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Nonequilibrium issues in RHICs and DCCs

14.1 Relativistic heavy ion collisions (RHICs)

14.1.1 In the beginning

The goal of this chapter is to provide a short summary of the main points where
nonequilibrium field theory may contribute to our understanding of relativistic
heavy ion collisions. We skip over details of strong interaction processes, but
focus on those aspects which are directly related to the nonequilibrium features
of the (collective) dynamics.

The relevant experiments are the Super Proton Synchroton (SPS) (CERN)
and the Relativistic Heavy-Ion Collider (RHIC) (Brookhaven), with the Large
Hadron Collider (LHC) coming on line soon. SPS accelerates lead ions (Z = 82,
A = 207) to energies of 17 GeV per nucleon in the center-of-mass frame; RHIC
collides gold (Z = 79, A = 197) at energies of 130 to 200 GeV per nucleon. The
RHIC experiments are described in detail in the so-called “white papers,” which
are possibly the most reliable source on the subject [BRAHMS05, PHOBOS05,
STAR05, PHENIX05]. Other basic references are [Cse94, Won94, Gyu01, Shu88].

We shall work in natural units, the characteristic scale for strong interactions
being 1 fm = 10−15 m = (200 MeV)−1

. The strength of the interaction is mea-
sured by the structure constant αS = g2/4π, where g is the coupling constant.
(We assume that the symmetry group is SU (3 ) with eight gluons.) In the pertur-
bative regime E � ΛQCD ∼ 200 MeV, the structure constant runs with scale as

αS (E) =
12π

(33 − 2nf ) ln
[

E2

Λ2
QCD

] (14.1)

where nf is the number of flavors (6) and ΛQCD is the QCD energy scale. This
means that for scales of the order of the proton mass mp ∼ 1 GeV, αS ∼ 0.5.
Because of the logarithmic fall off, it will not get much smaller in the relevant
range of energies.

The most abundant product from the heavy ion collisions are the lightest
mesons, the pions π± and π0 with masses mπ ∼ 140 MeV. Pions are pseudo-
scalars, so they do not have different polarization states. The proton, on the other
hand, comes in two different spin states – this will be important in what follows.

One of the goals of the RHIC program was to probe into possible new phases
of nuclear matter at higher energies such as a conjectured deconfined phase. In
such a high-energy phase, matter would most likely be a plasma of gluons and
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430 Nonequilibrium issues in RHICs and DCCs

(massless) quarks (quark–gluon plasma, QGP). Remember that for relativistic
particles each bosonic degree of freedom contributes

εB =
π2

30
T 4 (14.2)

to the energy density in equilibrium, while (neglecting chemical potentials) each
massless fermionic degree of freedom contributes εF = (7/8) εB . We have eight
different gluons with two polarization degrees of freedom each, and four effec-
tively massless quarks (u, d and their antiparticles) coming in three colors and
two spin states each. Therefore the energy density in the deconfined phase is

εplasma =
37
30

π2T 4 (14.3)

and the pressure is pplasma = εplasma/3.
In the low-temperature phase, only the pions are effectively massless. These

pions live on a quark condensate which enforces confinement. Therefore the
energy density is εhadron = εpions + εcondensate, where

εpions =
3
30

π2T 4 (14.4)

and εcondensate ≡ −B, where B ∼ Λ4
QCD is known as the bag constant . The pres-

sure of the confined phase is phadron = εpion/3 + B.
At the coexistence point, both phases have the same pressure, and so the

critical temperature obeys

34
90

π2T 4
c = B = Λ4

QCD (14.5)

namely Tc =
(
90/34π2

)1/4 ΛQCD ∼ 0.72ΛQCD ∼ 150 MeV. This means that to
enter the deconfined phase, we need a mininal energy density of εcrit = (3 · 37/34)
Λ4

QCD = 650 MeV/fm3.
Of course, this is the transition point at zero chemical potential only; in gen-

eral, we have a coexistence curve in the (μ, T ) plane, so that the critical temper-
ature may be lowered by increasing the baryon number density.

Nevertheless, evidence seems to suggest that the QGP has not been created at
RHIC [BRAHMS05, PHOBOS05, STAR05, PHENIX05]. The high-energy col-
lisions have created what seems to be a new state of dense nuclear matter,
whose description in terms of purely hadronic degrees of freedom seems inad-
equate. This suggests the presence of unscreened color charges over distances
larger than the size of a nucleon. However, the system seems to be strongly
interacting throughout, with properties closer to a liquid than to a plasma.

14.1.2 The Bjorken scenario

Virtually all the field-theoretic analyses of RHICs assume a spacetime picture of
collision provided by the Bjorken model [Bjo83]. The colliding nuclei are seen as
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14.1 Relativistic heavy ion collisions (RHICs) 431

slabs of quark and gluon matter. In the center-of-mass frame, both slabs approach
each other at near light speed. Upon collision, the two slabs of matter will mostly
go through each other, leaving behind a wake of hot plasma. We may then
distinguish three different regions: the two fragmentation regions corresponding
to the receding slabs, and the central region corresponding to the plasma in
between. We are interested in phenomena in the central region.

At the time of crossing a number of hard scattering processes will occur, whose
products will directly reach the detectors. These hard processes are unrelated to
the nonequilibrium dynamics of the plasma; and may presumably be predicted on
perturbative QCD grounds. In what follows, we will assume this hard component
has been isolated despite great difficulty to achieve this in reality.

The hot plasma will expand and cool, and eventually fragment into ordinary
particles in flight intercepted by the detectors. We wish to predict the number
of particles of each species to be detected, as a function of the angle θ between
the direction of flight and the direction z of the beam. It is remarkable that with
this simple picture we can state a first observable prediction already.

Indeed, because of Lorentz contraction, we may think of the approaching slabs
as infinitely thin in the direction of motion z, and in a first approach to the
problem, as infinite and homogeneous in the transverse directions x and y. This
picture is invariant under boost in the z direction, and so is the final distribution
of particles. So if we parameterize the momentum of an out-going particle as
p0 = E, p3 = p and

(
p1, p2

)
= p⊥, then the distribution of particles may depend

only upon the transverse momentum and E2 − p2 = m2 + p2
⊥. In particular, it

must be independent of θ, since cos θ ∼ p/E is not invariant. It is conventional to
plot the yield of the collision in terms of the rapidity y, defined by p/E ≡ tanh y,
or rather the pseudo-rapidity η = − ln tan [θ/2] , tanh η = p/ |p| . Rapidity and
pseudo-rapidity agree at momenta which are large compared to the mass of the
particle. Then the prediction in this picture is that there is a plateau in the
(pseudo) rapidity distribution, at least for small rapidity (|η| → ∞ corresponds
to the fragmentation rather than the central region).1

We may elaborate on the Bjorken picture further. Let us assume that the
plasma is formed on the plane z = 0 at the time t = 0 of the collision, and then
expands along the z direction. A given plasma element will cool according to
its own proper time τ . Now, as in the twin paradox, the proper time lapse will
be less for those elements which move faster, which are also those which reach
farther if we compare the relative positions at a given fixed time, as measured,
say, in the center-of-mass frame. Thus the plasma will be hotter in the outer
layers than in the center. This situation resembles the dessert known as baked
Alaska, made by briefly putting an ice-cream ball in the oven, thereby the outer
crust heats up while the center remains frozen.

1 This prediction is not clearly borne out by the RHIC data [PHOBOS05]. Therefore, it
remains a possibility that analyses based on the Bjorken model are not so relevant to
current experiments compared to future higher energy collisions.
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Eventually, at some given constant τ surface, the plasma will be cold enough
(and/or dilute enough) to break up into hadrons. Assuming that the product
hadrons are thermally distributed, massless and at zero chemical potential, the
Bose–Einstein distribution predicts that the energy per particle is ε/n = 2.7 T .
Since temperature is constant on the break-up surface, this means that in all
collisions particles should have the same average energy. Indeed, it is observed
that the energy per particle is about 0.8 GeV, regardless of the center-of-mass
energy and impact parameter.

Another important observation is that for transverse momenta higher than
2 GeV, the number of emitted protons is actually higher than pions. This can
be explained as a consequence of hydrodynamic behavior [HeiKol02a], or else,
at very large momenta, through a recombination mechanism [MulNag06]. If no
chemical potentials were involved, then equality would obtain (at pT = 2 GeV)
for a temperature of about 340 MeV. In reality, pions do not have chemical
potential, but protons do, associated with baryon number conservation. Adding a
chemical potential μ ∼ 40 MeV for the protons reduces the crossing temperature
to 280 MeV [HeiKol02a].

To obtain a more quantitative description of the process, we may describe
the plasma as a relativistic ideal fluid [BelLan56, CarDuo73, CarZac83]. The
assumption of a homogeneous plasma in the transverse direction is too simplis-
tic, and a full four-dimensional solution must be sought, which requires numer-
ical methods [KoSoHe00, MolGyu00, Hir01, MMNH02, HeiWon02, TeLaSh01,
HirTsu02, KolRap03, HeiKol02b, HKHRV01]. To close the hydrodynamic sys-
tem of equations we must provide the equation of state. The central feature of
this is the “softening” near the critical point, meaning that the speed of sound
c2
s = ∂p/∂ε → 0 as we approach the transition point. The softening of the equa-

tion of state affects the evolution of the fireball, which then becomes a signal of
whether the transition point has been reached or not.

Since perfect fluids conserve entropy, the total entropy within the fireball
remains constant, and T scales as V −1/3. So, if the expansion is one-dimensional,
and we consider the volume enclosed between two fixed rapidities, then T ∼
τ−1/3, where τ is the proper time. In particular, the energy density scales as
τ−4/3 rather than τ−1, as in our earlier estimate. This leads to a slight increase
in the estimate of the initial plasma temperature.

For treatment of RHICs beyond perfect fluids, see [GyRiZh96a, GyRiZh97,
Ris98, Tea03].

14.1.3 Break-up

We now consider more closely the phenomenon of break-up [CooFry74,
SiAkHa02]. Assume this occurs on a three-dimensional surface Σ defined by
some equation Σ (xμ) = 0. If x0 is a solution, then the normal vector at x0 is
nμ = (−α) Σ,μ, α = (−Σ,μΣ,μ)−1/2

. We shall assume that nμ is time-like. For
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a more realistic scenario where the surface has both time-like and space-like
regions, see [Bug03]. The invariant measure on Σ is given by d3σ = d4x δ (Σ)α−1.

Let us assume that both before and after break-up, we can describe matter as a
perfect relativistic fluid. Let Ka = ∂/∂xa be the four Killing vectors of Minkowski
space. Then Gauss’ theorem shows that the quantities nμKaνT

μν and nμN
μ are

continuous across the break-up surface (we shall consider only one conserved
current, corresponding to, say, the baryon number). These conditions plus the
equation of state of the hadronic phase define the energy density, pressure, baryon
number density (or equivalently, the temperature and chemical potential) and
the 4-velocity of the hadrons at break-up. The detailed spectrum is found by
assuming that the hadrons are thermally distributed.

In principle we could distinguish between matter having a thermal distribution
of momenta (kinetic equilibrium) and in chemical equilibrium. Correspondingly,
there is a kinetic freeze-out, and a chemical freeze-out, which are not necessarily
simultaneous. This permits some extra freedom in matching models to data.

The total number of emitted particles is∫
d3x K0μN

μ
had (14.6)

where the integral is over some t = constant surface well to the future of the
collision. Because of Gauss’ theorem, we may replace the integral by an integral
over the break-up surface (we may have to complete this surface to get a Cauchy
surface, but the particle density flux will vanish on these additions anyway). But
then we may use the matching conditions to express this integral in terms of the
particle current before break-up. We obtain the total number of emitted particles
as ∫

d4x δ (Σ) Σ,μN
μ
hydro (14.7)

In practice, we may wish to smear a little the position of the break-up surface,
thus writing the total number of emitted particles as∫

d4x

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydro (14.8)

The total number of particles of species i with momentum pμ is

gi

∫
d4x

C (x)

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydroδ

(
p2
i −m2

i

) Uhad
λ pλi

[exp (−βνpνi − μbi) − εi]
(14.9)

where

C (x) =
∑
i

gi

∫
d4pi

(2π)4
δ
(
p2
i −m2

i

) Uhad
μ pμi

[exp (−βνpνi − μbi) − εi]
(14.10)

The two basic observables are the total number of particles with transverse (with
respect to the beam axis) momentum p⊥, which is usually given in terms of the
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transverse mass m2
⊥ = m2 + p2

⊥, and the elliptic flow coefficient v2, which results
from fitting the particle spectrum in the transverse plane to a second harmonic
(1 + 2v2 (p⊥) cos 2φ) , where φ is the angle measured from the reaction plane.
This is equivalent to considering an elliptic fireball, in which case v2 measures
the eccentricity of the ellipse. The first harmonic is called directed flow, and
would represent a shifted spherical fireball in the transverse plane [VolZha96].

In our simplified discussion we have not considered the possibility that some
particles produced at break-up may actually decay before reaching the detectors,
so that the one-to-one correspondence we have assumed is not strictly valid. Also,
because of long-range interactions, the propagation of charged particles from
break-up to detection is not quite free. Both phenomena must be considered for
a meaningful contrast between theory and experiment. Finally, observe that the
form of the distribution function we have used is not a solution of the transport
equation if there are gradients of the hydrodynamical variables. If these gradients
are important, one may consider using an improved distribution function [Sin99].

The agreement of predictions from hydrodynamical simulations with experi-
mental data is good, provided the simulation is started very early (earlier than
1 fm/c after the collision). If one believes that the validity of hydrodynamics
preassumes (local) equilibration, this very short time is somewhat of a puzzle.
However, as we shall see presently, not all is well with hydro simulations. This is
the main area where NEqQFT may be relevant to understanding RHICs.

14.1.4 Measuring the fireball

We shall describe a method of data analysis from heavy ion collisions which, in
principle, yields direct information on the geometry of the fireball at break-up.
It pertains to studying the simultaneous detection of pairs of identical particles,
rather than individual ones [GyKaWi79, Hei96, WieHei99].

Let us make the simplifying assumption that the only particles produced at
break-up are pions, and that these may be treated as a free Klein–Gordon field.
The Heisenberg pion field operator obeys a wave equation

∂2Φ (x) −m2Φ (x) = −J (x) (14.11)

where the external c-number source J (x) represents the particle creating current
at break-up. Under the action of this source, the pion vacuum state |0〉 evolves
(in the interaction picture) into

|J〉 = T

{
exp
[
i

∫
d4x J (x) Φ0 (x)

]}
|0〉 (14.12)

where Φ0 (x) is a free Klein–Gordon field. Φ0 (x) may be expanded into positive
and negative frequency parts

Φ0 (x) =
∫

d3p

(2π)3
eipx√
2ωp

{
e−iωptap + eiωpta†−p

}
(14.13)
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where ω2
p = p2 + m2. The state |J〉 is a coherent state

ap |J〉 =
iJ(p,ωp)√

2ωp

|J〉 (14.14)

where

Jp =
∫

d4x e−ipxJ (x) (14.15)

The number of particles with momentum p in the final state is then

Np =
|Jp|2
2p0

(14.16)

Let us introduce the emission function

S (x, p) =
∫

d4y e−ipyJ∗
(
x− y

2

)
J
(
x +

y

2

)
(14.17)

whence

|Jp|2 =
∫

d4x S (x, p) (14.18)

Comparing (14.9) and (14.16), one may be strongly tempted to write

S (x, p) =
g

C (x)

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydroδ

(
p0 − ωp

) Uhad
λ pλ

[exp (−βνpν − μ) − 1]
(14.19)

The number of pairs of particles, one with spatial momentum p and another
with spatial momentum q, is

Npq = 〈J | a†pa†qaqap |J〉 (14.20)

For a coherent source, such as discussed so far, Npq = NpNq, which is not ter-
ribly interesting.

However, let us consider the case in which the source is an incoherent super-
position of elementary sources

J (x) =
∑
i

eiθiJi (x) , Ji (x) = eipi(x−xi)J0 (x− xi) (14.21)

meaning that the identical elementary sources J0 are translated, boosted and
phased in different ways, with the xi, pi, θi all random mutually independent
variables. In this case, the emission function reads

S (x, p) =
∑
i,j

∫
d4y e−ipyei(θi−θj)J∗

j

(
x− y

2

)
Ji

(
x +

y

2

)
(14.22)

Averaging over the unknown phase of each source, we get

S (x, p) =
∑
i

Si (x, p) (14.23)
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Let us consider again the average number of pairs

Npq =
1

4ωpωq

〈
J∗
pJ

∗
q JqJp

〉
=

1
4ωpωq

∑
ijkl

ei(θi+θj−θk−θl)
〈
J∗
k,pJ

∗
l,qJi,qJj,p

〉
(14.24)

The average over phases vanishes unless i = l, j = k or i = k, j = l (we neglect
the possibility of i = j = k = l simultaneously). Therefore

Npq = NpNq +
1

4ωpωq

∣∣∣∣∣
∑
i

〈
J∗
i,qJi,p

〉∣∣∣∣∣
2

(14.25)

The second term shows the existence of correlations among the created particles.
This is the so-called pion bunching, or HBT (for Hanbury-Brown/Twiss) corre-
lations. In the real world, the sources are neither totally coherent nor totally
incoherent; we may account for this by adding a fudge factor to the second term
in (14.25) (for a more sophisticated treatment, see [AkLeSi01]). A similar factor
may arise from the superposition of particle emission from a collision core and
a halo of long-lived resonances [NiCsKi98].

Introducing

P =
p + q

2
, ξ = p− q (14.26)

then ∑
i

〈
J∗
i,qJi,p

〉
=
∫

d4x e−iξxS (x, P ) (14.27)

and we see that it is possible to express the HBT correlations in terms of the
emission function, for which we already have the ansatz (14.19). In practice,
this is too involved to attempt a direct comparison with data. Rather, the usual
procedure is, for a given P, to evaluate the moments of the emission function∫

d4x S (x, P ) = 2ωPNP (14.28)

x̄μ =
1

2ωPNP

∫
d4x xμS (x, P ) (14.29)

Rμν =
1

2ωPNP

∫
d4x xμxνS (x, P ) − x̄μx̄ν (14.30)

Let us assume the source is axisymmetric and P points in the x-direction (z
being the beam direction). In the center-of-mass frame we have R0i = Rij = 0
for i �= j. The values of the momenta suggest the approximation

S (x, P ) =
2ωPNP

(2π)2 (det [Rμν ])1/2
exp

{
−1

2

[
(t− t̄)2

R00
+

x2

R11
+

y2

R22
+

z2

R33

]}

(14.31)
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It is important to realize that the Rμν are not the moments of the source as a
whole, since the emission function is weighted by P dependent factors. We may
think of the emission functions as the probability of a particle with momentum
P being emitted at point x. The Rμν then measure the size of the region where
emission is most likely. This expression for the emission function is simple enough
that we may compute the HBT correlations.

One last point: If the p and q momenta in Npq are on-shell, the components of
P and ξ are not independent. We have P 2 = m2 − ξ2/2, so we may consider P

on-shell when ξ is small, and Pξ = 0, meaning that ξ0 = (P/ωP ) ξ1. Therefore∣∣∣∣
∫

d4x e−iξxS (x, P )
∣∣∣∣
2

= (2ωPN)2P exp
{
−
[(

R00P 2

ω2
P

+ R11

)
ξ2
1 + R22ξ2

2 + R33ξ2
3

]}
(14.32)

We see that the HBT correlations may be parameterized in terms of three “radii,”
with z corresponding to the “longitudinal” direction, x to the “out” direction,
and y to the “side” direction.∣∣∣∣

∫
d4x e−iξxS (x, P )

∣∣∣∣
2

∼ exp
{
−
[
R2

outξ
2
1 + R2

sideξ
2
2 + R2

longξ
2
3

]}
(14.33)

(R2
out = R00P 2/ω2

P + R11, R2
side = R22, R2

long = R33). Observe that, in general,
we expect R11 ∼ R22, and so the out radius, which is sensitive also to the duration
of the emission process (in terms of laboratory time) is predicted to be larger
than the side radius. This prediction is not borne out by the data, which show
Rout/Rside ∼ 1.25–1.5 [BRAHMS05, PHOBOS05, STAR05, PHENIX05]. This
disagreement constitutes the so-called HBT puzzle.

This suggests that the emission process occurs early, which reinforces the need
for an early onset of the hydrodynamic regime, or else for some new thinking
[SoBaDi01, Hum06]. In principle the HBT puzzle is a puzzle only within the
framework of hydrodynamical models.

14.1.5 Insights from nonequilibrium quantum field theory

We see from the above analysis that the clue to understanding the physics of
RHICs lies in the first fermi/c or so after the collision. This is the point where
nonequilibrium field theory methods may have an impact on the theory of RHICs.

The first input for any field theoretic modeling is of course some well-defined
initial condition. The basic idea is that each colliding nucleus is not just a
bunch of nucleons marching in step, but a rather complex array of gluons
and partons. In fact, a naive perturbative calculation yields the result that
the number of gluons with a given momentum diverges as the momentum
becomes light-like. It is believed that this divergence is cut off at some scale
by nonperturbative effects (parton saturation) [Mue01, KhaLev01, KhLeNa01].
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A sophisticated model built on this premise is the so-called color glass condensate
[IaleMc02, BjoVen01, KrNaVe02, McLVen94a, McLVen94b, McLVen94c].

The basic framework to understand the early evolution of the plasma is the so-
called bottom-up scenario [BMSS01, MuShWo05]. The hard gluons released from
the color glass condensate take part in both elastic and inelastic collisions. Elastic
collisions broaden a little the initial gluon distribution (see below) while inelas-
tic collisions contribute to the creation of a soft gluon background. It may be
observed that the emission of ultrasoft gluons is suppressed by destructive inter-
ference between multiple collision events, the so-called Landau–Pomeranchuk–
Migdal effect [BaiKAt03, ArMoYa01a, ArMoYa01b, ArMoYa02, BBGM06]. On
the other hand, nearly collinear events are amplified by the small denominators
in the transition amplitude [Won04].

The soft gluons thermalize very efficiently. Eventually they become the domi-
nant species, and we have a picture of a few very energetic gluons on a thermal-
ized soft gluon background. The remaining hard gluons decay (through gluon
branching, which is a specific form of wave splitting for a non-abelian plasma).
The decay of the hard gluons heats up the soft gluons over and above the cooling
from the longitudinal expansion of the plasma, and so we may enter the fully
hydrodynamic stage at a conveniently high temperature.

The key question in the bottom-up scenario is how fast the soft fields build up
from the initial hard quanta. The natural approach would seem to be to write
a kinetic equation for those hard gluons [Mue00a, Mue00b], taking into account
both elastic and inelastic processes (see also Chapter 11). The result seems to be
that the build up of soft fields is too slow to meet the demands of hydrodynamical
RHIC models.

At the time of writing, much effort is being spent on elucidating a pro-
posal by S. Mrowczynski which would result on a much faster growth rate
[Mro94a, Mro94b] (see [Mro05] for a recent review). Mrowczynski’s insight is
that the initial gluon distribution must be highly anisotropic. Since gluons with
a substantial longitudinal momentum will stream out of the central region, the
momentum distribution in the local rest frame is squeezed along the beam. Under
these conditions, the so-called filamentation or Weibel instability sets in. Sup-
pose the initial hard gluon distribution results in alternating currents along a
transverse direction. These currents create magnetic fields, and the correspond-
ing Lorentz force accelerates particles along the longitudinal direction. Moreover,
particles are redistributed in such a way that the initial currents are amplified,
thus setting up a positive feedback loop. While the instability lasts, the soft fields
are found to increase exponentially. Instabilities do not directly equilibrate the
system but rather isotropize it and thus speed up the process of thermalization
[Mro07].

Current efforts are aimed at a precise estimate of the growth rates that may be
achieved by this mechanism, and to identify possible effects which may knock off
the instability. At the time of writing, the most important limiting factor seems to
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be that the growing soft modes will in turn excite a turbulent ultraviolet cascade
[ArLeMo03, ALMY05, Moo05, ArnMoo05, ArMoYa05, ArnMoo06, MuShWo07].
The energy extracted from the hard gluons through the magnetic fields is
returned to them through the cascade. The growth of the soft modes turns from
exponential to linear, and eventually ceases altogether. It is not clear whether
this effect will rule out fast enough thermalization through Weibel instabilities.
In principle, it ought to be possible to obtain an answer by coupling the Yang–
Mills classical equations for the soft fields to the Wong kinetic equations for
the hard fields (see Chapter 11 and [ManMro06, Mro06, RomReb06, DuNaSt07,
Str06, RomVen06, Ven07]), but it is hard to carry out numerical simulations
within a realistic parameter range.

14.2 Disoriented chiral condensates (DCCs)

Besides deconfinement, other exotic events are thought to lie just above the QCD
phase transition. Among these, one of the best researched is the possibility of
chiral symmetry restoration. More concretely, the idea is, if it were possible to
heat strongly interacting matter above the chiral restoration temperature, and
then quenching it again below the critical point, there exists the possibility that
the second time around the system will settle into a different vacuum than the
one we are familiar with. That would create a new form of matter, the so called
“disoriented chiral condensate” (DCC). When brought into contact with the
ordinary vacuum, the DCC would decay with a characteristic burst of particles,
whose detection would provide a signature of its existence.

Theoretical and experimental interest in DCCs had a strong surge in the early
1990s [KowTay92], further motivated by the unexplained Centauro events seen
in cosmic ray experiments [MohSer05]. After several searches both in an ad hoc
experiment [MINIMAX03] and as a part of larger RHIC program, no clear detec-
tion has been reported. However, this null result is actually in agreement with
theoretical estimates. New probes are being suggested which could lead to a
positive result [AgSoVi06]. We refer the reader to [Bjo97] and [MohSer05] for
reviews.

With these experimental perimeters delimited, let us describe in slightly more
detail what a DCC is expected to look like. According to the standard models of
particle interactions, the fundamental constituents of hadrons are quarks. There
are six flavors of quarks, organized into three isospin doublets (u, d), (c, s) and
(t, b). The quark masses increase as we go from one doublet to the next; for the
(u, d) pair they are of a few MeV, about a GeV for (c, s) and a few GeV for (t, b).
In a first approximation, the (u, d) quarks may be taken as massless.

Now, a theory with a massless isospin doublet would be invariant under inde-
pendent global isospin rotations of the left and right quark components. Thus
the isospin group should have been SU(2) × SU(2), rather than the observed
SU(2). In particular, for each hadronic state there would be a partner with
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opposite parity. This is not even approximately observed, and therefore the
SU(2) × SU(2) symmetry must be broken down to the physical isospin SU(2).

The idea is that the quark vacuum is not invariant under SU(2) × SU(2).
Since the algebra of this group is isomorphic to SO(4), it is natural to take the
order parameter for this transition (chiral symmetry breaking) as a vector in
a four-dimensional internal Euclidean space. The symmetric state corresponds
to a vanishing order parameter. A nonzero order parameter picks up a definite
direction in four-dimensional internal space, therefore breaking the symmetry
down to SO(3), with covering group SU(2). From the microscopic point of view,
the components of the order parameter express the formation of quark pair
condensates, in a mechanism which resembles the formation of Cooper pairs
(with a breaking of the U(1) symmetry) in a BCS superconductor.

According to Goldstone’s theorem, the breaking of a global symmetry must
be followed by the apparition of one massless particle for each broken sym-
metry. In our case there are three, one for each SU(2) generator, while the
Goldstone bosons are the pions. Of course, quarks are not really massless,
SU(2) × SU(2) is not an exact symmetry, and pions are therefore not quite mass-
less, but their masses are small enough, certainly in comparison with the quarks
themselves.

In this picture, pions are viewed as the lowest energy excitations of the quark
vacuum, and at low energy the standard model is a pion theory. In the broken-
symmetry phase, the modulus of the pion vector is fixed by the symmetry-
breaking condition, and so pions are represented by a vector living in the unit
sphere of Euclidean 4-space. This is the nonlinear sigma model. At higher energy,
the modulus also becomes dynamical, and we may represent pions as a 4-vector
self-interacting via a SO(4)-invariant potential. This is the linear sigma model,
which will be the starting point for our discussion below.

As we have seen, the Bjorken scenario of a RHIC leads to the “baked Alaska”
picture of the collision, where the edge of the expanding central region is hotter
than its center. The hot plasma layer shields the cool center from interaction
with the outer world, and therefore makes it possible for cooling the pion field
to develop in a direction (in internal isospin space) different from the (cosmolog-
ically chosen) direction outside.

At some point the outer layer will be cool enough that causal contact will
be restored, and the “disoriented” pion condensate will register as “ordinary”
pions. Suppose that we call z the direction corresponding to neutral pions in
isospin space, and that the disoriented pion condensate points in a direction z′

at an angle Θ with respect to z. Upon decay into ordinary matter, the ratio
of neutral to total number of pions will go roughly as f = cos2 Θ. Assuming
that all directions in the unit sphere in isospace are equivalent, and recalling
that the same f results from angles Θ and π − Θ, then the probability to find a
ratio between f and f + df would go like df/

√
f . This characteristic distribution

is another remarkably simple prediction of the “baked Alaska” scenario. Other
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signatures of DCC formation involve the nonequilibrium emission of photons
[BVHK97, CNLL02].

Going beyond this qualitative picture, we now wish to introduce a microscopic
perspective based upon nonequilibrium quantum field theory to provide a more
detailed description of the chiral phase transition in the aftermath of the collision.
We will largely follow the treatment by Cooper and collaborators [CKMP95,
CoKlMo96, LaDaCo96]. To the best of our knowledge, this was also one of the
first attempts to apply NEqQFT to a realistic experimental situation. Mean field
models have also been investigated [MroMul95, Ran97, AmBjLa97], and there is
a proposal to study DCC evolution within a Langevin framework [BeRaSt01].

14.2.1 Self-consistent mean fields in the large N approximation

Adopting the above qualitative picture we now study the evolution of the mean
field in a O(4) symmetric theory assumed to describe the low-energy excitations
of the QCD vacuum. We shall make one further simplification, namely, instead of
O(4) we work with an O(N) theory under the large N approximation. We have
studied the large N (LN) approximation in Chapter 6. Unlike there, now we have
to account for the possibility of symmetry breaking. To avoid misunderstandings,
we shall develop the relevant formulae from scratch.

The O(N) invariant action, allowing for spontaneous symmetry breaking,
reads

S =
∫

d4x

{
−1

2
∂μΨA∂μΨA − λ

8N
(
ΨAΨA −Nv2

)2}
(14.34)

We scale ΨA =
√
NΦA to get

S = N

∫
d4x

{
−1

2
∂μΦA∂μΦA − λ

8
(
ΦAΦA − v2

)2}
(14.35)

To make the perturbative expansion more manageable, we use the Coleman–
Jackiw–Politzer trick of including an auxiliary field χ = λ

(
ΦAΦA − v2

)
/2, by

adding a term to the action, which becomes

S = N

∫
d4x

{
− 1

2
∂μΦA∂μΦA − λ

8
(
ΦAΦA − v2

)2

+
1
2

(
χ√
λ
−

√
λ

2
(
ΦAΦA − v2

))2}
(14.36)

Expanding out, we get

S = N

∫
d4x

{−1
2

∂μΦA∂μΦA +
χ2

2λ
+

1
2
v2χ− 1

2
χΦAΦA

}
(14.37)

In this new action, strings of fish graphs beyond two loops are no longer 2PI.
The next nontrivial graph is the three-pointed star, Fig. 6.10 in Chapter 6, which
scales as N−1. Thus, once again, we obtain a closed form for NLO large N .

https://doi.org/10.1017/9781009290036.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.020


442 Nonequilibrium issues in RHICs and DCCs

To obtain this explicit expression, we begin by shifting the field ΦA → fA +
ϕA, χ → K + κ̄. As usual, we discard linear terms, so

S = S
[
fA,K

]
+ N

∫
d4x

×
{−1

2
∂μϕ

A∂μϕA +
κ̄2

2λ
− 1

2
KϕAϕA − fAκ̄ϕA − 1

2
κ̄ϕAϕA

}
(14.38)

It is convenient to eliminate the quadratic cross-term, shifting κ̄ = κ + λfAϕA.
We get

S = S
[
fA,K

]
+ N

∫
d4x

{
−1

2
(∂ϕ)2 +

κ2

2λ
− 1

2
M2

ABϕ
AϕB

− 1
2
κϕAϕA − 1

2
λfAϕAϕBϕB

}
(14.39)

(M2
αβ = KδAB + λfAfB), where the 2PIEA is

ΓNLO = S
[
fA,K

]
+

N

2

{[
∇2δAB −M2

AB

]
GAB +

H

λ

}

− i�

2
{Tr lnH + Tr lnG} + ΓNLO

Q + O
(
N−1

)
(14.40)

ΓNLO
Q =

iN2

4�

∫
d4xd4x′

{
H (x, x′)

[
GAB (x, x′)

]2
+λ2fA (x) fB (x′) ΔAB (x, x′)

}
(14.41)

ΔAB (x, x′) = GAB (x, x′)
[
GCD (x, x′)

]2
+ 2GAD (x, x′)GCD (x, x′)GCB (x, x′)

(14.42)
Let us write the equations of motion leaving the CTP indices implicit

∇2fA −KfA − λGAB (x, x) fB (x) +
iλ2N

2�

∫
d4x′ fB (x′) ΔAB (x, x′) = 0

(14.43)
K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA (x, x) = 0 (14.44)

1 − iλ�

N
H−1 +

iλN

2�

[
GAB (x, x′)

]2
= 0 (14.45)

[
∇2δAB −M2

AB

]
− i�

N
G−1

AB +
iN

�
H (x, x′)GAB (x, x′)

+
iλ2N

2�
fA (x) fB (x′)

[
GCD (x, x′)

]2
+

iλ2N

�
fC (x) fD (x′)GCD (x, x′)GAB (x, x′)

+
iλ2N

�
fC (x) fD (x′)GCB (x, x′)GAD (x, x′)

+
iλ2N

�
fA (x) fD (x′)GCD (x, x′)GCB (x, x′)

+
iλ2N

�
fC (x) fB (x′)GCD (x, x′)GAD (x, x′) = 0 (14.46)
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It is clear from these equations that the propagators are O
(
N−1

)
, and therefore

some of the terms we have included are actually of higher order. In removing
them, however, we must be careful that we compute factors of N which may
arise when summing over internal indices. The resulting equations are

∇2fA −KfA = 0 (14.47)

K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA (x, x) = 0 (14.48)

1 − iλ�

N
H−1 +

iλN

2�

[
GAB (x, x′)

]2
= 0 (14.49)

[
∇2δAB −M2

AB

]
− i�

N
G−1

AB +
iλ2N

2�
fA (x) fB (x′)

[
GCD (x, x′)

]2
= 0 (14.50)

We observe that the H propagator does not feed back on the mean fields, so
we will not consider its evolution. For the other propagators, it is convenient
to discriminate between the “pion” propagators GAB

⊥ (which is defined by the
property that GAB

⊥ fB ≡ 0) and the “sigma” propagator, that is, the propagator
for fluctuations along the mean field. Since there are N − 1 “pions” and only
one “sigma,” only the former feed back on K. Writing only the equations for the
mean field and the pion propagator, we obtain

∇2fA −KfA = 0 (14.51)

K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA

⊥ (x, x) = 0 (14.52)

[
∇2 −K

]
δ⊥AB − i�

N
G−1

⊥AB = 0 (14.53)

where δ⊥AB is the projector orthogonal to the mean field. These are the equations
which determine the mean field evolution. Clearly, they admit a solution where
f1 = f , fA = 0 (A �= 1) and GAB

⊥ = G (x, x′) δAB
⊥ /N . For such a solution, we

obtain

∇2f −Kf = 0 (14.54)

K

λ
+

1
2
v2 − 1

2
f2 − 1

2
G (x, x) = 0 (14.55)

[
∇2 −K

]
− i�G−1 = 0 (14.56)

where we have used the result that (N − 1)/N = 1 −O(1/N).

14.2.2 The quantum pion field

The equations for the mean fields and the pion propagator are simplified by
the observation that the latter are identical to the equations for the propaga-
tors of free fields with a position-dependent mass K. Thus we may introduce a
“Heisenberg” pion field Φ, decompose it in modes, and then compute the prop-
agators by summing over modes in the usual way. It is natural to choose a set
of modes adapted to the boost symmetry of the baked Alaska scenario. That is,
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we introduce, instead of the usual Minkowski coordinates t and x, Rindler coor-
dinates τ and η, defined by t = τ cosh η and x = τ sinh η. In these coordinates,
the Minkowski metric reads ds2 = −dτ2 + τ2dη2 + dx2

⊥ (x⊥ = (y, z)), and the
D’Alembertian ∇2 = −τ−1∂ττ∂τ + τ−2∂2

η + ∇2
⊥. We therefore write

Φ (τ, η,x⊥) =
∫

d2k⊥dp

(2π)3/2
eik⊥x⊥eipη

{
φpk⊥ (τ) apk⊥ + φ∗

pk⊥ (τ) a†−p−k⊥

}
(14.57)

where the mode functions obey{
1
τ

d

dτ
τ
d

dτ
+

p2

τ2
+ k2

⊥ + K

}
φpk⊥ (τ) = 0 (14.58)

and the destruction operators apk⊥ have the usual commutation relations[
apk⊥ , a

†
p′k′

⊥

]
= δ (p− p′) δ2 (k⊥ − k′⊥) (14.59)

To obtain the usual ETCCRs for the field operators, we must normalize the
modes as

φ∗
pk⊥ (τ)

d

dτ
φpk⊥ (τ) − φpk⊥ (τ)

d

dτ
φ∗
pk⊥ (τ) = − i

τ
(14.60)

If we make the reasonable assumption that the initial state, defined on some
surface τ = τ0 = constant, is an incoherent superposition of states with well-
defined occupation numbers as defined from the apk⊥ particle model, then the
coincidence limit in the equation for K reads

G = 2
∫

d2k⊥dp

(2π)3
|φpk⊥ (τ)|2

{
1
2

+ n0
pk⊥

}
(14.61)

where n0
pk⊥

is the occupation number for the corresponding mode in the initial
state.

14.2.3 Adiabatic modes and renormalization

At this point, we have reduced the problem of computing the mean field evolution
to a system of n + 2 coupled ordinary differential equations, where n is the
number of modes we care to include in our numerical solution (already this
problem is too complex to attempt a closed analytical solution). Since the number
of modes is necessarily finite, in effect we are imposing a momentum cut-off on
the theory. This means that the coincidence limit (14.61) is de facto finite, but,
since it diverges as the cut-off is removed, it is strongly cut-off dependent.

Physics, on the other hand, is supposed to be cut-off independent, so we should
be able to absorb the dependence on the cut-off by renormalizing the parameters
in the equation for K, namely λ and v2, which implies, as a previous necessary
condition, that the cut-off dependent part of the coincidence limit depends on
the instantaneous value of K, but not on its derivatives.
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To analyze the ultraviolet behavior of the mode amplitudes, let us write
φpk⊥ (τ) = τ−1/2ϕpk⊥ (τ), whereby

d2

dτ2
ϕpk⊥ (τ) +

[
Ω2

pk⊥ (τ) +
1

4τ2

]
ϕpk⊥ (τ) = 0, Ω2

pk⊥ (τ) =
p2

τ2
+ k2

⊥ + K

(14.62)
and ϕ∗

pk⊥
ϕ′
pk⊥

− ϕpk⊥(ϕ′
pk⊥

)∗ = −i, where a prime stands for a τ derivative. In
this regime Ω2

pk⊥
(τ) becomes a slowly varying function of τ . This suggests trying

a WKB-type solution

Fpk⊥ (τ) =
e−iS(τ)√
2wpk⊥ (τ)

, S =
∫ τ

dτ ′ wpk⊥ (τ ′) (14.63)

Fpk⊥ is well normalized by construction, and the mode equation becomes

w2
pk⊥ = Ω2

pk⊥ (τ) +
1

4τ2
− 1

4

(
w2

pk⊥

)′′
w2

pk⊥

+
5
16

⎡
⎢⎣
(
w2

pk⊥

)′
w2

pk⊥

⎤
⎥⎦

2

(14.64)

The hypothesis of slow variation allows us to seek an adiabatic solution, namely,
an iterative solution starting from the zeroth order approximation w2

pk⊥
=

Ω2
pk⊥

(τ) . Let us write this solution as a formal series

w2
pk⊥ =

∞∑
n=0

W (n)

[
p2

τ2
, k2

⊥, τ

]
(14.65)

where W (n) is a homogeneous function of p2/τ2 and k2
⊥ of degree 1 − n. It follows

that

1
wpk⊥

=
1[

W (0)
]1/2 − 1

2
W (1)[

W (0)
]3/2 + R (14.66)

where R vanishes at large momentum as (momentum)−5. It is clear that only
W (0) and W (1) may contribute to the cut-off dependence. Replacing (14.65) into
(14.64), we obtain

W (0) =
p2

τ2
+ k2

⊥ (14.67)

W (1) = K +
1

4τ2
− 1

4

6p2

τ4

p2

τ2 + k2
⊥

+
5
16

(
2p2

τ3

p2

τ2 + k2
⊥

)2

≡ K +
k2
⊥

(
−4p2

τ2 + k2
⊥

)
4τ2
(

p2

τ2 + k2
⊥

)2

(14.68)

The potentially cut-off dependent terms in the coincidence limit of the propaga-
tor are

1(
p2

τ2 + k2
⊥

)1/2
− K

2
(

p2

τ2 + k2
⊥

)3/2
−

k2
⊥

(
−4p2

τ2 + k2
⊥

)
8τ2
(

p2

τ2 + k2
⊥

)7/2
(14.69)
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However, the third term vanishes upon integration (this is easiest to see in polar
coordinates). In conclusion, we obtain the same cut-off dependence as from the
simple approximation w2

pk⊥
= Ω2

pk⊥
(τ), and in passing we have proved that

the cut-off dependent terms are functions of the instantaneous value of K, as
required.

To complete the renormalization procedure, we write

v2 = v2
r +

Λ2

4π2
;

1
λ

=
1
λr

− 1
8π2

ln
(

Λ
κ

)
(14.70)

where κ defines the renormalization point. The finite equations of motion now
read

∇2f −Kf = 0 (14.71)

K

λr
+

1
2
v2
r −

1
2
f2 − 1

2
M2 = 0 (14.72)

d2

dτ2
ϕpk⊥ (τ) +

[
Ω2

pk⊥ (τ) +
1

4τ2

]
ϕpk⊥ (τ) = 0 (14.73)

where Ω2
pk⊥

(τ) = p2

τ2 + k2
⊥ + K and

M2 =
1
τ

∫ Λ d2k⊥dp

(2π)3

⎧⎪⎨
⎪⎩|ϕpk⊥ (τ)|2

(
1 + 2n0

pk⊥

)
− 1(

p2

τ2 + k2
⊥

)1/2

+
Kθ
(

p2

τ2 + k2
⊥ − κ2

)
2
(

p2

τ2 + k2
⊥

)3/2

⎫⎪⎬
⎪⎭ (14.74)

In a typical collision, the initial occupation numbers n0
pk⊥

will be high enough to
ensure a large positive M2, and therefore also K will be positive; in this regime,
the symmetric point f = 0 is stable. As the system expands and cools, M2 will
go down, and eventually K becomes negative. This event marks the start of
the chiral symmetry-breaking transition, and the formation of the disoriented
condensate.

For negative K and large enough τ , not only f but also some of the long-
wavelength modes will grow exponentially. This will shift the particle spectrum
towards the infrared, which becomes the basic signal for DCC formation.

In summary, we have depicted DCC formation as a spinodal decomposition
process in an expanding geometry. Since we have already discussed a similar
process in Chapter 4, we will not discuss further the evolution of this model.
The size and duration of the ordered domains determine the prospective sizes of
the DCCs, and therefore the probability of their detection.
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