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We develop theoretical finite-sample results concerning the size of wild bootstrap-
based heteroskedasticity robust tests in linear regression models. In particular, these
results provide an efficient diagnostic check, which can be used to weed out tests
that are unreliable for a given testing problem in the sense that they overreject
substantially. This allows us to assess the reliability of a large variety of wild
bootstrap-based tests in an extensive numerical study.

1. INTRODUCTION

Testing hypotheses on the parameters in a regression model with potentially
heteroskedastic errors is a time-honored problem in econometrics and statistics.
As the classical t-statistic (F-statistic, respectively) is not pivotal, or asymptot-
ically pivotal, in such a case in general, even under Gaussianity of the errors,
so-called heteroskedasticity robust (aka heteroskedasticity consistent) modifica-
tions of these test statistics have been proposed. These statistics are asymptotically
standard normally (chi-square, respectively) distributed under the null. The first
generation of such procedures is rooted in the results of Eicker (1963, 1967), see
also Hinkley (1977), and has been popularized in econometrics by White (1980).
It soon transpired that tests obtained from these heteroskedasticity robust test
statistics by relying on critical values obtained from the respective asymptotic
distributions are prone to overrejecting the null hypothesis in finite samples,
especially so if the design matrix contains leverage points; see, e.g., MacKinnon
and White (1985), Davidson and MacKinnon (1985), and Chesher and Jewitt
(1987). One factor contributing to this tendency to overreject is a downward
bias present in the covariance matrix estimators used in these test statistics, see
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Chesher and Jewitt (1987). Attempts at remedying the overrejection problem
have led to the development of second-generation heteroskedasticity robust test
statistics (often denoted by HC1 through HC4, with HC0 denoting the first
generation test statistic). These statistics use various ways of rescaling the least-
squares residuals before computing the covariance matrix estimator employed in
the construction of the test statistic; see Hinkley (1977), MacKinnon and White
(1985), and Cribari-Neto (2004). Simulation studies reported in, e.g., Davidson
and MacKinnon (1985) and Cribari-Neto (2004) show that these modifications,
especially HC3 and HC4, ameliorate the overrejection problem to some extent, but
do not eliminate it. Further numerical results are provided in Chesher and Austin
(1991), see also Chesher (1989). Davidson and MacKinnon (1985) also consider
variants of HC0–HC3, denoted by HC0R–HC3R, obtained by using restricted
instead of unrestricted least-squares residuals in the computation of the covariance
matrix estimators employed by the various test statistics (the restriction alluded to
being the restriction defining the null hypothesis). In their simulation experiments,
this typically leads to tests that do not overreject (but that may underreject); see also
the simulation results in Godfrey (2006), who additionally also considers HC4R.
Of course, these simulation results do not rule out that the tests based on HC0R–
HC4R (relying on critical values suggested by asymptotic theory) may overreject
in some situations outside of the scope of the simulation studies; in fact, Pötscher
and Preinerstorfer (2021) provide numerical proof that also these tests can suffer
from considerable overrejection. Note that under the typical assumptions used
in the literature all of the modifications of HC0 discussed so far have the same
asymptotic distribution under the null, and thus use the same critical value.

An alternative approach is to use bootstrap methods to compute critical values
for the test statistics HC0–HC4 or HC0R–HC4R, with the intention to improve
upon the critical values derived from the asymptotic null distributions.1 Inspired by
earlier work in the statistics literature (e.g., Wu (1986) and the discussion in Beran
(1986), Liu (1988), Mammen (1993)), Horowitz (1997) used the wild bootstrap to
obtain critical values for HC0. This was followed up by Flachaire (1999, 2005a)
and Davidson and Flachaire (2008), who considered the test statistics HC0–HC3
as well as HC0R–HC3R, and who stressed the version of the wild bootstrap that
imposes the null restriction on the bootstrap data generating process; see also
Godfrey and Orme (2004) and the more recent survey MacKinnon (2013). Further
simulation studies, some of which also include HC4 and HC4R, can be found in
Cribari-Neto (2004), Godfrey (2006), Cribari-Neto and Lima (2009), and Richard
(2017). Once one has turned to bootstrap methods, one can also think of reverting

1Another possibility is to use Edgeworth expansions to find better critical values, see Rothenberg (1988) for the
case of the HC0 test statistic and Davidson and MacKinnon (1985) for the HC0R test statistic. Simulation results
in MacKinnon and White (1985) and Davidson and MacKinnon (1985) indicate that this does not work too well in
practice. Of course, such expansions could also be worked out for the other versions of the test statistics mentioned,
but this does not seem to have been pursued in the literature. Other adjustments are discussed in Imbens and
Kolesár (2016); however, as shown in Pötscher and Preinerstorfer (2021), these adjustments do also not resolve the
overrejection problem in general.
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to the classical (i.e., uncorrected) t-statistic (F-statistic, respectively) and to apply
the bootstrap methods to determine appropriate critical values. This has been
considered in Mammen (1993); see also Godfrey (2006) for some Monte Carlo
results. Since the majority of the literature on bootstrap-based heteroskedasticity
robust tests favors the wild bootstrap over other bootstrap methods, we shall
concentrate on the wild bootstrap in the sequel.

While the before mentioned bootstrap procedures have their merits and overre-
jection is ameliorated in many of the cases considered in the simulation studies
cited, it is unclear whether these observations generalize beyond the situations
studied in these simulation experiments. In particular, it is unclear if—and under
which conditions—these bootstrap procedures (and which of the many variants
thereof) are immune to overrejection in finite samples.2,3 In the present paper,
we set out to study this question theoretically and numerically. On the theoretical
side we show the following finite-sample result: For any test statistic T from
a large class of test statistics (including HC0–HC4, HC0R–HC4R, the classical
F-statistic and a variant thereof that uses restricted residuals) and for any bootstrap
method from a large class of wild bootstrap methods (including virtually all wild
bootstrap methods considered in the literature) there is a computable number
ϑ (depending only on observables like the design matrix, the restriction to be
tested, etc.), such that the size of the corresponding bootstrap-based test is 1 for
nominal significance levels α satisfying α > ϑ .4 That is, for α > ϑ the bootstrap-
based test fails miserably in that it has null rejection probabilities arbitrarily
close to 1 for some forms of heteroskedasticity.5 We note that our results also
provide information concerning the infimal coverage probabilities of confidence
sets obtained by “inverting” the bootstrap-based tests under consideration. We
discuss this in more detail in Remark 5.15.

In practice, our theoretical finite-sample result can be used as a diagnostic tool
to weed out procedures in the following sense: as mentioned before, there is a
large menu of heteroskedasticity robust test statistics and wild bootstrap methods
available in the literature from which the applied researcher has to choose. As it is
unlikely that simulation results in the literature are available that precisely fit the
problem the researcher is interested in (i.e., use the same design matrix and the
same restriction to be tested), the researcher is typically left with little guidance

2We are not interested in asymptotic justifications here.
3In the quite special case where the number of restrictions tested equals the number of regression parameters,
Davidson and Flachaire (2008) have a result which implies that certain wild bootstrap-based tests have size equal to
the nominal significance level (and hence do not overreject) in finite samples. We note that this result in Davidson and
Flachaire (2008) is not entirely correct as stated, but needs some amendments and corrections; see also Footnote 34.
4The size is the maximal (i.e., worst-case) null rejection probability, where one maximizes over all possible forms
of heteroskedasticity, reflecting agnosticism about the form of the heteroskedasticity; see (4) for a formal definition.
It is also assumed that the normalized regression error vector (u1/Var1/2(u1), . . . ,un/Var1/2(un))

′ follows a given
(fixed) distribution (e.g., a normal distribution). Note that the theoretical result mentioned in the main text does not
depend on the choice of this distribution (as long as it is absolutely continuous), see Section 7.
5By construction ϑ ≤ 1 always holds. If ϑ < 1 (which will often be the case) we can then conclude that the bootstrap-
based test has size 1 at least for some values of α.
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on which of the many bootstrap-based test procedures to choose for the problem
at hand. Based on our theoretical results, the applied researcher can now eliminate
procedures that break down in the researchers problem, by computing—for any
initially selected procedure—the corresponding ϑ for the given design matrix and
restriction to be tested. If it turns out that ϑ < α holds, this procedure should
not be used, because these tests have size equal to one according to our theoret-
ical results. Numerical routines for computing ϑ are provided in the associated
R-package wbsd by Preinerstorfer (2020).6

The before mentioned theoretical result will typically have practical conse-
quences only in testing problems for which ϑ is sufficiently small so that standard
choices of α like 0.05 or 0.1 satisfy the condition α > ϑ . We hence investigate
this numerically for the test statistics HC0–HC4, HC0R–HC4R, for the classical
F-statistic, and for a variant thereof that uses restricted residuals, each combined
with a large variety of wild bootstrap methods.7 We now summarize the results of
our numerical experiments for n = 10 (the results for n = 20,30 being similar): For
each combination of test statistic and wild bootstrap method (960 combinations)
we compute ϑ for a range of design matrices and null hypotheses (i.e., restrictions
to be tested) and report ϑmin, the smallest of these values of ϑ .8,9 We find that for
826 of the 960 combinations ϑmin is less than 0.05, and for 936 combinations ϑmin

is less than 0.1. As a consequence, for the bootstrap-based tests corresponding to
these 826 (936, respectively) combinations our theoretical results imply that size is
equal to 1 for some design matrices and null hypotheses, if a nominal significance
level of 0.05 (0.1, respectively) is being used. Thus these bootstrap-based tests are
found not to be reliable in general, in that they suffer from severe overrejection
for some design matrices and null hypotheses. Furthermore, for each combination
of test statistic/wild bootstrap method we also compute a lower bound for the size
of the bootstrap-based test conducted at nominal significance level α = 0.05 (as
well as at α = 0.1).10 We find that for 95 out of the remaining 134 combinations
(11 out of the remaining 24 combinations, respectively) the (lower bound for the)
size exceeds 3α for some of the design matrices and null hypotheses, sometimes
by a considerable margin. Thus also these combinations do not lead to reliable
bootstrap-based tests. This leaves us with 39 (13, respectively) combinations.
Exploiting that some of these combinations left are in fact equivalent to some
of the above mentioned unreliable procedures (see Sections 8.1 and 8.3 for an

6As discussed in Section 8.2 and Sections E.2 and E.3 of Appendix E, computing ϑ is a nontrivial numerical problem.
Supplementing the calculation of ϑ by numerically evaluating null rejection probabilities for strategically chosen
heteroskedasticity structures as discussed in Section E.2 of Appendix E may be advisable.
7In the wild bootstrap methods we vary the following elements: (i) centering the bootstrap sample at the unrestricted
versus at the restricted least squares estimator, (ii) bootstrapping from unrestricted versus restricted residuals, (iii) the
distribution of the bootstrap noise, and (iv) various bootstrap multiplicator weights. See Section 8 for more details.
8For reasons of numerical stability we actually compute an upper bound for ϑ , see Section E.3 in Appendix E for
more information.
9Some of the 960 combinations actually give rise to one and the same bootstrap-based test. The reasons for
nevertheless considering all 960 combinations are discussed in Sections 8.1 and 8.3.
10For the size computations we assume the errors to be normally distributed.

https://doi.org/10.1017/S0266466622000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000184


BOOTSTRAP-BASED HETEROSKEDASTICITY ROBUST TESTS 793

explanation), allows us to even conclude that in the end only 16 (4, respectively)
bootstrap-based heteroskedasticity robust test procedures do not exhibit severe
overrejection within the range of our numerical study when n = 10.

Combining the just-described results with similar findings for the other sample
sizes n = 20,30 leads to the sobering conclusion that none of the bootstrap-based
tests considered is reliable for all sample sizes and for α = 0.05 as well as α = 0.1.
That is, for every combination of test statistic and bootstrap method considered,
there is a sample size n ∈ {10,20,30}, a significance level α ∈ {0.05,0.1}, a testing
problem and a design matrix, such that the size of the corresponding bootstrap-
based test equals 1 by our theoretical results or is numerically found to exceed
3α. We must hence conclude that none of the bootstrap-based tests considered
is guaranteed to be immune to overrejection, and thus such tests are no reliable
panacea for heteroskedasticity robust testing.

If one considers a fixed α, the situation is somewhat more encouraging. While
there is no bootstrap-based test that is reliable for all sample sizes for the
significance level α = 0.1, for α = 0.05 there are two bootstrap-based tests that are
found not to break down in the above sense for any of the sample sizes considered
in the numerical study. Both of these tests use a heteroskedasticity robust test
statistic based on a HC3R covariance estimator, a wild bootstrap method based
on the Mammen distribution, and impose the null restriction on the bootstrap data
generating process. For more details see Section 8. It is interesting to note that
these findings call into question the recommendation in Davidson and Flachaire
(2008) to base the wild bootstrap on the Rademacher distribution.

Of course, the above are worst-case results in spirit and do not preclude a
given bootstrap-based test to be reasonably sized for certain instances of design
matrix and null hypothesis. Therefore, in a given application, one could in
principle imagine the following strategy: Numerically evaluate the size of the given
bootstrap-based test (this will require to commit to a distributional assumption on
the errors) and use the test only if the so-evaluated size does not exceed the nominal
level α (by much).11 Otherwise, switch to another one of the many other bootstrap-
based tests, repeat, and stop upon finding an acceptable test. As mentioned before,
a partial shortcut for this strategy could be to compute ϑ first and to check if α > ϑ ,
as we then know from our theoretical results that size must be equal to 1. Of course,
such a strategy would be computationally expensive and moreover would only be a
stab into the dark, as there is no guarantee that one would end up with a bootstrap-
based test that performs well in the sense of delivering size less than or equal to
α. It seems that a better and more direct strategy is to forgo the bootstrap idea and
rather to construct size-controlling critical values for the original test statistics, e.g.,
for HC0–HC4 or HC0R–HC4R. This is pursued in the companion paper Pötscher
and Preinerstorfer (2021). Certainly, this also leads to a computationally intensive
method, but one that comes with guaranteed size control.

11Of course, this could also be pursued with nonbootstrap-based tests.
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All test statistics mentioned so far are based on the ordinary least squares
estimator. An alternative is to start from a feasible generalized least squares esti-
mator, computed from a (potentially misspecified) model for heteroskedasticity.
Again heteroskedasticity robust test procedures can then be developed in a similar
manner, see, e.g., Cragg (1983, 1992), Flachaire (2005b), Romano and Wolf
(2017), Lin and Chou (2018), DiCiccio, Romano, and Wolf (2019). While results
similar to the ones given in the present paper can probably also be developed for
this alternative class of heteroskedasticity robust test procedures, we do not pursue
this avenue here.

2. FRAMEWORK

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n × k
and where β ∈ Rk denotes the unknown regression parameter vector. We always
assume rank(X) = k and 1 ≤ k < n. We furthermore assume that the n × 1
disturbance vector U = (u1, . . . ,un)

′ has mean zero and unknown covariance
matrix σ 2�, where � varies in a user-specified (nonempty) set C describing
the allowed forms of heteroskedasticity, with C satisfying C ⊆ CHet, and where
0 < σ 2 < ∞ holds (σ always denoting the positive square root).12 The set C will
be referred to as the “heteroskedasticity model.” Here

CHet =
{

diag(τ 2
1 , . . . ,τ 2

n ) : τ 2
i > 0 for all i,

n∑
i=1

τ 2
i = 1

}
,

where diag(τ 2
1 , . . . ,τ 2

n ) denotes the n × n matrix with diagonal elements given
by τ 2

i . That is, the errors in the regression model are uncorrelated but can be
heteroskedastic. In particular, ifC is chosen to beCHet, one allows for heteroskedas-
ticity of completely unknown form. The normalization condition

∑n
i=1 τ 2

i = 1 is
included here only in order to guarantee identifiability of σ 2 and �, and could be
replaced by any other normalization condition such as, e.g., maxτ 2

i = 1, or τ 2
1 = 1,

without affecting the final results (because any of these normalizations leads to the
same overall set of covariance matrices σ 2� when σ 2 varies through the positive
real line).

Although of no real significance for the results of this paper as explained
in Section 7, we shall, for ease of exposition, maintain in the sequel that the
disturbance vector U is normally distributed. The linear model described in (1),
together with the just made Gaussianity assumption on U and with the given
heteroskedasticity model C, then induces a collection of distributions on the

12Since we are concerned with finite-sample results only, the elements of Y, X, and U (and even the probability space
supporting Y and U) may depend on sample size n, but this will not be expressed in the notation. Furthermore, the
obvious dependence of C on n will also not be shown in the notation.
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Borel-sets of Rn, the sample space of Y. Denoting a Gaussian probability measure
with mean μ ∈Rn and (possibly singular) covariance matrix A by Pμ,A, the induced
collection of distributions is then given by{
Pμ,σ 2� : μ ∈ span(X),0 < σ 2 < ∞,� ∈ C

}
. (2)

Since every � ∈ C is positive definite by assumption, each element of the set in the
previous display is absolutely continuous with respect to (w.r.t.) Lebesgue measure
on Rn.

We shall consider the problem of testing a linear (better: affine) hypothesis on
the parameter vector β ∈ Rk, i.e., the problem of testing the null Rβ = r against
the alternative Rβ �= r, where R is a q×k matrix always of rank q ≥ 1 and r ∈ Rq.
Set M = span(X). Define the affine space

M0 = {μ ∈ M : μ = Xβ and Rβ = r}
and let

M1 = {μ ∈ M : μ = Xβ and Rβ �= r} .

Adopting these definitions, the above testing problem can then be written more
precisely as

H0 : μ ∈ M0, 0 < σ 2 < ∞, � ∈ C vs. H1 : μ ∈ M1, 0 < σ 2 < ∞, � ∈ C.
(3)

With Mlin
0 we shall denote the linear space parallel to M0, i.e., Mlin

0 = M0 −μ0 =
{Xβ : Rβ = 0} where μ0 ∈ M0. Of course, Mlin

0 does not depend on the choice of
μ0 ∈ M0.

As already mentioned, the assumption of Gaussianity is made for the sake of
exposition only and does not really restrict the scope of the results in the paper as
is discussed in Section 7. The assumption of nonstochastic regressors entails little
loss of generality either: For example, if X is random and U is conditionally on X
distributed as N(0,σ 2�), with σ 2 = σ 2(X) and � = �(X) ∈ CHet, the results of
the paper can be applied after one conditions on X (and a similar statement applies
to the generalizations to non-Gaussianity discussed in Section 7). See Section
7 for more discussion. For arguments supporting conditional inference see, e.g.,
Robinson (1979). Note that such a “strict exogeneity” assumption is quite natural
in the situation considered here.

We next collect some further terminology and notation used throughout the
paper. A (nonrandomized) test is the indicator function of a Borel-set W in Rn,
with W called the corresponding rejection region. The size of such a test (rejection
region) is—as usual—defined as the supremum over all rejection probabilities
under the null hypothesis H0 given in (3), i.e.,

sup
μ∈M0

sup
0<σ 2<∞

sup
�∈C

Pμ,σ 2�(W). (4)
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In slight abuse of terminology, we shall sometimes refer to this quantity as “the
size of W over C” when we want to emphasize the rôle of C. Throughout the
paper, we let β̂(y) = (

X′X
)−1

X′y, where X is the design matrix appearing in (1)
and y ∈ Rn. The corresponding ordinary least squares (OLS) residual vector is
denoted by û(y) = y−Xβ̂(y) and its elements are denoted by ût(y). The elements
of X are denoted by xti, while xt· and x·i denote the tth row and ith column of X,
respectively. For A an affine subspace of Rn satisfying A ⊆ span(X) let β̃A(y)
denote the restricted least-squares estimator, i.e., Xβ̃A(y) solves

min
z∈A

(y− z)′(y− z).

Lebesgue measure on the Borel-sets of Rn will be denoted by λRn . The set of real
matrices of dimension l × m is denoted by Rl×m (all matrices in the paper will be
real matrices). The Euclidean norm is denoted by ‖·‖. Let B′ denote the transpose
of a matrix B ∈ Rl×m and let span(B) denote the subspace in Rl spanned by its
columns. For a symmetric and nonnegative definite matrix B we denote the unique
symmetric and nonnegative definite square root by B1/2. For a linear subspace
L of Rn we let L⊥ denote its orthogonal complement and we let 	L denote the
orthogonal projection onto L. The jth standard basis vector in Rn is written as
ej(n). Furthermore, we let N denote the set of all positive integers. A sum (product,
respectively) over an empty index set is to be interpreted as 0 (1, respectively). For
a subset A of a topological space we denote by int(A) the interior of A (w.r.t. the
ambient space). Finally, for A an affine subspace of Rn, let G(A) denote the group
of all affine transformations y �→ δ(y−a)+a∗ where δ ∈R, δ �= 0, and a as well as
a∗ are elements of A; for more information see Section 5.1 of Preinerstorfer and
Pötscher (2016).

3. HETEROSKEDASTICITY ROBUST TEST STATISTICS USING
UNRESTRICTED RESIDUALS

We next introduce two test statistics that will feature prominently. Variants of
these statistics using restricted residuals are discussed in Section 5.2. For a result
pertaining to a more general class of test statistics see Theorem A.1 in Appendix
A. The test statistic we shall consider first is a standard heteroskedasticity robust
test statistic frequently considered in the literature and is given by

THet (y) =
{

(Rβ̂ (y)− r)′�̂−1
Het (y)(Rβ̂ (y)− r), if det�̂Het (y) �= 0,
0, if det�̂Het (y) = 0,

(5)

where �̂Het = R�̂HetR′ and where �̂Het is a heteroskedasticity robust estimator
as considered in Eicker (1963, 1967), which later on has found its way into the
econometrics literature (e.g., White, 1980). It is of the form

�̂Het (y) = (X′X)−1X′diag
(
d1û2

1 (y), . . . ,dnû2
n (y)

)
X(X′X)−1,
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where the constants di > 0 sometimes depend on the design matrix. Typical choices
for di suggested in the literature are di = 1, di = n/(n − k), di = (1−hii)

−1, or
di = (1−hii)

−2, where hii denotes the ith diagonal element of the projection matrix
X(X′X)−1X′, see Long and Ervin (2000) for an overview. Another suggestion is
di = (1−hii)

−δi for δi = min(nhii/k,4), see Cribari-Neto (2004). For the last three
choices of di just given, we use the convention that we set di = 1 in case hii = 1.
Note that hii = 1 implies ûi (y) = 0 for every y, and hence it is irrelevant which real
value is assigned to di in case hii = 1.13 The five examples for the weights di just
given correspond to what is often called HC0–HC4 weights in the literature.

In conjunction with the test statistic THet, we shall consider the following mild
assumption, which is Assumption 3 in Preinerstorfer and Pötscher (2016). As
discussed further below, this assumption is in a certain sense unavoidable when
using THet. It furthermore also entails that our choice of assigning THet (y) the value
zero in case �̂Het (y) is singular has no import on the rejection probabilities of
the (nonbootstrap-based) tests obtained from THet (because of Lemma 3.1(c) and
absolute continuity of the measures Pμ,σ 2�). As will be seen later, our results for
the corresponding bootstrap-based tests do also not depend on this choice.

Assumption 1. Let 1 ≤ i1 < · · · < is ≤ n denote all the indices for which eij(n) ∈
span(X) holds where ej(n) denotes the jth standard basis vector in Rn. If no such
index exists, set s = 0. Let X′ (¬(i1, . . . is)) denote the matrix which is obtained
from X′ by deleting all columns with indices ij, 1 ≤ i1 < · · · < is ≤ n (if s = 0 no
column is deleted). Then rank

(
R(X′X)−1X′ (¬(i1, . . . is))

) = q holds.

Observe that this assumption only depends on X and R and hence can be
checked. Obviously, a simple sufficient condition for Assumption 1 to hold is
that s = 0 (i.e., that ej(n) /∈ span(X) for all j), a generically satisfied condition.
Furthermore, we introduce the matrix

B(y) = R(X′X)−1X′diag
(
û1(y), . . . ,ûn(y)

)
= R(X′X)−1X′diag

(
e′

1(n)	span(X)⊥y, . . . ,e′
n(n)	span(X)⊥y

)
. (6)

The facts collected in the subsequent lemma will be used in the sequel. Parts (a)–
(c) have been shown in Lemma 4.1 in Preinerstorfer and Pötscher (2016), while
Part (d) is taken from Lemma 5.18 of Pötscher and Preinerstorfer (2018). Part (e) is
obvious (observe that B(y) depends only on û(y) and that û(γ (y−μ)+μ•) = γ û(y)
for every γ ∈ R, every μ ∈ span(X), and every μ• ∈ span(X)).

LEMMA 3.1. (a) �̂Het (y) is nonnegative definite for every y ∈ Rn.
(b) �̂Het (y) is singular (zero,respectively) if and only if rank (B(y)) < q (B(y) =

0, respectively).
(c) The set B given by {y ∈ Rn : rank (B(y)) < q} (or in view of (b) equivalently

given by {y ∈ Rn : det(�̂Het (y)) = 0}) is either a λRn -null set or the entire sample

13In fact, hii = 1 is equivalent to ûi (y) = 0 for every y, each of which in turn is equivalent to ei(n) ∈ span(X).
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space Rn. The latter occurs if and only if Assumption 1 is violated (in which case
the test based on THet becomes trivial, as then THet is identically zero).

(d) Under Assumption 1, the set B is a finite union of proper linear subspaces
of Rn; in case q = 1, B is even a proper linear subspace itself.14

(e) B is a closed set and contains span(X). Furthermore, B is G(M)-invariant
and, in particular, B+ span(X) = B holds.

In light of Part (c) of the lemma, we see that Assumption 1 is a natural
and unavoidable condition if one wants to obtain a sensible test from THet.15

Furthermore, note that, if B = span(X) is true, then Assumption 1 must be satisfied
(since span(X) is a λRn-null set due to the maintained assumption k < n). As shown
in Lemma A.3 in Pötscher and Preinerstorfer (2018), for any given restriction
matrix R, the relation B = span(X) holds generically in various universes of design
matrices. For later use we also mention that under Assumption 1 the test statistic
THet is continuous at every y ∈ Rn\B.16

Next, we also consider the classical (i.e., uncorrected) F-test statistic, i.e.,

Tuc(y) =
{

(Rβ̂ (y)− r)′
(
σ̂ 2(y)R

(
X′X

)−1
R′

)−1
(Rβ̂ (y)− r), if y /∈ span(X),

0, if y ∈ span(X),

(7)

where σ̂ 2(y) = û(y)′ û(y)/(n−k) ≥ 0 (which vanishes if and only if y ∈ span(X)).
Our choice to set Tuc(y) = 0 for y ∈ span(X) has no import on the rejection
probabilities of the (nonbootstrap-based) tests obtained from Tuc, since span(X)

is a λRn-null set as a consequence of the maintained assumption that k < n (and
since the measures Pμ,σ 2� are absolutely continuous). It will turn out also not
to affect our results for bootstrap-based tests obtained from Tuc. For reasons of
comparability with (5), we have chosen not to normalize the numerator in (7) by
q, the number of restrictions to be tested, as is often done in the definition of the
classical F-test statistic. This also has no import on the results as the bootstrap
automatically adapts to scaling. For later use we also mention that the test statistic
Tuc is continuous at every y ∈ Rn\span(X).

Remark 3.2. (i) The test statistics THet as well as Tuc are G(M0)-invariant as
is easily seen (with the respective exceptional sets B and span(X) being G(M)

-invariant).
(ii) Both statistics actually belong to the class of nonsphericity-corrected F-type

test statistics in the sense of Section 5.4 in Preinerstorfer and Pötscher (2016)
(terminology being somewhat unfortunate in the case of Tuc as no correction for
the nonsphericity is applied in this case). See Remark B.1 in Appendix B for more
discussion.

14If Assumption 1 is violated, B equals Rn by Part (c).
15If this assumption is violated then THet is identically zero, an uninteresting trivial case.
16If Assumption 1 is violated, then THet is constant equal to zero, and hence is trivially continuous everywhere.
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4. SOME INTUITION FOR THE SIZE ONE RESULTS

The mechanism leading to the size one results put forward formally in the next
section is a concentration effect in the distribution generating the data Y =
(y1, . . . ,yn)

′, entailing a similar effect in the distribution of T(Y), where we denote
by T any of the test statistics considered in the paper. This concentration effect
emerges when the data-generating process (DGP) is “strongly heteroskedastic.”
For simplicity, in this section we call a DGP strongly heteroskedastic, if a single
observation has a (relatively) high variance, whereas all other observations have
(relatively) low variance. We shall denote the index corresponding to the highly
varying observation by i∗. Denote the expectation of the data vector Y by μ0,
where we assume for the discussion in this section that μ0 ∈ M0, i.e., that the
null hypothesis is satisfied.

We now provide a nonrigorous explanation of the above-mentioned concentra-
tion effect and how it leads to the size one results:

1. If the DGP is strongly heteroskedastic, only the single highly varying observa-
tion yi∗ will substantially deviate from its expectation μ

(i∗)
0 , whereas all other

observations will be very close to their expectations. That is, under such a DGP
we approximately have

Y ≈ μ0 + (yi∗ −μ
(i∗)
0 )ei∗(n),

where we recall that ei∗(n) is the i∗th n × 1 standard basis vector. That is,
essentially, the data are concentrated on a one-dimensional affine subspace of
the sample space Rn.

2. Invariance properties of T common to all test statistics used in this paper (and
in practice) imply that

T(μ0 + cei∗(n)) = T(μ0 + ei∗(n)) for every c �= 0.

That is, the test statistic under consideration is essentially constant on the one-
dimensional affine subspace just obtained in the previous item.

3. Combining the two previous observations (and ignoring the case where yi∗ =
μ

(i∗)
0 ), suggests that for strongly heteroskedastic DGPs we have

T(Y) ≈ T(μ0 + ei∗(n)).

That is, essentially, the distribution of the test statistic collapses at the value
T(μ0 + ei∗(n)).

Now, recall that a wild bootstrap-based test rejects if the test statistic evaluated
at the data T(Y) exceeds the bootstrap critical value. This bootstrap critical value
is a 1 − α quantile of the distribution of the test statistic, but now induced by
the distribution that corresponds to a bootstrap scheme Y∗, say. In general, the
distribution of T(Y∗) depends on two sources of randomness: first, the DGP itself,
and second, the randomization mechanism used to generate the bootstrap scheme
Y∗. Making use of the concentration mechanism outlined above, one can, for
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the class of bootstrap schemes considered, however, show that the dependence
on the DGP essentially vanishes for strongly heteroskedastic DGPs. That is, the
distribution function of T(Y∗) approximately equals a distribution function �i∗ ,
say, which depends on i∗, but on no other aspect of the DGP. The bootstrap
critical value is then a 1 − α quantile of �i∗ . Recalling from 3. that for strongly
heteroskedastic DGPs T(Y) ≈ T(μ0 + ei∗(n)), it follows that for such DGPs the
event that the wild bootstrap based test rejects the null hypothesis essentially
coincides with the event that T(μ0 + ei∗(n)) exceeds the 1 − α quantile of �i∗ .
Both T(μ0 + ei∗(n)) and �i∗ are nonrandom. Hence (recall that we are operating
under the null hypothesis) for strongly heteroskedastic DGPs the test will have a
rejection probability close to one if �i∗(T(μ0 + ei∗(n))) > 1 −α.17 In the above
argument i∗ was fixed. Varying i∗ ∈ {1, . . . ,n}, we finally come to the conclusion
that the maximal rejection probability under the null will be close to 1 in case

max
i∗=1,...,n

�i∗(T(μ0 + ei∗(n))) > 1−α.

In other words, the bootstrap-based test under consideration will have rejection
probabilities close to one for all levels of significance satisfying

α > 1− max
i∗=1,...,n

�i∗ (T(μ0 + ei∗(n))) .

The quantity to the right is closely related to our constants ϑ . Note that the above
reasoning is nonrigorous and, in particular, does not take into consideration some
technical subtleties that arise in the just given approximation arguments and that
we have tacitly ignored in the preceding discussion. Therefore, the expressions for
the constants ϑ we arrive at in the theorems in the subsequent section are somewhat
more complicated, albeit the underlying intuition is the same.

As transpires from the preceding heuristic discussion, the method for establish-
ing the size one results given in the next section relies on the assumption that the
heteroskedasticity model employed is rich enough to approximate extreme cases
of strongly heteroskedastic DGPs, namely the ones where all but one observation
have zero variance, arbitrarily well. This is certainly so for the leading case of
the heteroskedasticity model CHet, which describes agnosticism about the form
of heteroskedasticity. Therefore, the results in the next section are presented for
this case, and a discussion to which other heteroskedasticity models these results
generalize is given in Section 7.

If one maintains a heteroskedasticity model that does not allow one to approxi-
mate any of the above mentioned extreme cases of strongly heteroskedastic DGPs
(such as, e.g., the heteroskedasticity model CHet(a) which consists of all error-
covariance matrices in CHet with diagonal elements bounded from below by a > 0),
then the method of proof underlying our size one results no longer is applicable.
However, this does not imply that the size of a bootstrap-based test over CHet(a)

17More precisely, if the left hand side limit �i∗ (T(μ0 +ei∗ (n))−) exceeds 1−α. We ignore this technical detail here
for the sake of simplicity.
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is about right: Since the rejection probabilities are continuous in the parameters
(in particular, in �), the size over CHet(a) will be much larger than the nominal
significance level at least for small a (in fact, it will be close to one if a is
sufficiently small) in any situation where the size over CHet equals one (e.g., in the
situations described in the theorems further below). [The actual size over CHet(a)

depends on the chosen bound a and on the design matrix, the hypothesis to be
tested, the test statistic, and also on the bootstrap scheme used.] Furthermore, the
bound a has to be decided on prior to the data analysis and is part of modeling
the form of heteroskedasticity. It is difficult to see how one would come up with a
reasonable bound a in practice: if a is chosen to be very small, this may result in a
heteroskedasticity model under which the tests are still severely oversized as just
discussed, while choosing a large will typically not be defendable as it presumes
considerable knowledge about the admissible forms of heteroskedasticity.

5. SIZE ONE RESULTS

In this section, we provide sufficient conditions for the size of bootstrap-based
heteroskedasticity robust tests to be equal to one when the heteroskedasticity model
is CHet, which is the largest possible heteroskedasticity model and which reflects
agnosticism regarding the form of heteroskedasticity. For extensions to other
heteroskedasticity models see Section 7. We next discuss the bootstrap schemes
that will be considered and which all are based on the wild bootstrap idea. The
first bootstrap scheme is given by

y∗(y,ξ) = Xβ̃M0(y)+diag(ξ)(y−Xβ̃A(y)) (8)

for every y ∈Rn, where A will always be an affine subspace of Rn satisfying M0 ⊆
A⊆ span(X), and where ξ is a draw from �, a given (Borel) probability measure on
Rn. Typical choices in the literature are A =M0, i.e., one uses restricted residuals
in the wild bootstrap, or A = span(X), in which case unrestricted residuals are
used.18 In practice only these two choices will typically arise, but the theory
given below covers the more general case where M0 ⊆ A ⊆ span(X) at no extra
cost. The measure � may depend on observable quantities like, e.g., X, R, or
A, but not on y. For example, � could be the n-fold product of Mammen or
Rademacher distributions, but other choices (e.g., ones obtained by modifying
the aforementioned distributions by weights, or nondiscrete distributions) are also
covered. See Section 8 for some examples. For the theoretical results in this section,
there is no need to specify a particular form of �.19

18Because all test statistics (and associated exceptional sets) considered below are at least G(M0)-invariant (see
Remarks 3.2 and 5.6), the bootstrap scheme (8) can be replaced by y∗∗(y,ξ) = μ0 + diag(ξ)(y − Xβ̃A(y)) for an
arbitrary value μ0 ∈ M0 without affecting the bootstrapped test statistic.
19Suppose � is the empirical distribution of B draws (possibly modified by weights) from an underlying distribution
�0, which will often be the case if n is large and the ideal bootstrap using �0 is infeasible. In this case � is strictly
speaking a random probability measure (depending on the particular sample of size B drawn from �0) and the
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The second bootstrap scheme differs from the first one only insofar as centering
is at the unrestricted estimator Xβ̂(y) rather than at the restricted estimator
Xβ̃M0(y). That is, the second bootstrap scheme is given by

y�(y,ξ) = Xβ̂(y)+diag(ξ)(y−Xβ̃A(y)) (9)

for every y ∈ Rn. Note that y∗(y,ξ) as well as y�(y,ξ) depend also on the choice
of A, but we shall not show this dependence in the notation.

5.1. Bootstrap-Based Tests Derived from THet and Tuc

In the subsequent theorems, � is always a (Borel) probability measure on Rn, and
A is an affine subspace of Rn satisfying M0 ⊆ A ⊆ span(X). If we use the first
bootstrap scheme, i.e., (8), the bootstrapped test statistic corresponding to THet is
given by T∗

Het, where T∗
Het : Rn ×Rn → R is defined via

T∗
Het(y,ξ) = THet

(
y∗(y,ξ)

)
.

Furthermore, for every y ∈Rn denote the distribution function of the bootstrapped
test statistic under � by FHet,y, i.e., FHet,y(t) = �(T∗

Het(y,ξ) ≤ t) for t ∈ R. For
reasons that are discussed further below, we also need to consider a modification
of THet defined by T�

Het (y) = THet (y) if y /∈ B and T�
Het(y) = ∞ otherwise. Its

bootstrapped version is then given by T�,∗
Het (y,ξ) = T�

Het (y
∗(y,ξ)). Similarly as

before, for every y ∈ Rn we denote its distribution function under � by F�
Het,y,

i.e., F�
Het,y(t) = �(T�,∗

Het (y,ξ) ≤ t) for t ∈ R∪{∞}.

THEOREM 5.1. Suppose Assumption 1 holds.
(a) For every α ∈ (0,1), let fHet,1−α(y) denote a (1−α)-quantile of FHet,y. Define

ϑHet = 1−max(ϑ1,Het,ϑ2,Het), where

ϑ1,Het = max
i=1,...,n,
ei(n)/∈B

�
({

ξ : T∗
Het(μ0 + ei(n),ξ)

< THet(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ B
})

(10)

and

ϑ2,Het = max
i=1,...,n,

ei(n)∈span(X),Rβ̂(ei(n))�=0

�
({

ξ : y∗(μ0 + ei(n),ξ) /∈ B
})

(11)

for some μ0 ∈ M0, with the convention that ϑ1,Het = 0 (ϑ2,Het = 0, respectively) if
the index set in the maximum operator in (10) ((11), respectively) is empty. Then

bootstrap-based tests also depend on this sample. However, working conditionally on this sample brings us back
into the current framework.
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neither ϑ1,Het nor ϑ2,Het depend on the choice of μ0 ∈ M0. Furthermore, for every
α ∈ (0,1) such that α > ϑHet holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
THet ≥ fHet,1−α

) ≥ sup
�∈CHet

Pμ0,σ
2�

(
THet > fHet,1−α

) = 1 (12)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (12) are to
be interpreted as inner probabilities20).

(b) For every α ∈ (0,1), let f �
Het,1−α(y) denote a (1−α)-quantile of F�

Het,y. Then,
with ϑHet defined in Part (a), for every α ∈ (0,1) such that α > ϑHet holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
THet ≥ f �

Het,1−α

) ≥ sup
�∈CHet

Pμ0,σ
2�

(
THet > f �

Het,1−α

) = 1 (13)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (13) are to
be interpreted as inner probabilities).

Part (a) of the preceding theorem implies that for every nominal signifi-
cance level α > ϑHet the size (over CHet) of the bootstrap-based test derived
from THet is equal to 1 and thus is inflated (and this is true whether the
bootstrap-based test uses the rejection region

{
y : THet(y) ≥ fHet,1−α(y)

}
or{

y : THet(y) > fHet,1−α(y)
}
).21 Note that the lower bound ϑHet is observable

and can be computed, see Section 5.3 for some more detail. As we shall see
from the numerical results in Section 8, the lower bound ϑHet can be quite
small, the results in the theorem thus covering standard choices for α such as
α = 0.05. A consequence of Theorem 5.1 thus is, in particular, that there is
in general no guarantee for bootstrap-based tests derived from THet (or from
the other statistics considered in the theorems further below), conducted at a
nominal significance level α, to be truly level α tests. Although trivial, we
note that Theorem 5.1 provides only a sufficient condition for size being equal
to one and thus, in case α ≤ ϑHet holds, the size of the bootstrap-based test
may nevertheless be much larger than α (and may perhaps even be equal
to 1).

The significance of Part (b) of the theorem is as follows: Recall from Lemma
3.1 that under Assumption 1 the way THet is defined on B is immaterial for
the rejection probabilities of (nonbootstrap-based) tests obtained from this test
statistic since the set B is a Lebesgue null set and since the probability measures
in (2) are all absolutely continuous w.r.t. Lebesgue measure; in particular, the
(nonbootstrap-based) tests derived from THet and T�

Het have the same rejection
probabilities. However, when it comes to the bootstrapped test statistics, the
situation becomes more complicated as � often will be a discrete measure. That

20This allows one to ignore measurability issues regarding fHet,1−α .
21We note that in principle it is conceivable that these two rejection regions have different probabilities under Pμ0,σ

2� .
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is, it is a priori conceivable that the value we assign to the test statistic on the set
B may have an effect on the bootstrapped test statistic and thus on the (1 − α)-
quantile computed from it; in particular, it might be that an assignment of a value
different from zero on the set B may lead to a larger (1 −α)-quantile. This then
raises the question, whether a bootstrap-based test that uses such a (potentially)
larger (1 −α)-quantile may have a smaller size than when the quantile fHet,1−α is
being used. Within the context of the theorem, Part (b) answers this in the negative
by showing that, even if one defines the bootstrapped test statistic as ∞ on the
event where the bootstrap sample y∗(y,ξ) falls into the exceptional set B and uses
a resulting (1 − α)-quantile, the bootstrap-based test again has size 1 under the
same condition on α. [As any other way of defining the bootstrapped test statistic
on the event y∗(y,ξ) ∈ B obviously leads to (1 − α)-quantiles not larger than an
(appropriately chosen) (1 − α)-quantile of F�

Het,y, Part (b) covers also any such
alternative definition of the bootstrapped test statistic.]22 For additional discussion
see also Remark 5.12.

We also stress that the results in the preceding theorem hold for any
choice fHet,1−α (f �

Het,1−α(y), respectively) from the set of (1−α)-quantiles of FHet,y

(F�
Het,y, respectively).23

Furthermore, we note that the preceding theorem holds with the same lower
bound ϑHet for a much larger class of error distributions than just Gaussian errors
(an assumption we have made only for convenience), see Section 7. Hence, in this
sense the lower bound ϑHet is “distribution free.”

We next turn to the test statistic Tuc. Again using the first bootstrap scheme, the
bootstrapped test statistic is then given by T∗

uc where T∗
uc : Rn ×Rn →R is defined

via

T∗
uc(y,ξ) = Tuc

(
y∗(y,ξ)

)
.

Furthermore, for every y ∈Rn denote the distribution function of the bootstrapped
test statistic under � by Fuc,y, i.e., Fuc,y(t) = �(T∗

uc(y,ξ) ≤ t) for t ∈ R. As before,
we also need to consider the modification of Tuc defined by T�

uc (y) = Tuc (y) if
y /∈ span(X) and T�

uc(y) = ∞ otherwise. Its bootstrapped version is then given
by T�,∗

uc (y,ξ) = T�
uc (y∗(y,ξ)). Similarly as before, for every y ∈ Rn we denote

its distribution function under � by F�
uc,y, i.e., F�

uc,y(t) = �(T�,∗
uc (y,ξ) ≤ t) for

t ∈ R∪{∞}.

22An alternative approach, which—if successful—would make considering Part (b) obsolete, would be to try to show
that the set of y′s for which T�,∗

Het and T∗
Het coincide �-a.e., and thus their quantiles coincide, is the complement of a

Lebesgue null set. While this alternative approach actually can be shown to work in some special cases, it does not
so in general, as can be seen from examples.
23Suppose 0 < δ < 1 and F is a cdf defined on R (R∪{∞}, respectively). An element q ∈ R (q ∈ R∪{∞},
respectively) is said to be a δ-quantile of F iff it satisfies F(q) ≥ δ ≥ F(q−), where F(q−) denotes the left-hand
limit of F at q. Note that q need not be unique in general. There is always a smallest and a largest δ-quantile among
all δ-quantiles. The smallest one is given by F−1(δ), where F−1 is the “generalized” inverse of F. If δ does not
belong to the range of F, then F−1(δ) is also the largest δ-quantile. Otherwise, the largest δ-quantile is given by
sup{x ∈ R : F(x) = δ} (sup{x ∈ R∪{∞} : F(x) = δ}, respectively), which may or may not coincide with F−1(δ).
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THEOREM 5.2. (a) For every α ∈ (0,1), let fuc,1−α(y) denote a (1−α)-quantile
of Fuc,y. Define ϑuc = 1−max(ϑ1,uc,ϑ2,uc), where

ϑ1,uc = max
i=1,...,n,

ei(n)/∈span(X)

�
({

ξ : T∗
uc(μ0 + ei(n),ξ)

< Tuc(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ span(X)
})

(14)

and

ϑ2,uc = max
i=1,...,n,

ei(n)∈span(X),Rβ̂(ei(n))�=0

�
({

ξ : y∗(μ0 + ei(n),ξ) /∈ span(X)
})

(15)

for some μ0 ∈ M0, with the convention that ϑ2,uc = 0 if the index set in the
maximum operator in (15) is empty.24 Then neither ϑ1,uc nor ϑ2,uc depend on the
choice of μ0 ∈ M0. Furthermore, for every α ∈ (0,1) such that α > ϑuc holds, we
have

sup
�∈CHet

Pμ0,σ
2�

(
Tuc ≥ fuc,1−α

) ≥ sup
�∈CHet

Pμ0,σ
2�

(
Tuc > fuc,1−α

) = 1 (16)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (16) are to
be interpreted as inner probabilities).

(b) For every α ∈ (0,1), let f �
uc,1−α(y) denote a (1 −α)-quantile of F�

uc,y. Then,
with ϑuc defined in Part (a), for every α ∈ (0,1) such that α > ϑuc holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
Tuc ≥ f �

uc,1−α

) ≥ sup
�∈CHet

Pμ0,σ
2�

(
Tuc > f �

uc,1−α

) = 1 (17)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (17) are to
be interpreted as inner probabilities).

Mutatis mutandis, a discussion similar to the one given subsequently to Theorem
5.1 also applies here.

So far we have only considered the bootstrap scheme (8). We now turn to the
second bootstrap scheme given by (9). Here the bootstrapped version of THet is
given by

T�
Het(y,ξ) = (Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y))′�̂−1
Het

(
y�(y,ξ)

)
(Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y)),

if y�(y,ξ) /∈ B, and by T�
Het(y,ξ) = 0 if y�(y,ξ) ∈ B. And the bootstrapped version

of Tuc is given by

T�
uc (y,ξ) = (Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y))′
(
σ̂ 2(y�(y,ξ))R

(
X′X

)−1
R′

)−1

× (Rβ̂
(
y�(y,ξ)

)−Rβ̂ (y)),

24Note that the index set in the maximum operator in (14) cannot be empty since we have assumed k < n.
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if y�(y,ξ) �∈ span(X), and by T�
uc (y,ξ) = 0 if y�(y,ξ) ∈ span(X). Furthermore,

T�,�
Het (y,ξ) and T�,�

uc (y,ξ) are defined in exactly the same way, except that
T�,�

Het (y,ξ) = ∞ if y�(y,ξ) ∈ B and that T�,�
uc (y,ξ) = ∞ if y�(y,ξ) ∈ span(X).

We will show in the next lemma that T�
Het(y,ξ) coincides with T∗

Het(y,ξ), and that
the same is true for T�

uc (y,ξ) and T∗
uc(y,ξ) (as well as for T�,�

Het (y,ξ) and T�,∗
Het (y,ξ),

and T�,�
uc (y,ξ) and T�,∗

uc (y,ξ)), provided the same affine space A is used in (8) and
(9). As a consequence, this—together with Remark 5.4—shows that Theorems
5.1 and 5.2 also apply immediately to the bootstrap-based test when the second
bootstrap scheme, i.e., (9), is used (with the sameA and �). The lemma is certainly
not new and is a variant of a similar result given as Proposition 1 in van Giersbergen
and Kiviet (2002).

LEMMA 5.3. We have T∗
Het(y,ξ) = T�

Het(y,ξ), T∗
uc(y,ξ) = T�

uc (y,ξ), T�,∗
Het (y,ξ) =

T�,�
Het (y,ξ), and T�,∗

uc (y,ξ) = T�,�
uc (y,ξ) for every y ∈Rn and every ξ ∈Rn. [Here it

is understood that both bootstrap schemes are based on the same affine space A.]

Remark 5.4. Define θHet exactly in the same way as ϑHet, except that T∗
Het and

y∗ are replaced by T�
Het and y�. Similarly define θuc. Then θHet = ϑHet and θuc = ϑuc

in view of Lemma 5.3 and the fact that y∗(y,ξ) /∈ B iff y�(y,ξ) /∈ B and y∗(y,ξ) /∈
span(X) iff y�(y,ξ) /∈ span(X) (note that y∗(y,ξ) − y�(y,ξ) ∈ span(X) and that
B+ span(X) = B).

5.2. Bootstrap-Based Tests Derived from T̃Het and T̃uc

Based on suggestions in the literature on bootstrapping heteroskedasticity robust
tests, we next consider two further test statistics, which are versions of THet and Tuc

with the only difference that the covariance matrix estimators used are computed
from restricted—instead of unrestricted—residuals. We thus define

T̃Het (y) =
{

(Rβ̂ (y)− r)′�̃−1
Het (y)(Rβ̂ (y)− r), if det�̃Het (y) �= 0,
0, if det�̃Het (y) = 0,

(18)

where �̃Het = R�̃HetR′ and where �̃Het is given by

�̃Het (y) = (X′X)−1X′diag
(

d̃1ũ2
1 (y), . . . ,d̃nũ2

n (y)
)

X(X′X)−1,

where the constants d̃i > 0 sometimes depend on the design matrix and on the
restriction matrix R. Here ũ(y) = y−Xβ̃M0(y) = 	(Mlin

0 )⊥(y−μ0), where the last

expression does not depend on the choice of μ0 ∈ M0, and where ũt (y) denotes
the tth component of ũ(y). Typical choices for d̃i are d̃i = 1, d̃i = n/(n− (k −q)),
d̃i = (1 − h̃ii)

−1, or d̃i = (1 − h̃ii)
−2 where h̃ii denotes the ith diagonal element of

the projection matrix 	
Mlin

0
, see, e.g., Davidson and MacKinnon (1985). Another

suggestion is d̃i = (1− h̃ii)
−δ̃i for δ̃i = min(nh̃ii/(k−q),4) with the convention that
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δ̃i = 0 if k = q.25 For the last three choices of d̃i just given we use the convention
that we set d̃i = 1 in case h̃ii = 1. Note that h̃ii = 1 implies ũi (y) = 0 for every
y, and hence it is irrelevant which real value is assigned to d̃i in case h̃ii = 1.26

The five examples for the weights d̃i just given correspond to what is often called
HC0R–HC4R weights in the literature.27

The subsequent assumption ensures that the set of y’s for which �̃Het (y) is
singular is a Lebesgue null set, implying that our choice of assigning T̃Het (y) the
value zero in case �̃Het (y) is singular has no import on the rejection probabilities
of the (nonbootstrap-based) tests obtained from T̃Het (as the measures Pμ,σ 2� are
absolutely continuous). As will be seen later, our results for the corresponding
bootstrap-based tests do also not depend on this choice. Also, as discussed further
below, the assumption is in a certain sense unavoidable when using T̃Het.

Assumption 2. Let 1 ≤ i1 < · · · < is ≤ n denote all the indices for which eij(n) ∈
Mlin

0 holds where ej(n) denotes the jth standard basis vector in Rn. If no such index
exists, set s = 0. Let X′ (¬(i1, . . . is)) denote the matrix which is obtained from X′
by deleting all columns with indices ij, 1 ≤ i1 < · · · < is ≤ n (if s = 0 no column is
deleted). Then rank

(
R(X′X)−1X′ (¬(i1, . . . is))

) = q holds.

Observe that this assumption only depends on X and R and hence can be
checked. Obviously, a simple sufficient condition for Assumption 2 to hold is that
s = 0 (i.e., that ej(n) /∈Mlin

0 for all j), a generically satisfied condition. Furthermore,
we introduce the matrix

B̃(y) = R(X′X)−1X′diag(ũ1(y), . . . ,ũn(y))

= R(X′X)−1X′diag
(

e′
1(n)	(Mlin

0 )⊥(y−μ0), . . . ,e
′
n(n)	(Mlin

0 )⊥(y−μ0)
)

.

(19)

Note that this matrix does not depend on the choice of μ0 ∈ M0. The following
lemma collects some important properties of �̃Het and B̃ (defined in that lemma).
Its proof is given in Appendix C.

LEMMA 5.5. (a) �̃Het (y) is nonnegative definite for every y ∈ Rn.
(b) �̃Het (y) is singular (zero, respectively) if and only if rank(B̃(y)) < q (B̃(y) =

0, respectively).
(c) The set B̃ given by {y ∈ Rn : rank(B̃(y)) < q} (or, in view of (b), equivalently

given by {y ∈ Rn : det(�̃Het (y)) = 0}) is either a λRn -null set or the entire sample
space Rn. The latter occurs if and only if Assumption 2 is violated (in which case
the test based on T̃Het becomes trivial, as then T̃Het is identically zero).

(d) Suppose Assumption 2 holds. Then for every μ0 ∈M0 the set B̃−μ0 is a finite
union of proper linear subspaces; in case q = 1, B̃ −μ0 is even a proper linear

25Note that in case k = q we have h̃ii = 0, and hence d̃i = 1 regardless of our convention for δ̃i.
26In fact, h̃ii = 1 is equivalent to ũi (y) = 0 for every y, each of which in turn is equivalent to ei(n) ∈ Mlin

0 .
27In the case k = q the HC0R–HC4R weights all coincide (d̃i = 1 for every i), and hence result in the same test
statistic.
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subspace itself.28,29 [Note that B̃−μ0 does not depend on the choice of μ0 ∈ M0.
In particular, if r = 0, i.e., if M0 is linear, we thus may set μ0 = 0.]

(e) B̃ is a closed set and contains M0. Also B̃ is G(M0)-invariant, and in
particular B̃+Mlin

0 = B̃.

In light of Part (c) of the lemma, we see that Assumption 2 is a natural
and unavoidable condition if one wants to obtain a sensible test from T̃Het.30

Furthermore, note that if B̃ = M0 is true, then Assumption 2 must be satisfied
(since M0 is a λRn-null set as k − q < n is always the case). For later use we
also mention that under Assumption 2 the statistic T̃Het is continuous at every
y ∈ Rn\B̃.31

We finally consider in analogy with Tuc

T̃uc(y) =
{

(Rβ̂ (y)− r)′
(
σ̃ 2(y)R

(
X′X

)−1
R′

)−1
(Rβ̂ (y)− r), if y /∈ M0,

0, if y ∈ M0,

(20)

where σ̃ 2(y) = ũ(y)′ ũ(y)/(n−(k−q)) ≥ 0 (which vanishes if and only if y ∈M0).
Of course, our choice to set T̃uc(y) = 0 for y ∈ M0 has no import on the rejection
probabilities of the (nonbootstrap-based) tests obtained from T̃uc, since M0 is a
λRn-null set (and since the measures Pμ,σ 2� are absolutely continuous). It will

turn out also not to affect our results for bootstrap-based tests obtained from T̃uc.
For later use we also mention that T̃uc is continuous at every y ∈ Rn\M0.

Remark 5.6. The test statistics T̃Het as well as T̃uc are G(M0)-invariant as is
easily seen (with the respective exceptional sets B̃ and M0 also being G(M0)-
invariant), but typically they are not nonsphericity-corrected F-type tests in the
sense of Section 5.4 in Preinerstorfer and Pötscher (2016).

In the theorems given in the next two subsections we use the same bootstrap
schemes as before (i.e., (8) and (9)); in particular, recall that � is a (Borel)
probability measure on Rn, and that A is an affine subspace of Rn satisfying
M0 ⊆ A ⊆ span(X).

5.2.1. The first bootstrap scheme. We start with results where the first boot-
strap scheme, i.e., (8), is being used. The bootstrapped test statistic corresponding
to T̃Het is then given by T̃∗

Het, where T̃∗
Het : Rn ×Rn → R is defined via

T̃∗
Het(y,ξ) = T̃Het

(
y∗(y,ξ)

)
.

28Consequently, B̃ is a finite union of proper affine subspaces, and is a proper affine subspace itself in case q = 1.
29If Assumption 2 is violated, then B̃−μ0 = B̃ = Rn in view of Part (c).
30If this assumption is violated then T̃Het is identically zero, an uninteresting trivial case.
31If Assumption 2 is violated, then T̃Het is constant equal to zero, and hence trivially continuous everywhere.
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Furthermore, for every y ∈Rn denote the distribution function of the bootstrapped
test statistic under � by F̃Het,y, i.e., F̃Het,y(t) = �(T̃∗

Het(y,ξ) ≤ t) for t ∈ R. For
similar reasons as in Section 5.1, we also consider the modification of T̃Het

defined by T̃�
Het (y) = T̃Het (y) if y /∈ B̃ and T̃�

Het(y) = ∞ otherwise. Its bootstrapped
version is then given by T̃�,∗

Het (y,ξ) = T̃�
Het (y

∗(y,ξ)). For every y ∈ Rn we denote
its distribution function under � by F̃�

Het,y, i.e., F̃�
Het,y(t) = �(T̃�,∗

Het (y,ξ) ≤ t) for
t ∈ R∪{∞}.

THEOREM 5.7. Suppose Assumption 2 holds.
(a) For every α ∈ (0,1), let f̃Het,1−α(y) denote a (1−α)-quantile of F̃Het,y. Define

ϑ̃Het = 1− max
i=1,...,n,

μ0+ei(n)/∈B̃

�
({

ξ : T̃∗
Het(μ0 + ei(n),ξ)

< T̃Het(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ B̃

})
(21)

for some μ0 ∈M0, with the convention that ϑ̃Het = 1 if the index set in the maximum
operator in (21) is empty. Then ϑ̃Het does not depend on the choice of μ0 ∈ M0.
Furthermore, for every α ∈ (0,1) such that α > ϑ̃Het holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃Het ≥ f̃Het,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃Het > f̃Het,1−α

)
= 1 (22)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (22) are to
be interpreted as inner probabilities).

(b) For every α ∈ (0,1), let f̃ �
Het,1−α(y) denote a (1−α)-quantile of F̃�

Het,y. Then,

with ϑ̃Het defined in Part (a), for every α ∈ (0,1) such that α > ϑ̃Het holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃Het ≥ f̃ �

Het,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃Het > f̃ �

Het,1−α

)
= 1 (23)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (23) are to
be interpreted as inner probabilities).

We next turn to the test statistic T̃uc. Again using the first bootstrap scheme, the
bootstrapped test statistic is then given by T̃∗

uc, where T̃∗
uc : Rn ×Rn →R is defined

via

T̃∗
uc(y,ξ) = T̃uc

(
y∗(y,ξ)

)
.

Furthermore, for every y ∈Rn denote the distribution function of the bootstrapped
test statistic under � by F̃uc,y, i.e., F̃uc,y(t) = �(T̃∗

uc(y,ξ) ≤ t) for t ∈ R. We also
consider the modification of T̃uc defined by T̃�

uc (y) = T̃uc (y) if y /∈M0 and T̃�
uc(y) =

∞ otherwise. Its bootstrapped version is then given by T̃�,∗
uc (y,ξ) = T̃�

uc (y∗(y,ξ)).
For every y ∈Rn we denote its distribution function under � by F̃�

uc,y, i.e., F̃�
uc,y(t) =

�(T̃�,∗
uc (y,ξ) ≤ t) for t ∈ R∪{∞}.
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THEOREM 5.8. (a) For every α ∈ (0,1), let f̃uc,1−α(y) denote a (1−α)-quantile
of F̃uc,y. Define

ϑ̃uc = 1− max
i=1,...,n,

μ0+ei(n)/∈M0

�
({

ξ : T̃∗
uc(μ0 + ei(n),ξ)

< T̃uc(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ M0

})
(24)

for some μ0 ∈ M0.32 Then ϑ̃uc does not depend on the choice of μ0 ∈ M0.
Furthermore, for every α ∈ (0,1) such that α > ϑ̃uc holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃uc ≥ f̃uc,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃uc > f̃uc,1−α

)
= 1 (25)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (25) are to
be interpreted as inner probabilities).

(b) For every α ∈ (0,1), let f̃ �
uc,1−α(y) denote a (1 −α)-quantile of F̃�

uc,y. Then,

with ϑ̃uc defined in Part (a), for every α ∈ (0,1) such that α > ϑ̃uc holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃uc ≥ f̃ �

uc,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃uc > f̃ �

uc,1−α

)
= 1 (26)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (26) are to
be interpreted as inner probabilities).

Mutatis mutandis, a discussion similar to the one given subsequently to Theorem
5.1 also applies to the preceding two theorems.

5.2.2. The second bootstrap scheme. For the test statistics T̃Het and T̃uc an
analogon to Lemma 5.3 is not available. Hence, we need to provide separate
theorems for the case where the second bootstrap scheme, i.e., (9), is being used.
This is done next. With this bootstrap scheme, the bootstrapped test statistic
corresponding to T̃Het is given by

T̃�
Het(y,ξ) = (Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y))′�̃−1
Het

(
y�(y,ξ)

)
(Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y)),

if y�(y,ξ) /∈ B̃, and by T̃�
Het(y,ξ) = 0 if y�(y,ξ) ∈ B̃. For every y ∈ Rn denote

the distribution function of the bootstrapped test statistic under � by H̃Het,y, i.e.,
H̃Het,y(t) = �(T̃�

Het(y,ξ) ≤ t) for t ∈ R. Furthermore, T̃�,�
Het (y,ξ) is defined exactly

as is T̃�
Het(y,ξ), except that T̃�,�

Het (y,ξ) = ∞ if y�(y,ξ) ∈ B̃. For every y ∈Rn denote
its distribution function under � by H̃�

Het,y, i.e., H̃�
Het,y(t) = �(T̃�,�

Het (y,ξ) ≤ t) for
t ∈ R∪{∞}.

THEOREM 5.9. Suppose Assumption 2 holds.

32Note that the index set in the maximum operator in (24) cannot be empty since k − q ≤ k and we have assumed
k < n.
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(a) For every α ∈ (0,1), let h̃Het,1−α(y) denote a (1−α)-quantile of H̃Het,y. Define

θ̃Het = 1− max
i=1,...,n,

μ0+ei(n)/∈B̃

�
({

ξ : T̃�
Het(μ0 + ei(n),ξ)

< T̃Het(μ0 + ei(n)),y�(μ0 + ei(n),ξ) /∈ B̃

})
(27)

for some μ0 ∈M0, with the convention that θ̃Het = 1 if the index set in the maximum
operator in (27) is empty. Then θ̃Het does not depend on the choice of μ0 ∈ M0.
Furthermore, for every α ∈ (0,1) such that α > θ̃Het holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃Het ≥ h̃Het,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃Het > h̃Het,1−α

)
= 1 (28)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (28) are to
be interpreted as inner probabilities).

(b) For every α ∈ (0,1), let h̃�
Het,1−α(y) denote a (1−α)-quantile of H̃�

Het,y. Then,

with θ̃Het defined in Part (a), for every α ∈ (0,1) such that α > θ̃Het holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃Het ≥ h̃�

Het,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃Het > h̃�

Het,1−α

)
= 1 (29)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (29) are to
be interpreted as inner probabilities).

With the bootstrap scheme considered in this subsection, the bootstrapped test
statistic corresponding to T̃uc is given by

T̃�
uc (y,ξ) = (Rβ̂

(
y�(y,ξ)

)−Rβ̂ (y))′
(
σ̃ 2(y�(y,ξ))R

(
X′X

)−1
R′

)−1

× (Rβ̂
(
y�(y,ξ)

)−Rβ̂ (y)),

if y�(y,ξ) /∈ M0, and by T̃�
uc (y,ξ) = 0 if y�(y,ξ) ∈ M0. For every y ∈ Rn denote

the distribution function of the bootstrapped test statistic under � by H̃uc,y, i.e.,
H̃uc,y(t) = �(T̃�

uc (y,ξ) ≤ t) for t ∈R. Furthermore, T̃�,�
uc (y,ξ) is defined exactly as

is T̃�
uc (y,ξ), except that T̃�,�

uc (y,ξ) = ∞ if y�(y,ξ) ∈M0. For every y ∈ Rn denote
its distribution function under � by H̃�

uc,y, i.e., H̃�
uc,y(t) = �(T̃�,�

uc (y,ξ) ≤ t) for
t ∈ R∪{∞}.

THEOREM 5.10. (a) For every α ∈ (0,1), let h̃uc,1−α(y) denote a (1 − α)-
quantile of H̃uc,y. Define

θ̃uc = 1− max
i=1,...,n,

μ0+ei(n)/∈M0

�
({

ξ : T̃�
uc (μ0 + ei(n),ξ)

< T̃uc(μ0 + ei(n)),y�(μ0 + ei(n),ξ) /∈ M0

})
(30)
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for some μ0 ∈ M0.33 Then θ̃uc does not depend on the choice of μ0 ∈ M0.
Furthermore, for every α ∈ (0,1) such that α > θ̃uc holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃uc ≥ h̃uc,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃uc > h̃uc,1−α

)
= 1 (31)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (31) are to
be interpreted as inner probabilities).

(b) For every α ∈ (0,1), let h̃�
uc,1−α(y) denote a (1−α)-quantile of H̃�

uc,y. Then,

with θ̃uc defined in Part (a), for every α ∈ (0,1) such that α > θ̃uc holds, we have

sup
�∈CHet

Pμ0,σ
2�

(
T̃uc ≥ h̃�

uc,1−α

)
≥ sup

�∈CHet

Pμ0,σ
2�

(
T̃uc > h̃�

uc,1−α

)
= 1 (32)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (32) are to
be interpreted as inner probabilities).

Mutatis mutandis, a discussion similar to the one given subsequently to Theorem
5.1 also applies to the preceding two theorems.

5.3. Further Remarks

Remark 5.11. As already noted earlier, the various lower bounds for α given
in the theorems depend only on observable quantities, and can thus be computed
numerically. In particular, ϑHet in Theorem 5.1 depends only on X, R, r, A, �, and
on the di’s appearing in the definition of the test statistic, while ϑuc in Theorem
5.2 depends only on X, R, r, A, and �. Similarly, ϑ̃Het in Theorem 5.7 and θ̃Het

in Theorem 5.9 depend only on X, R, r, A, �, and on the d̃i’s appearing in the
definition of the test statistic. Finally, ϑ̃uc in Theorem 5.8 and θ̃uc in Theorem 5.10
depend only on X, R, r, A, and �.

Remark 5.12. (i) Relations (12) and (13) continue to hold a fortiori if THet is
replaced by T�

Het, as T�
Het is never smaller than THet (in fact, T�

Het and THet coincide
except on a Lebesgue null set under Assumption 1).

(ii) Relations (16) and (17) continue to hold a fortiori if Tuc is replaced by T�
uc, as

T�
uc is never smaller than Tuc (in fact, both coincide except on span(X), a Lebesgue

null set).
(iii) Relations (22), (23), (28), and (29) continue to hold a fortiori if T̃Het is

replaced by T̃�
Het, as T̃�

Het is never smaller than T̃Het (in fact, both coincide except
on a Lebesgue null set under Assumption 2).

(iv) Relations (25), (26), (31), and (32) continue to hold a fortiori if T̃uc is
replaced by T̃�

uc, as T̃�
uc is never smaller than T̃uc (in fact, both coincide except

on M0, a Lebesgue null set).

33Note that the index set in the maximum operator in (30) can not be empty since k − q ≤ k and we have assumed
k < n.
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Remark 5.13. In case q = 1, inspection of the proof of Theorem 5.1 shows that
the bound ϑHet can be somewhat improved by allowing in the definition of ϑ2,Het

the index i to range over all indices such that ei(n) ∈ B and Rβ̂(ei(n)) �= 0. [This is
so, since in case q = 1 singularity of �̂Het (y) is equivalent to �̂Het (y) = 0.]

Remark 5.14. The test statistics THet using HC0 and HC1 weights, respectively,
differ only by a multiplicative constant, and hence result in the same bootstrap-
based test. For design matrices X with hii not depending on i, the same conclusion
applies for all weights HC0–HC4. A similar remark applies to T̃Het (with h̃ii taking
the rôle of hii).

Remark 5.15. The size one results for bootstrap-based tests given in the
preceding theorems are easily seen to imply infimal coverage zero results for
the corresponding confidence sets for Rβ obtained by “inverting” the tests. The
computation of such confidence sets is straightforward and leads to ellipsoids
in the case where the bootstrap-based test is obtained from THet or Tuc and the
bootstrap scheme (9) with A = span(X) is used. This is so, since the covariance
matrix estimator employed in THet (or Tuc, respectively) does not depend on r, and
since the quantile of the bootstrap distribution is easily seen also not to depend on
r in this case. By Lemma 5.3 the same is true for the bootstrap-based tests obtained
from THet or Tuc and the bootstrap scheme (8) with A = span(X). In all other
combinations of test statistics and bootstrap schemes the “inversion” is typically
more complicated and becomes numerically burdensome, as then the covariance
matrix estimator employed in the test statistic and/or the quantile of the bootstrap
distribution will typically depend on r.

6. SOME SPECIAL CASES

Here we consider the special case where the null hypothesis is simple (i.e., q = k).
If restricted residuals are used in the bootstrap scheme (8) (i.e., if A = M0 holds),
the following result shows that in these cases our theorems become vacuous, and
thus do not allow us to draw any conclusion about the sizes of the corresponding
bootstrap-based tests. [Of course, this by itself does not preclude the possibility
that in these cases the size may be equal to one or may substantially exceed α.]
The observations made in the theorem below are in line with a result in Davidson
and Flachaire (2008) implying that—in the case corresponding to Part (c) of the
subsequent theorem—the bootstrap-based test using the bootstrap scheme (8) with
A = M0 indeed has size equal to the nominal significance level α, provided a
particular choice of � and particular values of α are used. [In fact, this result,
which is Theorem 1 in Davidson and Flachaire (2008), is not entirely correct in
the form given, but needs some amendments and corrections, which we shall not
provide here.34]

34A simple counterexample to Theorem 1 in Davidson and Flachaire (2008) is provided by a regression model which
has a standard basis vector as its only regressor. It is then easy to see that the test statistic is (almost surely) constant
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THEOREM 6.1. Suppose q = k and �({ξ ∈ Rn : ξi �= 0}) = 1 for every i =
1, . . . ,n. Then:

(a) ϑHet = 1 holds in Theorem 5.1, if A=M0 is used in the bootstrap scheme.35

(b) ϑuc = 1 holds in Theorem 5.2, if A = M0 is used in the bootstrap scheme.
(c) ϑ̃Het = 1 holds in Theorem 5.7, if A=M0 is used in the bootstrap scheme.36

(d) ϑ̃uc = 1 holds in Theorem 5.8, if A = M0 is used in the bootstrap scheme.

Remark 6.2. (i) Part (a) (Part (b), respectively) of the preceding theorem applies
to the bootstrap-based test derived from THet (Tuc, respectively) when the bootstrap
scheme (8) with A = M0 is employed. In view of Lemma 5.3 and Remark 5.4,
these results also apply if the bootstrap scheme (9), again with A = M0, is used.
However, as can be seen from simple examples, this is not so in the context of
Parts (c) and (d) of the preceding theorem (i.e., θ̃Het < 1 and θ̃uc < 1 can occur
in Theorems 5.9 and 5.10, respectively, even if q = k, A = M0, and � is as in
Theorem 6.1).

(ii) If bootstrap schemes (8) or (9) are used for the bootstrap-based tests derived
from any of THet, Tuc, T̃Het, and T̃uc, but now with M0 �A, simple examples show
that ϑHet < 1, ϑuc < 1, ϑ̃Het < 1, ϑ̃uc < 1, θ̃Het < 1, and θ̃uc < 1 can occur.

As a consequence of the preceding theorem, the function in the R-package wbsd
for computing ϑHet, etc. first checks if the conditions of the theorem are satisfied,
and if so, outputs 1 for ϑHet, etc.

7. EXTENSIONS AND GENERALIZATIONS

7.1. Other Covariance Models

The results given so far refer to the size of bootstrap-based tests when the
covariance model CHet is maintained. Inspection of the proofs of the theorems in
Sections 5 and 6 as well as of Theorem A.1 in Appendix A shows that they also hold
with CHet replaced by any covariance model C⊆ CHet other than CHet, provided the
closure of C contains, for i = 1, . . . ,n, the matrices ei(n)ei(n)′. More generally,
if the closure of C contains the matrices ei(n)ei(n)′ only for i ∈ I ⊆ {1, . . . ,n},
then Theorem A.1 continues to hold with CHet replaced by C, provided the range
of the maximum operator in (35) is intersected with I, and the other theorems
mentioned before continue to hold with CHet replaced by C, provided the ranges

and coincides with the bootstrapped test statistic. Consequently, the bootstrap-based test becomes trivial. Its null
rejection probabilities are equal to 0 if the p-value is defined as in Davidson and Flachaire (2008). [They are equal to
1 if an alternative definition of the p-value is used.]
35Theorem 5.1 maintains Assumption 1. If this assumption is violated, then THet is identically equal to zero, leading
to a useless test. If one would formally apply bootstrap scheme (8), the bootstrapped test statistic T∗

Het would then
also be identically zero, leading to a bootstrap critical value of zero. The rejection probability is then always equal
to zero or always equal to one, depending on whether one uses a strict or weak inequality in the definition of the
rejection region.
36Theorem 5.7 maintains Assumption 2. If this assumption is violated, then a similar comment as in Footnote 35
applies.
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of the maximum operators appearing in the definitions of the various quantities
ϑ1,Het, ϑ2,Het, ϑ1,uc, ϑ2,uc, ϑ̃Het, ϑ̃uc, θ̃Het, and θ̃uc are intersected with I.37

7.2. Non-Gaussian Errors

Consider now the regression model as in Section 2, except for the Gaussianity
assumption.

(i) If we assume a (possibly semiparametric) model for the distribution of the
errors such that the implied model for the distributions of Y contains all the
Gaussian distributions shown in (2), then the results of the paper continue to hold
a fortiori (with the same lower bounds for α), since the size of any test computed
w.r.t. such a larger model for the distributions of Y is certainly not smaller than the
size of the same test when computed w.r.t. to the Gaussian model (2).

(ii) Suppose next we assume that the standardized errors σ−1�−1/2U follow a
(fixed) distribution G that does not depend on (μ,σ,�), and let Qμ,σ 2�,G denote the
implied distribution of Y. If G is absolutely continuous w.r.t. λRn , then the results
of the paper continue to hold with Pμ,σ 2� replaced by Qμ,σ 2�,G (and with the same
lower bounds for α). This is easily seen from an inspection of the proofs.38

(iii) Suppose we have the same framework as in (ii), except that now G varies
in a set G (independently of (μ,σ,�)), i.e., we have a semiparametric model. If
at least one member G ∈ G is absolutely continuous, then the results of the paper
continue to hold a fortiori (with the same lower bounds for α) for reasons similar
to the ones given in (i).39

(iv) Also note that the lower bounds for α in all the results do not involve the
distribution of Y (and thus of U), and, in particular, do not involve the Gaussianity
assumption. Hence, in this sense the lower bounds are “distribution free.”

7.3. Stochastic Regressors

The assumption of nonstochastic regressors can be easily relaxed as follows:
Suppose X is random and U is conditionally on X distributed as N(0,σ 2�), with
σ 2 = σ 2(X) > 0 and � = �(X) ∈ CHet, where σ 2(·) and �(·) vary in given classes
of functions. Suppose further that σ 2(X) and �(X) vary independently through
all of (0,∞) and CHet, respectively, for (almost) every realization of X, when the
functions σ 2(·) and �(·) vary in the before mentioned function classes.40 Then the

37It is here understood that a maximum is interpreted as zero if it extends over an empty range.
38The assumption of absolute continuity of G can, in fact, be relaxed to the assumption that none of its one-
dimensional marginals has positive mass at zero in case of Theorems A.1, 5.7–5.10, and of the weaker versions
of Theorems 5.1 and 5.2 discussed in Remark B.2 in Appendix B. The proofs of Theorems 5.1 and 5.2 also extend to
the situation discussed here under any additional condition that guarantees that the exceptional sets B and span(X),
respectively, have probability zero under any Qμ0,σ

2�,G.
39Again, the absolute continuity assumption can be weakened, cf. Footnote 38.
40This is certainly the case if no restrictions on the functions σ 2(·) and �(·) are imposed beyond σ 2(·) and �(·),
respectively, taking values in (0,∞) and in the set of diagonal matrices with positive diagonal elements. Another
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results of the paper obviously apply after one conditions on X provided (almost) all
realizations of X satisfy the assumptions of our theorems, which will typically be
the case (for brevity we do not provide a formal statement here). And again similar
generalizations to non-Gaussianity as discussed in the preceding subsection are
possible here.

8. NUMERICAL RESULTS

There is a considerable body of simulation studies investigating finite sample
properties of bootstrap-based heteroskedasticity robust tests, see the references
mentioned in Section 1. While these studies provide helpful information, there
is—as always with simulation studies—an issue to what extent conclusions of
such a study generalize. This is particularly so with positive findings (such as,
e.g., that a particular bootstrap-based test has null rejection probabilities close to
the nominal significance level) as it is less than clear that such a finding allows for
generalization beyond the design matrices X, the restrictions (given by R, r), and
the forms of heteroskedasticity considered in the simulation study. It is less of an
issue with negative results (such as, e.g., that a particular bootstrap-based test has
null rejection probabilities much larger than the nominal significance level), since
they can be viewed as counterexamples disproving good behavior of the bootstrap-
based test in general.

For these reasons we set out to study the worst-case size performance of a
variety of bootstrap-based tests.41 That is, for any given bootstrap-based test in
a large class, we try to “break” the test by searching for a design matrix X, a
restriction (given by R, r) to be tested, and a form of heteroskedasticity, such that
the null rejection probability of the test is substantially larger than the nominal
significance level α. Note that this is equivalent to finding X, R, and r such that
the size of the bootstrap-based test computed over the heteroskedasticity model
CHet is substantially larger than α. A bootstrap-based test that is “broken” in our
study, should probably not be used by practitioners (at least not without first
assessing its properties in the particular testing problem put before the practitioner,
e.g., by attempting to determining the size of the test in that problem by Monte
Carlo methods). A bootstrap-based test that “survives” the “stress test” imposed
by our study may perhaps be considered to be a better choice, but note that
our numerical results do not provide any guarantee for good performance in the
practitioner’s testing problem either (and thus again an assessment of its properties
in the practitioner’s testing problem may be called for).

Our theoretical results obtained in the previous sections play an important role
in our study of the size performance of bootstrap-based tests, as these results allow

instance where this is seen to be satisfied is the case where σ 2(X)�(X) = diag(�(x1·), . . . ,�(xn·)) with no further
restrictions on the function � (besides positivity) and with at least one regressor being absolutely continuous.
41The concept of the size of a test is by itself already a worst-case concept, as it is the supremum of the rejection
probabilities over the null hypothesis (where X and the restrictions are being held fixed), cf. (4). The term “worst-case”
in “worst-case size performance” here refers to varying X and the restrictions to be tested.
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us to deduce abysmal size behavior (i.e., size equal to 1) of a bootstrap-based test
(for a given design matrix X and restriction (R, r) to be tested) by comparing the
(numerically evaluated) ϑ with the nominal significance level α; in this section
the symbol ϑ serves as a generic abbreviation for ϑHet(= θHet) (cf. Theorem 5.1),
ϑuc(= θuc) (cf. Theorem 5.2), ϑ̃Het (cf. Theorem 5.7), θ̃Het (cf. Theorem 5.9), ϑ̃uc (cf.
Theorem 5.8), or θ̃uc (cf. Theorem 5.10), depending on which of the theorems listed
in parentheses (possibly after an appeal to Lemma 5.3 and Remark 5.4) applies
to the bootstrap-based test under consideration. Recall that these theorems show
that if α > ϑ holds, then the corresponding bootstrap-based test has size 1 (over
the heteroskedasticity model CHet), and thus certainly breaks down (for the given
testing problem, i.e., for the given X, R, r). Hence, we shall search for worst-case
X, R, and r that lead to small values of ϑ .42

More precisely, we shall consider three settings, where setting refers to sample
size n = 10,20, and 30, and various scenarios, where scenario refers to a com-
bination of k (number of regressors) and q (number of restrictions to be tested
and where R = (0 : Iq), r = 0). In every setting, we roughly do the following: we
compute for every bootstrap-based test included in our study the value of ϑ for a
variety of design matrices in a range of scenarios. We then determine the minimal
value of ϑ over all design matrices considered. Then, we compare this minimum
with two commonly used levels of significance (α = 0.05 and α = 0.1). In addition
to studying the behavior of this minimal value of ϑ , we shall complement this by
numerical size lower bound computations.

All computations were carried out in R (R Core Team, 2020) version 3.6.3
using version 1.0.0 of the R-package wbsd (“wild bootstrap size diagnostics”)
by Preinerstorfer (2020) generated with Rtools35. The package wbsd provides
computationally efficient routines for determining the quantities ϑHet(= θHet),
ϑuc(= θuc), ϑ̃Het, θ̃Het, ϑ̃uc, and θ̃uc, and for obtaining bootstrap p-values in order to
obtain the numerical results reported here. The tools for computing ϑ provided in
the R-package wbsd can be used by practitioners as a diagnostic device to check
whether a bootstrap-based test is provably unreliable (in that α > ϑ , which implies
size equal to 1) in a given testing problem. The package is available on CRAN.

In the following subsections, we describe the bootstrap-based tests studied, we
explain the computations carried out for each test, and discuss the results obtained.
Some of the details are deferred to Appendix E.

8.1. Description of the Bootstrap-Based Tests Studied

The number of bootstrap-based tests we cover in our study is vast: In total, we
consider the 960 possible combinations of the 12 test statistics discussed in Section
3 and at the beginning of Section 5.2 around Equations (5), (7), (18), and (20) with

42Evaluating ϑ numerically is a nontrivial task as discussed in Section E.3 in Appendix E. In order to be on the safe
side and to bias our results in favor of the tests (recall that we are after negative results), the ϑ we shall report will
actually be a numerical obtained upper bound for the true ϑ .
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the bootstrap schemes discussed further below (80 in total), which are popular
special cases of the two general bootstrap schemes discussed in Section 5.

To be precise, the 12 test statistics studied are:43

1. Test statistics based on unrestricted residuals: Tuc; THet with di = 1 (HC0);
with di = n/(n − k) (HC1); with di = (1 − hii)

−1 (HC2); with di = (1 − hii)
−2

(HC3); and with di = (1−hii)
δi for δi = min(nhii/k,4) (HC4).

2. Test statistics based on restricted residuals: T̃uc; T̃Het with d̃i = 1 (HC0R);
with d̃i = n/(n−(k−q)) (HC1R); with d̃i = (1− h̃ii)

−1 (HC2R); with d̃i = (1−
h̃ii)

−2 (HC3R); and with d̃i = (1− h̃ii)
δ̃i for δ̃i = min(nh̃ii/(k −q),4) (HC4R).

The bootstrap schemes we study are y∗ as defined in (8), and y� as defined in (9).
Both bootstrap schemes are applied with A=M0 as well as with A= span(X). In
addition to choosing A, both bootstrap schemes require a concrete choice of �. All
distributions � we consider are constructed in the following way: first an auxiliary
distribution �• on {−1,1}n has to be chosen. The way we choose this auxiliary
distribution depends on the magnitude of n. We consider three cases: Setting A
(n = 10), Setting B (n = 20), and Setting C (n = 30).

• In Setting A, we consider (i) �• equal to the n-fold Rademacher distribution (i.e.,
the n-fold product of the uniform distribution on {−1,1}), and (ii) �• equal to
the n -fold Mammen distribution (i.e., the n-fold product of the distribution on
{−(

√
5−1)/2,(

√
5+1)/2} that assigns mass (

√
5+1)/(2

√
5) to −(

√
5−1)/2).

• In Settings B and C, we consider �• equal to an empirical distribution of a
sample of size 10n − 1 from the n-fold Rademacher distribution and from the
n-fold Mammen distribution, respectively.44

Given an auxiliary distribution �•, the distribution � actually used in the
bootstrap scheme depends on a vector of weights w, itself typically depending on
X or on X and R. Given a weights vector w, � is then obtained as the distribution of
diag(w)ξ

•
where ξ

•
follows the distribution �•. We consider the following choices

for the vector of weights w:45

1. Unrestricted HC0–HC4 weights w = (w1, . . . ,wn): wi = 1 (HC0), wi =
[n/(n − k)]1/2 (HC1), wi = (1 − hii)

−1/2 (HC2), wi = (1 − hii)
−1 (HC3), and

wi = (1−hii)
δi/2 for δi = min(nhii/k,4) (HC4).

2. Null-restricted HC0R–HC4R weights w = (w̃1, . . . ,w̃n): w̃i = 1 (HC0R),
w̃i = [n/(n− (k −q))]1/2 (HC1R), w̃i = (1− h̃ii)

−1/2 (HC2R), w̃i = (1− h̃ii)
−1

(HC3R), and w̃i = (1− h̃ii)
δ̃i/2 for δ̃i = min(nh̃ii/(k −q),4) (HC4R).

In total this gives 960 possible combinations of test statistics and bootstrap
schemes. We emphasize that some of these combinations result in the same

43We use here the conventions for di and d̃i given below (5) and (18), respectively.
44The reason for treating Settings B and C differently from Setting A is that for values of n such as 20 or 30 an
enumeration of all support points of the n-fold Rademacher or n-fold Mammen distribution is numerically too costly.
45We use here the same conventions as mentioned in Footnote 43.
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bootstrap-based test: (i) For reasons discussed in Lemma 5.3, (ii) when changing
HC0 weights to HC0R weights in the bootstrap scheme, and (iii) when changing
HC0 (HC0R) weights to HC1 (HC1R) weights in the definition of THet (T̃Het),
cf. Remark 5.14. Concerning the run-time of the simulations, one could certainly
argue that, for the computations, one should keep only one of the combinations that
lead to the same bootstrap-based test. However, we have chosen not to, because
we can then exploit the ensuing additional computations as a double-check for
the methods that “survive” the worst-case analysis (as the design matrices are
generated separately for each of the 960 combinations).

Given a test statistic, a bootstrap scheme, and a level of significance α, the
corresponding bootstrap-based test is throughout taken as the test that, observing
y, rejects the null hypothesis, if the bootstrap p-value computed for y is strictly
smaller than α. Here, bootstrap p-value refers to the mass assigned by � to
the points ξ that give rise to elements in the bootstrap sample at which the
test statistic is greater than or equal to the test statistic evaluated at y. To be
precise, if, e.g., THet is used as a test statistic, we define the bootstrap p-value
as �(ξ : T�,∗

Het (y,ξ) ≥ THet(y)) if a bootstrap scheme of the form y∗ is used,
and as �(ξ : T�,�

Het (y,ξ) ≥ THet(y)) if a bootstrap scheme of the form y� is
used; for the other test statistics Tuc, T̃Het, and T̃uc we proceed similarly. Recall
that T�

Het coincides with THet, except on the exceptional set B, on which T�
Het

is set equal to ∞ (and a similar statement applies for the other test statis-
tics). The reason for using T�,∗

Het (T�,�
Het , respectively) rather than T∗

Het (T�
Het,

respectively) in the definition of the p-value (and similarly for the other test
statistics) is that this potentially gives a smaller rejection region, thus biasing
the result in favor of the test (recall we are after negative results!); cf. the
discussion relating to Part (b) of Theorem 5.1 given subsequent to this theo-
rem. For the same reason we use ≥, and not >, in the definition of the p-
value. It is easy to see that—in case a bootstrap scheme of the form y∗ is
used—the bootstrap-based test just defined via p-values can be rewritten as
the test that rejects if THet(y) > f �,upper

Het,1−α(y), where f �,upper
Het,1−α(y) is the upper (i.e.,

largest) (1 − α)-quantile of F�
Het,y; and a similar statement applies if a bootstrap

scheme of the form y� (or one of the other test statistics) is being used. [This
also shows that the above defined rejection region is the smallest among all
the rejection regions that can appear in the formulations of the theorems in
Section 5.]

8.2. Computations Carried Out in Each Setting

In each setting (n = 10,20,30) and for each of the 960 combinations of test
statistics and bootstrap schemes described above we perform a two-step procedure.
A detailed description of the computations carried out can be found in Sections
E.1 and E.2 in Appendix E. Here we only provide a brief summary of the
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two-step procedure to the extent needed for an understanding of the results
presented in Section 8.3.

1. The main goal of Step 1 is to find a scenario and a corresponding design matrix
leading to a small value of ϑ .

Essentially, this is done by randomly generating n× k design matrices (with
first column the intercept, and the remaining coordinates i.i.d. log-(standard)
normally distributed) and by computing the corresponding values of ϑ for the
testing problems R = (0 : Iq) and r = 0. In preparation for Step 2, for a suitably
chosen subset of the design matrices generated, we also compute null rejection
probabilities for strategically chosen variance parameters (assuming normality).
All this is done for every pair (k,q) with k = 2, . . . ,5 and q = 1, . . . ,k −1.

2. The goals of Step 2 are twofold: (a) to check the numerical reliability of the
computation of ϑ in Step 1; and (b) to compute lower bounds on the size of the
test, if necessary. We do the following for α ∈ {0.05,0.1}:

If ϑmin, the overall smallest ϑ identified in Step 1, turns out to be smaller than
α, we further check the numerical reliability of ϑmin by making use of the null
rejection probabilities computed in Step 1. If this numerical check, described
in Section E.2 in Appendix E, is not passed, we update ϑmin. Once this check is
passed, we distinguish two cases: (i) If ϑmin < α or if the maximum of the null
rejection probabilities just referred to (maximized over the strategically chosen
variance parameters) exceeds 3α, we stop. For these cases, we report the value
of ϑmin together with the maximal rejection probability obtained for the design
matrix pertaining to ϑmin. (ii) For the exceptional set of tests for which ϑmin ≥ α

and the maximum of the null rejection probabilities does not exceed 3α we
perform a second search (again sampling as in Step 1) to find design matrices
leading to high rejection probabilities under the null. For these cases we report
the highest null rejection probability found, and the value of ϑ corresponding
to the design matrix that led to the highest null rejection probability.

8.3. Results and Discussion

The results of the two-step procedure described in Section 8.2 are summarized
in Figure 1 in the form of six plots corresponding to the six combinations of the
three settings A, B, and C, and of the two values for α (α ∈ {0.05,0.1}). In each
plot, the vertical dashed line intersects the axis at α, the lower (upper, respectively)
horizontal dashed line intersects the axis at α (at 3α, respectively).

For every combination of the setting and the value of α, the plot is obtained
as follows: for every bootstrap-based test procedure (i.e., combination of test
statistic and bootstrap scheme), a null rejection probability is plotted against a
corresponding ϑ indicated by a black or red circle. The black circles correspond
to test procedures for which Step 2 terminated without starting a second set of
searches (which was the case for the vast majority of procedures, see Footnote
55 in Appendix E). The red circles correspond to the remaining (exceptional) test
procedures for which further null rejection probabilities were computed in Step 2.
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Figure 1. Results in Settings A, B, and C.

For all test procedures corresponding to black circles with ϑ < α, the reliability
check applied in Step 1 guarantees that the corresponding null rejection probability
found in Step 1 is greater than 0.4. Note that these null rejection probabilities do
not coincide with the sizes of the respective tests, which actually all are equal to 1
by our theoretical results; they are only lower bounds for the sizes that are reported
for completeness. For all black circles with ϑ ≥ α, the null rejection probabilities
are not less than 3α, which can be gathered from an inspection of the plots (and
which is so by construction of the two-step procedure, see Section E.2 in Appendix
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E); hence, they are much too large compared to the nominal significance level α.
A bootstrap-based test procedure corresponding to a black circle hence “fails the
worst-case check” (in the setting and for the α considered), because a scenario
(i.e., k and q) and a corresponding design matrix has been found for which the size
of the test is 1, or is exceedingly large, i.e., larger than or equal to 3α.

For the test procedures corresponding to red circles extra computations were
carried out in Step 2. A test procedure resulting in a red circle is declared to
“fail the worst-case check” (in the setting and for the α considered) if the null
rejection probability plotted is not less than 3α (as then a scenario (i.e., k and q)
and a corresponding design matrix have been found for which the size of the test
is exceedingly large, namely larger than or equal to 3α); otherwise it is declared
to “pass the worst-case check” (in the setting and for the α considered) for the
time being. [There are a few instances of red circles for which the null rejection
probability plotted is less than 3α, but ϑ < α holds. While our theoretical results
then tell us that the size of the test should be equal to 1, and we hence should
classify the test procedure as “failing the worst-case check,” we do not do so as we
do not want to rely too much on the information provided by ϑ in such cases, since
no reliability check for computing ϑ is included in the computation in Step 2.]

Bootstrap-based test procedures that fail the worst-case check (in at least one
setting and for one of the values of α) should thus not be expected to be reliable
in general. Therefore, such a test procedure should not be used in practice without
first obtaining further guarantees concerning its size properties in the specific
problem at hand, e.g., by running additional simulations geared towards the
problem at hand.

Figure 1 shows that in all settings and for both significance levels considered,
the vast majority of circles are black (see Footnote 55 in Appendix E), already
leading to the conclusion that most bootstrap-based test procedures fail the worst-
case check. Furthermore, most of these test procedures fail in such a way that the
corresponding ϑ is smaller than the significance level α, and thus the test is known
to have size equal to 1 (at least in one of the scenarios and for one of the design
matrices considered) as a consequence of our theoretical results. Inspection of
Figure 1 also shows that a good portion of the test procedures corresponding to red
circles fail the worst-case check in that the red circles are above or on the 3α-line.
Comparing the figures across different settings and values of α, we also see that the
number of red circles decreases when passing from α = 0.05 to α = 0.1. The figure
also shows that the number of red circles increases when increasing n. One reason
could be that the randomized search for design matrices leading to low values of
ϑ becomes more difficult as n increases. We used the same randomized search
algorithm in all three scenarios, which could explain the difference. A conceptual
difference between the methods used in Setting A and Settings B and C is that for
Setting A (n = 10) exact computations (concerning �•) are carried out, while for
Settings B (n = 20) and C (n = 30) approximate computations (based on empirical
distributions �•) are done. This introduces an additional source of variation in the
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computations in Settings B and C, which could also be responsible for the increase
in the number of red circles.

Important questions now are whether (i) there is a bootstrap-based test procedure
left that passes the worst-case check in all settings and for both significance levels
considered; (ii) there is a test procedure that passes the worst-case check in all
settings considered for a fixed α; and (iii) there is a pattern, in the sense that
certain combinations of test statistics and bootstrap schemes often pass the worst-
case check? To answer such questions, we shall next provide information on the
procedures that pass the worst-case check in each setting and for each α considered.

The bootstrap-based test procedures which (for the time being) pass the worst-
case check in Settings A–C, respectively, are summarized in Tables 1–3. In each
table, the first row contains the test procedures that pass the worst-case check for
α = 0.05, the second row the ones that pass for α = 0.1, and the third row the ones
that pass at both nominal levels of significance.

In these tables, to facilitate the exposition, we use the following way of encoding
a bootstrap-based test procedure: to each of the 960 possible procedures (i.e.,
combinations of test statistics and bootstrap schemes) considered we associate a 7
digit code: x = x1:x2:x3:x4:x5:x6:x7. The encoding of the digits is as follows:

x1 . . . indicates which covariance matrix estimator is used in the test statistic
(“−1” stands for the uncorrected estimator based on restricted or unre-
stricted residuals depending on whether x2 is set to F or T; and 0, . . . ,4
stand for HC0,. . .,HC4, respectively, or for HC0R,. . .,HC4R, respectively,
depending on whether x2 is set to F or T).

x2 . . . indicates whether the covariance matrix estimator used in the test statistic
is based on null-restricted residuals (T) or not (F).

x3 . . . indicates the distribution underlying �• (“r” stands for Rademacher, “m”
stands for Mammen).

x4 . . . indicates the weights w used in constructing � from �• (0, . . . ,4 stands for
HC0,. . .,HC4, respectively, or for HC0R,. . .,HC4R, respectively, depend-
ing on whether x5 is set to F or T).

x5 . . . indicates whether the weights w are null-restricted (T) or not (F).
x6 . . . indicates whether the bootstrap-scheme was based on null-restricted resid-

uals (T) (i.e., A = M0) or not (F) (i.e., A = span(X)).
x7 . . . indicates whether the bootstrap scheme y∗ (T) or y� (F) was used.

As an example, the code “−1:T:m:2:F:T:F” translates to the bootstrap-based test
procedure which uses the test statistic T̃uc (determined by the first two digits of the
code) and the following bootstrap scheme: �• based on the Mammen distribution,
modified by HC2 weights (based on unrestricted residuals), and y� with A=M0.

Before interpreting the results, we also need to explain why some test procedures
are struck out in Tables 1–3. Recall (e.g., from the discussion in the last but
one paragraph of Section 8.1) that some of the 960 procedures studied are in
fact equivalent, meaning that they lead to exactly the same bootstrap-based test.
Because the design matrices are generated anew for each of the 960 procedures, the
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Table 1. Surviving Test Procedures in Setting A.

α = 0.05 −1:T:m:0:F:T:F −1:T:m:0:T:T:F −1:T:m:1:F:T:F −1:T:m:1:T:T:F

−1:T:m:2:F:T:F −1:T:m:2:T:T:F −1:T:m:3:F:T:F −1:T:m:3:T:T:F

����������3:F:r:0:F:T:T ������������3:F:m:0:T:T:F ������
3:F:m:1:F:T:F ������

3:F:m:1:T:T:F

3:F:m:2:F:T:F 3:F:m:2:F:T:T 3:T:r:2:T:T:T 3:T:r:3:F:T:F

3:T:r:3:T:T:T
������3:T:m:0:F:T:T 3:T:m:1:T:T:T 3:T:m:2:T:T:T

3:T:m:3:F:F:F
������4:T:m:0:T:T:T

α = 0.1 −1:T:m:2:F:T:F −1:T:m:3:F:T:F �����
3:F:r:2:F:T:F 3:F:m:2:F:T:F

3:F:m:2:F:T:T ������
4:F:m:2:F:T:F

Both −1:T:m:2:F:T:F −1:T:m:3:F:T:F 3:F:m:2:F:T:F 3:F:m:2:F:T:T
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Table 2. Surviving Test Procedures in Setting B.

α = 0.05 −1:T:r:3:F:T:F ������
1:F:m:3:F:F:F �����

2:F:r:3:F:F:F ������������2:F:m:0:T:T:F

������������3:F:m:0:F:T:F ������
3:F:m:2:F:T:F ������

3:F:m:3:F:F:F
�����3:T:r:0:T:F:T

�����3:T:r:0:T:T:T 3:T:r:1:T:F:T 3:T:r:1:T:T:T 3:T:r:2:T:F:T

3:T:r:3:F:T:F 3:T:m:0:F:F:T 3:T:m:0:F:T:T 3:T:m:0:T:F:T

3:T:m:0:T:T:T 3:T:m:1:F:F:T 3:T:m:1:F:T:T 3:T:m:1:T:F:T

3:T:m:1:T:T:T 3:T:m:2:F:F:T 3:T:m:2:T:F:T 3:T:m:2:T:T:T
������4:T:m:0:T:T:T

α = 0.1 −1:T:r:3:F:F:F −1:T:r:3:F:T:F �����
1:F:r:3:F:F:F ������

1:F:m:3:F:F:F

������������3:F:m:0:T:T:T 3:F:m:2:F:T:F 3:F:m:2:F:T:T ������
3:F:m:3:F:T:T

�����3:T:r:0:T:T:T 3:T:r:2:F:F:T 3:T:r:2:F:T:T 3:T:r:2:T:F:T

3:T:r:3:F:F:F
������3:T:m:0:F:F:T 3:T:m:0:F:T:T 3:T:m:0:T:T:T

3:T:m:1:F:F:T 3:T:m:1:F:T:T 3:T:m:1:T:F:T 3:T:m:1:T:T:T

3:T:m:2:F:F:T 3:T:m:2:T:T:T

Both −1:T:r:3:F:T:F ������
1:F:m:3:F:F:F ������

3:F:m:2:F:T:F �����
3:T:r:0:T:T:T

3:T:r:2:T:F:T
������3:T:m:0:F:F:T 3:T:m:0:F:T:T 3:T:m:0:T:T:T

3:T:m:1:F:F:T 3:T:m:1:F:T:T 3:T:m:1:T:F:T 3:T:m:1:T:T:T

3:T:m:2:F:F:T 3:T:m:2:T:T:T
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Table 3. Surviving Test Procedures in Setting C.

α = 0.05 ������
0:F:m:3:F:F:F ������

1:F:m:3:F:F:T ������������2:F:m:0:T:T:F ������
2:F:m:3:T:T:T

����������3:F:r:0:T:T:T �����
3:F:r:1:T:T:F 3:F:r:2:F:T:F 3:F:r:2:F:T:T

������������3:F:m:0:F:T:T ������
3:F:m:1:F:T:T 3:F:m:2:F:T:F 3:F:m:2:F:T:T

������
3:F:m:2:T:T:F

�����3:T:r:0:T:F:T
�����3:T:r:0:T:T:T 3:T:r:2:F:F:T

3:T:r:2:T:T:T 3:T:m:0:F:F:T 3:T:m:0:F:T:T 3:T:m:0:T:F:T

3:T:m:0:T:T:T 3:T:m:1:F:F:T 3:T:m:1:F:T:T 3:T:m:1:T:F:T

3:T:m:1:T:T:T 3:T:m:2:F:F:T 3:T:m:2:T:F:T 3:T:m:2:T:T:T
�����4:T:r:0:F:T:T 4:T:m:0:F:T:T 4:T:m:0:T:T:T

α = 0.1 −1:T:r:3:F:F:F �����
0:F:r:3:F:F:F ������

0:F:m:3:F:F:F �����
1:F:r:3:F:F:F

������
1:F:m:3:F:T:F ������

2:F:m:3:F:T:T ������
2:F:m:3:T:T:T �����

3:F:r:2:F:T:F

�����
3:F:r:2:T:T:F ������

3:F:m:1:T:T:T ������
3:F:m:2:F:T:F 3:T:r:0:F:F:T

3:T:r:0:T:F:T
�����3:T:r:0:T:T:T 3:T:r:1:F:F:T 3:T:r:1:T:T:T

3:T:r:2:F:F:T 3:T:m:0:F:F:T 3:T:m:0:F:T:T 3:T:m:0:T:F:T

3:T:m:0:T:T:T 3:T:m:1:F:F:T 3:T:m:1:T:F:T 3:T:m:1:T:T:T

3:T:m:2:F:F:T 3:T:m:2:T:F:T 3:T:m:2:T:T:T 3:T:m:3:F:F:T

3:T:m:3:T:F:T

Both ������
0:F:m:3:F:F:F ������

2:F:m:3:T:T:T �����
3:F:r:2:F:T:F ������

3:F:m:2:F:T:F
�����3:T:r:0:T:F:T

�����3:T:r:0:T:T:T 3:T:r:2:F:F:T 3:T:m:0:F:F:T

3:T:m:0:F:T:T 3:T:m:0:T:F:T 3:T:m:0:T:T:T 3:T:m:1:F:F:T

3:T:m:1:T:F:T 3:T:m:1:T:T:T 3:T:m:2:F:F:T 3:T:m:2:T:F:T

3:T:m:2:T:T:T
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results found for equivalent procedures can be different. Therefore, it can happen
that a procedure passes the worst-case check, but an equivalent version of this
procedure does not. Now, a procedure is struck out in a given table, if—while
this procedure passed the worst-case check underlying the table—an equivalent
procedure did not (and thus does not appear in this table). Procedures that are
struck out in a table are now no longer considered as having passed the worst-case
check (although they appear in that table).

We exploit the following three reasons for equivalence between test procedures:
(1) Lemma 5.3 shows that a bootstrap-based test using a covariance matrix
estimator based on unrestricted residuals does not depend on whether y∗ or y�

is used as a bootstrap scheme. Therefore, two procedures with codes x and x′
are equivalent in case x2 = x′

2 = F and xi = x′
i for i = 1, . . . ,6. (2) Changing the

weights vector from HC0 to HC0R (or vice versa) in the construction of � does
not change the bootstrap-based test. Therefore, two procedures with codes x and
x′ are equivalent in case x4 = x′

4 = 0, and xi = x′
i for all i �= 5. (3) Changing HC0

(HC0R) weights to HC1 (HC1R) weights in the definition of THet (T̃Het) also does
not change the resulting bootstrap-based test, cf. Remark 5.14. Therefore, two
procedures with codes x and x′ are equivalent in case x1 ∈ {0,1}, x′

1 ∈ {0,1}, and
xi = x′

i for all i = 2, . . . ,7. Procedures x that are struck out by a slash, i.e., �x, were
eliminated based on reason (1); procedures that are struck out by a backslash, i.e.,

�x, were eliminated based on reason (2); and procedures that are struck out by a
horizontal line, i.e., x, were eliminated based on reason (3). Note that a procedure
can be struck out, e.g., based on reasons (1) and (2), and thus is then crossed out,
i.e., is marked by ��x, etc.

Concerning the questions (i)–(iii) raised above, inspection of Tables 1–3 now
delivers the following answers:

1. There is no bootstrap-based test procedure that passes the worst-case check in
all settings and for both significance levels.

2. The tests 3:T:m:1:T:T:T and 3:T:m:2:T:T:T pass the worst-case checks in all
three settings for the significance level α = 0.05. The corresponding rejection
probabilities shown in Figure 1 for the tests 3:T:m:1:T:T:T and 3:T:m:2:T:T:T
are 0.077 and 0.067 (Setting A), 0.033 and 0.080 (Setting B), 0.050 and 0.033
(Setting C), respectively. For α = 0.1 there is no test that passes the worst-case
checks in all three settings.

3. The majority of test procedures appearing in the tables is based on the HC3
or HC3R covariance estimator, and uses a bootstrap scheme based on the
Mammen-distribution. In Settings B and C, the tests passing the worst-case
check are typically based on T̃Het, i.e., they use restricted residuals in the
construction of the covariance estimator.

On the one hand our results issue a distinct warning: overall none of the
bootstrap-based tests considered comes with a guarantee that its size is (about)
right. On the other hand, when restricting attention only to α = 0.05, the
tests 3:T:m:1:T:T:T and 3:T:m:2:T:T:T did not break down in our worst-case
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analysis.46 These two tests are based on T̃Het using a HC3R covariance estimator,
and use the Mammen-distribution in the bootstrap scheme; properties that are
common to many of the tests that pass the check (in one of the settings considered).
While this obviously does not prove that 3:T:m:1:T:T:T and 3:T:m:2:T:T:T always
will have perfect size properties for α = 0.05, it shows that in the settings
considered (and for α = 0.05) they seem to have the best size performance among
all bootstrap-based tests considered, and should therefore perhaps be preferred
(over the other procedures) by practitioners who insist on applying a bootstrap-
based test. However one should keep in mind that, while we have examined a
considerable and reasonable range of scenarios and design matrices, the size-
behavior of the bootstrap-based tests outside of the range studied can potentially
be even worse.

In light of the findings above a better way forward seems to use heteroskedas-
ticity robust test procedures that guarantee size-control as expounded in Pötscher
and Preinerstorfer (2021).

9. CONCLUSION

Bootstrap-based heteroskedasticity robust tests have been suggested in the liter-
ature to ameliorate overrejection problems often arising with heteroskedasticity
robust tests based on standard critical values (derived from asymptotic theory).
While there is Monte Carlo evidence suggesting that the bootstrap can attenuate
this overrejection problem, the question arises whether this observation generalizes
beyond the specific Monte Carlo settings considered. In the present paper, we
establish sufficient conditions under which bootstrap-based tests can be shown to
“break down” in the sense that their size equals one. This theoretical insight can
be used to check whether a given bootstrap-based test procedure should not be
used in a given problem. Furthermore, the results allow us to conduct a numerical
“stress test” on a wide variety of existing bootstrap-based test procedures, leading
to the conclusion that none of these tests is immune to considerable overrejection.
Thus any such bootstrap-based test is no reliable panacea for heteroskedasticity
robust testing. An alternative to bootstrap-based procedures is to use smallest size-
controlling critical values as studied in Pötscher and Preinerstorfer (2021).

APPENDIX

A. A Basic Theorem

THEOREM A.1. Let Ti : Rn →R∪{∞} be Borel-measurable and G(M0)-invariant for
i = 1,2. Let � be a (Borel) probability measure on Rn, and let A be an affine subspace of
Rn with M0 ⊆ A ⊆ span(X). Define the function T∗

2 : Rn ×Rn → R∪{∞} via

T∗
2 (y,ξ) = T2

(
y∗(y,ξ)

)
, (33)

46However, recall that we have only computed a lower bound for the size.
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where y∗(y,ξ) has been defined in (8), and set

K(y) = {ξ ∈ Rn : y∗(y,ξ) is a continuity point of T2}.
For every y ∈ Rn denote by Fy the distribution function of �◦T∗

2 (y,·), i.e., Fy(t) = �({ξ :
T∗

2 (y,ξ) ≤ t}) for t ∈ R∪{∞}. For every α ∈ (0,1), let f1−α(y) denote a (1 −α) -quantile
of Fy. For every i = 1, . . . ,n define

ci = sup
δ>0

inf
z∈B(ei(n),δ)

T1(μ0 + z) (34)

for some μ0 ∈ M0, where B(ei(n),δ) = {z ∈ Rn : ‖z − ei(n)‖ < δ} (note that ci does not
depend on the choice of μ0 ∈ M0). Then, for every α ∈ (0,1) such that

α > 1− max
i=1,...,n

�
({

ξ : T∗
2 (μ0 + ei(n),ξ) < ci,ξ ∈ K(μ0 + ei(n))

})
(35)

for some (and hence all) μ0 ∈ M0, we have

sup
�∈CHet

Pμ0,σ
2�

(
T1 ≥ f1−α

) ≥ sup
�∈CHet

Pμ0,σ
2�

(
T1 > f1−α

) = 1 (36)

for every μ0 ∈ M0 and every 0 < σ 2 < ∞ (where the probabilities in (36) are to be
interpreted as inner probabilities47).48

Proof. By G(M0)-invariance of Ti, for every z ∈Rn the expression Ti(μ0 +γ z) depends
neither on the choice of μ0 ∈M0 nor on the value of γ ∈R\{0} (for i = 1,2).49 This shows,
in particular, that the ci’s do not depend on the choice of μ0 ∈ M0. Furthermore, since
M0 ⊆ A has been assumed, it is easy to see that A−μ0 is a linear space containing Mlin

0
for every choice of μ0 ∈ M0 (with A−μ0 being the same space regardless of the choice of
μ0 ∈M0), and that y−Xβ̃A(y) = 	(A−μ0)

⊥(y−μ0) holds for every y ∈Rn and for every

choice of μ0 ∈ M0. It now easily follows that y∗(μ0 + y,ξ) = y∗(μ′
0 + y,ξ)−μ′

0 +μ0 for
every μ0, μ′

0 ∈M0. In view of G(M0)-invariance of T2 we can conclude that the right-hand
side of (35) also does not depend on the choice of μ0 ∈M0. For later use we also make the
following observation: Since Xβ̃M0(y) obviously belongs to M0, we have for every y ∈Rn,
every ξ ∈ Rn, and every μ0 ∈ M0

T∗
2 (y,ξ) = T2(Xβ̃M0(y)+diag(ξ)(y−Xβ̃A(y)) = T2(μ0 +diag(ξ)(y−Xβ̃A(y))

= T2(μ0 +diag(ξ)	(A−μ0)
⊥(y−μ0)), (37)

in view of what has been said at the beginning of the proof.
Now, denote the set of continuity points of T2 by K2, and define T̄2 := T21K2 +∞1Rn\K2

(with the convention ∞·0 = 0). Define T̄∗
2 analogously to T∗

2 (cf. (33)), but with T2 replaced
by T̄2. For every y ∈ Rn, we let F̄y denote the distribution function of � ◦ T̄∗

2 (y,·), i.e.,
F̄y(t) = �({ξ : T̄∗

2 (y,ξ) ≤ t}) for t ∈ R∪{∞}. It easily follows that for every y ∈ Rn and
every t ∈R we have F̄y(t) = �({ξ : T∗

2 (y,ξ) ≤ t,ξ ∈ K(y)}). Consequently, for every y ∈Rn

47This allows one to ignore measurability issues regarding f1−α .
48The set appearing in (35) is a Borel set since T∗

2 (y,·) is Borel measurable and since K(y) is a Borel set.
49Let μ′

0 ∈ M0 and γ ′ ∈ R\{0} be arbitrary. By G(M0)-invariance, Ti(μ0 + γ z) = Ti(h(μ0 + γ z)) where h(v) =
γ ′γ −1(v−μ0)+μ′

0 ∈ G(M0). This shows that Ti(μ0 +γ z) = Ti(μ
′
0 +γ ′z).
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and every t ∈ R∪ {∞}, we have F̄y(t−) = �({ξ : T∗
2 (y,ξ) < t,ξ ∈ K(y)}), where F̄y(t−)

denotes the left-hand side limit of F̄y at t. In particular, (35) is equivalent to

max
i=1,...,n

F̄μ0+ei(n)(ci−) > 1−α

(with the convention that F̄μ0+ei(n)(ci−) = 0 in case ci = −∞). From now on, let i
be an index that realizes the maximum in the previous display. If F̄μ0+ei(n)(ci−) = 0,
there is nothing to prove and we are done. Hence, it remains to consider the case where
F̄μ0+ei(n)(ci−) > 0. Note that this implies ci > −∞. In this case, let α ∈ (0,1) now
be such that F̄μ0+ei(n)(ci−) > 1 − α (where μ0 ∈ M0 can be chosen arbitrarily). From
F̄μ0+ei(n)(ci−) > 1 −α we can then conclude existence of a real number xi smaller than
ci (recall ci > −∞ must hold) such that F̄μ0+ei(n)(xi) > 1 − α holds and such that xi

is a continuity point of F̄μ0+ei(n). In view of (34), there exists a δ > 0 such that every
z ∈ B(ei(n),δ) satisfies T1(μ0 + z) > xi (and the same is true if we replace δ by a smaller
positive number). We claim that for every sequence zm → ei(n) (zm ∈ Rn) we have

liminf
m→∞ Fμ0+zm(xi) ≥ F̄μ0+ei(n)(xi).

Define Vm = Vm(ξ) = y∗(μ0 + zm,ξ) and V = V(ξ) = y∗(μ0 + ei(n),ξ), which can be
viewed as random vectors defined on Rn (equipped with the Borel σ -field) and where
the probability measure is given by �. Note that Vm converges to V everywhere as m →
∞ (as y∗(y,ξ) is continuous w.r.t. y). Furthermore, Fμ0+zm(xi) = �(T2(Vm) ≤ xi) and
F̄μ0+ei(n)(xi) = �(T̄2(V) ≤ xi) hold (recall that xi is a real number). The statement in
the previous display now follows from Lemma A.3, recalling that we have chosen xi as
a continuity point of F̄μ0+ei(n), which implies �(T̄2(V) = xi) = 0. Summarizing, we hence
arrive, replacing δ by another element of (0,δ) if necessary, at

T1(μ0 + z) > xi and Fμ0+z(xi) > 1−α for every z ∈ B(ei(n),δ). (38)

From (37) and the observation in the first sentence in this proof it readily follows that for
every z ∈ Rn and every γ �= 0 we have

Fμ0+γ z(xi) = �(ξ : T∗
2 (μ0 +γ z,ξ) ≤ xi)

= �(ξ : T2(μ0 +diag(ξ)	(A−μ0)
⊥(μ0 +γ z−μ0)) ≤ xi)

= �(ξ : T2(μ0 +γ diag(ξ)	(A−μ0)
⊥(z)) ≤ xi)

= �(ξ : T2(μ0 +diag(ξ)	(A−μ0)
⊥(z)) ≤ xi) = Fμ0+z(xi).

Using the observation in the first sentence of the proof again, the preceding display and (38)
thus give

T1(μ0 + y) > xi and Fμ0+y(xi) > 1−α for every y ∈ {γ z : γ �= 0,z ∈ B(ei(n),δ)} =: �,

or equivalently

T1(y) > xi and Fy(xi) > 1−α for every y ∈ μ0 +�. (39)

By Lemma A.4, we see that Fy(xi) > 1−α implies xi ≥ f1−α(y). Hence,{
y ∈ Rn : T1(y) > xi, Fy(xi) > 1−α

} ⊆ {
y ∈ Rn : T1(y) > f1−α(y)

}
.
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This, together with (39), gives{
y ∈ Rn : T1(y) > f1−α(y)

} ⊇ μ0 +� ⊇ μ0 + int(�) ⊇ μ0 + (span(ei(n))\{0}), (40)

where int(�) denotes the interior of �. Finally, to complete the proof of (36), let �m
be a sequence in CHet that converges to ei(n)ei(n)′ and let 0 < σ 2 < ∞. Lemma E.1
in Preinerstorfer and Pötscher (2016) then shows that Pμ0,σ

2�m
converges weakly to

Pμ0,σ
2ei(n)ei(n)′ . The previous display implies that for every m ∈ N

Pμ0,σ
2�m

({
y ∈ Rn : T1(y) > f1−α(y)

}) ≥ Pμ0,σ
2�m

(μ0 + int(�)),

where the left-hand side is to be interpreted as an inner probability. The Portmanteau
theorem delivers

liminf
m→∞ Pμ0,σ

2�m
(μ0 + int(�)) ≥ Pμ0,σ

2ei(n)ei(n)′ (μ0 + int(�))

≥ Pμ0,σ
2ei(n)ei(n)′ (μ0 + (span(ei(n))\{0})) = 1,

where the second inequality follows from (40), and the final equality from Pμ0,σ
2ei(n)ei(n)′

being supported by μ0 +span(ei(n)) and assigning probability zero to {μ0}. This establishes
(36). �

Remark A.2. (i) If T1 is lower semi-continuous at μ0 + ei(n) for some (and hence all)
μ0 ∈ M0, then ci = T1(μ0 + ei(n)).

(ii) If the set K(μ0 + ei(n)) has �-measure 1, then �
(
ξ : T∗

2 (μ0 + ei(n),ξ) < ci,ξ

∈ K(μ0 + ei(n))) reduces to Fμ0+ei(n)(ci−).
(iii) The lower bound for α in (35) depends only on observable quantities and thus can

be computed.

LEMMA A.3. Let (�,A,P) be a probability space, and let Vm be a sequence of Rp-
valued random vectors (p ∈ N) defined on that space that converges almost everywhere to
the random vector V. Let T :Rp →R∪{∞} be Borel measurable, denote the set of continuity
points of T by KT , and define T̄ := T1KT +∞1Rp\KT (with the convention ∞·0 = 0). Then,
for every t ∈ R such that P(T̄(V) = t) = 0 as well as for t = ∞, it holds that

P
(
T̄(V) ≤ t

) ≤ liminf
m→∞ P(T(Vm) ≤ t) . (41)

Proof. It is well known that KT is a countable intersection of open sets, and hence is
a Borel set. As a consequence T̄ : Rp → R∪ {∞} is Borel measurable. For t = ∞ the
probabilities in (41) are all equal to 1, and the inequality therefore trivially holds in this
case. Next, let t ∈ R be such that P(T̄(V) = t) = 0. Set Am := {ω ∈ � : T(Vm(ω)) ≤ t},
A := {ω ∈ � : T̄(V(ω)) ≤ t} and �′ = {ω ∈ � : T̄(V(ω)) �= t,Vm(ω) → V(ω)}. From the
definition of T̄ we obtain

limsup
m→∞

T(Vm(ω)) ≤ T̄(V(ω)) for every ω ∈ � such that Vm(ω) → V(ω). (42)

Furthermore, if ω ∈ A ∩�′, we have that T̄(V(ω)) < t must hold and hence T(Vm(ω)) < t
must hold eventually in view of (42), i.e., that ω ∈ Am eventually must be true. This implies
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that liminfm→∞ 1Am(ω) ≥ 1A(ω) for every ω ∈ �′ (the inequality being trivial for ω /∈ A),
and thus almost everywhere. Fatou’s lemma now yields

liminf
m→∞ P(T(Vm) ≤ t) = liminf

m→∞ E(1Am) ≥ E(liminf
m→∞ 1Am) ≥ E(1A) = P(T̄(V) ≤ t),

where E denotes the expectation operator associated with P. �

LEMMA A.4. Let F be the distribution function of a random variable taking values in
R∪{∞} and let δ ∈ (0,1). If s ∈ R∪{∞} satisfies F(s) > δ, then s is larger than or equal
to any δ-quantile of F.

Proof. If r ∈ R∪{∞} satisfies r > s, it follows that F(s) ≤ F(r−) must hold. Together
with the hypothesis, we conclude that F(r−) > δ. But this shows that r can not be a δ-
quantile of F, cf. Footnote 23. �

B. Proofs for Section 5.1

The facts collected in the subsequent remark will be used in the proofs further below.

Remark B.1. (i) Suppose Assumption 1 holds. Then the test statistic THet is a non-
sphericity corrected F-type test statistic in the sense of Section 5.4 in Preinerstorfer and
Pötscher (2016). More precisely, THet is of the form (28) in Preinerstorfer and Pötscher
(2016) and Assumption 5 in the same reference is satisfied with β̌ = β̂, �̌ = �̂Het, and
N = ∅. Furthermore, the set N∗ defined in (27) of Preinerstorfer and Pötscher (2016) satisfies
N∗ = B. And also Assumptions 6 and 7 of Preinerstorfer and Pötscher (2016) are satisfied.
All these claims follow easily in view of Lemma 4.1 in Preinerstorfer and Pötscher (2016),
see also the proof of Theorem 4.2 in that reference.

(ii) The test statistic Tuc is also a nonsphericity corrected F-type test statistic in the
sense of Section 5.4 in Preinerstorfer and Pötscher (2016) (terminology being somewhat
unfortunate here as no correction for the nonsphericity is being attempted). More precisely,
Tuc is of the form (28) in Preinerstorfer and Pötscher (2016) and Assumption 5 in the same

reference is satisfied with β̌ = β̂, �̌ = σ̂ 2R
(
X′X

)−1 R′, and N = ∅. Furthermore, the set
N∗ defined in (27) of Preinerstorfer and Pötscher (2016) satisfies N∗ = span(X). And also
Assumptions 6 and 7 of Preinerstorfer and Pötscher (2016) are satisfied. All these claims
are evident (and obviously do not rely on Assumption 1).

(iii) We note that any nonsphericity corrected F-type test statistic (for testing (3)) in the
sense of Section 5.4 in Preinerstorfer and Pötscher (2016), i.e., any test statistic T of the
form (28) in Preinerstorfer and Pötscher (2016) that also satisfies Assumption 5 in that
reference, is invariant under the group G(M0). Furthermore, the associated set N∗ defined
in (27) of Preinerstorfer and Pötscher (2016) is even invariant under the larger group G(M).
See Sections 5.1 and 5.4 of Preinerstorfer and Pötscher (2016) as well as Lemma 5.16 in
Pötscher and Preinerstorfer (2018) for more information.

Proof of Theorem 5.1. We first prove Part (b) and apply Theorem A.1 in Appendix
A with T1 = T2 = T�

Het. Borel-measurability and G(M0)-invariance of T1 and T2 follow
from the corresponding properties of THet, see the discussion in Section 3 and, in particular,
Remark 3.2. Furthermore, we see that Fy in Theorem A.1 coincides with F�

Het,y, implying

that we may set f1−α(y) = f �
Het,1−α

(y). For indices i such that ei(n) /∈ B, we have also
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μ0 + ei(n) /∈ B and thus continuity of T1 at μ0 + ei(n) (as T1 coincides with THet on the
complement of the closed set B); cf. Remarks 3.2, B.1, and Lemma 5.15 in Preinerstorfer
and Pötscher (2016). In particular, ci = T1(μ0 +ei(n)) = THet(μ0 +ei(n)) follows for such
indices i. Also note that y∗(μ0 + ei(n),ξ) /∈ B implies that y∗(μ0 + ei(n),ξ) is a continuity
point of T2. This shows that ϑ�

1,Het defined by

ϑ�
1,Het = max

i=1,...,n,
ei(n)/∈B

�
({

ξ : T�,∗
Het (μ0 + ei(n),ξ) < THet(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ B

})

is less than or equal to the maximum appearing on the right-hand side of (35) (where we set
ϑ�

1,Het = 0 if the maximum operator is taken over an empty index set). It is also obvious that

ϑ�
1,Het = ϑ1,Het holds, since T�,∗

Het (μ0 + ei(n),ξ) coincides with T∗
Het(μ0 + ei(n),ξ) when

y∗(μ0 +ei(n),ξ) /∈ B. Next, consider an index i such that ei(n) ∈ span(X) and Rβ̂(ei(n)) �= 0
hold. We show that then ci = ∞: For this it suffices to show that T1(μ0 +vm) → ∞ for any
sequence vm with vm → ei(n) for m → ∞. Now, for all m such that μ0 + vm ∈ B holds we
have T1(μ0 + vm) = T�

Het(μ0 + vm) = ∞; and for all m with μ0 + vm /∈ B we obtain

T1(μ0 + vm) = THet(μ0 + vm) ≥
∥∥∥Rβ̂(μ0 + vm)− r

∥∥∥2
λ−1

max(�̂Het(μ0 + vm)),

where λmax(·) denotes the largest eigenvalue of the matrix indicated. Note that Rβ̂(μ0 +
vm) − r → Rβ̂(μ0 + ei(n)) − r = Rβ̂(ei(n)) �= 0 and that �̂Het(μ0 + vm) → �̂Het(μ0 +
ei(n)) = 0, the last equality following from μ0 + ei(n) ∈ span(X), which in turn is a
consequence of ei(n) ∈ span(X). Obviously, T1(μ0 + vm) → ∞ for m → ∞ now follows.
Now define

ϑ�
2,Het = max

i=1,...,n,
ei(n)∈span(X),Rβ̂(ei(n)) �=0

�
({

ξ :T�,∗
Het (μ0 + ei(n),ξ) < ∞,y∗(μ0 + ei(n),ξ) /∈ B

})
,

where we set ϑ�
2,Het = 0 if the maximum operator is taken over an empty index set. Then

ϑ�
2,Het is obviously less than or equal to the maximum appearing on the right-hand side of

(35), again using that y∗(μ0 +ei(n),ξ) /∈ B implies y∗(μ0 +ei(n),ξ) being a continuity point
of T2. Observe now that the condition T�,∗

Het (μ0 + ei(n),ξ) < ∞ in the above set is always
satisfied because of y∗(μ0 +ei(n),ξ) /∈ B. Hence, ϑ�

2,Het = ϑ2,Het holds (of course, also in
the trivial case where the index set in question is empty). Consequently, any α satisfying
α > ϑHet = 1−max(ϑ1,Het,ϑ2,Het) also satisfies (35). An application of Theorem A.1 now
yields (13) but with THet replaced by T�

Het. Since both the latter functions agree outside of
B, a λRn -null set, and since the measures Pμ0,σ

2� are absolutely continuous with respect
to λRn , also (13) as given in the theorem follows. Independence of ϑ1,Het and ϑ2,Het from
the choice of μ0 ∈ M0 follows since y∗(μ0 + y,ξ) = y∗(μ′

0 + y,ξ) − μ′
0 + μ0 for every

μ′
0 ∈M0 as shown in the proof of Theorem A.1 and since THet and B are G(M0)-invariant,

see Remark 3.2.
Part (a) now follows from the already established Part (b), noting that we may choose

f �
Het,1−α

such that f �
Het,1−α

(y) ≥ fHet,1−α(y) holds for every y ∈ Rn.50 �

50For example, by choosing f �
Het,1−α(y) as the largest (1−α)-quantile of F�

Het,y.
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Proof of Theorem 5.2. We first prove Part (b) and apply Theorem A.1 in Appendix
A with T1 = T2 = T�

uc. Borel-measurability and G(M0)-invariance of T1 and T2 follow
from the corresponding properties of Tuc, see the discussion in Section 3 and, in particular,
Remark 3.2. Furthermore, we see that Fy in Theorem A.1 coincides with F�

uc,y, implying

that we may set f1−α(y) = f �
uc,1−α

(y). For indices i such that ei(n) /∈ span(X), we have
also μ0 + ei(n) /∈ span(X) and thus continuity of T1 at μ0 + ei(n) (as T1 coincides with
Tuc on the complement of the closed set span(X)); cf. Remarks 3.2, B.1, and Lemma 5.15
in Preinerstorfer and Pötscher (2016). In particular, ci = T1(μ0 + ei(n)) = Tuc(μ0 + ei(n))

follows for such indices i. Also note that y∗(μ0 + ei(n),ξ) /∈ span(X) implies that y∗(μ0 +
ei(n),ξ) is a continuity point of T2. This shows that ϑ�

1,uc defined by

ϑ�
1,uc = max

i=1,...,n,
ei(n)/∈span(X)

�
({

ξ : T�,∗
uc (μ0 + ei(n),ξ)

< Tuc(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ span(X)
})

is less than or equal to the maximum appearing on the r.h.s. of (35). It is also obvious
that ϑ�

1,uc = ϑ1,uc holds, since T�,∗
uc (μ0 + ei(n),ξ) coincides with T∗

uc(μ0 + ei(n),ξ)

when y∗(μ0 + ei(n),ξ) /∈ span(X). Next, consider an index i such that ei(n) ∈ span(X)

and Rβ̂(ei(n)) �= 0 hold. We show that then ci = ∞: For this it suffices to show that
T1(μ0 + vm) → ∞ for any sequence vm with vm → ei(n) for m → ∞. Now, for all m
such that μ0 +vm ∈ span(X) holds we have T1(μ0 +vm) = T�

uc(μ0 +vm) = ∞; and for all
m with μ0 + vm /∈ span(X) we obtain

T1(μ0 + vm) = Tuc(μ0 + vm) ≥
∥∥∥Rβ̂(μ0 + vm)− r

∥∥∥2
λ−1

max(R
(
X′X

)−1 R′)σ̂−2(μ0 + vm),

where λmax(·) denotes the largest eigenvalue of the matrix indicated. Note that Rβ̂(μ0 +
vm)−r → Rβ̂(μ0 +ei(n))−r = Rβ̂(ei(n)) �= 0 and that σ̂ 2(μ0 +vm) → σ̂ 2(μ0 +ei(n)) =
0, the last equality following from μ0 +ei(n) ∈ span(X), which in turn is a consequence of
ei(n) ∈ span(X). Obviously, T1(μ0 + vm) → ∞ for m → ∞ now follows. Now define

ϑ�
2,uc = max

i=1,...,n,
ei(n)∈span(X),Rβ̂(ei(n)) �=0

�
({

ξ : T�,∗
uc (μ0 + ei(n),ξ)

< ∞,y∗(μ0 + ei(n),ξ) /∈ span(X)
})

,

where we set ϑ�
2,uc = 0 if the maximum operator is taken over an empty index set. Then

ϑ�
2,uc is obviously less than or equal to the maximum appearing on the right-hand side

of (35), again using that y∗(μ0 + ei(n),ξ) /∈ span(X) implies y∗(μ0 + ei(n),ξ) being a
continuity point of T2. Observe now that the condition T�,∗

uc (μ0 +ei(n),ξ) < ∞ in the above
set is always satisfied because of y∗(μ0 + ei(n),ξ) /∈ span(X). Hence, ϑ�

2,uc = ϑ2,uc holds
(of course, also in the trivial case where the index set in question is empty). Consequently,
any α satisfying α > ϑuc = 1 − max(ϑ1,uc,ϑ2,uc) also satisfies (35). An application of
Theorem A.1 now yields (17) but with Tuc replaced by T�

uc. Since both the latter functions
agree outside of span(X), a λRn -null set, and since the measures Pμ0,σ

2� are absolutely
continuous with respect to λRn , also (17) as given follows. Independence of ϑ1,uc and ϑ2,uc
from the choice of μ0 ∈M0 follows since y∗(μ0 +y,ξ) = y∗(μ′

0 +y,ξ)−μ′
0 +μ0 for every

μ′
0 ∈ M0 as shown in the proof of Theorem A.1 and since Tuc and span(X) are G(M0)-

invariant, see Remark 3.2.
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Part (a) now follows from the already established Part (b), noting that we may choose
f �
uc,1−α

such that f �
uc,1−α

(y) ≥ fuc,1−α(y) holds for every y ∈ Rn. �

Remark B.2. A weaker version of Theorem 5.1 (Theorem 5.2, respectively) is obtained
if ϑHet is replaced by 1 − ϑ1,Het (ϑuc is replaced by 1 − ϑ1,uc, respectively). These
weaker versions not only have simpler proofs in that one does not need to deal with the
quantities ϑ2,Het (ϑ2,uc, respectively), but can also be derived from Theorem A.1 more
directly by setting T1 = THet and T2 = T�

Het (T1 = Tuc and T2 = T�
uc, respectively), leading

to a somewhat simpler proof that directly establishes (13) ((17), respectively) instead of
establishing these relations for T�

Het (T�
uc, respectively) first. Cf. the proofs of Theorems 5.7

and 5.8 further below, which have a similar structure.

Proof of Lemma 5.3. Let y ∈ Rn and ξ ∈ Rn be arbitrary. Observe that y∗(y,ξ) −
y�(y,ξ) = Xβ̃M0(y) − Xβ̂(y). It is then elementary to see that Rβ̂(y∗(y,ξ)) − r =
Rβ̂(y�(y,ξ))−Rβ̂(y) since Rβ̃M0(y) = r certainly holds. Another immediate consequence

is that û(y∗(y,ξ)) = û(y�(y,ξ)) holds, which implies �̂Het(y
∗(y,ξ)) = �̂Het(y

�(y,ξ)) as
well as σ̂ 2(y∗(y,ξ)) = σ̂ 2(y�(y,ξ)). From the first observation we see that y∗(y,ξ) and
y�(y,ξ) differ only by an element of span(X). Hence, y∗(y,ξ)∈ B if and only if y�(y,ξ)∈ B,
since B + span(X) = B holds as noted in Lemma 3.1. And similarly, y∗(y,ξ) ∈ span(X) if
and only if y�(y,ξ) ∈ span(X). This proves all the claims. �

C. Proofs for Section 5.2

Proof of Lemma 5.5. Observe that �̃Het (y) = B̃(y)diag
(

d̃1, . . . ,d̃n

)
B̃′ (y). Given that

d̃i > 0, this immediately establishes Parts (a) and (b) of the lemma. We next prove Part
(c). Let s be as in Assumption 2 and consider first the case where this assumption is
satisfied. If now y ∈ B̃ it follows that ũl(y) = 0 must hold at least for some l /∈ {i1, . . . is}
where l may depend on y. But this means that y satisfies e′

l(n)	
(Mlin

0 )⊥(y−μ0) = 0. Since

e′
l(n)	

(Mlin
0 )⊥ �= 0 by construction of l, it follows that B̃ is contained in a finite union

of proper affine subspaces, and hence is a λRn -null set. Next consider the case where
Assumption 2 is not satisfied. Observe that then s > 0 must hold. Note that ũi(y) = 0
holds for all y ∈ Rn and all i ∈ {i1, . . . is} by construction of {i1, . . . is}. But then for every
y ∈ Rn

rank(B̃(y)) = rank
(

R(X′X)−1X′ (¬(i1, . . . is))A(y)
)

≤ rank
(

R(X′X)−1X′ (¬(i1, . . . is))
)

< q

is satisfied where A(y) is obtained from diag(ũ1(y), . . . ,ũn(y)) by deleting rows and columns
i with i ∈ {i1, . . . is}. This completes the proof of Part (c). To prove Part (d) recall that B̃ is
the set where

B̃(y) = R(X′X)−1X′diag
(

e′
1(n)	

(Mlin
0 )⊥(y−μ0), . . . ,e′

n(n)	
(Mlin

0 )⊥(y−μ0)
)

= R(X′X)−1X′ [e1(n)e′
1(n)	

(Mlin
0 )⊥(y−μ0), . . . ,en(n)e′

n(n)	
(Mlin

0 )⊥(y−μ0)
]
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has rank less than q. Define the set

D = {(j1, . . . ,js) : 1 ≤ s ≤ n,1 ≤ j1 < · · · < js

≤ n,rank
(

R(X′X)−1X′ [ej1(n), . . . ,ejs(n)
])

< q
}
,

which may be empty in case q = 1. Consider first the case where D is nonempty: Since
R(X′X)−1X′ has rank q, it is then easy to see that we have y ∈ B̃ if and only if there exists
(j1, . . . ,js) ∈ D such that e′

j(n)	
(Mlin

0 )⊥(y−μ0) = 0 for j �= ji for i = 1, . . . ,s. This shows,

that B̃−μ0 is a finite union of (not necessarily distinct) linear subspaces. In case D is empty,
rank(R(X′X)−1X′) = q implies that y ∈ B̃ if and only if e′

j(n)	
(Mlin

0 )⊥(y−μ0) = 0 for all

1 ≤ j ≤ n, i.e., if and only if y ∈ M0. That is, in this case B̃−μ0 = Mlin
0 , a linear subspace.

That the linear subspaces making up B̃−μ0 are proper, follows since otherwise B̃−μ0, and
thus B̃, would be all of Rn, which is impossible under Assumption 2 as shown in Part (c).
To prove the second claim, observe that in case q = 1 the condition that rank(B̃(y)) is less
than q is equivalent to B̃(y) = 0. Since the expressions R(X′X)−1X′ej(n) are now scalar, we

may thus write the condition B̃(y) = 0 equivalently as[
R(X′X)−1X′e1(n)e1(n), . . . ,R(X′X)−1X′en(n)en(n)

]
	

(Mlin
0 )⊥(y−μ0) = 0.

But this shows that B−μ0 is a linear subspace, namely the kernel of the matrix appearing
on the left-hand side of the preceding display. It remains to prove Part (e). Closedness of
B̃ follows from Parts (c) and (d), and the remaining claims are trivial (note that B̃(y) only
depends on ũ(y), which obviously is G(M0)-invariant). �

Proof of Theorem 5.7. We first prove Part (b) and apply Theorem A.1 in Appendix
A with T1 = T̃Het and T2 = T̃�

Het. Borel-measurability and G(M0)-invariance of T1 and

T2 follow from the corresponding properties of T̃Het, see Remark 5.6. Furthermore, we
see that Fy in Theorem A.1 coincides with F̃�

Het,y, implying that we may set f1−α(y) =
f̃ �
Het,1−α

(y). For indices i such that μ0 + ei(n) /∈ B̃, the function T1 is continuous at μ0 +
ei(n). In particular, ci = T1(μ0 +ei(n)) = T̃Het(μ0 +ei(n)) follows for such indices i. Also
note that y∗(μ0 +ei(n),ξ) /∈ B̃ implies that y∗(μ0 +ei(n),ξ) is a continuity point of T2. This
shows that ϑ̃�

Het defined by

ϑ̃�
Het = 1− max

i=1,...,n,
μ0+ei(n)/∈B̃

�
({

ξ : T̃�,∗
Het (μ0 + ei(n),ξ)

< T̃Het(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ B̃

})

is not less than the right-hand side of (35) (where we set ϑ̃�
Het = 1 if the maximum operator

is taken over an empty index set). It is also obvious that ϑ̃�
Het = ϑ̃Het holds, since T̃�,∗

Het (μ0 +
ei(n),ξ) coincides with T̃∗

Het(μ0 + ei(n),ξ) when y∗(μ0 + ei(n),ξ) /∈ B̃. Consequently, any

α satisfying α > ϑ̃Het also satisfies (35). An application of Theorem A.1 now yields (23).
Independence of ϑ̃Het from the choice of μ0 ∈ M0 follows since y∗(μ0 + y,ξ) = y∗(μ′

0 +
y,ξ)−μ′

0 +μ0 for every μ′
0 ∈ M0 as shown in the proof of Theorem A.1 and since T̃Het

and B̃ are G(M0)-invariant, see Remark 5.6.
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Part (a) now follows from the already established Part (b), noting that we may choose
f̃ �
Het,1−α

such that f̃ �
Het,1−α

(y) ≥ f̃Het,1−α(y) holds for every y ∈ Rn. �

Proof of Theorem 5.8. 51 We first prove Part (b) and apply Theorem A.1 in Appendix
A with T1 = T̃uc and T2 = T̃�

uc. Borel-measurability and G(M0)-invariance of T1 and T2
follow from the corresponding properties of T̃uc, see Remark 5.6. Furthermore, we see that
Fy in Theorem A.1 coincides with F̃�

uc,y, implying that we may set f1−α(y) = f̃ �
uc,1−α

(y).
For indices i such that μ0 + ei(n) /∈ M0, the function T1 is continuous at μ0 + ei(n). In
particular, ci = T1(μ0 + ei(n)) = T̃uc(μ0 + ei(n)) follows for such indices i. Also note that
y∗(μ0 +ei(n),ξ) /∈M0 implies that y∗(μ0 +ei(n),ξ) is a continuity point of T2. This shows
that ϑ̃�

uc defined by

ϑ̃�
uc = 1− max

i=1,...,n,
μ0+ei(n)/∈M0

�
({

ξ : T̃�,∗
uc (μ0 + ei(n),ξ)

< T̃uc(μ0 + ei(n)),y∗(μ0 + ei(n),ξ) /∈ M0

})
is not less than the right-hand side of (35). It is also obvious that ϑ̃�

uc = ϑ̃uc holds,
since T̃�,∗

uc (μ0 + ei(n),ξ) coincides with T̃∗
uc(μ0 + ei(n),ξ) when y∗(μ0 + ei(n),ξ) /∈ M0.

Consequently, any α satisfying α > ϑ̃uc also satisfies (35). An application of Theorem
A.1 now yields (26). Independence of ϑ̃uc from the choice of μ0 ∈ M0 follows since
y∗(μ0 + y,ξ) = y∗(μ′

0 + y,ξ) − μ′
0 + μ0 for every μ′

0 ∈ M0 as shown in the proof of

Theorem A.1 and since T̃uc and M0 are G(M0)-invariant, see Remark 5.6.
Part (a) now follows from the already established Part (b), noting that we may choose

f̃ �
uc,1−α

such that f̃ �
uc,1−α

(y) ≥ f̃uc,1−α(y) holds for every y ∈ Rn. �

LEMMA C.1. Let A be an affine subspace of Rn satisfying M0 ⊆ A ⊆ span(X), and let
y�(y,ξ) be as defined in (9).

(a) For every γ ∈ R, every μ′
0 ∈ M0, every μ′′

0 ∈ M0, every y ∈ R, and every ξ ∈ Rn we
have

y�(γ (y−μ′
0)+μ′′

0,ξ) = γ
(

y�(y,ξ)−μ′
0

)
+μ′′

0,

Rβ̂(y�(γ (y−μ′
0)+μ′′

0,ξ))−Rβ̂(γ (y−μ′
0)+μ′′

0) = γ
[
Rβ̂(y�(y,ξ))−Rβ̂(y)

]
,

ũ(y�(γ (y−μ′
0)+μ′′

0,ξ)) = γ ũ(y�(y,ξ)),

�̃Het

(
y�(γ (y−μ′

0)+μ′′
0,ξ)

)
= γ 2�̃Het

(
y�(y,ξ)

)
where ũ(y) = y−Xβ̃M0(y) denotes the vector of restricted residuals corresponding to the

restricted estimator β̃M0 .

(b) The set {y ∈Rn : det�̃Het

(
y�(y,ξ)

)
= 0} as well as T̃�

Het(·,ξ) are G(M0)-invariant

for every ξ ∈ Rn.
(c) The set {y ∈ Rn : y�(y,ξ) ∈ M0} as well as T̃�

uc (·,ξ) are G(M0)-invariant for every
ξ ∈ Rn.

51In view of the relationship between T̃uc and Tuc discussed in Section 5.1.1 in Pötscher and Preinerstorfer (2021),
one could attempt to use this relationship to derive Theorem 5.8 from Theorem 5.2. However, it is not obvious how
this can actually be executed since the relationship mentioned only holds outside of a Lebesgue null-set, but y∗(y,ξ)

typically follows a discrete distribution.
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Proof. (a) Using elementary properties of the least squares estimator β̂, using that y −
Xβ̃A(y) = 	(A−μ0)

⊥(y −μ0) as noted in the proof of Theorem A.1 in Appendix A, and

noting that 	(A−μ0)
⊥(μ′′

0 − μ0) = 0 = 	(A−μ0)
⊥(μ0 − μ′

0) (since μ′′
0 − μ0 as well as

μ0 −μ′
0 belong to Mlin

0 and since (A−μ0)⊥ ⊆ (Mlin
0 )⊥) we get

y�(γ (y−μ′
0)+μ′′

0,ξ) = Xβ̂(γ (y−μ′
0)+μ′′

0)+diag(ξ)

×	(A−μ0)
⊥(γ (y−μ′

0)+μ′′
0 −μ0)

= γ (Xβ̂(y)−μ′
0)+μ′′

0 +γ diag(ξ)	(A−μ0)
⊥(y−μ0)

= γ
(

y�(y,ξ)−μ′
0

)
+μ′′

0.

The second displayed equation is then an immediate consequence. Using what has already
been established

ũ(y�(γ (y−μ′
0)+μ′′

0,ξ)) = ũ(γ
(

y�(y,ξ)−μ′
0

)
+μ′′

0)

= 	
(Mlin

0 )⊥(γ
(

y�(y,ξ)−μ′
0

)
+μ′′

0 −μ0)

= γ	
(Mlin

0 )⊥
(

y�(y,ξ)−μ′
0

)
= γ	

(Mlin
0 )⊥

(
y�(y,ξ)−μ0

)
= γ ũ(y�(y,ξ)),

which then also immediately gives the fourth displayed equation.
(b) and (c). Follows from (a). �

Proof of Theorem 5.9. We prove Part (b) first. By G(M0)-invariance of T̃�
Het(·,ξ) and of

the set {y ∈Rn : y�(y,ξ) ∈ B̃} (for every ξ ) established in Lemma C.1 we can conclude that
for every z ∈Rn the expression T̃�

Het(μ0 +γ z,ξ) depends neither on the choice of μ0 ∈M0
nor on the value of γ ∈ R\{0}, cf. Footnote 49. By G(M0)-invariance (see Remark 5.6),
the same is true also for T̃Het(μ0 +γ z). By Lemma C.1 and by G(M0)-invariance of B̃, the
truth-value of the statement y�(μ0 +γ z,ξ) /∈ B̃ depends neither on the choice of μ0 ∈ M0
nor on the value of γ ∈ R\{0}. A similar comment applies to the statement μ0 + ei(n) /∈
B̃. This shows, in particular, that θ̃Het does not depend on the choice of μ0 ∈ M0. Next,

observe that for every y ∈Rn and every t ∈R we have H̃�
Het,y(t) = �({ξ : T̃Het

(
y�(y,ξ)

)
≤

t,y�(y,ξ) /∈ B̃}). In particular, the condition α > θ̃Het is equivalent to

max
i=1,...,n,

μ0+ei(n)/∈B̃

H̃�
Het,μ0+ei(n)(T̃Het(μ0 + ei(n))−) > 1−α,

with the convention that the left-hand side is zero if the maximum operator extends over an
empty index set, in which case there is then nothing to prove. Otherwise, let from now
on i be an index that realizes the maximum in the previous display. In the case where
H̃�

Het,μ0+ei(n)
(T̃Het(μ0 + ei(n))−) = 0, there is again nothing to prove and we are done.

Hence, it remains to consider the case where H̃�
Het,μ0+ei(n)

(T̃Het(μ0 + ei(n))−) > 0. In

this case then, let α ∈ (0,1) be such that H̃�
Het,μ0+ei(n)

(T̃Het(μ0 +ei(n))−) > 1−α (where
μ0 ∈ M0 can be chosen arbitrarily). From this inequality we can conclude existence of a
real number xi smaller than T̃Het(μ0 + ei(n)) such that H̃�

Het,μ0+ei(n)
(xi) > 1 − α holds

https://doi.org/10.1017/S0266466622000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000184


BOOTSTRAP-BASED HETEROSKEDASTICITY ROBUST TESTS 839

and such that xi is a continuity point of H̃�
Het,μ0+ei(n)

. Since μ0 + ei(n) /∈ B̃, it is obvious

that T̃Het is continuous at μ0 + ei(n). In view of this, there exists a δ > 0 such that every
z ∈ B(ei(n),δ) satisfies T̃Het(μ0 + z) > xi (and the same is true if we replace δ by a smaller
positive number). We claim that for every sequence zm → ei(n) (zm ∈ Rn) we have

liminf
m→∞ H̃�

Het,μ0+zm
(xi) ≥ H̃�

Het,μ0+ei(n)(xi). (43)

Define Vm = Vm(ξ) = (μ0 + zm,y�(μ0 + zm,ξ)) and V = V(ξ) = (μ0 + ei(n),y�(μ0 +
ei(n),ξ)), which can be viewed as random vectors defined on Rn (equipped with the Borel
σ -field) and where the probability measure is given by �. Note that Vm converges to
V everywhere as m → ∞ (since y�(y,ξ) is continuous w.r.t. y). Define S : Rn ×Rn →
R∪{∞} via

S(z,x) =
{

(Rβ̂ (x)−Rβ̂ (z))′�̃−1
Het (x)(Rβ̂ (x))−Rβ̂ (z)), if x /∈ B̃,

∞, if x ∈ B̃,

and note that H̃�
Het,μ0+zm

(t) = �(S(Vm) ≤ t) and H̃�
Het,μ0+ei(n)

(t) = �(S(V) ≤ t) holds for
t ∈ R and thus also for t = xi (recall that xi is a real number). The statement in (43) now
follows from Lemma A.3 in Appendix A, recalling that we have chosen xi as a continuity
point of H̃�

Het,μ0+ei(n)
, which implies �(S(V) = xi) = 0, and noting that S̄ = S here holds.

Summarizing, we hence arrive, replacing δ by another element of (0,δ) if necessary, at

T̃Het(μ0 + z) > xi and H̃�
Het,μ0+z(xi) > 1−α for every z ∈ B(ei(n),δ). (44)

Now, for every z ∈ Rn and every γ �= 0 we have

H̃�
Het,μ0+γ z(xi) = �

({
ξ : T̃�,�

Het (μ0 +γ z,ξ) ≤ xi

})
= �

({
ξ : T̃�,�

Het (μ0 + z,ξ) ≤ xi

})
= H̃�

Het,μ0+z(xi)

by what has been shown at the very beginning of the proof. Using also the observation for
T̃Het(μ0 +γ z) made at the beginning of the proof, the preceding display and (44) thus give

T̃Het(μ0 + y) > xi and H̃�
Het,μ0+y(xi)

> 1−α for every y ∈ {γ z : γ �= 0,z ∈ B(ei(n),δ)} =: �,

or equivalently

T̃Het(y) > xi and H̃�
Het,y(xi) > 1−α for every y ∈ μ0 +�. (45)

By Lemma A.4, we see that H̃�
Het,y(xi) > 1−α implies xi ≥ h̃�

Het,1−α
(y). Hence,

{
y ∈ Rn : T̃Het(y) > xi, H̃�

Het,y(xi) > 1−α
}

⊆
{

y ∈ Rn : T̃Het(y) > h̃�
Het,1−α(y)

}
.

This, together with (45), gives{
y ∈ Rn : T̃Het(y) > h̃�

Het,1−α(y)
}

⊇ μ0 +� ⊇ μ0 + int(�) ⊇ μ0 + (span(ei(n))\{0}),
where int(�) denotes the interior of �. The proof is now completed by following the steps
after (40) in the proof of Theorem A.1 in Appendix A.
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Part (a) now follows from the already established Part (b), noting that we may choose
h̃�

Het,1−α
such that h̃�

Het,1−α
(y) ≥ h̃Het,1−α(y) holds for every y ∈ Rn. �

Proof of Theorem 5.10. We prove Part (b) first. By G(M0)-invariance of T̃�
uc (·,ξ)

and of the set {y ∈ Rn : y�(y,ξ) ∈ M0} (for every ξ ) established in Lemma C.1 we can
conclude that for every z ∈Rn the expression T̃�

uc (μ0 +γ z,ξ) depends neither on the choice
of μ0 ∈ M0 nor on the value of γ ∈ R\{0}, cf. Footnote 49. By G(M0)-invariance (see
Remark 5.6), the same is true also for T̃uc(μ0 +γ z). By Lemma C.1, the truth-value of the
statement y�(μ0 +γ z,ξ) /∈M0 depends neither on the choice of μ0 ∈M0 nor on the value
of γ ∈R\{0}. A similar comment applies to the statement μ0 +ei(n) /∈M0. This shows, in
particular, that θ̃uc does not depend on the choice of μ0 ∈ M0. Next, observe that for every

y ∈ Rn and every t ∈ R we have H̃�
uc,y(t) = �({ξ : T̃uc

(
y�(y,ξ)

)
≤ t,y�(y,ξ) /∈ M0}). In

particular, the condition α > θ̃uc is equivalent to

max
i=1,...,n,

μ0+ei(n)/∈M0

H̃�
uc,μ0+ei(n)(T̃uc(μ0 + ei(n))−) > 1−α.

From now on let i be an index that realizes the maximum in the previous display (note
that the index set is not empty since k − q ≤ k < n by assumption). In the case where
H̃�

uc,μ0+ei(n)
(T̃uc(μ0 + ei(n))−) = 0, there is nothing to prove and we are done. Hence,

it remains to consider the case where H̃�
uc,μ0+ei(n)

(T̃uc(μ0 + ei(n))−) > 0. In this case

then, let α ∈ (0,1) be such that H̃�
uc,μ0+ei(n)

(T̃uc(μ0 + ei(n))−) > 1−α (where μ0 ∈ M0
can be chosen arbitrarily). From this inequality, we can conclude existence of a real number
xi smaller than T̃uc(μ0 +ei(n)) such that H̃�

uc,μ0+ei(n)
(xi) > 1−α holds and such that xi is a

continuity point of H̃�
uc,μ0+ei(n)

. Since μ0 +ei(n) /∈M0, it is obvious that T̃uc is continuous
at μ0 + ei(n). In view of this, there exists a δ > 0 such that every z ∈ B(ei(n),δ) satisfies
T̃uc(μ0 + z) > xi (and the same is true if we replace δ by a smaller positive number). We
claim that for every sequence zm → ei(n) (zm ∈ Rn) we have

liminf
m→∞ H̃�

uc,μ0+zm
(xi) ≥ H̃�

uc,μ0+ei(n)(xi). (46)

Define Vm = Vm(ξ) = (μ0 + zm,y�(μ0 + zm,ξ)) and V = V(ξ) = (μ0 + ei(n),y�(μ0 +
ei(n),ξ)), which can be viewed as random vectors defined on Rn (equipped with the Borel
σ -field) and where the probability measure is given by �. Note that Vm converges to
V everywhere as m → ∞ (since y�(y,ξ) is continuous w.r.t. y). Define S : Rn ×Rn →
R∪{∞} via

S(z,x) =
{

(Rβ̂ (x)−Rβ̂ (z))′
(
σ̃ 2(x)R

(
X′X

)−1 R′)−1
(Rβ̂ (x))−Rβ̂ (z)), if x /∈ M0,

∞, if x ∈ M0,

and note that H̃�
uc,μ0+zm

(t) = �(S(Vm) ≤ t) and H̃�
uc,μ0+ei(n)

(t) = �(S(V) ≤ t) holds for
t ∈ R and thus also for t = xi (recall that xi is a real number). The statement in (46) now
follows from Lemma A.3 in Appendix A, recalling that we have chosen xi as a continuity
point of H̃�

uc,μ0+ei(n)
, which implies �(S(V) = xi) = 0, and noting that S̄ = S here holds.

Summarizing, we hence arrive, replacing δ by another element of (0,δ) if necessary, at

T̃uc(μ0 + z) > xi and H̃�
uc,μ0+z(xi) > 1−α for every z ∈ B(ei(n),δ). (47)
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Now, for every z ∈ Rn and every γ �= 0 we have

H̃�
uc,μ0+γ z(xi) = �

({
ξ : T̃�,�

uc (μ0 +γ z,ξ) ≤ xi

})
= �

({
ξ : T̃�,�

uc (μ0 + z,ξ) ≤ xi

})
= H̃�

uc,μ0+z(xi)

by what has been shown at the very beginning of the proof. Using also the observation for
T̃uc(μ0 +γ z) made at the beginning of the proof, the preceding display and (47) thus give

T̃uc(μ0 + y)>xi and H̃�
uc,μ0+y(xi)>1−α for every y∈{γ z : γ �= 0,z ∈ B(ei(n),δ)} =: �,

or equivalently

T̃uc(y) > xi and H̃�
uc,y(xi) > 1−α for every y ∈ μ0 +�. (48)

By Lemma A.4, we see that H̃�
uc,y(xi) > 1−α implies xi ≥ h̃�

uc,1−α
(y). Hence,{

y ∈ Rn : T̃uc(y) > xi, H̃�
uc,y(xi) > 1−α

}
⊆

{
y ∈ Rn : T̃uc(y) > h̃�

uc,1−α(y)
}

.

This, together with (48), gives{
y ∈ Rn : T̃uc(y) > h̃�

uc,1−α(y)
}

⊇ μ0 +� ⊇ μ0 + int(�) ⊇ μ0 + (span(ei(n))\{0}),
where int(�) denotes the interior of �. The proof is now completed by following the steps
after (40) in the proof of Theorem A.1 in Appendix A.

Part (a) now follows from the already established Part (b), noting that we may choose
h̃�

uc,1−α
such that h̃�

uc,1−α
(y) ≥ h̃uc,1−α(y) holds for every y ∈ Rn. �

D. Proofs for Section 6

Proof of Theorem 6.1. Because of the assumption q = k, we have A = M0 = {μ0},
where μ0 = Xβ0 and β0 is defined as R−1r. Observe that y∗(y,ξ)= Xβ0 +diag(ξ)(y−Xβ0),
and hence y∗(μ0 +ei(n),ξ) = μ0 +ξiei(n) for every i = 1, . . . ,n. Furthermore, note that our
assumption on � is equivalent to �(

{
ξ ∈ Rn :

∏n
i=1 ξi �= 0

}
) = 1.

(a) Because Assumption 1 is assumed in Theorem 5.1, we may conclude that ei(n) /∈
span(X) holds for every i = 1, . . . ,n.52 This shows that ϑ2,Het = 0. We now turn to ϑ1,Het:
Consider i = 1, . . . ,n, such that ei(n) /∈ B (if no such i exists ϑ1,Het = 0 follows immediately
from our convention). Observe that T∗

Het(μ0 + ei(n),ξ) = THet(μ0 + ξiei(n)) by definition
and that, in view of G(M0)-invariance of THet (Remark 3.2), this equals THet(μ0 + ei(n))

provided that ξi �= 0 (cf. the argument at the beginning of the proof of Theorem A.1). By
our assumption on �, we can conclude that ϑ1,Het = 0. This now gives ϑHet = 1.

(b) Consider first i = 1, . . . ,n, such that ei(n) ∈ span(X). Then y∗(μ0 + ei(n),ξ) = μ0 +
ξiei(n) ∈ span(X) also holds for every ξ , since μ0 ∈ M0 ⊆ span(X) and since span(X) is a
linear space. This shows that ϑ2,uc = 0. We turn now to ϑ1,uc: Consider i = 1, . . . ,n, such
that ei(n) /∈ span(X) (which has to be the case for at least one i in view of the assumption
k < n). Observe that T∗

uc(μ0 + ei(n),ξ) = Tuc(μ0 + ξiei(n)) by definition and that, in view
of G(M0)-invariance of Tuc (Remark 3.2), this equals Tuc(μ0 +ei(n)) provided that ξi �= 0

52If ei(n) ∈ span(X) would hold for some i, then there would exist a k × 1 vector a, such that Xa = ei(n). It
would follow that (X′ (¬(i1, . . . is)))′a = 0, where X′ (¬(i1, . . . is)) is the matrix appearing in Assumption 1. As a
consequence, this assumption would be violated, a contradiction.
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(cf. the argument at the beginning of the proof of Theorem A.1). By our assumption on �,
we can conclude that ϑ1,uc = 0. This now gives ϑuc = 1.

(c) Consider i = 1, . . . ,n, such that μ0 + ei(n) /∈ B̃ (if no such i exists ϑ̃Het = 0 follows
immediately from our convention). Observe that T̃∗

Het(μ0 + ei(n),ξ) = T̃Het(μ0 + ξiei(n))

by definition and that, in view of G(M0)-invariance of T̃Het (Remark 5.6), this equals
T̃Het(μ0 + ei(n)) provided that ξi �= 0 (cf. the argument at the beginning of the proof of
Theorem A.1). By our assumption on �, we can conclude that ϑ̃Het = 1.

(d) Consider i = 1, . . . ,n such that μ0 + ei(n) /∈ M0 (which is actually the case here for
every i sinceM0 = {μ0}). Observe that T̃∗

uc(μ0 +ei(n),ξ) = T̃uc(μ0 +ξiei(n)) by definition
and that, in view of G(M0)-invariance of T̃uc (Remark 5.6), this equals T̃uc(μ0 + ei(n))

provided that ξi �= 0 (cf. the argument at the beginning of the proof of Theorem A.1). By
our assumption on �, we can conclude that ϑ̃uc = 1. �

E. Computational Details

For every Setting A, B, and C and every bootstrap-based test procedure (i.e., combination
of test statistic and bootstrap scheme) the two-step procedure of computations outlined in
Section 8.2 proceeds as detailed in the following two subsections.

E.1. Step 1: Search for Design Matrices Leading to a Small ϑ . In every
scenario, i.e., for every combination of k = 2, . . . ,5 and q = 1, . . . ,k − 1, we do the
following: In a loop, we generate n×k -dimensional design matrices X with first column the
intercept, and the remaining coordinates drawn independently from a log-(standard) normal
distribution. For every X generated in this way, we determine the corresponding value of ϑ

for testing the restriction R = (0 : Iq) and r = 0 (after checking whether X has full rank and
satisfies the assumption in the theorem corresponding to ϑ [if applicable]).53 If a matrix X
is found such that the corresponding ϑ satisfies ϑ < 0.01, or if 150 design matrices have
been generated in total we stop the loop.

Then, we determine a matrix X∗(k,q), say, that realizes the minimal value of ϑ among the
(at most 150) matrices considered. In preparation for Step 2, for X∗(k,q) (and the restriction
given by the associated q) we also compute, by Monte Carlo based on 300 replications for
computing each probability (and assuming normality), the null rejection probabilities πα,ρ ,
say, of the bootstrap-based test under consideration for α = 0.05 and α = 0.1 under the
parameters β = 0, σ 2 = 1, and �(ρ,i∗) = diag(τ2

1 (ρ,i∗), . . . ,τ2
n (ρ,i∗)) given by

τ2
i∗(ρ,i∗) = ρ, and τ2

i (ρ,i∗) = (1−ρ)/(n−1) for i �= i∗, (49)

for ρ ∈ {n−1,0.9,0.99,0.999,0.9999} and where i∗ denotes the first index which realizes the
optimum in the optimization problem defining ϑ = ϑ(X∗(k,q)) in the appropriate theorem
that applies to the bootstrap-based test under consideration. The rationale for computing
πα,ρ is the following: Inspection of the proofs of the just mentioned theorems shows that
if ϑ < α holds, then the null rejection probabilities of the bootstrap-based test converge
to 1 along a sequence of �m ∈ CHet converging to ei∗(n)ei∗(n)′. Thus if ϑ < α, the null

53That is, Assumption 1 (Assumption 2, respectively) is checked if the test under consideration falls under the regime
of Theorem 5.1 (Theorem 5.7 or 5.9, respectively). All these checks, including the full rank check, were always passed
(which should not come as a surprise as these conditions are generically satisfied).
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rejection probability πα,ρ should be large for the variance specification considered in (49)
and ρ close to 1. This will be exploited as a numerical check in Step 2.

Note also that ρ = n−1 corresponds to homoskedastic errors.
For n ∈ {20,30} (i.e., in Settings B and C) the empirical distribution �• used in the

bootstrap scheme is generated once for each combination of k and q and then held fixed in
the computations of ϑ and the rejection probabilities described before.

E.2. Step 2: Numerical Check and Computation of Additional Size Lower
Bounds if Necessary. First, we determine the matrix X∗∗, say, that corresponds to
the minimal value of ϑ among the matrices {X∗(k,q) : k = 2, . . . ,5, q = 1, . . . ,k − 1}
determined in Step 1. We then conduct the following numerical check: if, for α = 0.05
or α = 0.1, the value of ϑ corresponding to X∗∗ (and the associated q) was smaller than
α, but maxρ πα,ρ < 0.4, we took this as an indication of numerical unreliability of ϑ (cf.
the discussion after (49) for an explanation, and see the discussion in Section E.3 below
concerning some numerical issues that make determining ϑ nontrivial). If the value of ϑ

corresponding to X∗∗ was deemed unreliable, we replaced X∗∗ by the matrix that led to the
minimal value of ϑ among all matrices in {X∗(k,q) : k = 2, . . . ,5, q = 1, . . . ,k −1}\{X∗∗},
and iterated this procedure until the check was passed (which eventually was always
the case before the set of all matrices X∗(k,q) was exhausted). Typically, the check was
passed right away.54 Denote by ϑmin the value of ϑ corresponding to the so-obtained
matrix X∗∗.

Once the check was passed, we proceeded as follows, separately for α = 0.05 and α = 0.1:
On the one hand, if ϑmin < α (and the maximal rejection probability computed thus was
guaranteed to be at least 0.4 by the numerical check), or if maxρ πα,ρ ≥ 3α, no additional
computations were carried out, which was the case for the vast majority of test procedures.55

In this case, the values of ϑmin and of maxρ πα,ρ are reported. Note that if ϑmin < α our
theoretical results indicate that the test has size 1 (in the scenario corresponding to X∗∗); and
if maxρ πα,ρ ≥ 3α, the null rejection probability is exceedingly large (even if ϑmin �< α)
and thus the test is also not reliable. On the other hand, if ϑmin ≥ α and maxρ πα,ρ < 3α,
we started a second set of computations to determine null rejection probabilities of the test
over a range of additional design matrices.

In this second set of computations, we focus exclusively on the scenario k and q pertaining
to X∗∗. In this scenario we first generate in a loop further design matrices in the same way
as in Step 1, and compute for each matrix the value of ϑ (after checking whether X has full
rank and satisfies the assumption in the theorem corresponding to ϑ [if applicable]).56 If
one of these new design matrices leads to a ϑ smaller than α, or once 150 matrices have
been considered, we stop the loop. The matrix corresponding to the smallest value of ϑ is
then used as the starting value in the following routine, in addition to (at most) 29 newly
generated design matrices (of dimension n × k) that are generated in the same way as the
design matrices in Step 1:

54More specifically, in Settings A–C no replacements were necessary for 99.38%, 98.96%, and 98.33%, respectively,
of the 960 bootstrap based test procedures considered.
55For α = 0.05 no additional computations were necessary for 921, 904, and 887 of the 960 bootstrap based test
procedures in Settings A–C, respectively; for α = 0.1 no additional computations were necessary for 947, 926, and
920 of the 960 bootstrap based test procedures in Settings A–C, respectively
56Again all these checks, including the full rank check, were always passed.
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(I) For every X considered we compute via a Monte Carlo method (again based on 300
replications and normality) the maximal null rejection probability for β = 0, σ 2 = 1
and � = diag(τ 2

1 , . . . ,τ 2
n ) where the vector (τ 2

1 , . . . ,τ 2
n )′ varies in the set of vectors

that is obtained from

{(τ 2
1 (0.99,i), . . . ,τ 2

n (0.99,i))′ + s|G| : i = 1, . . . ,n, s = 0,0.1,0.5},
after dividing each vector by its l1-norm (cf. (49)); here the vector |G| denotes
coordinate-wise absolute values of G, and the latter is obtained as a draw from an
n-variate standard normal distribution (here G was re-drawn for each X, i, and s).
Once an X is found such that the maximal null rejection probability exceeds 4α, or
once all 30 design matrices have been considered, we stop these computations.

(II) Denote by X∗∗∗ the matrix for which the largest rejection probability was obtained
in (I). All of the following computations are done on X∗∗∗.

If the largest rejection probability in (I) is greater than 4α, we re-compute this
rejection probability on a new Monte Carlo sample (of size 300 and under normality)
and stop.

Otherwise, we run (at most) 20 iterations of a Nelder–Mead optimization algo-
rithm initialized at the vector (τ 2

1 , . . . ,τ 2
n )′ that leads to the maximal rejection

probability in (I) to maximize the rejection probabilities further (all probabilities
are again determined by Monte Carlo with 300 replications assuming normality each
time a rejection probability is required during the Nelder–Mead optimization). After
these iterations, the rejection probability for the “optimal” (τ 2

1 , . . . ,τ 2
n )′ so obtained

is re-computed on a new Monte Carlo sample (of size 300 and assuming normality).
In both cases we report the last null rejection probability computed. Furthermore,

we compute the value of ϑ corresponding to X∗∗∗ (and the restrictions implied by
the value of q under consideration) and report this value.57,58

In the second set of computations in Step 2, for n ∈ {20,30}, and in contrast to Step 1,
whenever a new design matrix X was considered, the empirical distribution �• used in the
bootstrap scheme was newly initialized, and computations of ϑ and of rejection probabilities
for this X were done based on this corresponding empirical distribution �•.

As a point of interest we note that for every bootstrap-based test we also performed
the following check: For every design matrix X (with associated scenario (k,q)) that
underlies a result shown in Figure 1 or Tables 1–3 we have checked that all the relevant
assumptions for size-controllability of the corresponding non-bootstrap-based test given in
Pötscher and Preinerstorfer (2021) are satisfied.59 Hence, for all these design matrices X
(and their associated scenarios (k,q)), that we have shown to result in oversized bootstrap-
based tests in the vast majority of cases, the testing procedures established in Pötscher
and Preinerstorfer (2021), however, work and deliver valid tests, i.e., tests that are not
oversized.

57The matrix X∗∗∗ was also checked to have full rank and to satisfy the assumption in the theorem corresponding to
ϑ (if applicable). These checks were always passed.
58The values of ϑ computed in the second set of computations are not subject to a numerical reliability check. While
we report these (unvetted) values of ϑ as auxiliary information also in cases where this second set of computations
are needed, we base our classification of the corresponding bootstrap-based test procedure as reliable or unreliable
only on the magnitude of the computed null rejection probabilities and not on the value of such a ϑ . See Section 8.3.
59We have also checked that all these design matrices X satisfy hii < 1 for all i = 1, . . . ,n (which implies some, but
not all, of the before mentioned conditions in Pötscher and Preinerstorfer, 2021).
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E.3. Numerical Details Concerning the Computation of ϑ . Evaluating ϑ numer-
ically is a nontrivial task. In order to be on the safe side and to bias our results in favor
of the bootstrap-based tests (recall we are after negative results), the ϑ we shall obtain
will actually be a numerical obtained upper bound for the true ϑ (as can be seen from the
subsequent discussion). In the following we discuss how the routines implemented in the
R-package wbsd address the numerical challenges encountered in determining ϑ . We give
the discussion for the case where ϑHet is to be computed. The routines proceed similarly
for the other cases.

As can be seen from Theorem 5.1, to obtain ϑ1,Het one repeatedly needs to compute
THet(z), after checking that z /∈ B, for various vectors z, say. Because this check is needed
anyway for computing THet(z) (see (5)), it is carried out in wbsd within the sub-routine
computing THet(z). To this end, the subroutine uses the function “isInvertible” associated
to the rank-revealing LU decomposition (with complete pivoting) from the Eigen-library
for linear algebra in C++ (recall that z /∈ B is equivalent to �̂Het (z) being invertible). The
package wbsd makes use of this library through the package RcppEigen by Bates and
Eddelbuettel (2013). The function “isInvertible” requires the specification of a tolerance
parameter, which we set to 10−6. Note that the function “isInvertible” works in such a
way that the larger the tolerance parameter, the more likely it is that the input matrix is
categorized as numerically noninvertible (i.e., that z is categorized as satisfying z ∈ B). As
a consequence, the larger the tolerance parameter, the smaller the numerically determined
value of ϑ1,Het, because violated rank conditions decrease ϑ1,Het.

60

In addition to rank computations, the definition of ϑ1,Het requires to numerically check
the inequality in the events defining ϑ1,Het, see (10). To this end, we introduce another
tolerance parameter and instead of checking “ · · · < · · ·” directly, we checked “ · · ·+10−5 <

· · ·” Note that also here, increasing the tolerance parameter decreases the numerically
determined value of ϑ1,Het.

In the computation of ϑ2,Het, checks of the form z /∈ B were done exactly in the same
way as in the computation of ϑ1,Het described above.61 Again, the larger the tolerance
parameter the more likely it is that the input matrix becomes numerically rank deficient.
Thus, increasing the tolerance parameter leads to a possible decrease in the numerically
determined value of ϑ2,Het. The computation of ϑ2,Het also requires checking whether
Rβ̂(ei(n)) �= 0. Numerically, we checked this via determining whether ‖Rβ̂(ei(n))‖∞ >

10−6 where ‖ · ‖∞ denotes the maximum norm (again the larger the tolerance parameter,
the smaller the numerically determined value of ϑ2,Het). To compute ϑ2,Het one also
needs to check if rank((X : ei(n))) < k + 1. These rank computations are implemented
in wbsd based on the rank-revealing LU decomposition (with complete pivoting) and the
corresponding function “rank” obtained from the Eigen-library mentioned above. Checking
rank conditions via the function “rank” requires the specification of a tolerance parameter.
To check rank((X : ei(n))) < k +1, we chose the tolerance parameter equal to the machine
epsilon 2.220446 × 10−16, because—in contrast to the previous checks—decreasing the
tolerance parameter used in this check decreases the numerically determined value of
ϑ2,Het. [Note that decreasing ϑ1,Het or ϑ2,Het increases ϑHet.]

60For the tests Tuc (T̃uc, respectively) we checked whether the residual variance estimate σ̂ 2(z) (σ̃ 2(z), respectively)
exceeds 10−6 instead of using the function “isInvertible.”
61When computing ϑ2,uc, we checked whether the residual variance estimate σ̂ 2(z) exceeded 10−6 instead of using
the function “isInvertible.”
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Theorem 5.1 requires Assumption 1 to hold, which (as noted above) was checked
throughout. This condition can be verified by a series of rank computations, which was
done based on the function “rank” as discussed above, but with a tolerance parameter of
10−7. A similar remark applies to Theorems 5.7 and 5.9 with regard to Assumption 2.
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