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Abstract

Sufficient conditions for an equilibrium point to be an attractor or a global
attractor are derived for a class of first-order difference equations which need
not be continuous at the equilibrium point. These conditions involve Lyapunov-
like functions which need not be continuous and are applied to the logistic
equation with a piecewise continuous control.

1. Introduction

Lyapunov functions provide an effective tool for the analysis of stability and
asymptotic properties of equilibria points of difference equations [1,3]. To date
their use has been restricted to difference equations described by continuous
functions. Discontinuities in the describing functions, however, arise quite
naturally in a control context due to switches in admissible controls. If an equi-
librium point is a point of discontinuity it can never be stable, but it may possess
desirable asymptotic properties such as being an attractor or a global attractor.

In this note sufficient conditions involving Lyapunov-like functions are derived
for an equilibrium point to be an attractor or a global attractor. These are valid
for a class of first-order autonomous difference equations on a normed linear
space which admit discontinuities of a certain kind at an equilibrium point.
Significantly the Lyapunov-like functions need not be continuous, even at the
equilibrium point. Moreover, the sufficient conditions include the usual ones for
asymptotic and global asymptotic stability as a special case. A simple example of
the logistic equation with a piecewise continuous control is given to illustrate the
use of the above conditions.
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2. Lyapunov-like sufficient conditions for attractors

Consider a first-order autonomous difference equation

xn+1=f(xn) (1)

described by a function/: X->X, where Xis a normed linear space, for which there
exists a subset X^X,& point x*eXu and a constant £>0 such that

/(**) = x*, (2)

f\Xi is continuous at x*, (3)

/ ( ^ u S ^ x * ) ) ^ . (4)

Here ^(x*) is the open ball in X of radius f and centre x* defined by

SQ(x*) = {xeX; \\x-x*\\<Q.

Such difference equations include many of the common discrete-time density
dependent population models with non-overlapping generations, with or without
spatial distribution [4]. They also include controlled versions of such models
where switches in the controls introduce discontinuities into the describing
functions [1,2]. An example is given in Section 3 where such a switch introduces a
discontinuity at an equilibrium point x* e dXt.

An equilibrium point x* of a difference equation (1) is said [3] to be
(i) stable if for every e > 0 there exists a 5 = <5(e) > 0 such that xn e Se(x*) for

n = 1,2,3,... whenever x0 e Sd(x*);
(ii) an at tractor if there exists a do>0 such that xn-*x* as n-*oo whenever

xoeSSo(x*);
(iii) asymptotically stable if it is stable and an attractor;
(iv) a global attractor if xn->x* for all x0 e X;
(v) globally asymptotically stable if it is stable and a global attractor.

Clearly an equilibrium point x* can never be stable when the function / has a
discontinuity at x*, though it may be an attractor or a global attractor. The
following theorems give sufficient conditions involving Lyapunov-like functions
for an equilibrium point x* to be an attractor or a global attractor. They include
the usual Lyapunov sufficient conditions for asymptotic or global asymptotic
stability [3] when x* is an interior point of the subset Xu in which case / is con-
tinuous at x*.

THEOREM 1 {Sufficient conditions for an attractor). Suppose that f satisfies
conditions (2), (3) and (4) and that there exists a function

V: Xt-+R+

with

aQ\x-x*\\)<V(x)$b(\\x-x*\\) (5)
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and
V(f(x))-V(x)^-c(\\x-x*\\) (6)

for all xeXlt where a, b and c are continuous, strictly increasing real valued functions
of a real variable with a(0) = 6(0) = c(0) = 0.

Then x* is an attractor for difference equation (1). If in addition A'*eintAr
1, then

x* is asymptotically stable for difference equation (1).

PROOF. Conditions (5) and (6) imply the global asymptotic stability of x* for
the restriction of difference equation (1) to the subset Xy. The proof of this is
exactly the same as for the usual Lyapunov sufficient conditions for global
asymptotic stability [3], which, in this case, really only requires the functions V
and / to be continuous in the relative topology on Xt at the equilibrium point x*.
Hence xn-+x* as w->oo for all xoeXY.

Let So = C- Then by condition (4) xx =f(xo)eX1 for all x0eSio(x*). Hence
xn-*x* as «-»oo for all x0 e Slo(x*), that is x* is an attractor for difference equation

(!)•
If x*eintXi, then the stability of x* for the restriction of (1) to A\ implies the

stability of x* for (1) on X since all small neighbourhoods of x* in the relative
topology on X1 are also neighbourhoods of JC* in X. Hence x* is both stable and
an attractor, that is, x* is asymptotically stable for (1).

THEOREM 2 (Sufficient conditions for a global attractor). Suppose that f satisfies
conditions (2), (3) and (4) and that there exists a function

V: ;r->R+

with
a(\\x-x*\\)^ V(x)^XXl(x).b1(\\x-x*\\)+Xx.Xl(x).b2(\\x-x*\\) (7)

and
V(f(x))-V(x)^-c(\\x-x*\\) (8)

for all xeX, where a, blt b2 and c are continuous, strictly increasing real valued
functions of a real variable with a(0) = 6j(0) = c(0) = 0s£62(0) and Xx, and Xx-x,
are the characteristic functions of subsets X^ and X-Xu respectively.

Then x* is a global attractor for difference equation (1). / / in addition x* e int A',,
then x* is globally asymptotically stable for difference equation (1).

PROOF. From Theorem 1 it follows that xn->x* as «->oo for all ^
Also, for each xoeX— XtuS^x*), there exists an integer n0 = no(xo) such that
xttoeS£x*) and hence such that xn-*x* as «->oo. For, if this were not the case,
then xneX-Xi and f< ||xn-x*|| for n = 0,1,2,..., and so by conditions (7) and
(8)
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0<a(O^a(\\xn-x*\\)

< V{xn)

^b2(\\xQ-x*\\)-nc(0

<0

for all n>b2(\\x0-x*\\)/c(0, which is absurd.
Hence x* is a global attractor for difference equation (1).
If, in addition x*eintAr

1, then x* is also stable and hence globally asymp-
totically stable for (1) on the whole space A'for the same reasons as in Theorem 1.

The Lyapunov-like function in Theorem 1 is defined only on the subset Xx of
which the equilibrium point may be a boundary point. In Theorem 2 it is defined
on the whole space X, but need not be continuous at the equilibrium point since
£>2(0)^0. As less is demanded of these Lyapunov-like functions, they should in
specific problems be easier to find than are the usual Lyapunov functions.

3. An example
To illustrate the application of the above theorems consider the controlled

logistic equation
xn+1 = axn{\ - xn) + u(xn) (9)

o n j = [a,/?]<=R with control u: X-+R defined by

{ —c if I—a'1 <x<y,
(10)

0 elsewhere,

where l<a<2 , 0<a< 1-a"1 </?< 1 with a^aj9(l-y3), l-a~l<y<ft with
°yiX ~y)^ 1 —a"1 and 0<c<ay(l — y) — a.

This gives a difference equation (1) described by a function / : X-+X defined by

{ ax(l-x)-c for \-a~l<x<y,

ax( 1 — x) elsewhere
with x* = 1-a"1, X, = [<x,x*] and C = y-x*.

Also the discontinuous Lyapunov-like function V: Ar-»R+ defined by

(x*—x f o 1 ,
V(x) = ]

[a+aa forxeA'— Xt

satisfies conditions (7) and (8) of Theorem 2 with a(r) = b^r) = r, c(r) = aar and
b2(r) = a+aa + r. Hence the equilibrium point x* is a global attractor.
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In a biological harvesting context, such as whaling, a control (10) corresponds to
harvesting at a constant rate c when the population is larger, but not too much
larger, than the equilibrium population and no harvesting otherwise. Theorem 2
says that the population always tends to the equilibrium population with such a
harvesting policy.
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