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Introduction. In a previous paper (1) the notion of the a-width eA(a) 
of a (0, 1)-matrix A was introduced, and a formula for the minimal a-width 
e(a) taken over the class 2t of all (0, 1)-matrices having the same row and 
column sums as A, was obtained. The main tool in arriving at this formula 
was a block decomposition theorem (1, Theorem 2.1; repeated below as 
Theorem 2.1) that established the existence, in the class 21 generated by A, 
of certain matrices having a simple block structure. The block decomposition 
theorem does not itself directly involve the notion of minimal a-width, but 
rather centres around a related class concept, that of multiplicity. We review 
both of these notions in § 2, together with some other pertinent definitions 
and results. 

The present paper continues the study begun in (1). The principal contri­
bution is a simple construction which produces a single matrix A in the class 
21 that has some remarkable properties: the partial row sum vectors of A are 
as smooth as possible in the sense of majorization (Theorem 3.2) ; all minimal 
a-widths and multiplicities for the class 21 can be obtained directly from A 
(Theorem 3.3 and Corollary 3.4). 

In the concluding section we apply the matrix A in the solution of a problem 
closely related to the minimal width problem. For each A in 21 define nA(&) 
to be the maximal number of columns that can be selected from A in such a 
way that the resulting submatrix has at most /3 l's in each row. It follows 
readily that the sequences eA(a) and ixA>{&), where A' is the complement 
of A, determine each other, and hence that the class sequence 

/z(/3) = max nA(p) 
A in 21 

is determined by the minimal width sequence for the complementary class. 

1. A basic construction. Let A be a matrix of m rows and n columns 
whose entries are either 0 or 1. We call A a (0, l)-matrix of size m by n. Let 
the sum of row i of A be denoted by rt and the sum of column j of A by Sj. 
We call 

(1.1) R = (rh r2, . . . , rm) 
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the row sum vector of A, and 

(1.2) 5 = (sh 52, . . . , sn) 

the column sum vector of A. These vectors determine a class 

(1.3) « = 8(22,5) 

consisting of all (0, 1)-matrices of size m by n having row sum vector R and 
column sum vector S. Simple necessary and sufficient conditions on R and 5 
are known in order that the class %(R, S) be non-empty (3; 6). 

Let A be in 21 and consider the 2 by 2 submatrices of A of the types 

m, ça 
An interchange is a transformation of the elements of A that changes a minor 
of one of these types into the other, leaving all other elements fixed. The 
interchange theorem (6) asserts that if A and B are in 21, then A is trans­
formable into B by interchanges. 

Throughout this paper we suppose and without loss of generality that 2Ï 
is non-empty and that 

(1.4) 

(1.5) 

r\ > r2 > . . . > rm > 0, 

si > s2 > . . . > sn > 0. 

Such an 21 is termed normalized. 
Let A = [a,ij] be in 2Ï. We call the column vector 

(1.6) -R. 

J - l 

€ 

, 7 = 1 

the eth partial row sum vector of A. Thus i ^ = i^77, where RT denotes the 
transpose of R. 

Given the vectors R and S for a normalized class 21, there is a simple 
rule for constructing an A in 21. This rule may be stated, somewhat loosely, 
as follows. Select any column j and insert its Vs in the positions corresponding 
to the Sj largest row sums; delete column j , reduce each of these Sj row sums by 1, 
and repeat the entire procedure on another column. 

Example. Let 21 be determined by 
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R = (7, 6, 3, 2, 2, 2, 2, 2), 
S = ( 4 , 4 , 4 , 4 , 4 , 4 , 1 , 1 ) . 

Suppose we apply the rule from "right to left," that is, select the last column 
first, then the next to last, and so on, and give preference to the bottommost 
positions in a column in case of ties (this keeps the partial row sums mono­
tone). The rule then constructs the matrix A below, having partial row sum 
vectors given by the matrix M. 

I l l 1 1 1 0 1 
10 1 1 1 1 1 0 
10 1 0 0 1 0 0 
10 0 1 0 0 0 0 
0 10 1 0 0 0 0 
0 10 0 1 0 0 0 
0 10 0 10 0 0 
0 0 1 0 0 1 0 0 

12 3 4 5 6 6 7 
112 3 4 5 6 6 
112 2 2 3 3 3 
111 2 2 2 2 2 
0 11 2 2 2 2 2 
0 11 1 2 2 2 2 
0 11 1 2 2 2 2 
0 0 1 1 1 2 2 2 

The validity of the construction can be established by a simple interchange 
argument, as follows. Let A be in 21 and suppose B has been constructed 
by the rule. We must show that B is in 21. Assume that in constructing B, 
the Ts in column j were assigned initially; we may suppose without loss of 
generality that these l's occupy the Sj topmost positions in column j . If A 
has a 0 above a 1 in column j , then by the monotonicity of the row sums of 
A, there is an interchange that switches this 0 and 1 in column j . Hence we 
may apply interchanges involving column j of A to obtain a transformed 
matrix in 21 whose jth column agrees with the j th column of B. We can now 
suppress column j of the transformed A and B, and repeat the argument. 
Eventually A has been transformed by interchanges into B, and thus B is 
in 21. 

Of course an analogous procedure in which the roles of rows and columns 
are reversed also constructs a matrix in the class. 

In § 3 we shall apply this construction in the right to left order (as in the 
example), giving preference to bottommost positions in a column in case of 
ties (as in the example). The resulting matrix will be denoted by A. 
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2. A review of multiplicity and width. Let 21 = 21 (R, S) be a nor­
malized class and let a and e be integers satisfying 

(2.1) 0 < a < r m , 

(2.2) 1 < € < n. 

We say that a pair a, e in the respective ranges (2.1), (2.2) are compatible 
if there is an A in 21 having an m by e submatrix E* each of whose row sums 
is at least a. If a and e are compatible, consider the class of all m by € sub-
matrices E* of the matrices A in 21 with the row sums of E* at least a, and 
let 5* denote the number of rows of E* whose sums are precisely a. The non-
negative integer 

(2.3) ô = ô(a, e) 

equal to the minimum of the integers 8* is called the multiplicity of a with 
respect to e. 

In (1) the following theorem was proved. 

THEOREM 2.1. Let a be compatible with e and of multiplicity ô with respect 
to e. Then there is a matrix A in the normalized 21 of the form 

\ M 
F 

L È 
Y 

X~\ 

0 (2.4) A = 

Here E is of size ô by e with exactly a l's in each row. M is a matrix of size 
e by e with a + 1 or more l's in each row. F is a matrix of size m — (e + 5) by e 
with exactly a + 1 Vs in each row. J is a matrix of l's of size e by f — e and 0 
is a zero matrix. The degenerate cases e — 0, e + ô = m, ô = 0, / = e, and 
f — n are not excluded. 

The a-width eA(a) of a matrix A in the normalized 21 is the least number 
of columns that can be selected from A so that the resulting submatrix E* 
has row sums at least a. Here 1 < a < rm. Then 

(2.5) ê(a) = min eA(a) 
A in 21 

is the minimal a-width of 21. The integer e(a), which can also be described as 
the least e compatible with a, has been explicitly determined in terms of the 
vectors R and -S in (1). This determination used the function 

(2.6) N{e, e,f) = re+1 + . . . + rm - (s€+1 + . . . + sf) + e(f - e), 

where e, e,f are integer parameters satisfying 

(2.7) 0 < e < n, 

(2.8) 0 < e < m, 

(2.9) e < / <n. 
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Precisely, e(a) is the first e such that 

(2.10) N(e,e,f) > a(m - e) 

for all e,f satisfying (2.8), (2.9). Note that if A is in 21 (i?, S) and if we write 

[ * y * I 

x * zy 
with X of size m — e by e and Y of size e by / — e, then 

(2.12) JV(e, e,/) = iVx(X) + No(Y) + N1(Z)1 

where N\(Q) [NQ(Q)] denotes the number of l's (O's) in a (0, 1)-matrix Q. 
It was also proved in (1) that if a, e are compatible, then 

(2.13) ô(a, e) = (a + \)m - 5e - min [^(e - 1, e,/) + ae]. 
0<e<m 
t<f<n 

(Only the special case of (2.13) in which e = I (a) is stated explicitly in (1), 
but the proof there establishes (2.13) in general.) 

3. The matrices A and iff. If 

T — (tiy t2, • • • , tm) 

T = (^i, £2, • • • , tm) 

are two vectors of non-negative integers, then T is majorized by T* (4; 5), 
written 

(3.1) T < r*, 

provided that with subscripts renumbered 

(3.2) h > h > . . . > tm, h > tt > . . . > &, 

(3.3) h + h + • . . + te < h + h + . . . + /t, (g = 1, 2, . . . , m - 1), 

(3.4) *x + /2 + • . . + tm = /î + / * + . . . + /*. 

In connection with this concept, we prove the following lemma, which will 
be used in the proof of Theorem 3.2. 

LEMMA 3.1. Let T = (th t2, . . . , tm) and T* = (tt, t*, . . . , tm) be two vectors 
of non-negative integers satisfying (3.2), (3.3), (3.4). Let U be obtained from T by 
reducing k of its positive components in positions ii, i2, . . . , H by 1. Similarly 
let U* be obtained from J1* by reducing k of its positive components in positions 
jhjz, • • • , j * by 1. If ii < j i , i2 < J2, • . . , H < > , **e« f/ < C/*. 

Proof. We proceed by induction on k. Let ^ = 1 and set i\ — i, ji = j . We 
may take Z7 and £/* to be monotone non-increasing by assuming that com­
ponent i' of T has been reduced by 1 to get U, component f of T* has been 
reduced by 1 to get £7*. Here i' > i, / > j and 
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(3.5) ti — ti+i — 

(3.6) * * 

where t^+i = 0 if ï = = m and t*,+1 = 

ti' > ti'+l, 

: tj> > v+1 > 

0 if / = m. If now i' < j ' , then clearly 
U < U*. Suppose that Ï > f. Thus 

(3.7) l<i<j<j'< ï < m. 

If U is not majorized by U*, there is an integer e satisfying 

(3.8) f <e< ï 

for which 

(3.9) h + h + • • • + te = h + h + . . . + t* . 

By assumption, 

(3.10) tl + t2 + ... + t*-i <£ + £+...+ Ci, 

(3.11) h + t2 + ... + te+1 <t* + t*2 + ... + /*+1. 

Subtracting (3.10) from (3.9), and (3.9) from (3.11) yields 

(3.12) u > L 

(3.13) te+i ^ te+l-

By (3.5), (3.7), (3.8), we have 

(3.14) te = te+l. 

Thus (3.12), (3.13), (3.14) and t* > t*e+1 imply 

(3.15) te = te = te+1. 

If e = f, this contradicts (3.6). If, on the other hand, f < e, we have from 
(3.15) and (3.9), 

(3.16) h + t2 + . . . + te-i = h + h + . . . + £-i. 

We may now repeat the argument with e — 1 in place of e. Eventually (3.6) 
is contradicted. This verifies Lemma 3.1 for k = 1. 

Assume the validity of the lemma for k — 1. Let P and P* be obtained 
from T and T* by reducing components '̂2, is, . . . , H of 2" and components 
J2, J3, . . • , jk of 2"*. By the induction assumption, we have P < P*. Of course 
P and P* may not be in monotone non-increasing order, but such rearrange­
ments of them can be secured without disturbing the i\ position of P or the 
ji position of P*. Applying the argument used for k = 1 to these rearrange­
ments shows that U < U*, thus proving Lemma 3.1. 

Let the vectors R and 5 be given for a normalized class 21 (P, 5) and let 
A denote the matrix in 31 (P, S) constructed by the rule of § 1, proceeding 
column-wise from right to left and giving preference within a column to 
bottommost positions in case of ties. We now prove 
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THEOREM 3.2. Let A be arbitrary in the normalized class % and let A have 
partial row sum vectors R\, R^, . . . , Rn> Let the matrix A in 21 have partial row 
sum vectors Rh R^, . . . , Rn- Then Re < i?e, e = 1, 2, . . . , w. 

Proof. We prove Theorem 3.2 by induction. Note that 

(3.17) Rn = Rn = R*, 

and hence the theorem is valid with e = n. Assume that 

(3.18) Ri+l < R*i, 

and consider the vectors R€, Rt. The vector R€ is obtained from a non-in-

e+l creasing rearrangement R*+1 of R€+i by reducing s€+i distinct components 
of R*+i by 1. A rearrangement of Rt is obtained from the monotone Re+i by 
reducing the first se+i components of R€+i by 1. By Lemma 3.1, we have 

(3.19) Re < R€. 

This proves Theorem 3.2. 

THEOREM 3.3. The matrix A is of form (2.4) for all compatible pairs a, e. 

Proof. Let a and e be compatible and let 

(3.20) A 
r M 

F 

L Ë 
Y 
—1 
0 

be the matrix whose existence is given by Theorem 2.1. Thus E is of size 
8 — ô(o£, e) by e with exactly a l 's in each row; M is of size e by e with at 
least a + 1 l's in each row; F is of size m — (ô + e) by e with exactly a + 1 
l's in each row; / is a matrix of size e by / — e consisting entirely of l 's and 
0 is a zero matrix. 

Consider the first e columns of A. Each of the row sums of these e columns 
must be at least a, for otherwise we may use the matrix A to contradict 
R€ < R€. By the definition of multiplicity, the first e columns of A cannot 
have fewer than 6 rows with exactly a l 's in each row. Nor can these e columns 
have more than ô rows with exactly a l 's in each row. For if this were the 
case, again Re < R€ would be contradicted. Hence, since R€ is monotone, A 
has a ô by e matrix of form E in the lower left corner, and the portion of A 
corresponding to M and F of A must contain at least a + 1 l's in each row. 
But 

N(ey e,f) = N1(F) + N^E) + N0(J) + N1(0) 

is a class invariant. Hence the portions of A corresponding to F, J, and 0 
of A are of the desired form. This completes the proof. 

Define M to be the m by n matrix of non-negative integers whose column 
vectors are the partial row sum vectors of A, 

(3.21) M = [Rlf & , . . . , Rn]. 
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We call M the multiplicity matrix of the normalized class 31. Corollary 3.4 
collects some immediate consequences of Theorem 3.3 that justify this 
nomenclature. 

COROLLARY 3.4. Let M = [Ru R2, . . . , Rn] be the multiplicity matrix of the 
normalized class 21. Then a and e are compatible if and only if the last com-
ponent of Re is at least a. If a and e are compatible, the multiplicity ô(a, e) of a 
with respect to e is equal to the number of components of R€ that are equal to a. 

Example. To illustrate Theorem 3.3, consider the example of § 1 corre­
sponding to the compatible pair a = 1, e = 3: 

A = 

1 1 1 1 1 1 0 1 
1 0 1 1 1 1 1 0 
1 0 1 0 0 1 0 0 
1 0 0 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 
0 1 0 0 1 0 0 0 
0 0 1 0 0 1 0 0 

M = 

1 1 
1 1 
0 1 
0 1 
0 1 
0 0 1 1 

From M the multiplicity ô(a, e) for each compatible a, « may be determined 
as in Corollary 3.4, 

X 1 2 3 4 5 6 7 8 

0 4 1 0 0 0 0 0 0 
S(a,e): 1 X X (5) 3 1 0 0 0 

2 X X X X X (5) 5 5 

Here a crossed-out cell in the array means that a and e are incompatible. 
Since the minimal a-width e(a) is the first e compatible with a, bracketed 
entries in the array pick out i( l) = 3, i(2) = 6. In terms of the matrix A, 
e(a) can be read off by looking at its last row: the ath 1 of this row occurs in 
column e(a). 

We conclude this section by listing some properties of 8 (a, e): 
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(3.22) S (a, e) > 5(a, 6 + 1), 

(3.23) ô(a - 1, 1(a)) = 0, 

(3.24) ô(a, ë(a)) > 0, 

(3.25) ô(a, 1(a)) = ô(a - 1, e(a) - 1) + w - s%{a). 

T h e first three of these are evident, either from the definition of multiplici ty 
or from the multiplicity matr ix M. T h e last is easily proved using M; it can 
also be established from the formula (2.13) for 8 (a, e), b u t this approach is 
more complicated. 

4. T h e s e q u e n c e s MA(0) a n d p(fi). Let 21 = %(R, S) be a normalized class 
and suppose t ha t /5 is an integer parameter in the range 

(4.1) 1 < p < n. 

For each A in 21 let MA(£) denote the maximal number of columns of A all 
of whose row sums are a t most 0. (For example, if A is the line-point incidence 
matr ix of a projective plane, then fxA(2) is the maximal number of points no 
three of which are collinear, t h a t is, the size of a maximal oval in the plane.) 
In this section we point ou t the close connection between this concept and 
t h a t of width . In particular, we show t h a t the preceding discussion on mult i ­
plicity and minimal width solves the problem of determining the class sequence 

(4.2) p(0) = max M A ( / 5 ) . 

A in 21 

I t will simplify mat te r s in this section if we extend the range of 0 in (4.1) 
to include /3 = 0 by defining fj,A(0) = 0. We also t ake eA(0) = 0. 

By the complementary class 21' = 3l(i?', S') of 21 = 2ï(i£, S) we mean the 
class of all (0, 1)-matrices of size m by n with row sum vector 

(4.3) R! = (n - rm, n - rTO_i, . . . , » — fi), 
and column sum vector 

(4.4) S' = (m — sn, m — s*_i, . . . , m — si). 

For the purposes of this discussion we take 21 so t h a t ri < n, S\ < m. Th i s is 
no real restriction and makes the complementary class normalized. The re is, 
of course, a na tura l correspondence between the matrices of 21 and those of 
2T, given by taking the complement of A and reversing the order of its rows 
and columns. We denote the resulting matr ix by A' and call it the class com­
plement of A. 

L E M M A 4.1 . Let a and 0 be integers in the respective intervals 

(4.5) 0 < a < n - rh 

(4.6) 0 < 0 < ri, 
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and let A' be the class complement of A. Then 

(4.7) eA.(a) <a + ft 

if and only if 

(4.8) »A(ft) >a + (3. 

Proof. Note t h a t a + ft ranges over the interval 0 < a + ft < n. 
Assume (4.7). Then there are a + ft columns of A' having a t least a l ' s in 

each row. Hence there are a + ft columns of A having a t most ft = (a+ft) — oc 
l 's in each row. Thus (4.8) holds. Conversely, if (4.8) holds, so t h a t A has 
a + ft columns with a t most ft l ' s in each row, then A' has a + ft columns 
with a t least a l ' s in each row. Hence (4.7). 

We use this lemma a number of times in the proof of Theorem 4.2, which 
shows t h a t the sequences eA'(a) and nA(ft) determine each other. 

T H E O R E M 4.2. (i) Let a be fixed in the interval (4.5) and let ft be the least 
integer in the interval (4.6) for which nA(ft) — /3 > a. Then eA'(a) = a + ft-
Conversely, if a is fixed in the interval (4.5) and if eAr(a) = a + ft, then ft is 
the least integer in (4.6) for which fxA(ft) — ft > «• 

(ii) Let 13 be fixed in the interval (4.6) and let a be the largest integer in the 
interval (4.5) for which eA'(a) — a < /3. Then MA(I#) = OL + 0. Conversely, if 0 
is fixed in the interval (4.6) and if ixA{ff) = a + ft, then a is the largest integer 
in (4.5) for which eA'(a) — a < ft. 

Proof. Observe t h a t both sequences eA'(a) — a and y,A(ft) — ft are monotone 
non-decreasing. We now prove (i). Let a be fixed in (4.5) and let ft be the 
least integer in (4.6) for which nA(ft) — ft > a. Such a ft exists since fJLA(r{) — rx 

= n — r\ > a. By Lemma 4.1, we have €A>(a) < a + ft. If ft = 0, then a = 0, 
and the conclusion follows. If ft > 0, then AU(/3 — 1) — (ft — 1) < a. Hence 
by Lemma 4.1 , eA>(a) > a + ft — 1. Thus a + ft — 1 < €A ' (a) < a + ft, and 
hence eA ' (a) = a + 0. 

Conversely, suppose eA>(a) = a + ft. We show first t h a t 0 < ft < rx. Clearly 
0 < ft. Since also eA>(n — ri) < n, then £ = eA'(a) — a < eA>(n — n ) — 
(# — ri) < fi. Now by hypothesis and Lemma 4 .1 , we have nA(ft) — ft > oc. 
If also MA(/3 — 1) — (ft — 1) > a, Lemma 4.1 implies eA>(a) < a + /3 — 1, a 
contradiction. Hence £ is the least integer in (4.6) for which nA(ft) — ft > a. 

T h e proof of (ii) is similar. 
Let 8 be a normalized class and let the complementary normalized class 

21' have minimal width sequence l(a). The discussion of the preceding section 
shows t ha t the matr ix A in 9f has width 1(a) for each a = 0, 1, . . . , n — rx. I t 
follows t h a t the matr ix A' in 2Ï yields the sequence jl(ft): 

(4.9) /z(0) = max nA(ft) = M i ' W , 0 = 0, 1, . . . , n . 
.4 iw §1 
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The sequences e(a) for ST and /Z(j3) for 21 determine each other in the manner 
outlined in Theorem 4.2. In terms of the matrix A in SI', the integer /z(/3) for 
H can be singled out as follows: if the (0 + l)st zero of the last row of A 
occurs in column j , then jû(/3) = j — 1. 
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