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MULTIPLIERS BETWEEN SOBOLEV SPACES 

R. C. FABEC 

ABSTRACT. A sufficient condition for the boundedness of a multiplier from a 
Sobolev space of index t > 1 / 4 to one of opposite index — t is obtained. The con­
dition relates the indices of the Sobolev spaces to which the multiplier belongs to the 
pairs of Sobolev spaces between which the multiplier is bounded. The result is applied 
to homogeneous multipliers and a description of these multipliers in this setting is pre-
sesented. Extensions to higher dimensions are indicated. 

Multipliers form an important class of densely defined operators on weighted IT 
spaces. Obtaining sufficient and in addition possibly necessary conditions for the bound­
edness of these operators has an interesting history with powerful results depending on 
sensitive integral estimates and special Hormander type conditions. For instance, papers 
[3] of Muckenhoupt, Wheeden and Young, and [4] of E. Sawyer consider multipliers of 
Hormander type on power weighted LP spaces. The results are very sharp and in some 
cases necessary and sufficient. The Hormander condition of type a restricts the multi­
plier to be essentially pointwise bounded and have its a t h derivative have average square 
growth grow not too quickly at oo. Other papers have dealt with studying the classes of 
multipliers giving bounded operators on weighted IF spaces. Moreover, the subject has 
focused primarily on conditions for boundedness on a fixed weighted LP space and not 
on the more general question of determining when the operator is bounded between dif­
ferent spaces having different weights. 

In this paper we determine sufficient boundedness conditions for multipliers between 
Sobolev spaces of different indices. Though necessary and sufficient conditions have 
been described in this context, these conditions relate to the boundedness of associ­
ated multipliers between the space and L2 and local properties of the multiplier. Indeed, 
Maz'ya and Shaposhnikova [2,2.2.7, Theorem 1] present precisely these types of neces­
sary and sufficient conditions for a multiplier to be bounded. The sufficiency conditions 
we present depend only on the Sobolev space to which the multiplier belongs. Indeed, 
our results, though not close to being necessary, are quite general and applicable to fairly 
unrestricted families of multipliers. Essentially knowing the highest Sobolev index to 
which the multiplier belongs determines pairs of Sobolev spaces for which the opera­
tor is bounded. The estimates for the bounds are made in terms of the corresponding 
convolution operators. Moreover, the arguments are clean and elementary. 
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As an application we consider the multipliers which arise from convolution operators 
homogeneous of degree d. These operators play fundamental roles in the representa­
tion theory of simple Lie groups and related questions in automorphic forms and have 
important applications in abelian Fourier analysis. The distributions which define these 
operators are well known and much is known about their Fourier transforms. For com­
pleteness we present a description of their Fourier transforms for d > 0 and then use 
our boundedness results to obtain Sobolev spaces between which these operators are 
bounded. Finally we indicate the generalizations of these results to the n dimensional 
case. Similar generalization should be possible for the LP Sobolev spaces. 

Multipliers on Sobolev spaces. Let S be the Schwartz space of C°° rapidly decreas­
ing functions on R and let S' be the space of all tempered distributions. The Fourier trans­
form is defined on S byf(x) = ff(x) = 4 = Sf(y)e~ixy dy. Its inverse is 7~x(f) = 7(f) 

where/(JC) = /(—x). We shall denote the value of a distribution U a t / by £/(/"), (/, U) or 
by J dU(x)f(x). The mapping U \—> 7U defined by (/*, fU) — (7f, U) is an extension 
of 7 to an isomorphism of S. A multiplication is defined between functions/ in S and 
distributions U in S' by (h,fU) = (/i/, U). Recall that differentiation is given on S' by 
(f,DU) = (-f,U). 

The sth Sobolev space H^ is the space of distributions obtained by Fourier transform­
ing the space Hs = L2((l + x2)s dx). This space is a Hilbert space with norm defined 

by \\7f\\s = { J l / W p C l + ^ y ^ l ^ . O n e h a s H , C Ût and || U\\s > | | t / | | , f o r s> t. 
Moreover, || U\\2 = \\ U]]^ + WDU^ for U G H,. Furthermore, if 0 < m < s - 1/ 2, 
then the distribution Lf1 U is a continuous function and the mapping U v—• DmU is a con­
tinuous transformation from Ûs into the space of continuous functions on R equipped 
with the topology of uniform convergence. 

The natural pairing ( , ) between the L2 spaces L2((l +x2)s dx) and L2((l + x2)^ dx) 
defined by (f,g) = Jf(x)g(x)dx defines a pairing between the Sobolev spaces Ûs and 
H_s. This pairing satisfies 

(i)l<t/,v>l<i|i/yv||-, 
(2) If L is a continuous linear functional on H5, then there exists a unique V G H_A 

such that ||L|| = || V\\.-s and L(U) = (U,V) VU G H5. 
The multiplication operators between Sobolev spaces Hy and H, correspond to convo­

lution operators between the L2 spaces H5 and H,. We begin by analyzing these operators. 
We first note the following: 

(3) The maximum and minimum of the function y i—• 1+
1+^ 2 are M\x\ and M_\xi 

where Mr = 1 + 1/ Ir2 + l/lrir2 + 4)?. 

LEMMA 1. Let Txf(y) = f(y — x). Then rx is a bounded operator on Hs. In fact, 
INI = (M W / / 2 if s > 0 and \\rx\\ = (M_\A)SI2 = (M{ATSI2 if s < 0. 

PROOF. The operator Js defined by JJix) = gs(x)f(x) where gs(x) — (1 + x2)^2 is 
an isomorphism of H, onto Hf_5. Thus the operator B on L2(R) defined by B = JSTXJ~{ 

has the same norm as TX. But B — Arx where A is the multiplication operator defined by 
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Af(y) — g^xyfiy)- Since rx is unitary on L2(R), the norm of rx on Hs is the maximum 

of the function { j ^ ^ } sl2. The result follows by (3). • 

LEMMA 2. Suppose s-t < 1/2 where t> 1/2. Then 

fjgUiy+xXl +*2r'(l +/)"'<fe<fy < oo. 

PROOF. If S > 1, then by (3) 

JJ(l + (x + y)2)5_1(l +x 2 r f ( l +y1rtdxdy 

< ff(MMr\l +Jy-t-l(l+y2rtdxdy 

ButM\y\ < 1 + 1 / 2 / + l/2|y|0>2 + 4|y| + 4)1/* = i + \y\ +y2 < 2(1 + / ) . Thus 

//s£-i(* + )0(i +*2r'(i +)V<frrfy < 
2 ' _ 1 / / ( 1 + *2)*~'~1(1 +y2Y~t~l dxdy < oo 

provided s — t < 1/2. 
I f s < 1, then JJ^_i(jc+j)2(l+Jc2r ?(l+/r rJjcJv< SS(l+x2yt(l+y2)-t dxdy < oo 

whenf > 1/2. • 

PROPOSITION 1. Suppose s—t < 1 / 2 where t > 1/2. 77î n f/ie convolution operator 
f H->/ * g.s-1 w Û bounded operator from Ht to H_f. 

PROOF. Note / * s,_i(x) = ( / , r ^ _ ! ) . Thus \f * ^^_I(JC)| < J | / | | , | | r^_i | |_ f . It 
therefore suffices to show that the function H(x) = \\Txgs-\ ||_, is in H_r. But 

\\H\\2_t = jH(x)2(l+x2ytdx 

= JJ(rxgs-i(y))\l + / r ' ( l +*2r'dyd*. 

Thus by Lemma 2, / / is in H_f. • 
Define the fe/f Sobolev space H_5 by H_^ = f \oH f . This is the space obtained 

by Fourier transforming H5_ = f)t<s Hr. We use the following lemma to establish our 
central theorem. 

LEMMA 3. Suppose u G H ^ - ondf G Ho = L2(R). 77ie« the function H{x) — 
J ^s(yZf u(y — x)f(y) dy is in H_r whenever t > 1 / 4 an J f > 5 — \j A. In this case there 
is a constant K with \\H^t\\ < ^||/| |o-
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PROOF. We may assume u > 0 and/ > 0. Then 

H(x) = Jgr„L2(y-x)g-t(y)f(y)l'2gl2_r+s(y-x)u(y-x)f(y)l'2dy 

< ( / gir-\iy - x)g-2t(y)f(y) dyj 

yj(gi-2r+2s(y - x)u(y - xffiy) dyj 

ThereforeH(x)2 < A(x)B(x) where A(x) = g 2 r ^ * (g_2/)(x), and £(JC) = (g^_r+su)2* 
f(x). 

Choose r with t > r - 1/4 > s - 1/4. Since/ G Ho, g-2tf € H2,. It follows by 
Proposition 1 that A G H_2f and ||A||_2, < #i | |g_2 / | |2 , = ^i| |/ | |o f° r s o m e constant A .̂ 

Next note that gi_r+sù G Hr_5_ C L2(R) since u G H1//2_. Hence B = h*f with 

h = tei_r+5w)2 G / /(R). Therefore | |£||0 < \\h\\h ||/||o is finite. 
Finally 

| |#| |-r < JA(x)B(x)(l +x2ytdx 

= (#-2,£,A) 

< |U_2^||2,||A||_2f 

= Pllol lAlU 

^^II / I IOII^IILJI / I IO. 

Hence H G H_f and ||//||_, < tf||/||0 where K = y/^hj^. • 

THEOREM 1. Suppose u G Hly/2_5_. Thenf i—>/ * uis a bounded operator from H, 
toH_r //V> l/4andt> 5—1/4. 

PROOF. Let w - £_,w and/ = g / . Then j< G ̂ H i _ 5 _ = H,_ and ||/| |0 - \\f\\t. 

Thus/ * u(x) = S s*^ûiy - x)f(y)dy. By Lemma 3 , / * u G H_, and | | / * M||_, < 

*||/| |o = *| | / | | , . 
A multiplication operator from H5 to Hr is a bounded linear operator L between these 

two spaces for which there is a tempered distribution U with Lf — fU for al l / in S. Such 
a distribution U will be called a bounded multiplier. 

Hence a distribution U is a bounded multiplier between Ûs and Hf provided the map­
ping/ \—-> fU for / in 5 has a bounded extension to ¥LS. In this case the value of the 
extension at a distribution V in H^ will be denoted by VU. Theorem 1 has the following 
corollary. 

COROLLARY 1. Let U be a distribution in the Sobolev space Hi_,_. Then U is a 

bounded multiplier between Hf and H_r whenever t is larger than both 1/4 and 5—1/4. 

PROOF. By Theorem 1, the operator V \-+ <J-x V K-> f- l V * 7~l U i-> <?( <Jr~x V * 
^F-1 U) is a bounded operator from É r to É_,. Moreover, if V — f G 5 and /i G 5, then: 
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(h, 7{7~xf * T~x uj) = UFh, J~lf * 7~x U) 

= jj 7(.h)(y)!F-lf(y - x) dy 7~x U(x) dx 

= J J nh)(y)W)(x - y) dy 7~x U(x) dx 

= J(^Fh*!Ff)(xW-1U(x)dx 

= {f(hf),f-xU) 

= (hf,U) 

= (h,fU). 
m 

Homogeneous Multiplication Operators. In the remaining part of this paper we 
will study all those operators A commuting with translations and homogeneous with 
respect to dilations on the group R. Specifically, we assume from the fact that A commutes 
with translations that Af = f * U for some tempered distribution U. Moreover, A is 
homogeneous of degree d if A{af) — ad( A(f)) where af(x) = f(a~lx), a > 0. From this 
it follows that the distribution V defined by V(f ) = J dU(y)\y\ ~df(y) is invariant under 
the action v i—• ay for a > 0. Since this action has two orbits, the positive and negative 
reals, it follows that two scalars c+ and c_ along with a Haar measure on R+ uniquely 
determine V. Namely V(f) = c+ JS°f(y) $ +c_ J ^ / C y ) ^ . From this we see that U has 
form 

U(f) = c+ JR+f(y)\y\d~l dy + c_ JRJ(y)\y\d-1 dy. 

Next define functions e+ and e_ by e+(x) = 1 and e_(x) = sgn(x). It follows that any 
distribution U of the above form is a linear combination of the distributions defined by 
the functions U(d, ±)(JC) = e±(jt)|;t| d~l. Thus any operator commuting with translations 
and homogeneous of degree d relative to dilations on the space of Schwartz functions is 
a combination of the operators A(d, ±) defined by the following: 

(4) A(d, ±)f(x) = J\y\ d-le±(y)f(x - y) dy. 

In general these operators are not bounded on L2(R). We thus consider them in the 
context of Theorem 1. That is they are bounded convolution operators between spaces 
Ht = L2((l + JC2)'dx) and H_r = L2((l + JC2)-'dx) for appropriate values of t. It then 
follows that the Fourier transforms A(d, ±) = 7A{d, ±)^F -1 are multiplication operators 
between the Sobolev spaces H, and H_, defined by the distribution Û(d, ±). That is: 

(5) Â(d,±)f=fÛ(d,±). 

THEOREM 2. For d > 1/2, the functions U(d, ±) are in Hi_^_. In particular the 

operators A(d, ±) are bounded multiplication operators between the Sobolev spaces H5 

andÛ-sfors > \jAands > d— 1/4. 

PROOF. Note J | U(d, ±)(x)\2(1 + x2)8 dx = J \x\ld~\\ + x2)5 dx < oo iff d > 1/ 2 
and s < 1/2 - d. Thus U(d,±) G Hi _d_ for d > 1/2. The final statement follows 
from Corollary 1. • 
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The remaining part of the paper will determine the homogeneous distributions 
Û(d, =b). Results concerning homogeneous distributions are known in various parts of 
the literature. Our discussion of these distributions will complete the description of the 
operators A(d, ±). 

Note that the distributions Û(d, ±) are tempered when d > 0 and are weakly analytic 
ind. 

PROPOSITION 2. Suppose/ is a Schwartz function vanishing in a neighborhood of 
0. Then 

(A Û(d, ±)) = c(d, ±) J e±(x)\x\ ~df(x) dx where 

c(d,+) = 2d^ r< r f/2> nnd 

c(d,-) = -2a-ï 

r((i-d)/2) 

r ( ( j + i ) / 2 ) . 
m-d/2)1' 

PROOF. Let R* be the multiplicative group of nonzero real numbers. Then, since 
fiaftiy) = \a\!F(f)(ay), the distributions Û(d,±) restricted to Q°(R*) satisfy 
\af,Û(d,±)) = e±(a)\a\l-d(f,Û(d,±j). Define functionsw± by w±(x) = e±(x)\x\d-\ 
Then the distributions w±Û(d, ±) are invariant under multiplication on R*. Indeed, 

(«/\ w±Û(d, ±)) = (w±UX Û(d9 ±)) 

= e±(a)\a\d-l(jw4ft,Û(d,±j) 

= (w±f,Û(d,±j) 

= (f,w±Û(d,±j). 

Thus the distributions w±Û(d, ±) are multiples of Haar measure H on R*. Thus there 
are constants c(d, db) with 

(f,w±Û(d9±j) = c(d,±) [T^-dx. 
J \x\ 

From this it follows that (/, Û(d, ±)) = c(d, ±) J C±(JC){£8 dx for all Schwartz functions 
/ vanishing near 0. 

Finally to determine the constants c(d, ±), we note these are analytic functions in d. 
Moreover, for 0 < d < 1/2, U(d, ±) are the sums of an L1 function and an L2 function. 
In fact the functions X[-i,\]U(d, ±) are integrable and the functions (1 — X[-i,i])^(^> ±) 
are square integrable. Therefore, the distributions Û(d, ±) are functions and thus must 
be given everywhere on 5 by 

(f, Û(d, ±)) = c(d, ±) J e±(x)f(x)\x\ ~d dx. 

Using the fact that ^f{e~x2l2) = e'*2!2, one sees that 

/o°° \x\"-le-^2dx = <**,+) j f \x\-"e-*2?2dx. 
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Replacing JC by y/2x, we finally obtain c(d, +) = 2d~1/2
 r^i$2) for 0 < d < 1/2. This 

formula holds for all d by analyticity. 
To find c(d, —) a similar argument is used using the fact that ^F{xe~^l2) = —ixe~x2l2. 

COROLLARY 2. I/O < d < 1, then 

(/, Û(d, ±)) = c(d, ±) Jf(x)e±(x)\x\ ~d dx 

for all Schwartz functions f. 

PROOF. In the proof of Theorem 3 we showed the equalities hold for 0 < d < 1/2. 
Since both sides are analytic in d on the interval (0,1), the equalities also hold on this 
interval. • 

COROLLARY 3. Suppose f is a Schwartz function andf{k\0) = Qfor k < [d — 1]. 
Then (/, Û(d, ±)) = c(d, ±) J/(JC)C±(JC)|JC| ~d dx. 

PROOF. The equalities hold for 0 < d < 1. Both sides are analytic as long as 
/(JC)|JC| ~d is integrable on the interval [-1,1]. But iff(k\0) = 0 for k < [d - 1], then 
there is a K such that |/(JC)| < K\x\[d] for x in this interval. It follows that the equalities 
hold at d. m 

PROPOSITION 3. Suppose n is a natural number. Then 

(a) Û(d, ±) = (-l)ÏDnÛ(d-n,±) ifn is even 

(b) Û(d, ±) = (-1)*^ iDnÛ(d - n, T) ifn is odd. 

PROOF. Note that U(d9 ±) = ^Uid-n, ±) if n is even and U(d, ±) = xnU(d-n, =F) 
if n is odd. The result now follows from the fact that ?F(xU) = iD(^FU) for any tempered 
distribution U. m 

The formulas given in Corollary 2 and Proposition 3 determine all the distributions 
Û(d, ±) for any positive noninteger d. To determine U(d, ±) for integer values of d, it 
suffices to obtain the distributions Û(l, ±). 

PROPOSITION 4. Letf be a Schwartz function. Then: 

(,.e,i.-)). ̂ [If/ £ = ^ * + / '-wfrw-/«»)AV 
v y U w > i |JC| ^i<i |x| ; 

PROOF, (a) follows from the identity ^ J/(JC) JJC = /(0). 
For (b) note by Corollary 2 that 

(f. <)«,.-)) = -,(!)'" ta/t**wt 
v 7 \ 7 r / ^—^l-^ be r 
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The result follows since 

,. ri e-(x)f(x) J v ri e_(x)(/(x) - / ( 0 ) ) 
hm / , , JJC = hm / V l ~dx 

= M € _ ( * ) ( / ( * ) - / ( 0 ) ) ^ 

for \f(x) —/(0)| < K\x\ for some constant K. m 
From Propositions 3 and 4 we see the distributions Û(n, +) for n odd and U(n, — ) for 

n even are distributions supported at 0 of particularly simple form. Indeed, if è is the 
Dirac unit mass at 0, then: 

#(n,+) = (-I^VITTD"-^ if n is odd, 
(6) A „ y— t 

t / (n,-) = - / ( - l ) 2 V 2 7 r ^ - 1 ^ if n is even. 

In particular, since Â(d, ±) V = V£/(d, ±), we see for/ in Hn that: 

A(«,+)/ = ( - 1 ) ^ ^ " ^ ( - 1 ) M " ~ 1 W D " " 1 ^ if n is odd, and 
k=0 \ * j 

. n-\ ln—\\ 
A ( n , - y = / ( - l ) ï v ^ 7 r ] C ( - 1 ) M . )fk(0)Dn-l-k6 ifrciseven. 

(7) 

The boundedness of the multiplication operators between the Sobolev spaces H, and 
H_f in the one dimensional Euclidean case have natural extensions to the case Rn. 
Specifically, if H5 is the Sobolev space obtained by Fourier transforming the space 
L2(Rn, (1 + ||JC|| 2Y dx\ where ||JC|| 2 = T,xf, then the distribution U is a bounded multi­
plication operator from H, into H_, provided U G Hi_5_ and t is greater than both nj 4 
and s + n/ 4 — 1/2. We leave the details to the reader. 

Moreover, the analysis on homogeneous distributions extends to R \ These distribu­
tions which were essentially determined by the analytic functions c(d, ±) are now de­
termined by functions c(d, •) or more generally by distributions on the sphere Sn_1. The 
behavior near the origin may be very complex, but away from the origin, their transforms 
behave as in Proposition 2. 

Specifically 

U{f) = Jsnx dV(u) j™ f{ruy-x-d dr 

for/ which vanish near the origin. 
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