as the driver of the solar cycle can 
naturally be interpreted by the oscillatory dynamo. Many observable 
characteristics were reproduced and predicted by the model. A pre-
diction, for example, was later confirmed by observation (Yoshimura, 
1976a, b). The Earth's dynamo is generally regarded as an example 
of the steady dynamo. The polarity of the Earth's magnetic field does 
not change for a long time though it reverses a few times in a million 
years. By similarity arguments, planetary dynamos are likely to be 
steady dynamos. These concepts are, however, to be confirmed by 
observations. When we do not have them, we need to explore prop-
erties of theoretical dynamo models in order to examine how general 
or how accurate these inferences could be. The first steady dynamo 
solution in the present model was found by chance in an effort to 
determine the level of solar cycle by a nonlinear model (Yoshimura, 
1978b). The level is determined by the balance between the strength 
of the dynamo and the diffusion of the magnetic field. The strength 
of dynamo is weakened by modification of the flows of the dynamo 
by Lorentz force of the generated magnetic field. When the dynamo 
weakens, a balance is achieved between generation and diffusion pro-
cesses. At this stage, the solution can either be oscillatory or steady. 
In a nonlinear model of the dynamo, a steady solution was found 
in which the balance is achieved without polarity reversals. In an 
effort to understand this phenomenon, a systematic exploration of 
nature of solutions of an eigen-problem of linear dynamos as a func-
tion of strength of the dynamo was done within the context of the 
two-dimensional formulation of Yoshimura (1972, 1975a). The re-
generation factor R was assumed to be constant in radial direction 
corresponding to the upper layer of the convective cell. We have 
found that the steady dynamo can easily be achieved when the dy-
namo is weak and the structure of the differential rotation is such 
that the dynamo waves propagate inward to the narrower part of the 
deep spherical shell (Yoshimura et al., 1984a, b, c). These situations 
can be achieved when latitudinal differential rotation is dominant 
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Fig. 9. An example of the steady growing solution with a tilted and offset dipole 
axis as a model of the magnetic field of planets Uranus and Neptune. 

and the poles rotate faster than the equator for the upper part of 
the convective cell. When the dynamo is strong or when the dynamo 
is in an infinite free space without boundaries, the dynamo always 
reverses the polarity of the field as Figures 6, 7, and 8 demonstrate. 
However, when the dynamo is weak, the diffusion makes the field sys-
tem expand in space. Then, if there is no space for the dynamo wave 
to propagate within boundaries of the dynamo system, a spherical 
shell in the present case, there could be situations when the dynamo 
generates the field against the diffusion process and yet cannot re-
verse the polarity of the field. These situations were achieved in our 
numerical integration experiments of the dynamo equation in two-
dimensional space as well as in numerical integration experiments of 
the MHD induction equation in three-dimensional space when either 
upper part or lower part is dominant and the direction of progaga-
tion of a potential dynamo wave under a fictitiously stronger dynamo 
action is toward the narrower bottom zone, or when spacial scales of 
the upper and the lower parts are similar and the potential dynamo 
waves from the two zones propagate toward the boundary between 
the two zones and collide at the boundary. Whether or not a planet 
has such a convective or fluid shell with such flows must be seen by 
solving dynamics of flows in the planet. In any case, we can say from 
the above results that a planet has likely a steady dynamo when the 
poles rotate faster than the equator, which is opposite to the case of 
the solar dynamo. 
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8. Longitudinal Structure of the Generated Magnetic 
Field and a Case of Steady Dynamo with 

a Tilted and Offset Dipole Axis 
The dynamo process as a generation mechanism of a magnetic field is 
sensitive to the difference of the differential rotation structure but not 
much to the difference of the global convection structure. Even when 
the convection consists of different kinds of modes, the basic features 
of the dynamo do not change. One exception to this general state-
ment is the longtitudinal structure of the magnetic field. The longitu-
dinal structure reflects directly the longitudinal structure of the global 
convection which depends on the mode of the convection (Yoshimura, 
1971). Coronal holes as a manifestation of the global surface mag-
netic field are likely an example of this case and reflect the structure 
of the global convection. An aspect of the three-dimensional MHD 
induction formulation of the dynamo which the two-dimensional dy-
namo equation formulation does not have is its capability to resolve 
and represent the longitudinal structure of the magnetic field. One 
example that demonstrates this aspect is its capability to reproduce 
the tilted and offset dipole fields of Uranus and Neptune. These fields 
arise because the nonaxisymmetric component of the magnetic field 
that is caused by the nonaxisymmetic global flows of longitudinal 
wave number 1 is to be superposed onto the axisymmetric field. The 
axisymmetric field has north-south mirror-symmetry. One example 
is shown in Figure 9 which is a steady solution with the differential 
rotation of polar acceleration and the global convection of wave num-
ber 1. Whether such flows are achieved in Uranus and Neptune must 
be pursued further both from a dynamical point and an observational 
point of view. We need to send a series of spacecrafts to these planets 
to explore their internal dynamics and dynamical evolution. 

9. Conclusions 
The dynamo process reviewd here is for the case of a cosmic dynamo 
in which flows of differential rotation and global convection amplify 
a magnetic field from an infinitesimal level and reverse its polarity 
in form of a propagating dynamo wave. This time-dependence of the 
magnetic field arises despite the fact the flows are time-independent or 
stationary in a reference frame. This simple model works as a model 
to prove that the cosmic dynamo can work against the Cowling's 
anti-dynamo theorem. Beyond this simple application, the model 
can also work as a model of the oscillatory solar dynamo and the 
steady planetary dynamo. Depending on the structure of the flows, 
the planetary dynamo could also be an oscillatory dynamo. We have 
proposed a model, as a matter of fact, in which the reversal of the 
Earth's magnetic field takes place by a sporadic and temporary tran-
sition to an oscillatory dynamo during a short interval (Yoshimura, 
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1980). The flows also need not be time-independent. When there are 
more than one mode of global convection, then the problem becomes 
time-dependent since the propagation angular velocities of different 
modes are different. There is no reference frame in which the con-
vective flow pattern with mixed modes looks stationary. This is a 
generalization of the present dynamo to a more complex system of 
flows. We have to keep in mind, however, that when we apply this 
model to a real case in nature, we need to make sure that such flows 
exist in reality. The driving force of the flows need not be convective. 
As long as there are such flows with properties described here and 
the flows are strong enough against diffusion, the dynamo works. 
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