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Hydraulic fracture induced by water injection in
weak rock
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A two-dimensional model of a hydraulic fracture propagating in a weakly consolidated,
highly permeable reservoir rock during a waterflooding operation is described in this
paper. The model recognizes the essential differences that exist between this class of
fractures and conventional hydraulic fracturing treatments of oil and gas wells, namely:
(i) the large-scale perturbations of pore pressure and the associated poroelastic effects
caused by extended injection time; (ii) the extremely small volume of fluid stored in
the fracture compared with the injected volume; and (iii) the leakage of water from
both the borehole and the propagating fracture. The model consists of a set of equations
encompassing linear elastic fracture mechanics, porous media flow and lubrication theory.
Three asymptotic solutions applicable at different time regimes are found theoretically,
and numerical results are obtained from the discretized governing equations. The solution
reveals that the injection pressure does not evolve monotonically, as it increases with time
in the early time radial-flow regime but decreases in the late time fracture-flow regime.
Thus, the peak injection pressure does not correspond to a breakdown of the formation,
as usually assumed, but rather to a transition between two regimes of porous media flow.
However, this problem exhibits an extreme sensitivity of the time scales on a dimensionless
injection rate I. If I � 1, the time to reach the peak pressure could become so large that
it cannot be observed in field operations, i.e. the fracture remains hydraulically invisible.
Finally, it is found that poroelasticity significantly affects the response of the system, by
increasing the injection pressure and delaying the time at which the peak pressure takes
place.
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1. Introduction

Waterflooding is a well-developed petroleum engineering technique used to increase oil
recovery from hydrocarbon-bearing rocks (de Swaan 1978; Weijermars, van Harmelen &
Zuo 2016). It relies on continuously pumping water over months or years in injector wells
to drive the oil towards producer wells. The efficiency of water injection treatments to
stimulate production is predicated in part on the initiation and propagation of hydraulic
fractures at producer wells to ensure a more efficient sweep of the reservoir (van den Hoek
& Mclennan 2000; Sharma et al. 2000; Noirot et al. 2003). This fracture allows the injected
fluid to leak through the crack surfaces, which eventually leads to the development of a
linear flow pattern around the borehole-fracture system.

The initiation of a hydraulic fracture is generally detected by a drop of the injection
pressure, with the peak pressure referred to as the breakdown pressure. However,
abnormally high peak pressure compared with the predicted fracture initiation pressure
as well as unusually large time to reach the peak pressure have been observed in water
flooding treatments of poorly consolidated rocks. These observations are counter-intuitive
since the tensile strength should be so small in weak rocks that the breakdown pressure
estimated according to the Haimson & Fairhurst (1967) criterion could in principle be
approximated by the pressure required to reach an effective tensile hoop stress at the
borehole wall.

It has been proposed that the abnormally high injection pressure is the result of a
large apparent fracture toughness caused by yielding of the rock ahead of the crack
(Papanastasiou & Thiercelin 1993; Papanastasiou 1997, 1999; van Dam, de Pater &
Romijn 2000; van Dam, Papanastasiou & de Pater 2002). However, laboratory fluid
injection experiments in weak sandstone show evidence of injection-induced hairline
cracks (Ispas et al. 2012; Gao & Detournay 2020b), in contradiction with the blunt crack
tip predicted by plasticity-based models (Germanovich et al. 2012). This inconsistency
between the plasticity hypothesis and the observed hairline cracks implies the existence of
a different underlying mechanism behind the abnormally high injection pressure.

The theoretical model described in this paper suggests instead that the large peak
pressure is linked to a transition of the flow pattern in the porous medium, caused by
the moving boundary represented by the propagating crack.

The class of problems addressed here is actually quite different from the hydraulic
fractures engineered to stimulate the production of oil and gas from a well. The key
differences include: (i) the duration of the fluid injection phase (months or years instead of
hours), (ii) the nature of the injected fluid (water instead of a high viscosity cake-building
fluid), (iii) the range of strength and permeability of the host rock (strength of a few MPa
and permeability in the range of 0.1 to 1 Darcy instead of tens of MPa and permeability
less than 10−2 Darcy).

Because of these fundamental differences between the two classes of problems, classical
models of hydraulic fractures – the subject of intense research for several decades, see
Adachi et al. (2007), Detournay (2016), and Lecampion, Bunger & Zhang (2018) for recent
reviews – cannot be applied as such. In particular, the large-scale perturbation of the pore
pressure and the related poroelastic effects cannot be ignored. Furthermore, in contrast
to the classical hydraulic fracture models, the amount of fluid stored in the fracture is
negligible compared with the volume of the fluid injected due to the high permeability; but
it also should be neglected to avoid ill-conditioning of the equations. Finally, the borehole
needs to be explicitly accounted for because the time-dependent partitioning of the fluid
leakage between the borehole and the crack is an important element of the mechanism
leading to a peak in the injection pressure.
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This paper describes a two-dimensional (2-D) model of a hydraulic fracture within the
particular context of waterflooding of weak, highly permeable rocks. It builds on our
previous work on modelling fluid injection in a weak permeable rock within the context
of a laboratory experiment (Gao & Detournay 2020a) and of a field test (Detournay
& Hakobyan 2021). Both studies have demonstrated that the peak pressure reflects a
transition between two flow regimes. However, the model of a laboratory injection
experiment was restricted to steady state in view of the smallness of the diffusion time
scale compared with the experiment time scale in very permeable rocks. In that case, the
fracture does not propagate unless the injection rate increases. On the other hand, the
model for the field injection test neglects poroelasticity and the presence of the borehole,
the latter affecting the asymptotic behaviour of the fluid partition between the borehole and
the crack. Furthermore, the field model presented in that paper overlooked the existence
of boundary layers that develop at the inlet and at the tip of the fracture under certain
asymptotic conditions.

The paper is structured as follows. First the problem is formulated on the basis of
the theories of poroelasticity, lubrication and linear elastic fracture mechanics. Taking
advantage of the linearity of the equations of poroelasticity, the model is then reformulated
as a nonlinear system of integro-differential equations, expressed in terms of variables that
are only defined on the hydraulic fracture. A scaling analysis reveals that the system only
depends on dimensionless time τ and on two other parameters, the scaled borehole radius
αk and the poroelastic coefficient η. Three time asymptotic solutions are then analysed,
small- and large-time asymptotes, as well as an intermediate-time asymptote that exists on
the condition that αk is small. The boundary layer at the crack inlet for the intermediate
asymptote, and at the crack tip for the large-time asymptote are analysed. These boundary
layers break locally the similarity nature of these asymptotic solutions. Discretization of
the integro-differential system of equations leads to the formulation of a nonlinear system
of algebraic equations, which is solved numerically for particular combinations of time
τ and numbers αk and η. Finally, application of the proposed model to waterflooding
operations is discussed.

2. Mathematical model

2.1. Problem description
The waterflooding problem is analysed within the framework of the 2-D model sketched
in figure 1. It consists of an infinite poroelastic domain with a circular hole of radius a,
constrained to deform under plane strain conditions and subjected to a far-field isotropic
compressive stress σ0 and a far-field pore pressure p0 < σ0. The porous material is
saturated by a Newtonian fluid. It is also assumed to be perfectly brittle but with a
negligible toughness, i.e. KIc = 0. There are six independent parameters to describe the
Newtonian fluid and the poroelastic material, namely: dynamic viscosity μ, Young’s
modulus E, Poisson’s ratio ν, Biot coefficient α, permeability k or mobility κ = k/μ, and
diffusivity c. Three derived parameters are introduced to simplify the problem formulation,

E′ = E
1 − ν2 , η = α(1 − 2ν)

2(1 − ν)
, μ′ = 12μ, (2.1a–c)

where E′ denotes the plane strain Young’s modulus, and η ∈ [0, 1/2] is a poroelastic stress
coefficient (Detournay & Cheng 1993).

With the hole initially filled by the same fluid at pressure p0, the system is initially
equilibrated with a uniform pore pressure p0. There is an initial elastic stress concentration
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Figure 1. (a) A schematic diagram of the bi-wing fracture near a borehole and (b) poroelastic medium D,
wellbore W and bi-wing crack C with corresponding field variables.

at the hole boundary on account of the difference between the fluid pressure in the hole
and the far-field stress. At time t = 0, fluid is injected in the hole at a constant rate Q0
(dimension L2T−1) causing a progressive change in the stress and pore pressure field
in the vicinity of the hole that eventually lead to the initiation at the circular boundary
of a symmetric bi-wing hydraulic fracture. The direction of fracture is associated with a
small anisotropy of the far-field stress that causes the crack to propagate in the direction
perpendicular to the least compressive far-field stress. Propagation of the fracture is tracked
by the distance � between the crack tip and the hole centre. This distance, a monotonic
function of time t, will simply be referred to as the crack length.

The primary objective of the analysis is to determine the evolution of the borehole
pressure pw and the crack length �, as well as the dependence of the functions pw(t) and
�(t) on the various parameters describing this system.

2.2. Assumptions
The mathematical model is constructed on the following two critical hypotheses: (i) the
crack propagates in a region surrounding the borehole, where the pore pressure field is
quasi-steady; (ii) fluid storage in the crack is negligible compared with the amount of
fluid lost by leak-off. The justification for these two hypotheses lays in the presumed large
permeability of the rock, which is assumed to be poorly consolidated. Such a rock is also
assumed to have a negligible fracture toughness.

As a consequence of the first hypothesis, the diffusion equation governing the evolution
of the pore pressure field degenerates into a Laplace equation in a region containing the
crack. This degeneracy transforms the two-way poroelastic coupling between the stress
and pore pressure fields to a one-way coupling; i.e. the pore pressure field can be solved
first, and then acts as a forcing term in the elasticity equation governing the stress field.
Although the solution still depends on time, due to the far-field asymptotic solution of
the diffusion equation, the combined hypotheses lead to a history-independent solution.
In other words, time t becomes an independent parameter of the solution rather than a
variable, as further discussed in § 3.3.
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2.3. Field variables in Poroelastic domain D and crack C
A 2-D cartesian coordinates system (x, y) centred on the borehole is defined with the x-axis
oriented along the crack. Two sub-domains are naturally introduced: the 2-D poroelastic
domain D = {(x, y) | x2 + y2 � a2} and the crack C = {(x, y) | x ∈ [−�, −a] ∪ [a, �],
y = 0}. Domain D is bounded by wellbore W = {(x, y) | x2 + y2 = a2} and crack C. The
field variables defined on D are stress σ , displacement u, pore pressure p and specific
discharge v. On C, the field variables are fluid pressure pf , leak-off g, crack aperture w
and flux q. All these variables are functions of time t. The variables are constrained by the
following continuity and jump conditions between the two sub-domains:

pf (x, t) = p(x, 0, t), pf (x, t) = −σyy(x, 0, t), σxy(x, 0, t) = 0,

w(x, t) = [
uy(x, 0, t)

]
, g(x, t) = [

vy(x, 0, t)
]
.

}
(2.2)

Here a < |x| < �, and
[
f (x, 0, t)

] ≡ f (x, 0+, t) − f (x, 0−, t).
The field variables in D are governed by the theory of poroelasticity, while those in C are

also governed by the lubrication equation and by the fracture propagation criterion. The
complete set of governing equations and boundary conditions are presented in §§ 2.4–2.7.

2.4. Governing equations on D
The equations of poroelasticity can be reduced to a set of two coupled partial differential
equations that govern the displacement field u(x, t) in the porous solid and the pore
pressure field p(x, t): namely, a Navier-type equation for u(x, t) with a body force term
proportional to the pore pressure gradient, and a diffusion equation for p(x, t) with a source
term proportional to the rate of change of ∇ · u (Cheng 2016). The coupling term in the
diffusion equation vanishes, however, when the solution reaches a steady state or when the
displacement field is irrotational and the medium is infinite (Detournay & Cheng 1993).
As elaborated in more details in § 3.1, the first condition is indeed met in the problem in
view of the a priori hypothesis that the crack is growing in a region where the flow is in a
pseudo steady-state.

Thus, in the near-field the pore pressure is governed by Laplace equation

κ∇2p = −g(x, t)δ( y), (2.3)

where δ( y) denotes the Dirac delta function, and the leak-off g(x, t) is part of the solution.
While in the far field, p(x, t) is given by the solution of

∂p
∂t

− c∇2p = Q0δ(x)H(t), (2.4)

where H(t) is the Heaviside function. This asymptotic solution actually corresponds to the
classical continuous source solution (Cheng 2016). The specific discharge v is related to
the pore pressure p according to Darcy’s law

v = −κ∇p. (2.5)

The Navier equation for the displacement u is given by

G∇2u + G
1 − 2ν

∇(∇ · u) − α∇p = 0, (2.6)
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where G = E/2(1 + ν) is the shear modulus. The stress σ is related to pore pressure p and
strain ε = (∇u + u∇)/2 according to

σ + αpI = 2Gε + 2Gν

1 − 2ν
(ε : I)I, (2.7)

where I denotes the second-order identity tensor.
The system (2.3)–(2.7) represent the complete set of equations governing the fields

u(x, t), p(x, t), σ (x, t), v(x, t) in D.

2.5. Boundary conditions on W
The injection pressure pw and the fraction (1 − Φ) of the injection rate Q0 directly entering
the rock through the borehole wall (to be discussed near (3.21)) are both a priori unknown
functions of time t. The borehole pressure pw represents a boundary condition on wellbore
W for both the stress and the pore pressure,

σ (x, t) · n = −pwn, p(x, t) = pw, x ∈ W, (2.8a,b)

where n denotes the unit normal external vector on W . The rate of fluid volume passing
through the borehole wall and the flux at the crack inlet are constrained by the total
injection Q0,

−
∮
W

v(x, t) · n ds + 2q(a, t) = Q0, (2.9)

where the symmetry condition has been taken into account in (2.9).

2.6. Governing equations on C
The equations governing the fluid flow in the crack C are Poiseuille’s law

q = −w3

μ′
∂pf

∂x
, (2.10)

and the continuity equation
∂q
∂x

+ g = 0, (2.11)

with the storage term neglected in accord with the simplifying assumption stated earlier.
Combining (2.11) and (2.10) yields the Reynolds lubrication equation

1
μ′

∂

∂x

(
w3 ∂pf

∂x

)
= g. (2.12)

Two additional boundary conditions are required for the lubrication equation. One
condition imposes the pressure at the fracture inlet, and the other one a vanishing flux
at the crack tip (Detournay & Peirce 2014),

pf (±a, t) = pw, (2.13)

q(±�(t), t) = 0. (2.14)
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2.7. Tip asymptotics
According to linear elastic fracture mechanics (LEFM), the crack aperture asymptotically
behaves near the advancing tip as

w(x) ∝ (� −|x|)3/2, x → ±�, (2.15)

if the fracture toughness KIc = 0 and provided that the fluid pressure is finite at the tip.
This latter condition is indeed fulfilled as the fluid pressure in the crack is continuous with
the pore pressure field, which must be regular as it is governed by the Laplace equation in
a finite region (Evans 2010). (Since a 2-D point source leads to a logarithmically singular
pore pressure, the pore pressure induced by a distributed leak-off at the crack tip is thus
regular as can be confirmed by convolving the source function with the leak-off.) Hence,
the fluid pressure pf at the tip can be expanded as

pf (x) = c0 + c1 (� −|x|) + O (� −|x|)2 , x → ±�, (2.16)

which satisfies the requirement of the crack aperture tip asymptotic solution (2.15).
Substituting the above tip asymptotics for pf and w into the lubrication equation (2.12),

shows that the leak-off g near the tip should behave as

g ∝ (� −|x|)7/2, x → ±�. (2.17)

The tip asymptotic solution outlined above differs from tip asymptotic solutions for
hydraulic fractures propagating in permeable media, constructed on the assumptions that
leak-off is either governed by the one-dimensional Carter law (Lenoach 1995; Garagash,
Detournay & Adachi 2011; Detournay 2016) or by the diffusion equation (Detournay &
Garagash 2003). Solutions built on assuming Carter leak-off (Howard & Fast 1957) predict
pf (x) to be singular (with the singularity depending on whether the fracture propagates in
the viscosity- or the toughness-dominated regime) and leak-off rate to have a square root
singularity. On the other hand, asymptotic solutions obtained on the basis of the diffusion
equation require the existence of a lag region, which is filled by pore fluid circulating in
and out of the cavity.

3. Method of solution

In view of the linearity of the governing equations in D, the field variables σ and p in D can
be expressed as integrals of distributed singularities convolved with influence functions
over the boundaries of D. The detail of this method is discussed in this section, and further
simplifications are adopted to reduce the integral on the crack boundary C only. In addition,
due to the symmetry of the problem, only half of the crack C̃ = {(x, 0) | a � x � �} is
required for the convolution integrals.

3.1. Pore pressure field
The pore pressure field is formulated as a superposition of three particular solutions, each
satisfying the condition that the pore pressure on the borehole boundary W is uniform,

p(x, y, t) = p0 + pi(x, y, t) + pl(x, y, t), (3.1)

where pi(x, y, t) is the pore pressure induced by continuous injection from the borehole
in the absence of a fracture, and pl(x, y, t) the pore pressure field associated with leak-off
from the fracture. The field pl does not contribute to the total flow rate entering the porous
medium D, as explained later.
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The field pi is given by the classical source solution of the diffusion equation (Carslaw
& Jaeger 1959)

pi(x, y, t) = Q0

4πκ
E1

(
r2

4ct

)
. (3.2)

Inside the quasi-stationary region which expands as χ
√

ct, the diffusion equation
effectively degenerates to Laplace equation (2.3). In this region the exponential integral
function E1 simplifies to (Abramowitz & Stegun 1972)

pi(x, y, t) ≈ − Q0

2πκ

(
ln

r
2
√

ct
+ γ

2

)
, r < χ

√
ct, (3.3)

with r =
√

x2 + y2 and γ = 0.577216 · · · denoting the Euler gamma constant. The number
χ ≈ 0.35 defines the conditions for which the asymptotic solution (3.3) applies within an
error less than 1 %.

The field pl(x, y, t) breaks the axial symmetry of the injection-induced pore pressure
pi(x, y, t) by accounting for leak-off from the fracture. This field, which is also assumed
to satisfy the Laplace equation, is constructed by distributing fluid sources along the crack
C and image sinks inside the borehole W so that there is no net fluid injection in the
poroelastic media D. The locations of the image sinks inside W are chosen so that the
pore pressure pl is uniform on W . Thus, the field pl(x, y, t) is expressed as a convolution
integral of the leak-off g with the singular kernel P̃(x, y, s, a) (Gao & Detournay 2020a),
i.e.

pl(x, y, t) = 1
2πκ

∫ �

a
g(s, t)P̃(x, y, s, a) ds. (3.4)

The kernel P̃(x, y, s, a) accounts for the problem symmetry with respect to the y-axis by
taking the form

P̃(x, y, s, a) = P(x, y, s, a) + P(−x, y, s, a), (3.5)

with P representing the pore pressure field generated by a source located at (s, 0) and an
image sink positioned at (a2/s, 0), s > a. On y = 0, the kernel P is simply given by

P(x, 0, s, a) = − ln|x − s| + ln

∣∣∣∣∣x − a2

s

∣∣∣∣∣ . (3.6)

Expression (3.4) for the pore pressure field pl ensures that there is no contribution from
this field to the total flow rate entering the domain in D. In other words,∮

W
vl · n ds = 2q(a, t). (3.7)

With the introduction of the image sink, the same flux entering the fracture inlet is coming
back through the borehole boundary W , so that (1 − Φ)Q0 is leaking through W and
ΦQ0 through the walls of crack C. After superposing all the fields, the rate of fluid volume
injected into the media is Q0. Here Φ denotes the fraction of injected fluid leaking through
C; an expression to calculate Φ is given in (3.21).
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In summary, the pore pressure field induced by injection Q0 and leak-off g is found by
combining (3.1), (3.2) and (3.4). On the crack (a � |x| � �, y = 0) the fluid pressure reads
as

pf (x, t) = p0 − Q0

2πκ

(
ln

|x|
2
√

ct
+ γ

2

)
+ 1

2πκ

∫ �

a
g(s, t)P̃(x, 0, s, a) ds. (3.8)

To simplify the notation, the second parameter of P̃ is omitted in the rest of the paper, if it
is zero, i.e. P̃(x, s, a) ≡ P̃(x, 0, s, a).

3.2. Stress field
Taking advantage of the linearity of the elasticity equations (2.6) and (2.7), the stress
field σ in D can also be constructed by superposition of particular solutions. Here, only
the stress σyy on the crack C is of concern; it is decomposed into four parts: (i) the in-situ
stress −σ0, (ii) the stress σ

f
yy induced by the crack aperture w, (iii) the poroelastic stress σ

p
yy

induced by the pore pressure change p − p0, and (iv) a stress σ c
yy resulting from enforcing

the stress boundary condition (2.8a). Thus,

σyy(x, 0, t) = −σ0 + σ f
yy + σ p

yy + σ c
yy. (3.9)

The crack induced stress σ
f

yy can be expressed as (Hills et al. 1996)

σ f
yy(x, t) = E′

4π

∫ �

a
w(s, t)

∂

∂s
H̃(x, s, a) ds, (3.10)

where

H̃(x, s, a) ≡ H(x, s, a) + H(−x, s, a), (3.11)

noting also that H̃(x, a, a) = 0 and w(�) = 0. The kernel function H(x, s, a),

H(x, s, a) = s2 − a2

sx2 −
a2
(

s2 − a2
)

s
(
sx − a2

)2
(

s2

a2 − s2 − a2

sx − a2

)

− s
sx − a2 + a2

x3 + 1
x − s

+ 1
x
, (3.12)

represents the stress σyy(x, 0) induced by a unit normal dislocation located at (s, 0) along
the y-axis that satisfies the boundary condition σ · n = 0 on borehole W (Dundurs &
Mura 1964; Hills et al. 1996).

Echoing the decomposition of p in § 3.1, the poroelastic stress σ p is expressed as the
sum of an injection-induced stress σ

p
i and the leak-off induced stress σ

p
l . On crack C, σ

p
i
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is given by (Cheng & Detournay 1998; Gao & Detournay 2020a)

σ
p
xx,i(x, 0, t) = −2η

Q0

4πκ

[
−γ

2
− ln

|x|
2
√

ct
+ 1

2

]
= −ηpi(x, 0, t) − η

Q0

4πκ
,

σ
p
yy,i(x, 0, t) = −2η

Q0

4πκ

[
−γ

2
− ln

|x|
2
√

ct
− 1

2

]
= −ηpi(x, 0, t) + η

Q0

4πκ
,

σ
p
xy,i(x, 0, t) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

It can be shown, using the poroelastic steady-state source solution, that the leak-off
induced stress σ

p
l on the crack C is given by (Gao & Detournay 2020a)

σ
p
xx,l(x, 0, t) = σ

p
yy,l(x, 0, t) = −ηpl(x, 0, t), σ

p
xy,l(x, 0, t) = 0. (3.14a,b)

Combining (3.13), (3.14a,b) and (3.1) leads to the following expressions for the induced
normal and shear stresses σ

p
yy and σ

p
xy on C:

σ p
yy(x, 0) = −η( pf (x) − p0) + η

Q0

4πκ
, σ p

xy(x, 0) = 0, a � |x| � �. (3.15a,b)

The normal and shear stresses {σ p
rr, σ

p
rθ } acting on borehole boundary W need also to

be evaluated to determine σ c
yy in (3.9), as shown below. While it is clear that the borehole

injection-induced component σ
p
i of σ p satisfies σ

p
i (x) · n = σ

p
xx,i(a, 0)n on x ∈ W , we

assume that the leak-off induced normal stress on W is also uniform and given by
σ

p
l (x) · n ≈ σ

p
xx,l(a, 0)n = −ηpl(a, 0)n on x ∈ W . With this assumption and (3.13), the

expressions for σ
p
rr and σ

p
rθ acting on W simplify to

σ p
rr(x) = −η( pw − p0) − η

Q0

4πκ
, σ

p
rθ (x) = 0, x ∈ W . (3.16a,b)

The approximation adopted for σ
p
l recognizes that σ

p
l is negligible compared with σ

p
i for

a short crack, as only a small portion of fluid is leaking from the crack; while for a long
crack, the actual stress boundary conditions on borehole W are effectively irrelevant at the
scale of the fracture.

Finally, the fourth term σ c
yy in (3.9) is obtained by enforcing the boundary condition

(2.8a). After considering the in-situ stresses σ0 and the poroelasticity induced normal
stress σ

p
rr on borehole W in (3.16a), σ c

yy is given by (Cheng 2016)

σ c
yy(x) =

[
pw − σ0 − η( pw − p0) − η

Q0

4πκ

]
a2

x2 . (3.17)

In summary, the normal stress σyy on crack C is obtained by substituting (3.10), (3.15a)
and (3.17) into (3.9) to give

σyy(x, 0) = −σ0 +
[

pw − σ0 − η( pw − p0) − ηQ0

4πκ

]
a2

x2

− η( pf (x) − p0) + ηQ0

4πκ
+ E′

4π

∫ �

a
w(s)

∂

∂s
H̃(x, s, a) ds. (3.18)
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3.2.1. Influence of a far-field deviatoric stress
The assumption of an isotropic far-field stress σ0 could be relaxed by introducing the
minimum and maximum in-situ stresses σh and σH in the y- and x-directions, respectively.
This is equivalent to adding an independent parameter, the deviatoric stress, S0 = (σH −
σh)/2, into the model.

However, the only difference introduced by S0 is adding the term

− S0

(
1 − 3

a2

x2

)
a2

x2 (3.19)

into (3.17) and (3.18), as well as changing σ0 to σh in (3.18).
This additional term (3.19) affects the fracture initiation pressure pwi, but it is not

changing the analysis otherwise. In fact, by substituting � = a and the Terzaghi effective
stress σyy(a, 0) + pb = 0 into (3.18), the fracture initiation pressure now reads as

pwi = σh − S0 − ηp0

1 − η
. (3.20)

This result is the well-known Haimson–Fairhurst (H–F) breakdown criterion (Haimson &
Fairhurst 1967) with zero tensile strength. Since S0 essentially affects only the fracture
initiation pressure, we have assumed that S0 = 0.

3.3. Reduced system of equations
As shown above, the problem can be entirely formulated in terms of the crack length
�(t), the crack aperture w(x, t), the fracture pressure pf (x, t) and the leak-off g(x, t). This
reduction to variables defined only along crack C̃ is achieved by (i) expressing the pore
pressure field p and the stress field σ in domain D as convolution integrals of distributed
singularities over crack C̃, (ii) accounting for the problem symmetry, and (iii) enforcing
the continuity conditions (2.2) p = pf = −σyy on C̃.

The system consisting of the two integral equations (3.8) and (3.18), together with
the lubrication equation (2.12) and boundary conditions (2.13)–(2.15) is closed. Since
time t does not appear in a differential operator, t is actually a parameter and not a
variable. Although the problem is formally history-independent, the variation of the
solution with time should be consistent; in particular, the crack length � is expected to
be a monotonically increasing function of time. To emphasize the demotion of t from a
variable to a parameter, the dependence on x and t of the field variables defined on C̃ is
now denoted as (x; t).

Once �(t), w(x; t), pf (x; t) and g(x; t) have been solved at time t, the field variables in
D can be determined using convolution integrals. Also, the flooding efficiency Φ(t) ≡
2q(a; t)/Q0, defined as the portion of injected fluid leaking to the rock through the crack,
can be expressed as

Φ(t) = 2
Q0

∫ �

a
g(x; t) dx, (3.21)

after making use of the lubrication equation (2.12) and the crack tip boundary
condition (2.14).
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4. Scaling

The mathematical model is now formulated in a dimensionless form, with the introduction
of scales for time (tk), length (�k), aperture (wk), pressure (pk) and leak-off (gk). These
scales will be determined by setting the values of some dimensionless groups that appear
in the equations after scaling. First, we introduce the dimensionless coordinate ξ and
dimensionless time τ ,

ξ = x
�(t)

, τ = t
tk

, (4.1a,b)

as well as the scaled (time-dependent) borehole radius ατ (τ ),

ατ (τ ) = a
�(t)

, (4.2)

so that crack C̃ corresponds to ατ � ξ � 1. Dimensionless crack length Λ(τ) is then
defined as

Λ(τ) = �(t)
�k

√
τ
, (4.3)

with the presence of
√

τ in the above equation justified by the limit limτ→∞ Λ = 1, as
proved in § 5. An alternate time-independent borehole radius αk is also defined based on �k

αk ≡ a
�k

, (4.4)

and ατ can then be expressed as

ατ = αk

Λ
√

τ
. (4.5)

Next, the scaled crack aperture, fluid pressure and leak-off are introduced as

Ω(ξ ; τ) = w
wk

, Π(ξ ; τ) = ( pf − σ0) − η( pf − p0)

(1 − η)pk
+ η

4π(1 − η)
, Γ (ξ ; τ) = g

gk
,

(4.6a–c)
together with their borehole boundary values, which are denoted with a subscript w,

Ωw(τ ) ≡ Ω(ατ , τ ), Πw(τ ) ≡ Π(ατ , τ ), Γw(τ ) ≡ Γ (ατ , τ ). (4.7a–c)

Finally, kernel functions H̃ and P̃ are redefined as

H̃
(
ξ, ζ, ατ

) = �kΛ
√

τ H̃ (x, s, a) , P̃
(
ξ, ζ, ατ

) = P̃ (x, s, a) , (4.8a,b)

which can be verified by substituting dimensionless parameters into their definitions. The
same notations of H̃ and P̃ are used for both scaled and unscaled formulations.
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With the introduction of these scaled quantities, the governing equations listed in (2.12),
(3.8) and (3.18) can be rewritten as

Gm

Λ2τ

∂

∂ξ

(
Ω3 ∂Π

∂ξ

)
= Γ, (4.9)

(1 − η)Π(ξ) = − (Gq − 1
) η

4π
−
[
(1 − η)Πw − (Gq + 1

) η

4π

]
α2

τ

ξ2

− Gw

4πΛ
√

τ

∫ 1

ατ

Ω(ζ )
∂

∂ζ
H̃
(
ξ, ζ, ατ

)
dζ, (4.10)

Π(ξ) = − σ0 − p0

(1 − η)pk
− Gq

2π

(
ln

Λξ�k

2
√

ctk
+ γ

2
− η

2(1 − η)

)

+ Λ
√

τ

2π
Gc

∫ 1

ατ

Γ (ζ, τ )P̃
(
ξ, ζ, ατ

)
dζ, (4.11)

with the dimensionless groups G′s defined as

Gm = w3
kpk

μ′gk�
2
k
, Gq = Q0

κpk
, Gw = E′wk

pk�k
, Gc = gk�k

κpk
. (4.12a–d)

Expressions for the scales {pk, gk, wk, �k} are then obtained by setting each of these groups
to one,

pk = Q0

κ
, wk =

(
μ′κ2E′

Q0

)1/2

, �k =
(

μ′κ4E′3

Q3
0

)1/2

, gk =
(

Q5
0

μ′κ4E′3

)1/2

.

(4.13a–d)

Finally, the time scale tk is determined by enforcing the following constraint inspired by
(4.11):

σ0 − p0

(1 − η)pk
+ 1

2π

(
ln

�k

4
√

ctk
+ γ

2
− η

2(1 − η)

)
= 0. (4.14)

Hence,

tk = �2
k

16c
exp

(
4π(σ0 − p0)

(1 − η)pk
+ γ − η

1 − η

)
. (4.15)

The final system of equations governing crack length Λ and the fields {Ω, Π, Γ } defined
on crack C̃ are

1
Λ2τ

∂

∂ξ

(
Ω3 ∂Π

∂ξ

)
= Γ, (4.16)

(1 − η)Π(ξ) = −
[
(1 − η)Π(ατ ) − η

2π

]
α2

τ

ξ2 − 1
4πΛ

√
τ

∫ 1

ατ

Ω(ζ )
∂

∂ζ
H̃
(
ξ, ζ, ατ

)
dζ,

(4.17)

Π(ξ) = − 1
2π

ln
(
2Λξ

)+ Λ
√

τ

2π

∫ 1

ατ

Γ (ζ, τ )P̃
(
ξ, ζ, ατ

)
dζ. (4.18)
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Figure 2. The phase figure of {Φ, Λ} with different αk and η. The point {Φ, Λ} corresponding to peak
borehole pressure for different αk is also plotted.

The fracture propagation criterion with zero toughness (2.15) and the tip flux condition
(2.14) become

Ω(ξ) ∝ (1 − ξ)3/2, Ψ (ξ) = 0, for ξ → 1, (4.19a,b)

where Ψ denotes the dimensionless fluid flux in the crack

Ψ = −Ω3 ∂Π

∂ξ
. (4.20)

It is noted that the stress and pore pressure boundary conditions (2.8a,b) and (2.9) on
the borehole boundary W have already been considered in establishing the superposed
solutions, as discussed in § 3. Therefore, they are not required for solving the scaled
governing equations.

In summary, only three parameters {τ, αk, η} control the problem, which is governed by
(4.16)–(4.18) and boundary conditions (4.19a,b). Finally, the flooding efficiency Φ defined
in (3.21) can be assessed a posteriori after obtaining the solution

Φ(τ) = 2Λ
√

τ

∫ 1

ατ

Γ (ξ, τ ) dξ = − 2
Λ

√
τ
Ω3(ατ )Π

′(ατ ). (4.21)

5. Structure of the solution

Two key variables describe the state of the solution: crack length Λ(τ ;αk, η) and flooding
efficiency Φ(τ ;αk, η). The variation of the solution with time τ describes a trajectory
in the phase diagram {Φ, Λ}; see figure 2. The solution trajectory, which depends on the
two numbers {αk, η} starts at a point on the radial-flow edge corresponding to Φ = 0 and
Λ = Λi with

Λi = 1
2 exp(−η/(2 − 2η)), (5.1)

and terminates at the F-vertex characterized by Φ = 1 and Λ = 1. The initial Λi given in
(5.1) will be further explained in (6.9a,b).

Both efficiency Φ and crack length Λ can be seen to increase monotonically with time.
At the starting point of the solution trajectory, when the fracture initiates, the bi-wing
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hydraulic fracture reduces to two edge cracks. At the endpoint – the F-vertex, the borehole
can be ignored in the construction of the solution, which is then in the fracture-flow
regime.

There is a limiting trajectory corresponding to αk � 1. This trajectory consists of two
segments: first along the radial-flow edge Φ = 0 with Λ increasing from Λi to 1; then
along the KGD crack edge Λ = 1, with Φ increasing from 0 to 1. (The acronym KGD
refers in the literature to the plane strain model of a hydraulic fracture, in recognition of
the pioneering contributions of Khristianovic & Zheltov (1955) and Geertsma & de Klerk
(1969).)

On the radial-flow edge (referred to as R-regime hereafter), fluid injection in the
borehole results in an axisymmetric pore pressure field. In other words, the crack is
hydraulically invisible (Φ = 0). Time scale tk defined in (4.15) is thus not suitable to
describe the evolution of the solution along that edge. A new time scale td is introduced
with �k in tk replaced by borehole radius a,

td = α2
k tk, (5.2)

which leads to the definition of dimensionless time τ̄ ,

τ̄ = t
td

= τ

α2
k
. (5.3)

Number αk can thus be interpreted in terms of the ratio of the two time scales

αk =
√

td
tk

. (5.4)

Evidently ατ can be expressed as

ατ = αk

Λ
√

τ
= 1

Λ
√

τ̄
. (5.5)

The solution in the R-regime only depends on τ̄ and poroelastic coefficient η.
On the KGD crack edge, the borehole radius a is much smaller than the crack length

�. Thus, the borehole is too small to affect the solution globally, and the borehole can
be viewed as a point source injection. Provided that the fracture toughness is negligible,
it can be proved that Λ = 1 in the KGD-regime, which implies that fracture length �(t) ∼√

t (Detournay & Hakobyan 2021).
There is an intermediate asymptotic solution – the I-vertex – at the intersection of the

two edges. At this vertex, the borehole does not elastically affect the crack propagation
as �(t) � a, while the crack remains hydraulically invisible. The solution trajectory
passes through the I-vertex at intermediate time t such that td � t � tk, which evidently
requires that there is a separation of time scales td ≪ tk. However, according to numerical
simulations, this requirement for the existence of an intermediate asymptote can effectively
be relaxed to td/tk � 5 × 10−3 or, equivalently, to αk � 0.07.

On the two edges of the {Φ, Λ} phase diagram, the solution only depends on two
parameters: (τ̄ , η) on the radial-flow edge and (τ, η) on the KGD crack edge. Furthermore,
the global solutions at the I- and at the F-vertices, evolve according to power laws of time.

Table 1 summarizes the asymptotic solutions of {Λ, Πw, Ωw, Φ} at the three vertices
that are derived in § 6. Note, however, that the explicit dependence of Λ on τ̄ and η is
not known; the numerically evaluated function Λ(τ̄ , η) is plotted in figure 3, with details
given in § 6.1.
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E-vertex I-vertex F-vertex

Λ ΛR(τ̄ , η) 1 1

Πw ln
√

τ

2αk
ln

√
τ

2αk
(1 − η)−(3/4)τ−(1/4)

Ωw (ΛR
√

τ − αk)

[
2(1 − η) ln

√
τ

2αk
− η

]
(1 − η)τ 1/2 (1 − η)1/4τ 1/4

Φ α−1
k (ΛR

√
τ − αk)

3

[
2(1 − η) ln

√
τ

2αk
− η

]3

α−1
k (1 − η)3τ 3/2 1

Table 1. Summary of asymptotic (vertex) solutions. Some constant coefficients have been omitted.

6. Asymptotic solutions

Three particular solutions, referred to as vertex solutions, exist therefore in this problem.
The E- and F-vertices correspond to the small- and large-time asymptotics of the solution,
while the I-vertex is an intermediate-time asymptote that exists on the condition that
the scaled borehole radius is small, i.e. αk � 1. Both E- and I-vertices belong to the
rock-flow regime, while the F-vertex pertains to the fracture-flow regime. The rock flow
and the fracture flow are two asymptotic regimes, with the fracture and the borehole being
hydraulically invisible, respectively. Thus, the critical difference between these two flow
regimes is whether the pore pressure field in the vicinity of the fracture is dominated
by direct injection of fluid from the borehole or by leak-off from the crack walls. This
difference allows us to simplify the governing equations by balancing different terms in
the porous medium flow equation.

Asymptotic solutions for the two flow regimes are presented in this section. In particular,
it is shown that the I- and F-vertices are global similarity solutions characterized by a
power-law dependence on time. However, they both contain boundary layers, at the crack
inlet for the I-vertex and at the crack tip for the F-vertex. These boundary layers break
locally the similarity nature of these vertex solutions.

6.1. Radial-flow regime (R-regime)
We start the asymptotic analysis by presenting solutions for pressure Π and crack length
Λ in the rock-flow regime, or R-regime, which corresponds to the radial-flow edge in the
conceptual phase diagram sketched in § 5. First, we show that after rescaling, the solution
only depends on two parameters: namely, time τ̄ and poroelastic coefficient η. Indeed,
rescaling the variables according to

τ̄ = α−2
k τ, Π̄ = Π, Ω̄ = α−1

k Ω, Γ̄ = α−1
k Γ, Λ̄ = Λ, Φ̄ = α−2

k Φ,

(6.1a–f )
leads to this alternative formulation of the governing equations,

α2
τ

∂

∂ξ

(
Ω̄

3 ∂Π̄

∂ξ

)
= Γ̄ , (6.2)

(1 − η)Π̄ = −
[
(1 − η)Π̄w − η

2π

]
α2

τ

ξ2 − ατ

4π

∫ 1

ατ

Ω̄(ζ, τ̄ )
∂

∂ζ
H̃
(
ξ, ζ, ατ

)
dζ, (6.3)
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Π̄ = − 1
2π

ln
(

2Λ̄ξ
)

+ α2
k

2πατ

∫ 1

ατ

Γ̄ (ζ, τ̄ )P̃
(
ξ, ζ, ατ

)
dζ, (6.4)

and of the flooding efficiency

Φ̄ = −2ατ Ω̄
3
(ατ )Π̄

′
(ατ ). (6.5)

The boundary conditions are similar to (4.19a,b) and omitted here. Note that the scaled
crack length Λ̄ is hidden in the borehole radius ατ in the governing equations, and is a
part of the solution.

Since the second term on the right-hand side of (6.4) is negligible compared with the
first term on account that αk � 1, (6.4) reduces to

Π̄(ξ ; τ̄ , η) = − 1
2π

ln
[
2Λ̄(τ̄ , η)ξ

]
, (6.6)

and on the borehole boundary ξ = ατ , the pressure is simply given by

Π̄w(τ̄ ) = − 1
2π

ln
2√
τ̄
. (6.7)

Noting that ατ = (Λ̄
√

τ̄ )−1, the above equations prove that the solution in the R-regime
only depends on τ̄ and η.

Fracture initiation at the borehole wall corresponds to ατ = 1 according to its definition
in (4.2), since fracture toughness is zero and � = a and Ω̄ = 0. Substituting these
conditions into the elasticity equation (6.3) yields the fracture initiation pressure

Π̄wi = η

4π(1 − η)
. (6.8)

This result is consistent with the H–F breakdown criterion (Haimson & Fairhurst 1967)
for the particular case of negligible tensile strength and isotropic far-field stress. As
explained in § 3.2.1, in the case of anisotropic far-field stress there would be an additional
term proportional to the far-field stress deviator S0 in expression (6.8) for the fracture
initiation pressure. Time τ̄ i and fracture length Λ̄i at initiation are then deduced from
(6.8), (6.7) and definition (6.1a–f ) of τ̄ ,

τ̄ i = 4 exp
(

η

1 − η

)
, Λ̄i = 1

2
exp

(
− η

2(1 − η)

)
, (6.9a,b)

with τ̄ i ∈ [4, 4e] and Λ̄i ∈ [1/(2
√

e), 1/2] since η ∈ [0, 1/2].
Finally, the fracture aperture Ω̄(ξ ; τ̄ , η) and crack length Λ̄(τ̄ , η) in the R-regime

are determined by the elasticity singular integral equation (6.3) with Π̄(ξ) given by
(6.6), together with propagation criterion (4.19a,b). These equations are solved using the
numerical technique described in Appendix A. The computed fracture length Λ̄(τ̄ , η) is
plotted in figure 3 for η = {0, 0.25, 0.5}.

6.2. Small-time asymptote (E-vertex)
In the early time following fracture initiation, when � − a � a, the hydraulic fracture can
be treated as an edge crack in a semi-infinite plane with uniform net pressure. Note that
the crack opening w at the mouth of an edge crack is given by w = βΔp�′/E′ (Stallybrass
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Figure 3. A semi-log plot of crack length Λ̄(τ̄ ; η) for η = {0, 0.25, 0.5} in the R-regime.

1970), with β = 2.91, Δp and �′ denoting the net pressure and the length of the edge crack,
respectively. Hence, the small-time crack opening at the borehole wall reads as

Ω̄wE(τ̄ , η) = β
(
Λ̄

√
τ̄ − 1

)
ΔΠ̄wE, (6.10)

with ΔΠ̄wE = 2(1 − η)Π̄w − η/(2π), where Π̄w is determined with (6.7). The flooding
efficiency Φ̄E at the E-vertex is then deduced from (6.5) to be

Φ̄E(τ̄ , η) = β3

π

(
Λ̄

√
τ̄ − 1

)3
ΔΠ̄

3
wE. (6.11)

6.3. Intermediate-time asymptote (I-vertex)
Provided that td � t � tk or, equivalently, τ̄ � 1 and τ � 1, the solution trajectory
passes through the neighbourhood of the I-vertex. The existence of an intermediate-time
asymptote hinges, therefore, on the condition that td/tk = α2

k ≪ 1, which is effectively
met for td/tk < 5 × 10−3 according to numerical simulations. At the I-vertex, the fracture
length is large compared with the borehole radius, but the fracture is still hydraulically
invisible. Since � � a, the stress intensity factor can be calculated using the weight
function for a Griffith crack (Bueckner 1970),

KI = 2
√

π

∫ 1

0

Π̄(ξ)√
1 − ξ2

dξ. (6.12)

With Π̄(ξ) given by (6.6) on account that the fracture does not affect the porous media
flow, (6.12) yields

KI = −
√

π

2
ln Λ̄. (6.13)

Thus, the assumption of zero fracture toughness implies that Λ̄ = 1 at the I-vertex, as
illustrated in figure 3 when τ̄ → ∞. The fluid pressure in the crack is then given by

Π̄ I = − 1
2π

ln 2ξ. (6.14)
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Furthermore, since ατ � 1, the elasticity equation (6.3) simplifies to

(1 − η)Π̄ I(ξ) = − 1
4πτ̄ 1/2

∫ 1

−1

Ω̄ I(ζ )

(ξ − ζ )2 dζ, (6.15)

which can be inverted to yield (Sneddon & Lowengrub 1969)

Ω̄ I(ξ) = 4
π

(1 − η)τ̄ 1/2
∫ 1

0
Π̄ I(ζ ) ln

∣∣∣∣∣
√

1 − ξ2 +
√

1 − ζ 2√
1 − ξ2 −

√
1 − ζ 2

∣∣∣∣∣ dζ. (6.16)

The explicit form of the fracture aperture Ω̄ I(ξ ; τ̄ , η) at the I-vertex can then be deduced
from (6.16) with Π̄ I in (6.14),

Ω̄ I =
√

π

8
(1 − η)τ̄ 1/2ω(ξ), (6.17)

with

ω(ξ) =
√

1 − ξ2 − π

2

∣∣ξ ∣∣+ ξ arctan

(
ξ√

1 − ξ2

)
, (6.18)

and leak-off Γ̄ I(ξ ; τ̄ , η) is then obtained by integrating the lubrication equation (6.2) using
(6.14) and (6.17),

Γ̄ I(ξ ; τ̄ , η) =
√

π

211 (1 − η)3τ̄ 1/2υ(ξ), (6.19)

with

υ(ξ) = ω2(ξ)

ξ2

(
πξ +

√
1 − ξ2 − 2ξ arctan

ξ√
1 − ξ2

)
. (6.20)

Finally, flooding efficiency Φ̄I(τ̄ , η) is deduced from (6.5),

Φ̄I =
√

π

29 (1 − η)3τ̄ 3/2. (6.21)

It can readily be confirmed that Ω̄ I
ξ→1∼ (1 − ξ)3/2 and Γ̄ I

ξ→1∼ (1 − ξ)7/2, consistent with
the tip asymptotics discussed in § 2.7.

The crack aperture at the borehole, Ω̄wI(τ̄ , η) = Ω̄ I(ατ ; τ̄ , η), is obtained by setting
ξ = ατ = τ̄−(1/2) in (6.17),

Ω̄wI =
√

π

8
(1 − η)τ̄ 1/2, (6.22)

while the leak-off at the crack inlet Γ̄ wI(τ̄ , η) = Γ̄ I(ατ ; τ̄ , η) is

Γ̄ wI =
√

π

211 (1 − η)3τ̄ 3/2. (6.23)

The different time exponent in (6.23) for Γ̄ wI(τ̄ , η) and in (6.19) for Γ̄ I(ξ ; τ̄ , η) is a
consequence of the singular behaviour of the leak-off function near the origin, ΓI ∼ ξ−2,
and the movement of borehole boundary ατ = τ̄−(1/2) in the ξ -space. Singularity ΓI ∼
ξ−2 itself results from Γ̄ ∼ ∂2Π/∂ξ2 on account that Ω̄ is uniform near ξ = 0, and from
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Figure 4. Profiles of αk = 10−7, τ = 10−2 and η = 0 for (a) leak-off Γ (ξ) and (b) fluid pressure Π(ξ).
The near borehole and near tip asymptotic solutions of Γ (ξ) in the I-vertex, i.e.

√
π/2048ξ−2 and

√
π(1 −

ξ)7/2/12, are compared in (a). The asymptotic solution of Π(ξ), −1/(2π) ln 2ξ , is compared in (b). A boundary
layer in ξ < 0.005 is observed.

the assumption that Π̄ ∼ ln 2ξ holds. But this expression for Π̄ is valid only provided
that the porous media flow equation (6.4) is dominated by the borehole injection at the
I-vertex. In other words, the leak-off induced term in (6.4),

G(ξ ;αk, τ̄ , η) ≡
√

τ̄ α2
k

∫ 1

ατ

Γ̄ (ζ, τ̄ , η)P̃
(
ξ, ζ, ατ

)
dζ, (6.24)

should be negligible compared with the injection term ln 2ξ . However, G(ξ) grows
unbounded when ατ → 0 if Γ̄ ∼ ξ−2. In fact, expanding G(ξ) near the origin yields

G(ξ) ≈
√

π

2
α2

k

24ξ2 (1 − η)3
√

τ̄ , ατ � ξ � 1, (6.25)

implying that G(ατ ) ∼ α2
k τ̄ 3/2. This result indicates the formation of a boundary layer

at ξ = ατ when τ̄ � 1. Under these conditions, the above expressions for Ω̄ I , Π̄ and
Γ̄ I have to be understood as outer solutions. In fact, numerical simulations show that for
τ̄ � 1.47/α

4/3
k (corresponding to τ � 1.47α

2/3
k and ΦI � 0.0698(1 − η)3) causes G(ξ)

to be large enough near the boundary to break the dominance of the injection-induced
component ln 2ξ in the pressure profile. Growth of leak-off Γ̄ with time causes a
progressive increase of flooding efficiency Φ̄, and eventually the departure of the solution
from the I-vertex.

We have not made any attempt to construct an explicit solution in the boundary layer
to be matched with the outer solution. Rather the solution was computed numerically
using an element size small enough to capture the boundary layer. Numerically computed
leak-off Γ (ξ) and pressure Π(ξ) can be found in figure 4 for αk = 10−7, τ = 10−2 and
η = 0. The leak-off profile Γ (ξ) illustrated in figure 4(a) confirms the existence of an
inner boundary layer and of an intermediate asymptotic region where Γ =

√
πτ/211ξ−2.

The tip asymptote Γ = √
πτ(1 − ξ)7/2/12 can also be seen in this figure. Moreover,

numerical simulations indicate that the boundary layer corresponds approximately to ξ ∈
[ατ , 0.562τ ] with τ ∈ [1.47α

2/3
k , 0.178], noting that the intermediate asymptote disappears

for αk > 0.042. The profile of Π(ξ) in figure 4(b) shows a combination of the boundary
layer and the outer solution Π̄(ξ) ∼ ln 2ξ .
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6.4. Large-time asymptote (fracture-flow regime, F-vertex)
At large time, the fracture becomes conductive enough that all the injected fluid leaks
into the rock through the fracture walls, i.e. ΦF � 1, with the subscript F used to denote
a quantity defined at the F-vertex. Furthermore, numerical results confirm that ΛF = 1
when ατ → 0 (τ → ∞), implying that the crack grows as � ∝ √

t like the radius of the
steady-state region. In this section we formulate a time series expansion of the solution
near the F-vertex. However, we show that this solution does not comply with the tip
conditions for leak-off Γ and aperture Ω discussed in § 2.7, which leads to the existence
of a boundary layer at the crack tip. The obtained asymptotic large-time solution, referred
to as the F0-solution, is thus only self-similar in the bulk.

6.4.1. F-vertex solution and near F-vertex solution
The large-time limits Λ → 1, Φ → 1 and ατ → 0 result in a simplification of the system
of (4.16)–(4.18). In particular, imposing that 2

√
τ
∫ 1

0 ΓF dξ = 1, or ΦF = 1, enables the
removal of the term proportional to ln ξ from the porous media flow equation (4.18). The
system of equations (4.16)–(4.18) is therefore simplified to

1
τ

∂

∂ξ

(
Ω3

F
∂ΠF

∂ξ

)
= ΓF,

(1 − η)ΠF = − 1
2π

√
τ

∫ 1

0
ΩF(ζ, τ )

ξ2 + ζ 2

(ξ2 − ζ 2)2 dζ,

ΠF = − ln 2
2π

−
√

τ

2π

∫ 1

0
ΓF(ζ, τ ) ln

∣∣∣ξ2 − ζ 2
∣∣∣ dζ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.26)

Replacing ΓF, ΠF and ΩF in the above system of equations by a regular asymptotic
expansion of the form SF = SF0τ

−β0 + SF1τ
−β1 , and balancing terms of the same orders

leads to the expansion

ΓF(ξ, τ ) = ΓF0(ξ)τ−(1/2) + ΓF1(ξ)τ−(3/4) + O(τ−1),

ΩF(ξ, τ ) = ΩF0(ξ)τ 1/4 + ΩF1(ξ)τ 0 + O(τ−(1/4)),

ΠF(ξ, τ ) = ΠF0(ξ)τ−(1/4) + ΠF1(ξ)τ−(1/2) + O(τ−(3/4)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.27)

with the zero-order solution governed by

∂

∂ξ

(
Ω3

F0
∂ΠF0

∂ξ

)
= ΓF0,

(1 − η)ΠF0 = − 1
2π

∫ 1

0
ΩF0(ζ )

ξ2 + ζ 2

(ξ2 − ζ 2)2 dζ,

∫ 1

0
ΓF0(ζ )ln

∣∣∣ξ2 − ζ 2
∣∣∣ dζ = − ln 2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.28)
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and for the first-order correction by

∂

∂ξ

(
Ω3

F0
∂ΠF1

∂ξ
+ 3Ω2

F0ΩF1
∂ΠF0

∂ξ

)
= ΓF1,

(1 − η)ΠF1 = − 1
2π

∫ 1

0
ΩF1(ζ )

ξ2 + ζ 2

(ξ2 − ζ 2)2 dζ,

ΠF0 = − 1
2π

∫ 1

0
ΓF1(ζ )ln

∣∣∣ξ2 − ζ 2
∣∣∣ dζ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.29)

The last equation of the system (6.28) can be directly solved for ΓF0(ξ) to yield

ΓF0 = 1

π
√

1 − ξ2
. (6.30)

The first two equations in (6.28) to be solved for ΩF0(ξ) and ΠF0(ξ) are actually similar
to those ruling the propagation of a plane strain hydraulic fracture in the viscosity/leak-off
dominated regime, with Carter leak-off. This solution – referred to as the M̃-solution
(Adachi & Detournay 2008; Hu & Garagash 2010) – is characterized by negligible storage
of fluid in the fracture and negligible toughness. Its construction assumes, according to
Carter’s model (Howard & Fast 1957), that the leak-off rate is inversely proportional to the
time elapsed since the time of the first exposure, i.e. g(x, t) ∼ (t − t0(x))−(1/2), where t0 is
the time when the crack tip was at position x. The similarity between the F0-solution and
the M̃-solution stems from the formal equivalence between expression (6.30) for leak-off
ΓF0 combined with a growth law � ∝ √

t and Carter’s leak-off model, even though the
underlying physics is quite different.

Taking into account the difference in the scaling factors between the equations governing
the F0- and M̃-solutions, the zero-order ΩF0(ξ ; η) and ΠF0(ξ ; η) can be written as

ΩF0 = (1 − η)1/4π−(1/4)ΩM̃(ξ), ΠF0 = (1 − η)−(3/4)π−(1/4)ΠM̃(ξ), (6.31a,b)

where aperture ΩM̃ and pressure ΠM̃ can be expressed as Frobenius expansions in terms
of Gegenbauer polynomials (Adachi & Detournay 2008). In particular, the leading terms
of crack aperture and fluid pressure at the borehole are given by

ΩwF0 = 1.447(1 − η)1/4τ 1/4, ΠwF0 = 0.424(1 − η)−(3/4)τ−(1/4). (6.32a,b)

The first-order solution {ΓF1, ΠF1, ΩF1} is then calculated by numerically solving the
linear system of (6.29) using expressions (6.31a,b) for ΩF0(ξ) and ΠF0(ξ). Since the
lubrication equation in the first order is linearized by the time series expansion, it is easily
solved. It can be verified that

ΓF1 ∝ (1 − η)−(3/4), ΩF1 ∝ (1 − η)−(1/2), ΠF1 ∝ (1 − η)−(3/2). (6.33a–c)

6.4.2. Crack tip boundary layer at the F-vertex
The zero-order leak-off (6.30) is singular at the crack tip ΓF0 ∼ (1 − ξ)−(1/2) and, thus,
in contradiction with the expected non-singular crack tip asymptotic behaviour Γ ∼
(1 − ξ)7/2; see (2.17). Furthermore, as discussed in § 2.7, the fracture propagation criterion
(4.19a,b) requires crack aperture Ω ∼ (1 − ξ)3/2 and fluid pressure Π to be finite at the
tip. However, these two requirements are not fulfilled by the zero-order solution (6.31a,b),
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Figure 5. Leak-off profile Γ (ξ) obtained by F-vertex asymptotic solutions and numerical solutions for
τ = 104 and η = 0.

which is characterized by tip asymptotes ΩF0 ∼ (1 − ξ)5/8 and ΠF0 ∼ (1 − ξ)−(3/8)

(Adachi & Detournay 2008). These discrepancies point to the existence of a boundary layer
at the crack tip near the F-vertex, and also suggest that the tip asymptotes of the zero-order
solution actually represent the intermediate asymptotes of the F-vertex solution.

Figure 5 compares the leak-off profile Γ (ξ) numerically computed for τ = 104 and
η = 0 with the zero-order solution ΓF0τ

−(1/2) and the first two orders time expansion
ΓF0τ

−(1/2) + ΓF1τ
−(3/4). This figure confirms that the F-vertex asymptotic solution with

the two leading terms can be understood as an (approximated) outer solution to the
problem and that a boundary layer indeed exists at the crack tip. Numerical simulations
indicate that the size of the boundary layer shrinks with increasing time as τ−(1/4).

The numerical solutions calculated at τ = {106, 107} with η = 0 are shown as functions
of the distance from the crack tip (1 − ξ ) in the log-log plots of figure 6. To remove
the asymptotic dependence on time of the solution, Γ τ 1/2 and Ωτ−(1/4) are plotted
instead of Γ and Ω . Figures 6(a) and 6(b) show the transition between the tip asymptotic
solutions of the boundary layer and of the zero-order F-vertex series expansion, for
Γ and Ω , respectively. The results confirm that the autonomous tip asymptotes of the
F0-solution indeed act as intermediate asymptotes, which shield the global solution from
the tip boundary layer at large time. The numerical pressure profiles shown in figure 6(c)
also indicate that pressure Π is finite at the crack tip. To conclude this analysis of the
large-time solution, it is worth pointing out that the existence of a tip boundary layer at
the F-vertex can be traced to the conflict between the singular leak-off at the crack tip
ΓF0 ∼ (1 − ξ)−(1/2) and the non-singular expected asymptote Γ ∼ (1 − ξ)7/2.

7. Numerical results

This section describes a series of results obtained by solving the system of equations
(4.16)–(4.18) using the algorithm described in Appendix A.

7.1. Numerical solution near vertices
First, we compare the numerical solutions computed for αk = 10−6, τ = {1.15 ×
10−11, 10−7, 104} and η = {0, 0.5} with the asymptotic solutions derived in § 6. The
borehole radius αk and time τ were selected to ensure that the numerical solutions are
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Figure 6. Numerical results for (a) leak-off Γ τ 1/2, (b) aperture Ωτ−(1/4) and (c) fluid pressure |Π | near the
tip at the large time (F-vertex) with logarithmic scale axes.

in the neighbourhood of the three vertices E, I and F. The two values of η bracket the
range of poroelastic effects, which are inexistent if η = 0 but maximum if η = 1/2.

Figure 7 illustrates the fluid-pressure profile Π and crack-aperture profile Ω on the
crack C̃, at the three vertices. These quantities have been scaled by their borehole values.
The scaled borehole radius is of order O(0.1) at the E-vertex, but ατ � 1 at the I- and
F-vertices. In particular, ατ = 0.37 for η = 0 and ατ = 0.71 for η = 1/2 at the E-vertex,
and, thus, the E-vertex solution in figure 7 starts from the middle of the plots. The
poroelastic coefficient η has hardly any effect on the I- and F-vertex scaled solutions
shown in figure 7, as these solutions are proportional to a power of (1 − η), which is
cancelled when divided by Ωw and Πw. However, near the E-vertex, there is a large
dependence of ατ on η, due to its influence on crack length Λ̄.

The pore pressure field is significantly different at the three vertices as confirmed by
the contour plots of Π(ξ, ζ ) in figure 8; there is indeed a radial-flow regime at the E- and
I-vertices and a fracture-flow regime at the F-vertex.

7.2. Numerical solutions
Numerical simulations have been conducted to track the evolution of the waterflooding
process from fracture initiation to the large-time self-similar fracture-flow regime.
The histories of Πw1, Ωw, Λ and Φ, computed for αk = {10−3, 10−1, 10} and
η = {0, 0.25, 0.5}, are shown in figure 9. Asymptotic solutions for η = 0.25 at the E-,
I- and F-vertices show good agreement with the numerical results; see figure 9.

The numerical results confirm that the borehole pressure increases with time in the
radial-flow regime (6.7) but decreases with time in the fracture-flow regime (6.32b); a peak
pressure therefore exists at an intermediate time between the two asymptotic solutions.
This peak pressure is not related to fracture initiation (borehole breakdown), but reflects
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Figure 7. Scaled (a) crack aperture Ω(ξ)/Ωw and (b) pressure Π(ξ)/Πw near the E-, I- and F-vertices with
poroelastic coefficient η = {0, 0.5}.

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–1.0 –0.5 0 0.5 1.0 1.5 –1.5

–1.0

–0.5

0

0.5

1.0

1.5

–1.0 –0.5 0 0.5 1.0 1.5 –1.5

–1.0

–0.5

0

0.5

1.0

1.5

–1.0

–0.1

0.1

0.2

0

–0.2

–0.5 0 0.5 1.0 1.5

(a) (b) (c)

Figure 8. Pressure field Π(ξ, ζ ) for time τ = {10−11, 10−4, 106} with parameters αk = 10−6 and η = 0.
Borehole boundary and bi-wing crack are plotted with thick solid lines, although the scaled boreholes in (b,c)
are too small to be observed. (a) τ = 10−11, E-vertex, (b) τ = 10−4, I-vertex and (c) τ = 106, F-vertex.

the transition between the two flow regimes. The borehole pressure is not affected by the
poroelastic coefficient η in the radial-flow regime, but is amplified by (1 − η)−(1/4) in the
fracture-flow regime, as predicted by the asymptotic solutions.

The crack aperture at the borehole inlet is shown in figure 9(b). Asymptotic solutions
for the E-vertex (6.10), I-vertex (6.22) and F-vertex (6.32a) are also drawn in this figure.
Due to the pore pressure induced volumetric strain, the fracture aperture decreases as the
poroelastic coefficient η increases. The numerical results show that the I-vertex regime is
inexistent for αk = 10. The absence of the I-vertex regime is also confirmed by the solution
trajectory in the {Φ, Λ} phase figure for αk = 10, which can be seen to be deflected from
the I-vertex in figure 2.

Figure 9(c) illustrates the increase of crack length Λ with τ , especially in the radial-flow
regime, from the fracture initial value (6.9b) to the KGD crack edge as Λ = 1. The
solution Λ(τ/α2

k ) for the radial-flow regime shown in figure 3 matches the numerical
result well when αk is small. However, a larger error is found for αk = 10, as expected
from the deflection of the solution trajectory for large αk from the radial-flow edge shown
in figure 2. The evolution of flooding efficiency Φ plotted in figure 9(d) illustrates the
transition from radial flow (Φ = 0) to fracture flow (Φ = 1).
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Figure 9. Evolution of (a) borehole pressure Πw1, (b) crack aperture at inlet Ωw, (c) scaled crack length Λ

and (d) flooding efficiency Φ for αk = {10−3, 10−1, 10} and η = {0, 0.25, 0.5}. Asymptotic solutions in E-, I-
and F-vertices for η = 0.25 are shown in dashed lines.

7.3. Peak pressure
The dependence of the peak pressure on αk and η is illustrated in figure 10(a),
with computations conducted for αk = {10−4, 10−3, . . . , 10} and η = {0, 0.25, 0.5}. The
corresponding time τpeak to reach the peak pressure is shown in figure 10(b). Figure 11(a)
shows the variation of crack length Λpeak(αk; η), reached when the injection pressure
is maximum, with αk for η = {0, 0.25, 0.5}, while figure 11(b) shows the corresponding
ratio �peak/a = Λpeak

√
τpeak/αk. The points {Φ, Λ} pertaining to the maximum injection

pressure are also marked in figure 2.

8. Discussion

8.1. Magnitude of scales
The magnitudes of the physical parameters, μ, k or κ , c, E′, σ0 − p0, Q0 and a, have huge
influences on the response of the system. Even if we restrict the values of the parameters to
ranges that are expected in the context of waterflooding operations, there remains a large
range of variation for the scales, as we show below.

Consider these plausible orders of magnitude for the above parameters:
μ ≈ 10−9 MPa s, k = O(10−13 ∼ 10−12) m2 – corresponding to O(0.1 ∼ 1) Darcy – or
κ = O(10−4 ∼ 10−3) m2 (MPa s)−1, c = O(0.1 ∼ 1) m2 s−1, E′ = O(103 ∼ 104) MPa,
σ0 − p0 = O(10) MPa, Q0 = O(10−3) m2 s−1 (noting that the volumetric injection rate
into a well Q0 = O(10−2) m3 s−1 – corresponding to Q0 = O(104) bbl day−1 and a
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Figure 10. (a) Peak borehole pressure Πw varies with αk = {10−4, 10−3, . . . , 10} and η = {0, 0.25, 0.5}; (b)
corresponding time τ to reach the peak pressure.
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Figure 11. (a) Scaled crack length Λ and (b) the ratio of crack length compared with borehole radius �/a
when the borehole pressure reaches peak value.

reservoir thickness H = O(10) m). According to the definition (4.13a–d), we deduce
from these values that the order of magnitude of the scales other than tk are as follows:
�k = O(10−2 ∼ 10) m, pk = O(1 ∼ 10) MPa, wk = O(10−5 ∼ 10−3) m, gk = O(10−4

∼ 1) m s−1. Furthermore, given that the borehole a = O(0.1) m, the number αk is
estimated to be of order αk = O(10−2 ∼ 10).

The time scale tk requires special consideration in view of the presence of the
exponential term in its definition (4.15). First we express tk as

tk = Mt∗, t∗ = �2
k

16c
, M = exp

(
4π

(1 − η)I + γ − η

1 − η

)
, I = Q0

κ(σ0 − p0)
.

(8.1a–d)

As discussed below in § 8.2, the dimensionless injection rate I is restricted by the
inequality I � 4 (for η = 1/4), to ensure that the fracture indeed grows inside the
pseudo steady-state region. In view of the estimated orders of magnitude of �k and
c, t∗ = O(10−4 ∼ 102) s. The minimum value of M (I = 4, η = 1/4) is Mmin ≈ 100,
tk = O(10−2 ∼ 104) s, which translates into a time to peak pressure tp = O(1 ∼ 103) s,
according to figure 10 and after noting that αk ∼ �−1

k . However, since M exponentially
increases with I−1, the above time estimates are very sensitive to the value of I. For
example, if I = 1, M ≈ 2 × 107 and the time to peak could become as large as a few
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years if one adopts the upper bound for t∗. Smaller values of I implies that the flow pattern
remains essentially radial and that the fracture will always be hydraulically invisible.

8.2. Model consistency
The proposed model relies on the essential assumption that the hydraulic fracture
propagates inside the quasi-stationary region, where the pore pressure is effectively
governed by the Laplace equation. Thus, it is required that

�(t) < rs(t), (8.2)

where rs(t) = χ
√

ct is the outer radius of the quasi-stationary region. Number χ depends
on the error in approximating E1(z2) by − ln(z2) − γ , where z = r/

√
4ct; for a 1 % error,

χ � 0.35. An upper bound �u to the crack length is obtained by imposing Λ = 1 in � =
Λ�k

√
t/tk, which also implies that �u ∼ √

t. Since rs and �u have the same square root
dependence of time, the requirement (8.2) can be translated as

κ

Q0
(σ0 − p0) � 1

π

(
1 − 5η

4

)
, (8.3)

after noting the scales (4.13a–d) and (4.15), replacing (8.2) by the inequality ln �u < ln rs,
and approximating ln(4/χ) − γ /2 � 2. Finally, after adopting η = 1/4, the criterion (8.2)
simplifies to

Q0 � 4κ(σ0 − p0) or I � 4. (8.4)

Given the orders of magnitude for Q0, κ and σ0 − p0 summarized in the previous
section, we can conclude that the consistency criterion (8.4) is generally met in
waterflooding operations.

As shown next in § 8.3, the fracture length reached at the peak borehole pressure is
usually small (� = O(1) m) compared with a typical reservoir thickness H = O(10) m.
Hence, the KGD-type fracture is an appropriate model for this problem.

8.3. Example
Consider the following set of parameters a = 0.2 m, E = 3 × 104 MPa, ν = 0.3,
η = 0.25, μ = 2 × 10−9 MPa s, κ = 4 × 10−4 m2 (MPa s)−1, c = 0.8 m2 s−1, Q0 =
6.5 × 10−3 m2 s−1, σ0 = 36 MPa, p0 = 20 MPa. These can be translated into the
following scales: pk = 16.25 MPa, wk = 1.4 × 10−4 m, �k = 0.28 m, gk = 0.023 m s−1,
tk = 1.2 × 105 s, td = 943 s and the scaled borehole radius αk = 0.71. As a result, the
borehole pressure reaches peak value 43.8 MPa after 45 days, when the crack length is
� = 1.5 m. When the pressure reaches the peak, the flooding efficiency Φ = 27.1 % and
the scaled fracture length Λ = 0.92. This point is close to the KGD crack edge in the phase
diagram of figure 2, lying between the I- and F-vertices.

9. Conclusions

This paper has described a 2-D model of a hydraulic fracture propagating in a poroelastic
medium. In recognition to the particular context of waterflooding of weakly consolidated,
highly permeable reservoir rocks, three key assumptions were adopted in constructing this
model: namely, (i) the volume of fluid stored in the hydraulic fracture is negligibly small
compared with the injected volume; (ii) the crack is propagating within a domain where
the hydraulic fields are quasi-stationary; and (iii) the toughness of the rock is negligible.
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In contrast to the classical models of hydraulic fracture, the study tracks the propagation
of the fracture from its initiation at the borehole and takes into account the partitioning
of the injected fluid between the borehole and the fracture as well as the large-scale
perturbation of the pore pressure caused by injection. The model, which is based on
poroelasticity, fracture mechanics and lubrication theory, is ultimately described by a
nonlinear system of integro-differential equations, formulated in terms of variables that are
defined on the hydraulic fracture. A scaling analysis reveals that the system only depends
on dimensionless time τ and on two other parameters, the scaled borehole radius αk and
the poroelastic coefficient η. Here, time is a parameter and not a variable, a consequence
of having restricted consideration to asymptotic cases when the fracture propagates in a
region where the pore pressure is quasi-stationary. Discretization of the integro-differential
system of equations leads to the formulation of a nonlinear system of algebraic equations,
which can be solved numerically for particular combinations of time τ , number αk and
poroelastic coefficient η.

The evolution of the system was visualized as a trajectory in the phase space of the
fracture length Λ and the flooding efficiency Φ. Two time scales td and tk, related by
αk = √

td/tk, were naturally defined. On the one hand, td characterizes the evolution
of the system under the limiting condition αk ≪ 1 when the crack initiates at the
borehole and becomes large compared with the borehole radius with the fracture remaining
hydraulically invisible (Φ = 0). On the other hand, tk characterizes the evolution of
the system, also under the condition αk ≪ 1, with a transition between a radial- to
fracture-flow regime during which the borehole always is mechanically invisible (Λ = 1).
Three time asymptotic solutions were further identified corresponding to vertices in the
phase space: small time at the E-vertex (t � td), intermediate time at the I-vertex under
the condition αk ≪ 1 (td � t � tk) and large time at the F-vertex (t � tk).

The solution reveals that the borehole pressure pw does not evolve monotonically.
Indeed, pw increases with time in the early time radial-flow regime but decreases in the late
time fracture-flow regime. Thus, the peak pressure does not correspond to a breakdown
of the formation, as usually assumed, but rather to a transition between two regimes of
porous media flow. However, this problem exhibits an extreme sensitivity of the time
scales on the dimensionless injection rate I. If I � 1, the time to reach the peak pressure
could become so large that the peak pressure can not be observed in field operations;
in other words, the fracture remains hydraulically invisible. Finally, it was found that the
poroelastic coefficient η significantly affects the response of the system, consistent with the
expected large-scale perturbation of the pore pressure field caused by continuous injection
of fluid over long periods of time.

A phenomenon that has been neglected in this study is the deposition on the fracture and
borehole walls of impurities present in the injected water. Pore plugging indeed affects the
efficiency of the waterflooding treatment (Sharma et al. 2000), by offering extra hydraulic
resistance that causes a reduction in the leak-off rate but at the same time promotes fracture
growth. The plugging of the fracture walls by impurities leads to a reduction of the peak
borehole pressure and of the time needed to reach this peak. Future work will address this
issue by adding an evolving permeable membrane on the walls of the borehole and the
fracture. This membrane, which is characterized by a hydraulic resistance increasing with
time, introduces a jump between the fluid pressure in the fracture and the pore pressure
at the fracture walls. Inspired by models of filter cake build-up, the hydraulic resistance
will be assumed to be proportional to the local specific leak-off volume. Pore plugging
will bring another parameter in the formulation of the problem, which can be recast as a
time scale. Finally, the reservoir thickness, not considered in this study, will be addressed
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in future work based on the extended PKN (Perkins–Kern–Nordgren) model (Dontsov &
Peirce 2015).
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Appendix A. Numerical algorithm

This appendix outlines the numerical scheme devised to calculate the solution for an
arbitrary set of the parameters {τ ;αk, η}. The algorithm relies on formulating a nonlinear
system of algebraic equations derived by combining a finite volume approximation of the
nonlinear lubrication equation (4.16), discrete forms of the elasticity equation (4.17) and of
the porous media flow equation (4.18), and a discretized propagation criterion. The system
of equations is based on a discretization of the crack C̃ into n elements of constant length
h = (1 − ατ ) /n.

A.1. Nonlinear system of equations
The discrete solution consists of 3n + 2 unknown variables: Λ, Πw, and the set {Π, Ω, Γ },
where Π (and similarly for Ω and Γ ) is a vector consisting of the discrete values Πi,
i = 1, . . . , n. The variables Ωi and Γi represent, respectively, the assumed uniform values
of the crack aperture and leak-off on the ith element, while Πi corresponds to the fluid
pressure at the centre ξi = ατ + (i − 1

2)h of the ith element.
The 3n + 2 discrete equations governing these variables with a given set of {τ ;αk, η} are

determined as follows. First, discretizing (4.17) and (4.18) to calculate Πi for i = 1, . . . , n
leads to

(1 − η)Πi = −
[
(1 − η)Πw − η

2π

]
α2

τ

ξ2
i

− 1
4πΛ

√
τ

n∑
j=1

ΩjH̆ij, i = 1, . . . , n, (A1)

Πi = − 1
2π

ln
(
2Λξi

)− Λ
√

τ

2π

n∑
j=1

ΓjP̂ij, i = 1, . . . , n. (A2)

An additional equation for Πw,

Πw = − 1
2π

ln

(
2αk√

τ

)
− Λ

√
τ

π

n∑
j=1

ΓjP̂wj, (A3)

is deduced from

Πw = − 1
2π

ln

(
2αk√

τ

)
− Λ

√
τ

π

∫ 1

ατ

Γ (ζ ) ln
(

ζ

ατ

)
dζ, (A4)
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which is obtained by setting ξ = ατ into (4.18). The simplified kernel function
P̃
(
ατ , ζ, ατ

) = 2 ln(ζ/ατ ) is used in (A4) and the auxiliary functions H̆ij, P̂ij and P̂wj
are defined in Appendix B.

Next, an additional set of n equations are formulated by discretizing the lubrication
equation (4.16) with the finite volume method

1
Λ2τh2

[
Ki−1/2Πi−1 − (

Ki−1/2 + Ki+1/2
)
Πi + Ki+1/2Πi+1

]
= Γi, i = 2, . . . , n − 1,

(A5a)

Ω3
1

Λ2τh2

(
8
3
Πw − 4Π1 + 4

3
Π2

)
= Γ1, (A5b)

Kn−1/2

Λ2τh2

(
Πn − Πn−1

) = Γn, (A5c)

noting that the flux condition (4.19b) has been used for the tip element n. The coefficients
Ki−1/2 appearing in the above equations are defined as

Ki−1/2 = Ω3
i−1 + Ω3

i

2
, i = 2, . . . , n. (A6)

Finally, the fracture propagation criterion (4.19a) is enforced by imposing

Ωn−1 = 33/2Ωn, (A7)

which takes advantage of the uniformity of the element size.
The set of equations (A1)–(A3), (A5), (A7) constitute 3n + 2 equations in terms of

3n + 2 unknown variables {Λ, Πw, Π, Ω, Γ }. The element size h and ξi depend on ατ ,
which itself depends on the unknown variable Λ. The crack length Λ is thus deeply
coupled in the discretized equations.

Recognizing that all the equations at the exception of the lubrication equation are linear
given Λ, we devised a numerical scheme that iterates on Λ, with the fracture propagation
criterion (A7) used as the convergence criterion. Thus, at each iteration step, the linear
relations between {Πw, Π, Ω} and Γ are deduced from (A1)–(A3) and then substituted
into the lubrication equation (A5) to build n nonlinear equations in terms of Γ only. Once
the n unknown Γ have been solved, the variables {Πw, Π, Ω} are recalculated based on the
linear relationships. The obtained Ωn and Ωn−1 are then substituted into the convergence
criterion (A7) to update Λ for the next iteration. The numerical nonlinear solver FindRoot
of Mathematica is used in the loop to solve the coupled equations.

Once the solution of the governing equations has converged, the flooding efficiency Φ

is computed from

Φ = 2Λ
√

τh
n∑

i=1

Γi, (A8)

which is a discretized form of (4.21).

A.2. Convergence of the numerical scheme
The convergence of the numerical scheme is studied by repeatedly solving the problem for
αk = 10−1, τ = 1 and η = 0 with n = {5, 10, . . . , 320}. The variation of efficiency Φ and
borehole pressure Πw1 with n is plotted in figure 12.
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Figure 12. The values of (a) flooding efficiency Φ and (b) borehole pressure Πw computed with different
numbers of elements n = {5, 10, . . . , 320}. Results pertain to αk = 10−1, τ = 1 and η = 0.

These results show that the numerical scheme converges rapidly as the number of
elements increases. For the case n = 40, the relative error of Φ comparing to n = 320 is
less than 2 %. Considering the balance between accuracy and computational cost, n = 50
is used in numerical calculations reported in this paper.

Appendix B. Integral of kernel functions over elements

The auxiliary functions used in Appendix A to discretize the elasticity and the porous
medium flow equations are listed in this appendix. These auxiliary functions are available
in a Mathematica notebook (Gao & Detournay 2020c), which also includes the equations
for calculating the stress and pore pressure fields in the whole domain, such as shown in
figure 8.

In the elasticity equation (A1), an auxiliary function H̆ij is defined as

H̆ij ≡ H̃
(

ξi, ξj + h
2
, ατ

)
− H̃

(
ξi, ξj − h

2
, ατ

)
, (B1)

where the definition of H̃ can be found in (3.11) and (3.12).
In the porous medium flow equation (A2), the auxiliary function P̂ij is defined as

P̂ij ≡
∫ ξj+h/2

ξj−h/2
P̃(ξ, ζ, ατ ) dζ

= S
(

ξi, ατ , ξj − h
2
, ξj + h

2

)
+ S

(
−ξi, ατ , ξj − h

2
, ξj + h

2

)
, (B2)

where the function S denotes the integral of P(ξ, ζ, α) on ζ ∈ [ζ1, ζ2],

S(ξ, α, ζ1, ζ2) ≡
∫ ζ2

ζ1

P(ξ, ζ, α) dζ

=
(

ζ1 − α2

ξ

)
ln
∣∣∣α2 − ξζ1

∣∣∣−
(

ζ2 − α2

ξ

)
ln
∣∣∣α2 − ξζ2

∣∣∣
+ (ξ − ζ1) ln

∣∣ξ − ζ1
∣∣+ (ζ2 − ξ) ln

∣∣ξ − ζ2
∣∣

− ζ1 ln
∣∣ζ1
∣∣+ ζ2 ln

∣∣ζ2
∣∣+ ζ1 − ζ2. (B3)
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To obtain borehole pressure Πw, the auxiliary function P̂wj used in (A3) is defined as

P̂wj ≡
∫ ξj+h/2

ξj−h/2
ln

ζ

ατ

dζ = ξj ln
ξj + h

2

ξj − h
2

+ h
2

ln

(
ξ2

j − h2

4

)
− h − h ln ατ . (B4)
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